7.9 The arithmetical representation of GF(9)

Example 7.5.2, Remark 7.5.3, Example 7.2.2, Example 7.7.7 submirize the computational approach allowing to produce an arthmetical model for a Galois field of characteristic 2.

We discuss here an arithmetical model for a finite field F, char $(F) \neq 2$, using as example the easy, but not trivial, case of GF(9).

For $n = 9 = 3^2$ we have $n - 1 = 8 = 2^3$ so that

$$g_8(X) := X^8 - 1 \in \mathbb{Z}_3[X]$$

factorizies as

$$g_8 = \Phi_1 \Phi_2 \Phi_4 \Phi_8$$

where the four factors are the cyclotomic polynomials over \mathbb{Z}_3 which have the values

$$\begin{array}{rcl} \varPhi_1 & := & X-1, \\ \varPhi_2 & := & \frac{\varPhi_1(X^2)}{\varPhi_1(X)} & = & X+1, \\ \varPhi_4 & := & \varPhi_2(X^2) & = & X^2+1, \\ \varPhi_8 & := & \varPhi_4(X^2) & = & X^4+1. \end{array}$$

According to Theorem 7.2.2, $X^9 - X \in \mathbb{Z}_3[X]$ factorizes into the 3 trivial linear factors $X, \Phi_1 = X - 1$ and $\Phi_2 = X + 1$ and into all irreducible polynomials of degree 2 over \mathbb{Z}_3 ; an obvious degree count allows to deduce that they are $\frac{9-3}{2} = 3$ and it is sufficient to list all 9 polynomials

$$h(X) := X^{2} + aX + b, a, b \in \mathbb{Z}_{3} = \{-1, 0, 1\}$$

and preserve those which satisfy $h(-1)h(0)h(1) \neq 0$ in order to obtain the required 3 irreducible factors of degree 2 of $\frac{X^8-1}{X^2-1}$, namely:

$$X^2 + X - 1$$
, $X^2 - X - 1$ and $X^2 + 1 = \Phi_4$.

Of course we have

$$\Phi_8 = X^4 + 1 = (X^2 + X - 1) \cdot (X^2 - X - 1)$$

as it is easy to verify.

Remark that each root ξ of a factor of $\Phi_4 = X^2 + 1$ is not a primitive element of GF(9) since $\xi^4 = 1$; in fact they satisfy $\xi^2 = -1$ and, hence, $\xi^4 = 1$.

In order to obtain a primitive element we thus select a factor of Φ_8 , *e.g.* $f := X^2 + X - 1$ so that any root ξ of f satisfies the relation $\xi^2 = -\xi + 1$. Thus a recursive application of the formula

$$r_i(X) = \mathbf{Rem}(Xr_{i-1}, f) \in \mathbb{Z}_3(X)/f$$

using the seed r(1) = X, gives us the logarithmic table of $GF(3^2)$ reported in Tab. 7.1 whose correspinding Zech table is reported in Tab. 7.2

Table 7.1. Logarithm table for GF(9)

i	r(i)	i	r(i)
1	ξ	5	$-\xi$
2	$-\xi + 1$	6	$\xi - 1$
3	$-\xi - 1$	7	$\xi + 1$
4	-1	8	1

Table 7.2. Zech table for GF(9)

i	Z(i)	i	Z(i)
1	7	0	4
2	3	7	6
3	5	6	1
4	*	5	2

To complete our analysis we need to associate the four cycles $\{i, 3i\}$ of the permutation $\pi_3: \mathbb{Z}_8 \to \mathbb{Z}_8$ with the corresponding irreducible factors of g_8 , which can be obtained by computing $(X - \xi^i)(X - \xi^{3i})$; we obtain:

$$\begin{array}{c|c} \{1,3\} & X^2 + X - 1 \\ \{2,6\} & X^2 + 1 \\ \{4\} & X + 1 \\ \{5,7\} & X^2 - X - 1 \\ \{0\} & X - 1 \end{array}$$

However, the relation can be directly deduced by an easy argument:

- The cycle {1,3} of course is related to the minimal polynomial f of ξ.
 Remarking that the other factor g = X² − X − 1 of Φ₈ satisfies the relation

$$X^2g(\frac{1}{X}) = -f(X)$$

so that

$$f(\theta) = 0 \iff f(\theta^{-1}) = 0$$

and that for each $\theta = \xi^i$ we have $\theta^{-1} = \xi^{8-i}$, the cycle associated to $g = X^2 - X - 1$ is $8 - \{1, 3\} = \{5, 7\}$. • Finally $\theta = \xi^2$ necessarily satisfy $\theta^4 = \xi^8 = 1$ so it is a root of Φ_4 .