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Abstract

This work is devoted to attacking the small scale variants of the
Advanced Encryption Standard (AES) via systems that contain only
the initial key variables. To this end, we introduce a system of equa-
tions that naturally arises in the AES, and then eliminate all the inter-
mediate variables via normal form reductions. The resulting system
in key variables only is solved then. We also consider a possibility to
apply our method in the meet-in-the-middle scenario especially with
several plaintext/ciphertext pairs. We elaborate on the method fur-
ther by looking for subsystems which contain fewer variables and are
overdetermined, thus facilitating solving the large system.
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1 Introduction

In this paper we investigate several methods for obtaining and solving key
variables only equations, which appear in cryptanalysing the small scale vari-
ants of the Advanced Encryption Standard (AES). The cipher Rijndael was
chosen as the AES in 2001, and was published as a FIPS 197 standard [30].
AES provides fast and simple symmetric encryptions, while maintaining high
resistance to (known) attacks. Simplicity of the AES was criticized since the
moment it had appeared, but no one has proposed an attack, which would,
at least theoretically, break the AES. We will concentrate on the so-called
algebraic attacks. They emerged in the papers of Courtois [21] and Murphy
et. al. [29, 18]. The idea is to present the action of the AES block cipher
as a system of algebraic equations over a finite field. Then, solving such a
system would reveal a secret key. In [21] Courtois and Pieprzyk construct
a system over GF(2), whereas in [29] Murphy et. al. propose to consider
the system over GF(28). Courtois obtained his system directly from the
AES, wheres Murphy et. al. proposed an embedding of the AES state space
to a larger space. Different manipulations and variations of these meth-
ods were considered since their appearance. Some works in this area are
[17, 16, 12, 13, 32, 29, 18, 19, 1, 2, 21, 15, 31]. So far no method presented
any real threat to AES. For better understanding and in order to facilitate
experimenting, small scale variants of AES were proposed [19]. We mention
also that quite a few multivariate public key cryptosystems and signature
schemes were attacked with algebraic methods. Some works in this area in-
clude [24, 5, 22, 25].

We elaborate on the initial proposals. The fact that the equations men-
tioned above have many auxiliary variables, obstructs one from considering
several plaintext/ciphertext pairs. So we aim at obtaining systems that con-
tain only variables responsible for an unknown key. We use the fact that most
part of the equations above already constitutes a Gröbner basis for a suitable
ordering and then apply normal form computations. The idea of using the
zero-dimensional Gröbner-representation for AES was first proposed in [12]
and also considered in [32]. The main difference of our approach from the for-
mer is that we work over GF(2) and we include the field equations still being
able to exploit the Gröbner structure; we obtain equations in key-variables
only and solve them. The latter approach is more similar to ours, but the
difference is that again we work with equations over GF(2), rather than with
the BES equations as in [32]. In this respect we believe that optimized data
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structures of PolyBoRi [8], which is the main tool in our experiments, yield
an advantage. Also we provide a solid experimental material, which was not
done in [32].

The contribution of this paper as we see it is the following two points:

1. Cryptanalytic part. The method of obtaining and solving equations
in key variables only coming from the small scale variants of AES.
Applying this method in a framework of the meet-in-the-middle-attack,
use of several plaintext/ciphertext pairs.

2. Symbolic computations part. Using PolyBoRi as a tool to implement
the method in (1). In particular special data structures for operat-
ing with Boolean polynomials, computing normal forms, and Gröbner
bases efficiently, supposedly give an advantage against using general
purpose computer algebra systems. Therefore the experimental results
we present should be considered also from this point.

The paper is organized as follows. In Section 2 we recall necessary notions
from computational algebra and give a brief algebraic description of the AES
and the small scale variants thereof. In Section 3 we show how corresponding
systems of equations over GF(2) are obtained. We note that they actually
can be written in different ways. This can result in performance improve-
ments, which have partially been presented in [9]. Then we show how to
obtain systems with key variables only via normal form computations. Some
experiments are discussed. We move further in Section 4 to considering the
meet-in-the-middle attack. Some improvements of this attack are then pre-
sented in Section 5. We finish with the discussion of obtained results and
conclusion.

An extended abstract of a preliminary version of this work is in [7].

2 Background

2.1 Algebraic basics

In this section, we recall some algebraic basics, including classical notions for
the treatment of polynomial systems, as well as basic definitions and results
from computational algebra. For a more detailed treatment of the subject
see the book of [26] and the references therein.
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Let P = GF(2)[x1, . . . , xn] be the polynomial ring over the field GF(2). In
this section we explain notions and state result in terms of GF(2)[x1, . . . , xn],
but most of the things here hold also for a polynomial ring over an arbitrary
field. A monomial ordering on P , more precisely, on the set of monomials
{xα = xα1

1 · . . . · xαn

n |α ∈ N
n}, is a well ordering “>” (i. e. each nonempty set

has a smallest element with respect to “>”) with the following additional
property: xα > xβ ⇒ xα+γ > xβ+γ , for γ ∈ N

n. Let f =
∑

α cα · xα

(cα ∈ GF(2)) be a polynomial. If f 6= 0 then LM(f) denotes the leading
monomial of f , the biggest monomial with respect to “>” occurring in f
with a non-zero coefficient. Denote also by LT(f) the leading term of f , i. e.
the leading monomial times the corresponding coefficient. Moreover, we set
tail(f) = f − LT(f).

If F ⊂ P is any subset, L (F ) denotes the leading ideal of F , i. e. the ideal
in P generated by {LM(f)|f ∈ F\{0}}. A monomial m is called a standard
monomial for an ideal I, if m 6∈ L (I).

The S-polynomial of f, g ∈ P\{0} with leading monomials LM(f) = xα

and LM(g) = xβ is defined by

spoly(f, g) = xγ−αf − xγ−βg,

where γ = (max(α1, β1), . . . , max(αn, βn)). Also, we recall that a finite set
G ⊂ P is called a Gröbner basis of an ideal I ⊂ P , if {LM(g)|g ∈ G\{0}}
generates L (I) in the ring P and the inclusion G ⊂ I holds.

Definition 2.1 (Standard representation, reduced normal form). Let
f, g1, . . . gm ∈ P , and let h1, . . . , hm ∈ P . Then

f =

m
∑

i=1

hi · gi,

is called a standard representation of f w. r. t. g1, . . . , gm, if hi ·gi = 0 for all i,
or LM(hi · gi) ≤ LM(f) otherwise.

A polynomial f is said to be reduced against a generating system G, if
and only if supp(f)∩L (G) = ∅. A polynomial r is called the reduced normal
form of f against G, if and only if it is reduced against G and f − r has
standard representation with respect to G. As the reduced normal form is
unique, we may denote this by r = NF(f, G).
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Theorem 2.2 (Buchberger’s criterion, cf. e.g Theorem 1.7.3 [26]).
Let I be an ideal from GF(2)[x1, . . . , xn] and G = {g1, . . . , gs} ⊂ I. The
following are equivalent:

1. G is a Gröbner basis of I.

2. NF(f |G) = 0 for all f ∈ I.

3. Each f ∈ I has a standard representation with respect to G.

4. G generates I and NF(spoly(gi, gj)|G) = 0 for i, j = 1, . . . , s.

5. G generates I and NF(spoly(gi, gj)|Gij) = 0 for a suitable subset Gij ⊂
G and i, j = 1, . . . , s.

The PolyBoRi framework is designed for Gröbner basis computations
with the so-called Boolean polynomials as canonical representatives of residue
classes in GF(2)[x1, . . . , xn]/〈x2

1 + x1, . . . , x
2
n + xn〉. In [10] it is described,

how to apply classical Gröbner basis theory for polynomial rings to this
quotient ring. On the description and principles of the PolyBoRi framework
the reader is referred to [8].

Definition 2.3 (Boolean polynomial). An element f ∈ GF(2)[x1, . . . , xn]
is called a Boolean polynomial, if every variable xi occurs with exponent 0 or
1.

The following two criteria will play a crucial role in explaining our con-
struction in Section 3.2.

Proposition 2.4 (Product criterion, cf. e.g. p.63, [26]). Let f, g ∈
GF(2)[x1, . . . , xn] be polynomials such that lcm(LM(f), LM(g)) = LM(f) ·
LM(g), then

NF(spoly(f, g)|{f, g}) = 0.

In particular this holds if LM(f) and LM(g) are coprime.

Proposition 2.5 (Linear lead criterion, cf. [8]). Let f ∈ GF(2)[x1, . . . , xn]
be a Boolean polynomial such that f = l · g, LM(l) = xi for some i and g any
polynomial, then NF(spoly(f, x2

i + xi)|{f, x2
1 + x1, . . . , x

2
n + xn}) = 0.

The case g = 1 will be of interest for us.

Definition 2.6 (Elimination orderings). Let R = GF(2)[x1, . . . , xn, y1, . . . ym].
An ordering “>” is called an elimination ordering of x1, . . . , xn, if xi > t for
every monomial t in GF(2)[y1, . . . , ym] and every i = 1, . . . , n.
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2.2 Description of the AES

For the full description of the AES we refer to [30]. AES in its standard
form (the so-called AES-128) operates on rectangular arrays of bytes. So all
operations are performed on the 4 × 4 arrays of bytes. As we have already
mentioned, the AES is composed of relatively simple operations in order to
ensure its efficient implementation. A set of initial operations that are be-
ing executed consecutively composes a round. AES-128 performs 10 rounds,
where 9 rounds are the same, and the last 10th round differs a little. We
will consider a byte either as an element of GF(28) or as a GF(2)-vector of
length 8 via GF(28) = GF(2)[a]/〈m(a)〉, where m(a) = a8 + a4 + a3 + a + 1
is the Rijndael polynomial. The specifications of such a transformation are
given in [30]. The following algebraic description of one round of the AES is
from [29].
The AES S-Box. The value of each byte in the array is substituted accord-
ing to a table look-up. A result of this table look-up S[·] is the combination
of three transformations.

- The input w considered as an element from GF(28) and is mapped to
x = w(−1), where w(−1) is defined by

w(−1) = w254 =

{

w−1 w 6= 0,
0 w = 0.

Thus ”AES inversion” is identical to standard field inversion in GF(28)
for non-zero field elements with 0(−1) = 0.

- The intermediate value x is regarded as a GF(2)-vector of length 8 and
transformed using an (8×8) GF(2)-matrix LA. The transformed vector
LA · x is then regarded in the natural way as an element of GF(28).

- The output of the AES S-Box (substitution box) is (LA · x) + 63 (here
63 is the usual hexadecimal denotation of the byte 11000011), where
addition is with respect to GF(2).

The AES linear diffusion (mixing) layer.

- Each row of the array is rotated by a certain number of byte positions.

- Each column of the array is considered to be a GF(28)-vector, and a
column y is transformed to the column C · y, where C is a (4 × 4)
GF(28)-matrix.
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In [29] it is shown how to transfer an affine component of an S-Box to the
diffusion layer, so that S-Box is represented only by taking the inverse in
GF(28). We use this approach in the following discussion.
The AES subkey addition. Each byte of the array is added (with respect
to GF(2)) to the corresponding byte from the corresponding array of round
keys.

The round key we have just mentioned are created through the so-called
key schedule. Its specification is very similar to the main AES encryption,
cf. [30].

2.3 Small scale variants

In [19] C.Cid et. al. proposed the so-called small scaled variants of the AES.
The motivation for introducing this notion was that it is very hard to inves-
tigate feasibility of algebraic attacks, when one applies them directly to the
original AES. So, Cid et. al. proposed to scale down the original cipher AES
in terms of:

- the number of rounds n (1 ≤ n ≤ 10);

- the number of rows r in the rectangular representation (r = 1, 2, 4);

- the number of columns c in the rectangular representation (c = 1, 2, 4);

- the size e of a word in bits (e = 4, 8).

The notation for the scaled-down cipher is SR(n, r, c, e). In this cipher all
rounds are the same which is not quite true for the AES: the 10th round differs
from the others. But it differs only by an affine mapping, so in principle
is the same. Thus we may stick to studying ciphers SR(n, r, c, e). From
this prospective, the AES-128 with 10 identical rounds would be the cipher
SR(10, 4, 4, 8). In [19] it is written in details how to scale down the encryption
operations, we refer the reader to this paper.
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3 Attacking the AES via composing and solv-

ing a system in key variables only

3.1 Equations over GF(2)

One can write equations for cryptanalyzing (the small scale variants of) the
AES directly bitwise over GF(2). That was an initial proposal of Courtois
and Pieprzyk in [21]. There every byte of a 4 × 4 array is represented by 8
variables (we have 4 variables for the small scale variants with e = 4), each
responsible for a corresponding bit in that byte. The equations can then be
written in quite a straightforward way. Schematically and abusing notation
we can write these equations as

w0 = p + k0, (3.1)

SBOX(xi, wi−1) = 0, i = 1, . . . , n, (3.2)

wi = L(xi) + ki, i = 1, . . . , n, (3.3)

SBOXK(si, ki−1) = 0, i = 1, . . . , n, (3.4)

ki = LK(si) + L′

K(ki−1), i = 1, . . . , n, (3.5)

c = L(xn) + kn. (3.6)

The field equations for all the variables are included. All identifiers are meant
to refer to collections of variables (e.g. w0 = {w0,0,0, . . . , w0,0,e−1, . . . , w0,rc−1,0, . . . ,
w0,rc−1,e−1}) except c and p, which are composed of elements in GF(2). Here
SBOX, SBOXK are S-Box transformations for the encryption and the key
schedule resp.; L, LK are affine transformations. Note that operations in
(3.2) and (3.4) are done on each separate byte, whereas in (3.1), (3.3), (3.5),
and (3.6) are done on the whole rectangular array. The equations in (3.2) and
(3.4) are of degree 2. The equations from SBOX arise from GF(2e)-equations
xw = 1 translated over GF(2) via x =

∑e−1
i=0 xia

i and w =
∑e−1

i=0 wia
i, where

m(a) = a4 + a+1 = 0 for the case e = 4 and m(a) = a8 + a4 + a3 + a+1 = 0
for the case e = 8. So here we suppose that no 0-inversion occurs, which is
true with high probability cf. [29]. The equations are listed in the Appendix
A.

3.2 Writing the equations differently

The system presented in the previous subsection and also the BES-system
from [29] invoked a lot of research and were a starting point for algebraic
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cryptanalysis of the AES. Although much effort was put in analyzing the
structure of those systems, not much progress is achieved in obtaining com-
petitive attacks. In fact, researchers were only able to cryptanalize very ba-
sic small scale variants of the AES. For example in [16] and [19] the authors
could not go further SR(10, 1, 1, 4), SR(2, 1, 1, 8), SR(4, 2, 1, 4), SR(1, 2, 2, 4)
for BES equations and SR(10, 1, 1, 4), SR(2, 1, 1, 8) for GF(2)-equations. Al-
though it can be shown that one can go a bit further, that does not solve our
main goal. The XSL method should also be mentioned here [21]. Initially it
was believed that this method might be able to give an attack that could,
at least theoretically, break AES, but some evidence afterwards show that
probably estimates behind the XSL method were too optimistic ([15]).

Everything said above is a motivation for our present work. We need some
preparation. Namely, we will slightly rewrite equations from Section 3.1. In
rewriting the equations we aim at the situation where we express every suc-
cessive variable via its predecessors. So we rewrite equations (3.1)-(3.6) as
follows.

w0 = p + k0, (3.7)

xi = sbox(wi−1), i = 1, . . . , n, (3.8)

wi = L(xi) + ki, i = 1, . . . , n, (3.9)

si = sboxK(ki−1), i = 1, . . . , n, (3.10)

ki = LK(si) + L′

K(ki−1), i = 1, . . . , n, (3.11)

c = L(xn) + kn (3.12)

The field equations on all the variables are added. Here sbox, sboxK are S-
Box transformations for the encryption and the key schedule resp.; L, LK are
affine transformations. How do we achieve the form xi = sbox(wi−1)? Recall
that initially we have degree 2 equations SBOX(xi, wi−1) = 0. Now we im-
pose a block ordering, such that xi > wi−1 and find a reduced Gröbner basis
for these equations. We obtain exactly xi = sbox(wi−1) and one equation
(wi−1,∗,0 +1) . . . (wi−1,∗,e−1 +1) = 0, which we can drop out by assuming that
the case wi−1,∗,0 = 0, . . . , wi−1,∗,e−1 = 0 does not occur (which is true with
high probability). The same is true for the key schedule. It is interesting
to note that actually one can get rid of equations of the type (wi−1,∗,0 +
1) . . . (wi−1,∗,e−1 + 1) = 0 without any assumptions on non-occurrence of
0-inversion as above. Recall that an S-Box equation SBOX(x, w) = 0
is written with an assumption that no 0-inversion occurs. Otherwise, one
must rewrite GF(2e)-equations x − w2e

−2 = 0 over GF(2) to consider also
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0-inversions. As we have checked, it turns out that if we write the equa-
tions in SBOX this way, we obtain exactly the equations from sbox without
wi−1,∗,0 = 0, . . . , wi−1,∗,e−1 = 0.

Denote now by G the set of polynomials from (3.7)-(3.11) and the com-
plete set of field equations for every variable. We denote by the same letter
an ideal generated by G. Note that G contains both polynomials responsible
for encryption/key schedule and the field equations for all the variables. The
following holds.

Theorem 3.1. The set G is a Gröbner basis of a zero-dimensional ideal with
respect to lex ordering induced by k0 < w0 < s1 < x1 < k1 < w1 < · · · <
sn < xn < kn < wn. Variables in each of the variable-blocks k0, w0, . . . , kn, wn

are ordered arbitrarily.

Proof. The claim on dimension follows easily form the fact that the field
equations for all the variables are included in G. Now note that G consists of
the set B of Boolean polynomials with a linear leading term (those coming
from encryption/key schedule) and the set F of the field equations. The
claim on the Gröbner basis follows by applying the product criterion sepa-
rately to pairs from the set B and F (Proposition 2.4), and then the linear
lead criterion to pairs, where one element is from B and another is from F
(Proposition 2.5).

Remark 3.2. • Other elimination orderings can be used in Theorem 3.1,
e.g a block ordering, where each variable-block constitutes one block.

• Clearly the claim that B is a Gröbner basis is trivial due to the product
criterion. A distinguishing feature of Theorem above is that we actually
work with the field equations included. So a priori it is not clear that
G is a Gröbner basis. The result is guaranteed by Proposition 2.5. It
is crucial for our method, since field equations are always implicitly
included in PolyBoRi.

Note that when e = 4 sbox and sboxK have degree 3 and when e = 8
degree 7. The new equations appear more complex, but the advantage is that
we can express each successive variable via its predecessors. See Appendix
B for the S-Box equations for both e = 4. For the case e = 8 we have that
expressions for x-variables contain resp. 118, 118, 119, 127, 119, 122, 138,
128 monomials.

Different representations for the S-Boxes were studied in the literature (cf.
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[4, 17]). It is known that up to now ”a change of the Rijndael polynomial
should not affect the strength of the cipher”. It is interesting to see if this is
also true in our situation. If we take all 30 irreducible polynomials of degree
8 over GF(2), it can be seen that average number of monomials in the S-Box
equations for e = 8 varies from 122 to 139, which is close to 256/2 = 128, half
of the number of all Boolean monomials of degree up to 7. So we see that
changing Rijndael polynomial to some other irreducible polynomial does not
essentially decrease the number of terms in the S-Box equations.

3.3 Gröbner basis shape. Normal forms

Now let us use the Gröbner-shape of G as per Theorem 3.1 to actually obtain
equations in initial key variables k0 only. A quite obvious corollary from
Theorem 3.1 shows how to do this.

Corollary 3.3. Denote by R the polynomials (equations) in (3.12). For each
f ∈ R, NF(f, G) contains only initial key variables k0.

Note that we can obtain the same result by simply plugging in the vari-
ables successively from the beginning to the end and then plugging in in R.
Similar approach was proposed for the BES in [32].

For computing a normal form with respect to a system consisting of poly-
nomials with pairwise different linear leading terms (and the complete set of
field equations), there exist fast, highly specialized algorithms in PolyBoRi.
The Buchberger normal form algorithm ([11]) has the disadvantage that it
uses iteration over the leading terms of intermediate results and thus its
running time gets a quite direct dependency on the number of terms. The
special algorithms in PolyBoRi only depend on the ZDD (zero suppressed
decision diagram) structure of the involved polynomials [8]. Basically there
are two variants:

1. If we have computed the reduced Gröbner basis, then all polynomials
in it are tail reduced, so the computations are faster. But computing
the reduced Gröbner basis is quite expensive.

2. If we work only with a Gröbner basis (not a reduced Groebner ba-
sis), the recursive normal form computation splits in more recursive
branches, as the tails of the polynomials (which are used during the
computation) still have to be rewritten.
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Going back to Corollary 3.3 we see that it is possible to eliminate all variables
except the initial key variables.

The following timings that show an application of Corollary 3.3 have been
done on a AMD Dual Opteron 2.2 GHz (we have used only one CPU) with
16 GB RAM on Linux using a prerelease version of PolyBoRi 0.5 ([8]).
Solving the final system with the key variables is done with the symmgbGF2
algorithm [10] (an advanced version of SlimGB: [6]) implemented in Poly-

BoRi. We give the cumulative time for the whole process: normal form
reduction and solving.

Cipher time, sec. memory, MB

SR(10,2,2,4) 1205 170
SR(10,1,1,4) 0.02 75
SR(10,1,2,4) 0.2 79
SR(10,1,1,8) 2 183

Note that the reduction step takes the lion’s share of the computation,
whereas time for the final solving is quite negligible. We could not per-
form necessary reductions with F4 implementation in Magma, [23, 14].
We tried NormalForm, Reduce, ReduceGroebnerBasis both with and with-
out field equations. The reduction was done with respect to lex ordering.
PolyBoRi- and Magma-examples together with the running scripts can be
downloaded from http://www.mathematik.uni-kl.de/~bulygin/en/files.html.

We tried solving systems with Magma and Singular [27] as per (3.1)-
(3.6). We could attack only the full 10 rounds of SR(10, 1, 1, 4) and 3-4
rounds of some 8-bit ciphers. See also results in [19, 16].

We would like to mention an attack based on MRHS linear equations
([31]). In [31] the author was able to break SR(10, 1, 1, 8) in 0.32 sec., which
is better than above. Note, however that for key sizes larger than 8, the
method of MRHS linear equations needs some bits of a key to be guessed.
For instance for SR(10, 2, 1, 8) one needs 8 bits out of 16 to be guessed. Our
method does not have such a limitation. It is also notable that for 8 bits
known in advance in SR(10, 2, 1, 8) our method needs 4 sec. to execute.

For SR(10, 2, 2, 4) we have 16 equations of degree 16 in 16 key variables
with approx. 32000 terms per equation. Note that the equations we obtain
are actually reduced with respect to field equations for the key variables. In
general with this approach for SR(10, r, c, e), taking an assumption that the
small scale variants of AES have the ”best possible” diffusion layer, at the end
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we will have a system of rce equations in rce unknowns of degree rce with the
number of terms approx. 2rce−1 per equation. So solving such a system for
”large” parameters r, c, e is a big challenge. One further point is that Poly-

BoRi can represent structured polynomials of huge size in a compact way. In
this way we can handle carry bits of adders blocks in integrated circuits very
efficiently (number of terms 2N − 1, memory consumption: 3 · N − 1 · C for
some constant C). For more background about the verification of integrated
circuits with computational algebra we refer to [10]. Unfortunately we did
not observe such a nice behavior when studying SR-ciphers. In general, we
consider block ciphers vulnerable to such a attack, if one of the following
conditions, comes true.

1. Some of the equations purely in the key variables are small (in the
number of terms and degree).

2. Some of the equations purely in the key variables are structured.

4 Meet-in-the-middle attack

The idea of the meet-in-the-middle attack is not new in cryptanalysis. The
ideas of ”meet-in-the-middle” were employed already for attacking DES. The
main feature of such attacks is to move from both sides: plaintext and ci-
phertext in the ”middle” of a cipher, and there find some binding relations.
In algebraic cryptanalysis the technique of ”meet-in-the-middle” is studied
in [19, 16] in context of the small scale variants of AES. There the authors
propose to divide equations for n rounds into two subsystems: one consisting
of equations for rounds 1, . . . , n/2 (here n is assumed to be even), and the
one consisting of equations for rounds n/2+1, . . . , n. By computing Gröbner
bases with respect to lex ordering the authors get rid of variables that do not
appear in rounds n/2 and n/2 + 1. So at the end one deals with a smaller
system with the variables from rounds n/2 and n/2 + 1 only. Using also
equations from the key schedule it is possible to recover the key. We also
mention the use of the meet-in-the-middle principle in [1, 2].

In our approach the meet-in-the-middle attack as described in [19, 16]
can be realized in quite a straightforward way. One just has to do ”usual”
reductions in rounds 1, . . . , n/2, and then ”reverse” reductions in rounds
n/2 + 1, . . . , n. One then gets equations in k0 and kn from the equations
describing encryption plus some key-variables-only equations from the key
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schedule. In this section our aim will be to illustrate this idea and to see
how far can we go in parameters r, c, and e when attacks on two rounds of
SR(2, r, c, e) are considered. Note that here we will essentially use equations
obtained from several pairs to make our systems more overdetermined. This
is possible, since reduction complexity is not an issue here, see below for the
results.

Recall the equations from Section 3.2. Let us write them down again
explicitly for the case n = 2 and then discuss how to ”invert” the second
round to make the meet-in-the-middle attack possible.

Encryption Key Schedule
w0 = p + k0 (E1) s1 = sboxK(k0) (K1)
x1 = sbox(w0) (E2) k1 = LK(s1) + L′

K(k0) (K2)
w1 = L(x1) + k1 (E3) s2 = sboxK(k1) (K3)
x1 = sbox(w0) (E4) k2 = LK(s1) + L′

K(k1) (K4)
c = L(x1) + k2 (E5)

The field equations are assumed to be included. Now doing ”usual” reduction
in (E1)-(E3) we get equation of the form w1 =”something in k0”, and in
(K1)-(K2) of the form k1 =”someting in k0”. Now we need to ”invert”
equations (E4),(E5),(K3), and (K4) to meet these reduced equations in the
middle. The former three equations are easily invertible, namely (E4) inverts
as w1 = sbox−1(x2) = sbox(x2), considering that in all SR(n, r, c, e) holds
sbox = sbox−1. Similarly (K3) inverts as k1 = sbox−1

K (s2) = sboxK(s2). Then
(E5) inverts as x2 = L−1(k2 + c), where L−1 is the inverse of the invertible
affine transformation L.

The question remains only with (K4): k2 = LK(s1) + L′

K(k1). Let us
represent this linear system in matrix form:

(Erce | M | N),

where Erce is a unity matrix rce × rce, and M ∈ Mat(GF(2), rce, re), N ∈
Mat(GF(2), rce, rce) are full-rank matrices. Obviously, Erce corresponds to
k2-variables, M to s1-, and N to k1-variables. Now if we perform Gaussian
elimination so that matrix M is brought to the diagonal form, we obtain:

(

T ′ | Ere | N ′

T ′′ | 0 | N ′′

)

.

Here T ′, N ′ ∈ Mat(GF(2), re, rce), T ′′, N ′′ ∈ Mat(GF(2), rce−re, rce). There-
fore it is possible to get the following linear equations: s2 = A1(k1, k2), A2(k1, k2) =
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0, where A1 is given by matrices T ′ and N ′, and A2 is given by T ′′ and N ′′.
The block s2 = A1(k1, k2) has re equations (the number of components in
s-variables) and the block A2(k1, k2) = 0 has rce−re equations. So inverting
equations in this way we get:

Encryption Key Schedule
w0 = p + k0 (E1) s1 = sboxK(k0) (K1)
x1 = sbox(w0) (E2) k1 = LK(s1) + L′

K(k0) (K2)
w1 = L(x1) + k1 (E3) k1 = sboxK(s2) (K3’)
w1 = sbox(x2) (E4’) s2 = A1(k1, k2) (K4’)
x2 = L−1(k2 + c) (E5’) A2(k1, k2) = 0 (K4”)

Now obviously equations (E3) and (E4’) match through w1-variables which
yields rce equations in k0 and k2 of total degree e − 1 from the encryption
part. From the key schedule we get rce equations in k0 and k1 of total degree
e − 1 from (K2), re equations in k2 and k1 of total degree e − 1 from (K3’)
and rce − re linear equations in k1 and k2 from (K4”). Now note that if we
want to use P plaintext/ciphertext pairs for our attack, then the equations
from the key schedule will be the same for all the pairs and the equations
from the encryption part will be different. Summarizing we have that using
P pairs we get Prce + rce + re equations of degree e− 1 and rce− re linear
equations. All these equations are composed of 3rce variables, namely com-
ing from k0, k1, and k2.

In order to show how different the meet-in-the-middle representation is
from the one we have in Section 3.2, let us compare some important parame-
ters of obtained systems, using SR(2, 2, 2, 4) as an example. As is mentioned
above, the system in the initial key variables only from Section 3.2 obtained
via Corollary 3.3 includes only k0 variables, whereas the one constructed
using the meet-in-the-middle principle includes k0, k1, and k2. The follow-
ing table gives the comparison of some parameters (field equations are not
considered):

method # vars # eqs highest deg. av. # of terms

”normal” 1 pair 16 16 9 ≈ 2,500
”normal” 10 pairs 16 160 9 ≈ 2,500

”m-i-m” 1 pair 48 48 3 10
”m-i-m” 10 pairs 48 192 3 22

As we can see, although the extent to which the systems are overdetermined
is better in the ”normal” systems, we gain much in degree and the number
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of terms by applying the meet-in-the-middle principle.
We mention here one trick we used in order to reduce size of polynomials

in key variables after reductions in the encryption part. Let fi,j denote a
polynomial in key-variables only obtained via equating (E3) and (E4’) for
the i-th bit and j-th pair. It turns out that any sum fi,j′ + fi,j′′ had approx-
imately twice as few terms as any of fi,j (which all have approximately the
same size). So what we do is we replace for every i = 1, . . . , rce each fi,j in
our system by fi,j + fi,j+1 for j = 1, . . . , P − 1 and fi,P by fi,P + fi,1. Thus
we obtain an equivalent system where the polynomials responsible for the
encryption are reduced in size by a factor of 1.5-4. Note that if fi,j ’s were
completely random one would get that any sum fi,j′ +fi,j′′ has essentially the
same size as fi,j′ or fi,j′′. This observation shows that fi,j’s are not quite ran-
dom. But note also that by taking 4-,8-,16-,... sums (i.e. the sums obtained
by adding some 4,8,16,.. equations for a given bit position i) we get the same
size as by 2-sums, which one would expect from random polynomials. Also
taking 3-sums yields the same size as summands. This phenomenon is to be
studied further.
Let us now present some experimental results that were obtained using Poly-

BoRi. The timings have been done on a AMD Dual Opteron Processor 242
GB 1.6 GHz (we have used only one CPU) with 8 GB RAM on Linux. The
same machine has been used for Magma experiments.

Cipher Key size, bit P tred, sec. ttred, sec. tsolve, sec. mem., MB

SR(2,2,4,4) 32 8 0.1 0.8 1.3 35
SR(2,4,2,4) 32 8 0.2 1.6 1.4 37
SR(2,4,4,4) 64 8 0.3 2.4 3.7 61
SR(2,2,2,8) 32 64 4.0 256 ≈3,300 1,214
SR(2,1,4,8) 32 64 0.4 25.6 ≈950 353

Here tred is time to obtain key-variables-only equations from one pair via nor-
mal form reductions as described above, ttred is the total time for reductions
of all pairs, and tsolve is time to solve the final key-variables-only system.
”mem.” means the peak of memory consumption. Note that for e = 4 fast
dense linear algebra implemented in libm4ri by Gregory Bard and Martin
Albrecht was used [28]. For e = 8, the system reduction was done using ZDDs
(which consume less memory in this case). Note that results for SR(2, 4, 4, 4)
are quite interesting. They imply that we are able to break with only 8 pairs
a 64-bit cipher (although a very simple one) in basically 4 sec. if we do the
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eight reductions in parallel, and 6 sec. without parallelization.
Let us now present some results obtained with Magma 2.14-15.

Cipher Key size, bit P tred, sec. ttred, sec. tsolve, sec. mem., MB

SR(2,2,4,4) 32 8 0.1 0.8 2.5 43
SR(2,4,2,4) 32 8 0.6 4.8 7.8 190
SR(2,4,4,4) 64 8 2.9 23.2 64.8 667

We were unable to get any reasonable results forSR(2, 2, 2, 8) and SR(2, 1, 4, 8).
Namely it is quite impossible to make reductions as we need. We tried
NormalForm, Reduce, ReduceGroebnerBasis both with and without field
equations. Only with
ReduceGroebnerBasis and field equations included could we perform reduc-
tions for just one pair’s encryption part in 163 seconds.

Remark 4.1. • In principle it is possible to apply the method for two
rounds to the case of three rounds almost with no changes: one just
has to do ”forward” reductions in rounds 1-2 and ”reverse” reductions
in the third round. We could not break even 32-bit ciphers for e = 4 in
any reasonable time with this approach. See the next section on more
advanced techniques to tackle the problem.

• The trick on reducing size of polynomials in the encryption part gives a
win in efficiency up to 50% for PolyBoRi. Interestingly enough, this
tricks considerably slowed down the Magma-computation. So for the
table presented above for Magma we did not implement the trick.

• Special data structures employed in PolyBoRi are particularly useful
for normal form reductions that we need for obtaining key-variables-
only equations. It seems that general purpose computer algebra sys-
tems like Magma and Singular are not well suited for the purpose
of our approach.

5 Using weak diffusion and guessing some bits

5.1 Overdetermined polynomial systems

It is well known (see e.g. [3]), that it is usually easier to compute the Gröbner
bases of strongly overdetermined systems. Applying the techniques presented
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in the previous sections to obtain systems in the key variables only, it is pos-
sible to get such systems. The relation between variables and equations can
be improved by considering more pairs of ciphertext and plaintext. However
the number of variables is still quite large.

5.2 Subsets in less variables

The equation systems obtained in Section 4 seem to have more structure than
those in Section 3 (at least for a small number of rounds). However most
Gröbner bases implementations (even if they are optimized for the Boolean
case) are quite unaware of this structure. Assuming, that we have have a
subsystem, which involves much less variables (which is for certain a result
of the weak diffusion layer when working with small number of rounds like 2
or 3), the usual Buchberger’s algorithm would mix them quite strongly with
the polynomials that are not included in the considered subsystem, so that
their combination would involve more variables. Since more variables usu-
ally make computations harder, such an effect is not desirable. So it seems
quite appropriate to treat these subsystems in less variables separately to
preserve their structure. However, they could describe a complex zero set,
whose knowledge might not solve our problem (usually we assume that the
complete system has exactly one solution). Actually it is possible in our
experiments to overdetermine these subsystems by increasing the number of
pairs, so that they will also have only one solution in practice. In this way,
solving them will yield the solution for every variable involved in the subsys-
tem. Using these values, it will be much easier to solve the complete system
by computing a Gröbner basis or applying the same trick again. Of course
clustering subsystems of polynomials doesn’t seem to be obvious in general.

Finding a good (not necessarily the best) solution for identifying such
subsystems in polynomial time seems to be related to optimization tech-
niques. In our case, we just used a very simple solution: we considered
the variable sets of each of the Boolean polynomials that constitute the sys-
tem. Let fi, i = 1, . . . , N for some N be polynomials in the key variables
only system. For each i = 1, . . . , N we examine which variables occur in
fi. Denote this set of variables by V ar(fi). Then we collect all the poly-
nomials from the system that contain only variables from V ar(fi) and no
others. Denote the subsystem so obtained by SubSys(fi). Then among all
SubSys(fi), i = 1, . . . , N we look only for overdetermined ones. Among these
overdetermined ones we collect those with the least number of variables oc-
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curring, i.e. with the smallest |V ar(fi)|. Then for uniqueness of choice we
choose the one subsystem that has among those the most polynomials, i.e.
the one with maximal |SubSys(fi)|. This makes the clustering very fast. Of
course, the performance of our computations strongly depends on finding a
subsystem in as few variables as possible and also as much overdetermined
as possible. While the practical experiments show that the background is
quite promising, our method here is quite basic and should be optimized for
more complex ciphers to give better results (easier equation systems) to be
processed by our solving algorithms.

5.3 Guessing of key bits

Another aspect often applied in cryptanalysis is the guessing of bits in the
key. This can be combined quite well with the idea introduced in the pre-
vious subsection. Having found a subsystem in less number of variables, we
consider small subsets of these variable (preferably some variables out of the
initial key k0). Plugging in trial values for these variables, can yield a system,
which is much easier to solve via Gröbner basis computation for each possible
value of a trial. This means, that in the presented timings, we really try each
combination of these small sets of bits we guess, so no knowledge of them
is required for the attack in advance. For example for SR(2, 2, 2, 8) and 64
pairs plugging in just two bits simplified the systems dramatically, such that
it was easier to solve four of these systems via the Buchberger’s algorithm,
than just one of these systems. While plugging in values provides some speed
up, Gröbner basis computations can be seen as a good supplement to these
search techniques. This is the area, where still much research needs to be
done, in a much wider scope: touching both the field of computational al-
gebra as well as the very optimized toolset of SAT-solvers. An initial (quite
theoretical) publication on these aspects was done in [20].

We don’t have a special selection strategy for the bits at the moment. We
tried just taking the first bits of the k0 variables in the subsystem, as well
as a random selection, but it didn’t make much difference. Finding a more
sophisticated method here could yield further improvements of results. The
only thing, we can say at this time point of time, that it is seems reasonable
to guess bits of ki only for one i.
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5.4 Recursion

After having found bits of the key using the techniques in 5.3 and 5.2, we can
simplify our key variables only system. This easier system can be analyzed
and treated again with the same techniques. In this way, in each step of
recursion more bits values will be found. While in this way, a large number
of bits might be guessed, the Gröbner bases calculation on the subsystems
of equations make sure, that we will only continue our search on a specific
configuration of guessed bits, if a solution exists.

We next present some results obtained with the method of this section.

Cipher Key size, bit P tred, sec. ttred, sec. tsolve, sec. # b.g.

SR(3,2,4,4) 32 256 0.01 2.56 657 7
SR(2,2,2,8) 32 64 2.7 172.8 356 2
SR(2,2,4,8) 64 256 5.5 1,408 1,131 10

Here ”# b.g.” means the number of bits guessed during the computations.

6 Conclusions and future research

In this paper we presented several methods of obtaining and solving systems
of equations coming from algebraic cryptanalysis of small scale variants of
AES. The peculiarity of our method in comparison with numerous other at-
tempts is that we aim at a situation where only key variables are present in
the systems. After showing the method on some small scale variants for 10
rounds we showed how meet-in-the-middle idea can be used in our frame-
work. Here also the use of several plaintext/ciphertext pairs facilitated by
our method is illustrated. With this approach we could break 2 rounds of e.g.
SR(2, 4, 4, 4) with only 8 pairs in negligible time. Then we used the fact that
diffusion is very weak when the number of rounds is small and also employed
the idea of bit-guessing and subsystem finding to move further and break 3
rounds of SR(3, 2, 4, 4) and 2 rounds of SR(2, 2, 4, 8). Note that these re-
sults actually show that we can beat the exhaustive search for these cases.
Although other conventional statistical methods probably can break these
instances faster, we believe that these results provide a significant advance
for algebraic attacks. We see quite a lot of room for improving heuristics
used in our approach, therefore further research may yield better results for
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the small scale variants of AES as well as for other ciphers.
We also would like to mention that application of the described method

became possible by using specialized data structures and algorithms imple-
mented in PolyBoRi. Examples considered in this paper could be an illus-
tration that quite large problems leading to dense systems of equations can
still be feasible if optimizations on all levels are made:

• model/problem (combining the equations for several pairs of plaintext/
ciphertext);

• algorithmic (problem specific solving strategies);

• implementation (the PolyBoRi framework).
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Appendix A: Writing equations as in Section

3.1

Here by (wi) and (xi) we understand the bits coming in and out of an S-Box.
S-Box equations for e = 4:

x2w3 + x1w3 + x3w2 + x2w2 + x3w1 + x0w0 + 1 = 0,
x3w3 + x1w3 + x2w2 + x3w1 + x0w1 + x1w0 = 0,
x1w3 + x2w2 + x0w2 + x3w1 + x1w1 + x2w0 = 0,
x1w3 + x0w3 + x2w2 + x1w2 + x3w1 + x2w1 + x3w0 = 0.

S-Box equations for e = 8:

x7w7 + x6w7 + x3w7 + x2w7 + x1w7 + x7w6 + x4w6 + x3w6 + x2w6 + x5w5+
+x4w5 + x3w5 + x6w4 + x5w4 + x4w4 + x7w3 + x6w3 + x5w3 + x7w2 + x6w2+
+x7w1 + x0w0 + 1 = 0,
x6w7 + x4w7 + x1w7 + x7w6 + x5w6 + x2w6 + x6w5 + x3w5 + x7w4 + x4w4+
+x5w3 + x6w2 + x7w1 + x0w1 + x1w0 = 0,
x7w7 + x5w7 + x2w7 + x6w6 + x3w6 + x7w5 + x4w5 + x5w4 + x6w3 + x7w2+
+x0w2 + x1w1 + x2w0 = 0,
x7w7 + x2w7 + x1w7 + x3w6 + x2w6 + x4w5 + x3w5 + x5w4 + x4w4 + x6w3+
+x5w3 + x0w3 + x7w2 + x6w2 + x1w2 + x7w1 + x2w1 + x3w0 = 0,
x7w7 + x6w7 + x1w7 + x7w6 + x2w6 + x3w5 + x4w4 + x0w4 + x5w3 + x1w3+
+x6w2 + x2w2 + x7w1 + x3w1 + x4w0 = 0,
x6w7 + x3w7 + x1w7 + x7w6 + x4w6 + x2w6 + x5w5 + x3w5 + x0w5+
+x6w4 + x4w4 + x1w4 + x7w3 + x5w3 + x2w3 + x6w2 + x3w2 + x7w1+
+x4w1 + x5w0 = 0,
x7w7 + x4w7 + x2w7 + x5w6 + x3w6 + x0w6 + x6w5 + x4w5 + x1w5 + x7w4+
+x5w4 + x2w4 + x6w3 + x3w3 + x7w2 + x4w2 + x5w1 + x6w0 = 0,
x7w7 + x6w7 + x5w7 + x2w7 + x1w7 + x0w7 + x7w6 + x6w6 + x3w6 + x2w6+
+x1w6 + x7w5 + x4w5 + x3w5 + x2w5 + x5w4 + x4w4 + x3w4 + x6w3 + x5w3+
+x4w3 + x7w2 + x6w2 + x5w2 + x7w1 + x6w1 + x7w0 = 0.
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Appendix B: Writing equations as in Section

3.2

S-Box equations for e = 4:

x0 = w3w2w1 + w2w1w0 + w2w1 + w2w0 + w3 + w2 + w1 + w0,
x1 = w3w1w0 + w3w1 + w2w1 + w2w0 + w1w0 + w3,
x2 = w3w2w0 + w3w0 + w2w0 + w1w0 + w3 + w2,
x3 = w3w2w1 + w3w2 + w3w1 + w3w0 + w3 + w2 + w1.
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