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Setting

1. Let k be an infinite, perfect field, where, if p := char(k) 6= 0, it is possible
to extract pth roots and let k be the algebraic closure of k and Ω(k) the
universal field over k.

Let us fix an integer value n and consider the polynomial ring

P := k[X1, . . . , Xn]

and its k-basis

T := {Xa1
1 · · ·Xan

n : (a1, . . . , an) ∈ Nn}.

For each d ∈ N we will also set Td := {t ∈ T : deg(t) = d}.

2. We also fix an integer value r ≤ n, set d := n− r and consider

the field K := k(V1, . . . , Vd),
its algebraic closure K and its universal field Ω(K) = Ω(k);
the polynomial ring Q := K[Z1, . . . , Zr] and
its K-basis W := {Za1

1 · · ·Zar
r : (a1, . . . , ar) ∈ Nr}.

All the notation introduced will be applied also in this setting, just substi-
tuting everywhere n, k,P , T with, respectively r,K,Q,W .

3. Each polynomial f ∈ k[X1, . . . , Xn] is a unique linear combination

f =
∑

t∈T
c(f, t)t

of the terms t ∈ T with coefficients c(f, t) in k and can be uniquely decom-
posed, by setting

fδ :=
∑

t∈Tδ

c(f, t)t, for each δ ∈ N,

as f =
∑d

δ=0 fδ where each fδ is homogeneous, deg(fδ) = δ, and fd 6= 0 so
that d = deg(f).



6 Table of Contents

4. Since, for each i, 1 ≤ i ≤ n,

P = k[X1, . . . , Xi−1, Xi+1, . . . , Xn][Xi],

each polynomial f ∈ P can be uniquely expressed as

f =

D∑

j=0

hj(X1, . . . , Xi−1, Xi+1, . . . , Xn)X
j
i , hD 6= 0,

and
degXi

(f) := degi(f) := D

denotes its degree in the variable Xi.
In particular (i = n)

f =
D∑

j=0

hj(X1, . . . , Xn−1)X
j
n, hD 6= 0, D = degn(f);

the leading polynomial of f is Lp(f) := hD, its trailing polynomial is Tp(f) :=
h0.

5. Given a finite basis F := {f1, . . . , fu} ⊂ P , we denote

I(F ) := (F ) :=

{
u∑

i=1

hifi : hi ∈ P
}

⊂ P

the ideal generated by F and

Z(F ) := {a ∈ kn : f(a) = 0, for all f ∈ F} ⊂ kn;

the algebraic variety consisting of each common root of all polynomials in F .

6. The support
supp(f) := {t ∈ T : c(f, t) 6= 0}

of f being finite, once a term ordering1 < on T is fixed, f has a unique
representation as an ordered linear combination of terms:

f =

s∑

i=1

c(f, ti)ti : c(f, ti) ∈ k \ 0, ti ∈ T , t1 > · · · > ts.

The maximal term of f is T(f) := t1, its leading cofficient is lc(f) := c(f, t1)
and its maximal monomial is M(f) := c(f, t1)t1.

7. For any set F ⊂ P we denote

• T<{F} := {T(f) : f ∈ F};
1 A well-ordering < on T will be called a term ordering if it is a semigroup ordering.
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• T<(F ) := {τT(f) : τ ∈ T , f ∈ F};
• N<(F ) := T \T<(F );
• k[N<(F )] := Spank(N<(F ))

and we will usually omit the dependence on < if there is no ambiguity.

8. Let < be a term ordering on T , I ⊂ P an ideal, and A := P/I.
Since A ∼= k[N<(I)], b for each f ∈ P , a unique

g := Can(f, I, <) =
∑

t∈N<(I)

γ(f, t, <)t,

the canonical form, such that

g ∈ k[N(I)] and f − g ∈ I.

9. For an ideal I ⊂ P ,
I := ∩t

i=1qi

denotes an irredundant primary representation in P ; d := dim(I) its dimen-
sion and r := r(I) := n − d its rank; for each i, pi :=

√
qi is the associated

prime.

10. For such ideal I we will re-enumerate and re-label the variables as

{X1, . . . , Xn} = {V1, . . . , Vd, Z1, . . . , Zr},

so that
I ∩ k[V1, . . . , Vd] = (0), d := dim(I),

and we will wlog assume that the primaries are ordedered so that, for a
suitable value 1 ≤ r ≤ t,

qi ∩ k[V1, . . . , Vd] = (0), dim(qi) = d ⇐⇒ i ≤ r

so that the ideal

J := Ik(V1, . . . , Vd)[Z1, . . . , Zr] = IQ

is zero dimensional and has, in Q, the irredundant primary representation

J := ∩r
i=1qiQ

11. In general, when dealing witha 0-dimensional ideal, instead of

I ⊂ P = k[T ] = k[X1, . . . , Xn]

we preferably use the notation

J ⊂ Q = K[W ] = K[Z1, . . . , Zr].
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12. For such 0-dimensional ideal J, with a slite abuse of notation, we still
set A := Q/J and denote qi its primary components in Q; we also assume

s := deg(J) = dim(A)

and we denote, for each f ∈ Q, [f ] ∈ A its residue class modulo J and Φf the
endomorphism

Φf : A → A, [g] 7→ [fg].

13. In terms of a K-basis q = {[q1], . . . , [qs]} of A so that A = SpanK(q),
for each g ∈ Q, the Gröbner description of g is the unique (row) vector

Rep(g,q) := (γ(g, q1,q), . . . , γ(g, qs,q)) ∈ Ks

which satisfies
[g] =

∑

j

γ(g, qj,q)[qj ].

14. A Gröbner representation of J is the assignement of

• a K-linearly independent set q = {[q1], . . . , [qs]},
• the set M = M(q) :=

{(
a
(h)
lj

)
∈ Ks2 , 1 ≤ h ≤ r

}
of r square matrices

• s3 values γ
(l)
ij ∈ K

which satisfy

(1) Q/J ∼= SpanK(q),

(2) [Zhql] =
∑

j a
(h)
lj [qj ], for each l, j, h, 1 ≤ l, j ≤ s, 1 ≤ h ≤ r,

(3) [qiqj ] =
∑

l γ
(l)
ij [ql] for each l, j, h, 1 ≤ i, j, l ≤ s.

A Gröbner representation is called a linear representation iff q = N<(J)
wrt a term ordering <.

15. For the 0-dimensional ideal J ⊂ Q with the irredundant primary repre-
sentation J =

⋂r

i=1 qi in Q, we set, for each i, 1 ≤ i ≤ r,

• mi =
√
qi, the associated maximal prime,

• Ki := Q/mi, K ⊂ Ki ⊂ K,
• Qi := Ki[Z1, . . . , Zr],
• the irredundant primary representations qi = ∩ri

j=1qij and mi = ∩ri
j=1mij

in Qi,

• the roots bij := (b
(ij)
1 , . . . , b

(ij)
r ) ∈ Kr

i ⊂ Kr, 1 ≤ j ≤ ri,
• dij := mult(bij , J) = deg(qij) for each j, 1 ≤ j ≤ ri,

which satisfy:

(1) mij = (Z1 − b
(ij)
1 , . . . , Zr − b

(ij)
r ),

(2) the bijs, 1 ≤ j ≤ ri, are K-conjugate for each i,
(3) up to a renumeration,

√
qij = mij ,
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(4) mi = mij ∩ Q,
(5) qi = qij ∩Q,
(6) for each j, l, 1 ≤ j, l ≤ ri, dij = dil =: di,
(7) ri = deg(mi) = [Ki : K],
(8) deg(qi) = diri,
(9) J = ∩r

i=1 ∩ri
j=1 qij ,

√
J = ∩r

i=1 ∩ri
j=1 mij are the irredundant primary

representations in K[Z1, . . . , Zr],
(10) Z(J) = {bij : 1 ≤ i ≤ r, 1 ≤ j ≤ rj},
(11)

∑r
i=1 diri = s.

16. With the notation above the ideal J has s :=
∑r

i=1 ri roots which we
will also denote as

Z(J) = {α1, . . . , αs} ⊂ Kr, αi = (a
(i)
1 , . . . , a(i)r ).

For each such root αi we set

• mαi
= (Z1 − a

(i)
1 , . . . , Zr − a

(i)
r ),

• qi the mαi
-primary component of J, so that J = ∩s

i=1qi in K⊗K Q;
• si := mult(αi, J) = deg(qi) the multiplicity in J of αi so that s =

∑s

i=1 si.

17. A linear form Y :=
∑r

h=1 chZh is said an allgemeine coordinate for the
0-dimensional ideal J iff

(a) there are polynomials gi ∈ K[Y ], 0 ≤ i ≤ n, g0 monic, deg(gi) < deg(g0),
such that

G := (g0(Y ), Z1 − g1(Y ), Z2 − g2(Y ), . . . , Zr − gr(Y ))

is the reduced Gröbner basis of the ideal

J+ := J+

(
Y −

∑

h

chZh

)
⊂ K[Y, Z1, . . . , Zr]

w.r.t. the lex ordering induced by Y < Z1 < . . . < Zr;

with the present notation, this condition implies, among the others, that
(Corollary 34.4.6)

(b) Q/J ∼= K[Y ]/g0(Y )

(c) for each i, 1 ≤ i ≤ s, βi :=
∑r

h=1 cha
(i)
h is a root of g0 with multiplicity

si and
(d) a

(i)
j = gj(βi) for each i, 1 ≤ i ≤ s, and each j, 1 ≤ j ≤ r,

(e) g0(Y ) =
∏r

i=1(Y − βi)
si ;

(f) f ∈ J ⇐⇒ Rem(f(g1(Y ), . . . , gr(Y )), g0(Y )) = 0.

Moreover, there is a Zarisky open set U ⊂ Kn such that Y :=
∑r

h=1 chZh is
an allgemeine coordinate for J iff (c1, . . . , cr) ∈ U.
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18. Given the polynomial ring P := k[X1, . . . , Xn] and its monomial k-basis
T we introduce n futher variables Y1, . . . , Yn and we denote

• PY := k[Y1, . . . , Yn] and TY its corresponding monomial k-basis;
• P⊗ := P ⊗Q = k[X1, . . . , Xn, Y1, . . . , Yn], and T⊗ its corresponding mono-
mial k-basis T⊗ := {τ ⊗ ω : τ ∈ T , ω ∈ TY };

• for each i, 0 ≤ i ≤ n, we use the notation h(Xi) to denote the polynomial

h(Xi) := h(Y1, . . . , Yi, Xi+1, . . . , Xn) for each h(X1, . . . , Xn) ∈ P ;

in particular h(X0) = h(X1, . . . , Xn) and h(Xn) = h(Y1, . . . , Yn).
• for an ideal I = I(f1, . . . , fs) ⊂ P with a slight abuse of notation we denote
I also the ideal in PY generated by {f1(Y1, . . . , Yn), . . . , fn(Y1, . . . , Yn)} and
A := PY /I; thus we have also

A⊗k A = P⊗/I (fi(X1, . . . , Xn), fi(Y1, . . . , Yn), 1 ≤ i ≤ n) ;

• finally we denote IX := I⊗ PY ⊂ P⊗ and IY := P ⊗ I ⊂ P⊗.



39. Trinks

The first paper applying Buchberger’s Algorithm being Trinks proposal of an
algorithm for solving polynomial equations systems, Trinks’ Algorithm is the
natural choice for opening this section on algebraic solving.

Trinks’ Algorithm essentially is an effective reformulation of Gröbner’s
proof of Hilbert’s Nullstellensatz: given a 0-dimensional ideal J ⊂ Q :=
K[Z1, . . . , Zr], iteratively Trinks’ Algorithm, for each roots α ∈ Ki−1 of
J ∩ K[Z1, . . . , Zi−1], computes and solves gcd(h(α,Zi) : h ∈ Gi) ∈ K[Zi]
where Gi denotes a basis of the ideal J ∩K[Z1, . . . , Zi]; the rôle of Gröbner
bases consits in allowing to compute such basis of the elimination ideals.

The main improvement to Trinks’ Algorithm, a part from the use of
FGLM in order to efficiently deduce the needed lex Gröbner basis of J, is
Gianni–Kalkbrener’s proposal of using their Theorem; the evaluation at α of
all polynomials in Gi and the computation of their gcd is thus reduced to the
evaluation at α of the leading polynomials of some elements in Gi and of the
first element whose leading polynomial is not vanishing at α.

After recalling the basic tools provided by Gröbner bases w.r.t. solving
(Section 39.1) I present Trinks’ (Section 39.2) and Gianni–Kalkbrener’s Al-
gorithm (Section 39.3) concluding with some comments which aim to read
these algorithms in the setting of Kronecker–Duval Philosophy (Section 39.4).
Finally (Section 39.5) I discuss a solver dated 1913 which already explicitly
applies the main property of the lex term ordering and anticipates Macaulay’s
Lemma.

39.1 Recalling Gröbner

Let us consider

an infinite, perfect1 field k, where, if p := char(k) 6= 0, it is possible to
extract pth roots,

the algebraic closure k of k,
the universal field Ω(k) over k (Definition 9.4.1);

1 While the techniques discussed here apply in this general setting we are mainly
thinking of the case k = Q, k := C; on the other side technically we need to (and
we can) solve over Q(V1, . . . , Vd).
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the polynomial ring P := k[X1, . . . , Xn],
its k-basis T := {Xa1

1 · · ·Xan
n : (a1, . . . , an) ∈ Nn};

an ideal2 I := (F ) := I(F ) := {∑u
i=1 hifi : hi ∈ P} ⊂ P given by

a finite basis F := {f1, . . . , fu} ⊂ P ,
the algebraic affine variety

Z(I) := {a ∈ kn : f(a) = 0, for each f ∈ F} ⊂ kn.

Each polynomial f ∈ k[X1, . . . , Xn] is therefore a unique linear combination

f =
∑

t∈T
c(f, t)t

of the terms t ∈ T with coefficients c(f, t) in k; the support

supp(f) := {t ∈ T : c(f, t) 6= 0}
of f being finite, once a term ordering3 < on T is fixed, f has a unique
representation as an ordered linear combination of terms:

f =
s∑

i=1

c(f, ti)ti : c(f, ti) ∈ k \ 0, ti ∈ T , t1 > · · · > ts;

the maximal term of f is T(f) := t1, its leading coefficient is lc(f) := c(f, t1)
and its maximal monomial is M(f) := c(f, t1)t1.

For any set F ⊂ P we denote

• T<{F} := {T(f) : f ∈ F};
• T<(F ) := {τT(f) : τ ∈ T , f ∈ F};
• N<(F ) := T \T<(F );
• k[N<(F )] := Spank(N<(F ))

and we will usually omit the dependence on < if there is no ambiguity. Recall
that

Definition 39.1.1 (Buchberger). A subset G ⊂ I will be called a Gröbner
basis of I w.r.t. < if T(G) = T{I}, id est T{G} generates the monomial ideal
T(I) = T{I}.

For each f ∈ P the canonical form of f w.r.t. I is the unique polynomial

g := Can(f, I, <) =
∑

t∈N(I)

γ(f, t, <)t ∈ k[N(I)]

such that f − g ∈ I.

2 All over the book I will use the notation I(F ) ⊂ R in order to denote the ideal
generated by the basis F in the ring R; when there is no ambiguity R will be
not specified.

3 Recall that (cf. Definition 22.1.2) a well-ordering < on T will be called a term
ordering if it is a semigroup ordering, id est

t1 < t2 =⇒ tt1 < tt2, for each t, t1, t2 ∈ T .
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Let us fix any term-ordering < on T and let us compute a Gröbner basis
G ⊂ I of I w.r.t. <.

Then it holds (cf. Remark 27.12.4)

• Z(I) = ∅ ⇐⇒ 1 ∈ I ⇐⇒ 1 ∈ G;
• Z(I) is infinite iff N(I) is an infinite dimensional k-vector space iff there
exists i such that for each d ∈ N : Xd

i /∈ T(G) = T (I);
• Z(I) is finite iff N(I) is finite iff for each i there exists di ∈ N : Xdi

i ∈
T(G) ⊂ T(I); moreover, in this case and under the assumption that I is
radical, we have #Z(I) = #N(I).

Kredel–Weispfenning algorithm (cf. Corollary 27.11.9) allows to deduce
from T(I) the dimension d := dim(I), the rank r := n − d := r(I) of I and a
maximal set of independent variables (cf. Definition 27.11.4) {Xi1 , . . . , Xid}
so that I ∩ k[Xi1 , . . . , Xid ] = (0).

Then, we can re-enumerate and re-label the variables as

{X1, . . . , Xn} = {V1, . . . , Vd, Z1, . . . , Zr}, {Xi1 , . . . , Xid} = {V1, . . . , Vd},

so that
I ∩ k[V1, . . . , Vd] = (0)

and consider

the field K := k(V1, . . . , Vd),
its algebraic closure K

and its universal field Ω(K) = Ω(k);
the polynomial ring Q := K[Z1, . . . , Zr],
its K-basis W := {Za1

1 · · ·Zar
r : (a1, . . . , ar) ∈ Nr};

the zero-dimensional ideal J := Ie := IK[Z1, . . . , Zr]
and the unmixed ideal Jc := J ∩ P .
Then, if I = ∩t

i=1qi denotes any irredundant primary representation in P ,
and we wlog assume that the primaries are ordedered so that, for a suitable
value 1 ≤ r ≤ t,

{Xi1 , . . . , Xid} is a maximal set of independent variables for qi ⇐⇒ i ≤ r,

then Corollary 27.5.19 grants that

J := Ie =

r⋂

i=1

qei =

r⋂

i=1

qiQ

is an irredundant primary representation in Q and

Jc := Iec =

r⋂

i=1

qi ⊂ P

is an irredundant primary representation.
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Moreover, the (GTZ, ARGH, CCC)-schemes (Chapter 35) allow to com-
pute unmixed ideals aj ⊂ P giving a decomposition

√
I =

√
Jc
⋂

⋂

j

√
aj


 .

Thus solving the ideal I ⊂ P is reduced, via Gröbner technique, to solving
each unmixed (GTZ, ARGH, CCC)-component and solving each such com-
ponent is reduced to solving the related zero-dimensional extension ideal.

39.2 Trinks’ Algorithm

Thus we are reduced to consider a zero-dimensional ideal

J ⊂ Q := K[Z1, . . . , Zr]

which we assume to be given via a Gröbner basisG≺ w.r.t. the lexicographical
ordering ≺ induced on W by Z1 ≺ Z2 ≺ · · · ≺ Zr:

Za1
1 . . . Zar

r ≺ Zb1
1 . . . Zbr

r ⇐⇒ exists j : aj < bj and ai = bi for i > j.

Then, if we denote, for i, 1 ≤ i < r,

Ji := J ∩K[Z1, . . . , Zi],
πi : K

r → Ki the canonical projection πi(a1, . . . , ar) = (a1, . . . , ai),
Gi := G≺ ∩K[Z1, . . . , Zi],

we have, for each i

(1) Z(Ji) = πi(Z(J)) = {(a1, . . . , ai) : (a1, . . . , ar) ∈ Z(J)},
(2) Gi is the reduced lexicographical Gröbner basis of Ji (Corollary 26.2.4).

In particular, there is a unique polynomial f(Z1) ∈ K[Z1], such that

J1 = (f) and {f} = G≺ ∩K[Z1].

For each α := (a1, . . . , ai−1) ∈ Ki−1, denote Φα : K[Z1, . . . , Zi] → K[T ]
the projection defined by

Φα(f) = f(a1, . . . , ai−1, T ) for each f ∈ K[Z1, . . . , Zi].

Theorem 39.2.1 (Trinks). Let α := (a1, . . . , ai−1) ∈ Z(Ji−1) and let f ∈
K[T ] be a generator of the principal ideal Φα(Ji) ⊂ K[T ]. Then, for each b ∈ K

(a1, . . . , ai−1, b) ∈ Z(Ji) ⇐⇒ f(b) = 0.
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Proof. Let h(Z1, . . . , Zi) ∈ Ji be any polynomial such that

f(T ) = Φα(h) = h(a1, . . . , ai−1, T ).

Then

(a1, . . . , ai−1, b) ∈ Z(Ji) =⇒ f(b) = h(a1, . . . , ai−1, b) = 0.

Conversely for any g(Z1, . . . , Zi) ∈ Ji, Φα(g) ∈ Φα(Ji), so that

g(a1, . . . , ai−1, b) = Φα(g)(b) = 0 for each g ∈ Ji

and (a1, . . . , ai−1, b) ∈ Z(Ji). �

Algorithm 39.2.2 (Trinks). Trinks’ Algorithm (Figure 39.1) for ’solving’ a
zero-dimensional ideal is based on the Theorem above and consists in iter-
atively computing Z(Ji) by ’solving’, for each α ∈ Z(Ji−1), the univariate
polynomial generating the principal ideal Φα(Ji).

Fig. 39.1. Trinks’ Algorithm

Z := Solve(F,L)
where

F := (f1, . . . , fu) ⊂ Q := K[Z1, . . . , Zr],
L ⊃ K is a field extension of K,
J ⊂ Q is the zero-dimensional ideal generated by F ,
Z := {α1, . . . , αs} = Z(J) ∩ Lr.

Compute the reduced lexicographical Gröbner basis G of (f1, . . . , fu).
Let p(Z1) be the unique element in G ∩K[Z1],
Z1 := {a ∈ L : p(a) = 0}.
For i = 2..r do

Zi := ∅;
For each (a1, . . . , ai−1) ∈ Zi−1 do

H := {g(a1, . . . , ai−1, Zi) : g ∈ Gi \Gi−1},
p := gcd(H),
Z := {a ∈ L : p(a) = 0},
Zi := Zi ∪ {(a1, . . . , ai−1, a) : a ∈ Z}.

Z := Zr

Example 39.2.3. To illustrate Trinks’ Algorithm let us consider the zero-
dimensional ideal J ⊂ Q[Z1, Z2, Z3] discussed in Example 33.2.6 whose lex
Gröbner basis4 is G := {gi, 1 ≤ i ≤ 7}, where (Examples 33.5.1 and 33.5.2)

4 The leading polynomial (page 17) Lp(gi) is indicated in bold.
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g1 := 1Z3
1 − 3Z2

1 + 2Z1,

g2 := (Z2

1 − Z1)Z2,

g3 := Z1Z
2
2 − Z1Z2,

g4 := 1Z3
2 − 3Z2

2 + 2Z2,

g5 := (Z2

1 − 3Z1 + 2)Z3 − 3Z2
2 − 6Z2Z1 + 9Z2 − Z2

1 + 3Z1 − 2,

g6 := (Z2 + Z1 − 2)Z3 + 3Z2
2 + Z2Z1 − 7Z2 − 2Z2

1 + 3Z1 + 2,

g7 := (Z1 − 2)Z2
3 − 4Z3Z1 + 8Z3 − 15Z2

2 − 30Z2Z1 + 45Z2 + 3Z1 − 6,

g8 := 1Z3
3 − 3Z2

3 + 3Z3Z1 − 4Z3 − 3Z2
2 − 6Z2Z1 + 9Z2 − 3Z1 + 6,

and whose roots are Z(J) = {bj, 1 ≤ j ≤ 9} where

b1 = (0, 0, 1) b2 = (0, 1,−2) b3 = (2, 0, 2)
b4 = (0, 2,−2) b5 = (1, 0, 3) b6 = (1, 1, 3)
b7 = (1, 1, 1) b8 = (2, 0, 1) b9 = (2, 0, 0).

Then we have:

p(Z1) := g1,Z1 := {0, 1, 2};
α = (0) : Φα(g2) = Φα(g3) = 0;Φα(g4) = T 3 − 3T 2 + 2T ;

Z := {0, 1, 2},Z2 := {(0, 0), (0, 1), (0, 2)};
α = (1) : Φα(g2) = 0;Φα(g3) = T 2 − T ;Φα(g4) = T 3 − 3T 2 + 2T ;

gcd(Φα(g3), Φα(g4)) = T 2 − T ;

Z := {0, 1},Z2 := {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)};
α = (2) : Φα(g2) = 2T ;Φα(g3) = 2T 2 − 2T ;Φα(g4) = T 3 − 3T 2 + 2T ;

gcd(Φα(gi), 2 ≤ i ≤ 4) = T ;

Z := {0},Z2 := {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)};
α = (0, 0) : Φα(g5) = 2T − 2;Φα(g6) = −2T + 2;

Φα(g7) = −2T 2 + 8T − 6;Φα(g8) = T 3 − 3T 2 − 4T + 6;

gcd(Φα(gi), 5 ≤ i ≤ 8) = T − 1;

Z := {1},Z2 := {(0, 0, 1)};
α = (0, 1) : Φα(g5) = 2T + 4;Φα(g6) = −T − 2;

Φα(g7) = −2T 2 + 8T + 24;Φα(g8) = T 3 − 3T 2 − 4T + 12;

gcd(Φα(gi), 5 ≤ i ≤ 8) = T + 2;

Z := {−2},Z2 := Z2 ∪ {(0, 1,−2)};
α = (0, 2) : Φα(g5) = 2T + 4;Φα(g6) = −T − 2;

Φα(g7) = −2T 2 + 8T + 24;Φα(g8) = T 3 − 3T 2 − 4T + 12;

gcd(Φα(gi), 5 ≤ i ≤ 8) = T + 2;

Z := {−2},Z2 := Z2 ∪ {(0, 2,−2)};
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α = (1, 0) : Φα(g5) = 0;Φα(g6) = −T + 3;

Φα(g7) = −T 2 + 4T − 3;Φα(g8) = T 3 − 3T 2 − T + 3;

gcd(Φα(gi), 6 ≤ i ≤ 8) = T − 3;

Z := {3},Z2 := Z2 ∪ {(1, 0, 3)};
α = (1, 1) : Φα(g5) = 0;Φα(g6) = 0;

Φα(g7) = −T 2 + 4T − 3;Φα(g8) = T 3 − 3T 2 − T + 3;

gcd(Φα(gi), 7 ≤ i ≤ 8) = T 2 − 4T + 3;

Z := {1, 3},Z2 := Z2 ∪ {(1, 1, 3), (1, 1, 1)};
α = (2, 0) : Φα(g5) = Φα(g6) = Φα(g7) = 0;Φα(g8) = T 3 − 3T 2 − T + 3;

gcd(Φα(gi), 7 ≤ i ≤ 8) = T 3 − 3T 2 − T + 3;

Z := {0, 1, 2},Z2 := Z2 ∪ {(2, 0, 0), (2, 0, 1), (2, 0, 2)}.

39.3 Gianni–Kalkbrener Algorithm

A part from the FGLM-proposal of indirectly producing the needed lexico-
graphical Gröbner basis via linear algebra from the Gröbner bases wrt an
easier-to-compute termordering, the most relevant improvement on Trinks’
Algorithm is based on the deeper analysis performed by Gianni and Kalk-
brener on the structure of the lexicographical Gröbner basis of a zero-
dimensional ideal.

Remarking that each polynomial f ∈ K[Z1, . . . , Zi] can be uniquely ex-
pressed as

f =

D∑

j=0

hj(Z1, . . . , Zi−1)Z
j
i , hD 6= 0,

we recall that the degree of f in the variable Zi is denoted

degZi
(f) := degi(f) := D

and that Lp(f) := hd is named the leading polynomial of f and we observe

that, for the lexicographical ordering ≺, we have T(f) = T(Lp(f))Z
degi(f)
i .

We also denote, for each i, 1 ≤ i ≤ r, δ ∈ N,

Giδ := {g ∈ G, g ∈ K[Z1, . . . , Zi], degi(g) ≤ δ}

and remark that each Giδ is a section of both Giδ+1 and Gi and that hold
the obvious inclusions

G11 ⊆ G12 ⊆ . . . ⊆ G1 ⊆ . . . ⊆ Gi−1 ⊆ . . . ⊆ Giδ ⊆ Giδ+1 ⊆ . . . ⊆ Gi ⊆ . . .

For each i, 1 ≤ i ≤ r, δ ∈ N, and each F ⊂ Q, we also denote

Lpiδ(F ) := {Lp(g), g ∈ F ∩K[Z1, . . . , Zi], degi(g) ≤ δ}.
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Theorem 39.3.1 (Gianni—Kalkbrener). Let J ⊂ Q be an ideal, ≺ be the
lexicographical ordering induced by Z1 ≺ · · · ≺ Zr.

Let G := {g1, . . . , gv} be a Gröbner basis of J w.r.t. ≺, enumerated in
such a way that

T(g1) ≺ T(g2) ≺ . . . ≺ T(gv−1) ≺ T(gv).

Then with the notation above:

(1) for each i, i ≤ r, Gi is a Gröbner basis of Ji;
(2) for each i, 1 ≤ i ≤ r, δ ∈ N, Lpiδ(G) is a Gröbner basis of Lpiδ(J);
(3) for each i, 1 ≤ i ≤ r and each α := (b1, . . . , bi−1) ∈ Z(Ji−1), denoting

σ the minimal value such that Φα(Lp(gσ)) 6= 0 and
j, δ the value such that

gσ = Lp(gσ)Z
δ+1
j + · · · ∈ K[Z1, . . . , Zj] \K[Z1, . . . , Zj−1]

it holds
(a) j = i,
(b) for each g ∈ Gi−1, Φα(g) = 0,
(c) for each g ∈ Giδ, Φα(g) = 0,
(d) Φα(gσ) = gcd (Φα(g) : g ∈ Gi) ∈ K[T ],
(e) for each b ∈ K,

(b1, . . . , bi−1, b) ∈ Z(Ji) ⇐⇒ Φα(gσ)(b) = 0.

Proof. cf. Section 26.2 and 34.6. �

Algorithm 39.3.2 (Gianni–Kalkbrener). Gianni–Kalkbrener improvement to
Trinks’ Algorithm allows to avoid, for each α := (a1, . . . , ai−1) ∈ Zi−1, both
the complete evaluation Φα(g) of all g ∈ Gi \ Gi−1 and the computation of
their gcd, reducing this step to the evaluation of the leading polynomials of
a suitable subset of such elements (Figure 39.2).

Example 39.3.3. In Example 39.2.3, Gianni–Kalkbrener Algorithm computes

Z1 := {0, 1, 2};
α = (0) : Φα(Lp(g2)) = Φα(Lp(g3)) = 0, Φα(Lp(g4)) = 1;

Φα(g4) = T 3 − 3T 2 + 2T ;

Z := {0, 1, 2},Z2 := {(0, 0), (0, 1), (0, 2)};
α = (1) : Φα(Lp(g2)) = 0;Φα(Lp(g3)) = 1;

Φα(g3) = T 2 − T ;

Z := {0, 1},Z2 := {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)};
α = (2) : Φα(Lp(g2)) = 2, Φα(g2) = 2T ;

Z := {0},Z2 := {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)};
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Fig. 39.2. Trink’s Algorithm; Gianni—Kalkbrener improvement

Z := Solve(F,L)
where

F := (f1, . . . , fu) ⊂ Q := K[Z1, . . . , Zr],
L ⊃ K is a field extension of K,
J ⊂ Q is the zero-dimensional ideal generated by F ,
Z := {α1, . . . , αs} = Z(J) ∩ Lr.

Compute the reduced lexicographical Gröbner basis G of (f1, . . . , fu).
Sort G := {g1, . . . , gv} by increasing maximal terms.
Z1 := {a ∈ L : g1(a) = 0},
%% g1 is the unique element in G ∩K[Z1].
For i = 2..r do

Zi := ∅;
g := min(g ∈ Gi \Gi−1).
For each (a1, . . . , ai−1) ∈ Zi−1 do

h := g,
While Lp(h)(a1, . . . , ai−1) = 0 do h := Next(h,G),
p := h(a1, . . . , ai−1, Zi),
%% p = gcd(H) for H := {g(a1, . . . , ai−1, Zi) : g ∈ Gi \Gi−1},
Z := {a ∈ L : p(a) = 0},
Zi := Zi ∪ {(a1, . . . , ai−1, a) : a ∈ Z}.

Z := Zr

α = (0, 0) : Φα(Lp(g5)) = 2, Φα(g5) = 2T − 2;

Z2 := {(0, 0, 1)};
α = (0, 1) : Φα(Lp(g5)) = 2, Φα(g5) = 2T + 4;

Z := {1},Z2 := Z2 ∪ {(0, 1,−2)};
α = (0, 2) : Φα(Lp(g5)) = 2, Φα(g5) = 2T + 4;

Z := {−2},Z2 := Z2 ∪ {(0, 2,−2)};
α = (1, 0) : Φα(Lp(g5)) = 0, Φα(Lp(g6)) = −1, Φα(g6) = −T + 3;

Z := {3},Z2 := Z2 ∪ {(1, 0, 3)};
α = (1, 1) : Φα(Lp(g5)) = Φα(Lp(g6)) = 0;Φα(Lp(g7)) = −1,

Φα(g7) = −T 2 + 4T − 3;

Z := {1, 3},Z2 := Z2 ∪ {(1, 1, 3), (1, 1, 1)};
α = (2, 0) : Φα(Lp(g5)) = Φα(Lp(g6)) = Φα(Lp(g7)) = 0;Φα(Lp(g8)) = 1;

Φα(g8) = T 3 − 3T 2 − T + 3;

Z := {0, 1, 2},Z2 := Z2 ∪ {(2, 0, 0), (2, 0, 1), (2, 0, 2)}.
Remark 39.3.4. Cerlienco–Mureddu Correspondence and Algorithm (Chap-
ter 33) can give some hint in the structure of Gianni–Kalkbrener Algorithm.
Our informal discussion assumes that J is radical but holds in general. Gianni–
Kalkbrener Algorithm, for any root α := (a1, . . . , ai−1) ∈ Zi−1, considers the
first Gröbner basis element

h = Lp(h)Zδ+1
i + · · · ∈ K[Z1, . . . , Zi] \K[Z1, . . . , Zi−1]
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whose leading polynomial Lp(h) does not vanish at α.
In the same mood, Cerlienco–Mureddu considers a new point

x := (a1, . . . , ai−1, b) /∈ Z(Ji)

and the first Gröbner basis element which does not vanish at it. Clearly both
algorithms are choosing the same polynomial: in fact

δ + 1 = # {y ∈ Z(Ji) : πi−1(y) = α = πi−1(x)} = d.

Then

• Φα(h) | Φα(g), for each g ∈ Gi \Giδ+1 because

g(y) = 0, for each y ∈ Z(Ji) : πi−1(y) = α,

• Lp(g)(α) = 0 for each g ∈ Giδ , because there is y ∈ Z(Ji) such that

πi−1(y) = α = πi−1(x)

whence g(y) = 0 and 0 = Lp(g)(πi−1(y)) = Lp(g)(α).

In order to conclude our argument, we need to dispose of the elements
g ∈ Giδ+1 \Giδ id est of the Gröbner basis element

g = Lp(g)Zδ+1
i + · · · ;

to do so, we have just to remark that

• g(α) and h(α) are associate if T(g) ≻ T(h), because

g(y) = 0, for each y ∈ Z(Ji) : πi−1(y) = α,

• and Lp(g)(α) = 0 if T(g) ≺ T(h), because there is y ∈ Z(Ji) such that

πi−1(y) = α = πi−1(x)

whence g(y) = 0 and 0 = Lp(g)(πi−1(y)) = Lp(g)(α).

39.4 An Ecumenic Notion of Solving

As the decomposition algorithms (Chapter 35) were reducing primary de-
composition of multivariate ideals to factorization of univariate polynomials,
Trinks’ Algorithm (as most other solving algorithms) reduces multivariate
zero-dimensional ideal solving, to univariate polynomial solving.

Most of these algorithms are ’ecumenic’, in the sense that they can be ap-
plied to any computational model of L which allows, in endlichvielen Schrit-
ten,

• to computationally perform the four operations in L,
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• and, for each univariate polynomial p(T ) ∈ L[T ], to ’solve’ it, id est to
produce the set {a ∈ L : p(a) = 0} of all the roots of p living in L,

and use these tools, given F , to ’solve’ the zero-dimensional ideal J generated
by F , id est to produce the set Z(J)∩Lr of all the roots of J with coordinates
in L.

Trink’s Algorithm (Figure 39.2) is a perfect instance of such ‘ecumenic’
algorithms: for instance, setting L := R, it can be verbatim applied to a
numerical analysis solver5, or adapted in order to make use of Sturm Repre-
sentation and Thom Codification of Algebraic Reals6.

In the same way, Trink’s Algorithm can be easily adapted in order to
make use of Kronecker’s (and Duval’s) Model; obviously the resulting algo-
rithm (Figure 39.3) is a verbatim reformulation of the Zero-dimensional Prime
Decomposition Algorithm discussed in Section 35.2. Such strict relation be-
tween ’solving’ and decomposing, which was already stressed in Section 34.5,
is just a simple consequence of Kronecker–Duval Philosophy.

All over this Part we will preserve this ‘ecumenic’ approach to the notion
of ’solving’, as much as the persented solvers will allow to do so; naturally, the
most strict solver presented here is an integralist version of Kronecker–Duval
Phylosophy.

39.5 *Delassus–Gunther Solver

Historical Remark 39.5.1. Trinks’ paper, dated 1978, is the first published
application of Gröbner bases, except Buchberger’s thesis and paper. His re-
sult is an efficient adaptation and improvement of the proof of Hilbert’s Null-
stellensatz given by Gröbner (Section 20.3).

Gröbner’s argument, when restricted to the zero-dimensional case, essen-
tially computes iteratively the roots of each elimination ideal Ji by

• producing (via a suitable generic change of coordinates) a polynomial

fi(Z1, . . . , Zi) := cZdi

i +

di−1∑

j=0

hj(Z1, . . . , Zi−1)Z
j
i ∈ Ji, c 6= 0,

• solving the univariate polynomials

fi(a1, . . . , ai−1, Zi) ∈ K[Zi] for each (a1, . . . , ai−1) ∈ Z(Ji−1)

5 Of course, such a statement must be taken cum grano salis: it forgets the ill-
conditioning problem, which requires at least some suitable pre-processing before
applying the Algorithm.

6 Chapter 13 dicusses both such representations and the techniques needed in order
to solve the required polynomials

p(Zi) := h(a1, . . . , ai−1, Zi), h ∈ Q[Z1, . . . , Zi],

where each ai ∈ R is given by such representation.
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Fig. 39.3. Trinks’ Algorithm in Kronecker’s Model

Z := Solve(F )
where

F := (f1, . . . , fu) ⊂ Q := K[Z1, . . . , Zr],
J ⊂ Q is the zero-dimensional ideal generated by F ,
Z := {(f1,K1, α1), . . . , (fs,Ks, αs)}
where

fj = (fj1, . . . , fjr) is an admissible sequence (Definition 8.2.2) in
K[Z1, . . . , Zr],
Kj := K[Z1, . . . , Zr]/(fj1, . . . , fjr), K ⊂ Kj ⊂ K is the finite extension
explicitly given by fj ,
αj ∈ Kr

j

Z(J) := {α1, . . . , αs} ⊂ Kr

Compute the reduced lexicographical Gröbner basis G of (f1, . . . , fu);
Sort G := {g1, . . . , gv} by increasing maximal terms.
Let g1 =

∏σ

j=1
q
ej
j be the factorization of g1 over K,

For j = 1 . . . σ let
fj := (qj),
Kj := K[Z1]/qj ,
πj : K[Z1] → Kj be the canonical projection,
αj := πj(Z1) ∈ Kj ,

Z1 := {(f1,K1, α1), . . . , (fσ,Kσ, ασ)}
For i = 2 . . . r do

Zi := ∅,
g := min(g ∈ Gi \Gi−1)
For each (f ,K, α) ∈ Zi−1, f = (f1, . . . , fi−1) , α = (a1, . . . , ai−1) do

h := g,
While Lp(h)(a1, . . . , ai−1) = 0 do h := Next(h,G)
p(Zi) := h(a1, . . . , ai−1, Zi)
Let p =

∏σ

j=1
q
ej
j be the factorization of p over K,

For j = 2 . . . σ let
fj := (f1, . . . , fi−1, qj),
Kj := K[Zi]/qj ∼= K[Z1, . . . , Zi]/(f1, . . . , fi−1, qj)
πj : K[Zi] → Kj be the canonical projection,
αj := (a1, . . . , ai−1, πj(Zi)) ∈ Ki

j ,
Zi := Zi ∪ {(f1,K1, α1), . . . , (fσ,Kσ, ασ)}

Z := Zr
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• and including in Z(Ji) those roots (a1, . . . , ai−1, b) which are annihilating
not only fi but also a given basis of Ji.

Trinks proposal makes effective the ability of producing the required basis
of each Ji and allows to produce univariate polynomials to be solved without
performing changes of coordinates.

Gröbner’s argument, in turn, was an adapatation of the argument and
solver by Kronecker (Section 20.4) which, in the zero-dimensional case7, again
consists into

• producing (via a suitable generic change of coordinates) polynomials

fi(Z1, . . . , Zi) := cZdi

i +

di−1∑

j=0

hj(Z1, . . . , Zi−1)Z
j
i ∈ i, c 6= 0,

• solving the univariate polynomials

fi(a1, . . . , ai−1, Zi) ∈ K[Zi] for each (a1, . . . , ai−1) ∈ Z(Ii−1)

• and including in Z(Ii) those roots (a1, . . . , ai−1, b) which are annihilating
not only fi but also a given basis of Ii,

where each ideal Ii−1 is obtained from Ii (In := J) via a suitable resultant
computation.

Resultant is instead just a theoretical tool used in proving an interesting
solver which anticipates some ideas by Macaulay: the original version8 was
proposed by Delassus in 1987 but was flawed by the wrong assumption that
the generic initial ideal (Definition 37.1.5) of a homogeneous ideal w.r.t. the
lex ordering ≺ induced by Xn ≺ . . . ≺ X1 consists of the last terms w.r.t. ≺
while it is just Borel (Definition 37.2.7, Corollary 37.2.8); the flaw was found

(by Gunther and Robinson9) and fixed (by Gunther10) in 1913. �

7 Unlike Gröbner’s argument which was not intended as an effictive solver and was
turn into such by Trinks, Kronecker’s argument was an effective solver.

The restriction to the zero-dimensional case is done here to simplify the ar-
gument but is not required by Kronecker’s solver which in fact applies also to
non-unmixed ideals.

The details on the general case are discussed in Sections 20.3 and 20.4.
8 Delassus E., Sur les systèmes algébriques et leurs relations avec certains systèmes

d’́equations aux dérivées partielles. Ann. Éc. Norm. 3e série 14 (1897) 21–44
9 Gunther, N. Sur les caractéristiques des systémes d’equations aux dérivées par-
tialles, C.R. Acad. Sci. Paris 156 (1913), 1147–1150 and Robinson, L.B. Sur les
systémes d’équations aux dérivées partialles C.R. Acad. Sci. Paris 157 (1913),
106–108

10 Gunther, N. Sur la forme canonique des systèmes d’équations homogènes (in
russian) [Journal de l’Institut des Ponts et Chaussées de Russie] Izdanie Inst.
Inz̆. Putej Soobs̆c̆enija Imp. Al. I. 84 (1913) and Gunther, N. Sur la forme
canonique des équations algébriques, C.R. Acad. Sci. Paris 157 (1913), 577–80 .
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In order to present the solver proposed by Delassus–Gunther we must
slightly adapt the notation used; we assume J ⊂ Q = K[Z1, . . . , Zr] to be
homogeneous and we denote, for each d ∈ N,

Wd := {τ ∈ W , deg(τ) = d} and11 Jd := J ∩ SpanK(Wd).

We assume to have performed a generic change of coordinates and we consider
the (deg)-revlex ordering < induced by Z1 < Z2 < . . . < Zr and for each
(homogeneous) polynomial f =

∑
t∈W c(f, t)t ∈ Q we denote

L<(f) := min
<

(t ∈ W : c(f, t) 6= 0)

and, for each (homogeneous) set F ⊂ Q,

L<{F} := {L<(f) : f ∈ F} and L<(F ) := {τL<(f) : f ∈ F, τ ∈ W}.

Remark 39.5.2.

(1) if ≺ denotes the (deg)-lex ordering induced by Z1 ≻ Z2 ≻ . . . ≻ Zr we
have T≺(f) = L<(f) for each (homogeneous) polynomial f ∈ Q and
T≺(F ) = L<(F ) for each (homogeneous) set F ⊂ Q;

(2) for the homogeneous ideal J and each d ∈ N, we have

L<(J)d = L<{J}d = L<{Jd};

(3) there is a (minimal) value12 D ∈ N which satisfies, for each d ∈ N,

L(SpanK{ωf : ω ∈ Wd, f ∈ JD}) = {ωL(f) : ω ∈ Wd, f ∈ JD};

(4) each set L<{Jd}, d ≥ D, satisfies13 for each ℓ, ℓ′, 1 ≤ ℓ < ℓ′ ≤ r,

Za1
1 · · ·Zar

r ∈ L<{Jd} =⇒ Za1
1 · · ·Zaℓ+1

ℓ · · ·Zaℓ′−1
ℓ′ · · ·Zar

r ∈ L<{Jd};

11 the notation Jd denotes here the set of the homogeneous members of J of degree
d and must not be indentify with the previous notation where Ji denotes the
members of J depending only on the first j variables.

12 We can set D := max{deg(g) : g ∈ G} where G is a Gröbner basis of J wrt ≺
but the existence can be easily derived (as for the finiteness of Gröbner bases)
by Hilbert’s Nullstellensatz and this is the approach used by Gunther.

13 This is a direct consequence of Corollary 37.2.8 applied to the set T≺(f) = L<(f)
and to the (deg)-lex ordering ≺ induced by Zr ≺ . . . ≺ Z2 ≺ Z1.

Delassus’ mistake is to assume thatT≺(Jd) = L<(Jd) is the set L(d) consists of
the first #L<(Jd) terms w.r.t. the (deg)-revlex < induced by Z1 < Z2 < . . . < Zr

which tantamount to the last #T≺(Jd) terms w.r.t. the (deg)-lex ordering ≺
induced by Zr ≺ . . . ≺ Z2 ≺ Z1.

In its Lemma (cf. Section 23.3) Macaulay was considering the same set
L(d),#L(d) = #L<(Jd) as Delassus and presented it, as Delassus, in terms of
the (deg)-revlex ordering < and not in terms of the (deg)-lex ordering ≺.
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(5) Denoting, for each d, N(Jd) := Wd \ L<{Jd}, for each τ ∈ L<{Jd}, we
have Can(τ, J,≺) ∈ SpanK(N(Jd)) and we can set

gτ := τ − Can(τ, J,≺) ∈ SpanK(N(Jd)) and Gd := {gτ : τ ∈ L<{Jd}}
having τ = L<(gτ ) = T≺(gτ ) and L<{Gd} = L<{Jd}.

(6) Z(J) = {(a1, . . . , ar) ∈ Kr : g(a1, . . . , ar) = 0 for each g ∈ GD}. �

Theorem 39.5.3 (Delassus–Gunther). With the present notation and as-
sumptions, let γ1, . . . , γr ∈ N,

∑r
i=1 γi = D, be the values such that

Ω := Zγ1

1 · · ·Zγr−1

r−1 Z
γr
r = max

<
(L<{JD}) = max

<
(L<{GD}) = min

≺
(T≺{JD}).

Then

(1) if γ1 = 0 then gcd(GD) = 1;
(2) if γ1 6= 0 then

(a) h := gcd(GD) 6= 1;
(b) L<(h) = Zγ1

1 ;
(c) for each d ∈ N it holds

L(SpanK{ωg : ω ∈ Wd, g ∈ GD}) = {ωL(g) : ω ∈ Wd, g ∈ GD};
(3) max<{L<(g/h) : g ∈ GD} = Zγ2

2 · · ·Zγr−1

r−1 Z
γr
r ;

(4) if γ1 = 0 the set H := GD ∩K[Z2, . . . , Zr] satisfies, for each d ∈ N,

L(SpanK{ωf : ω ∈ Ud, f ∈ H}) = {ωL(f) : ω ∈ Ud, f ∈ H},
where we have set Ud := Wd ∩K[Z2, . . . , Zr];

(5) if γ1 = 0 and

(a2, . . . , ar) ∈ Z(H) := {(a2, . . . , ar) ∈ Kr−1 : g(a2, . . . , ar) = 0, g ∈ H},
then 1 6= h(Z1, a2, . . . , ar) = gcd(g(Z1, a2, . . . , ar) : g ∈ GD) ∈ K[Z1];

(6) moreover h(Z1, a2, . . . , ar) = (Z1 − a1)
deg(g) for some a1 ∈ K.

Proof.

(1) Remark that the first element, w.r.t. < in L<{JD} is ZD
1 and that

ZD
1 − Can(ZD

1 , J,≺) ∈ GD

so that

h := gcd(GD) 6= 1 =⇒ gcd(GD) ∈ K[Z2, . . . Zr][Z1] \K[Z2, . . . Zr].

If γ1 = 0, Ω ∈ K[Z2, . . . Zr] and gΩ ∈ K[Z2, . . . Zr]
14 so that

h = gcd(GD ∈ K[Z2, . . . Zr]).

Thus gcd(GD) = 1.

14 As a consequence of the elimination property of the lex ordering ≺ which is
explicitly stated by Gunther.
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(2) Assume now that γ1 6= 0.
(a) Let us consider variables Uτ ,Wτ , τ ∈ L<{JD}, and the polynomials

f :=
∑

τ∈L<{JD}
Uτgτ , g :=

∑

τ∈L<{JD}
Wτgτ ∈ K[Uτ ,Wτ , Z2, . . . Zr][Z1];

Sylvester resultant grants (Proposition 6.6.7) the existence of poly-
nomials p, q ∈ K[Uτ ,Wτ , Z2, . . . Zr][Z1] such that

Res(f, g) := pf + qg ∈ K[Uτ ,Wτ , Z2, . . . Zr];

moreover Res(f, g) is necessarily linear and homogeneous in terms
of members of the set F := {ωgτ , τ ∈ L<{JD}, ω ∈ Wd} where
d := deg(p) = deg(q). By Remarks 39.5.2.(3) and (5),

ΩZd
r := Zγ1

1 · · ·Zγr−1

r−1 Z
γr+d
r = max

<
(L<{F}).

As a consequence, since γ1 6= 0, there are elements f ′ ∈ F , for in-
stance f ′ = Zd

r gΩ, for which

L<(f
′) ∈ K[Uτ ,Wτ , Z2, . . . Zr][Z1] \K[Uτ ,Wτ , Z2, . . . Zr]

thus getting a contradiction unless Res(f, g) = 0 and f, g have a
common factor in K[Uτ ,Wτ , Z2, . . . Zr][Z1].
Such factor is necessarily a member of K[Z2, . . . Zr][Z1], thus proving
that h := gcd(GD) 6= 1.

(b) We necessarily have L<(h) = Zγ
1 for some γ ∈ N. Also

max
<

{L<(g/h) : g ∈ GD} = Zγ1−γ
1 Zγ2

2 · · ·Zγr−1

r−1 Z
γr
r

and, setting F ′ := {ωg/h : g ∈ GD, ω ∈ Wd}, we have (again by
Remarks 39.5.2.(3) and (5))

max
<

{L<(f : f ∈ F ′) = Zγ1−γ
1 Zγ2

2 · · ·Zγr−1

r−1 Z
γr+d
r .

Since clearly gcd(F ′) = 1 we conclude by (1) and (2.a) above that
γ1 − γ = 0 id est γ1 = γ.

(c) is trivial.
(3) is a trivial consequence of (2).
(4) If γ1 = 0, then H := GD ∩K[Z2, . . . , Zr] 6= ∅ and15

H = {gτ ∈ GD : τ ∈ W ∩K[Z2, . . . Zr]}.

The claim then is a direct application of Remark 39.5.2.(3).

15 Again a consequence of the elimination property of the lex ordering ≺ explicitly
stated by Gunther.
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(5) Let us again consider the resultant

Res(f, g) := pf + qg ∈ K[Uτ ,Wτ , Z2, . . . Zr]

of f :=
∑

τ∈L<{JD} Uτgτ and g :=
∑

τ∈L<{JD}Wτgτ ; since gcd(GD) = 1

we have gcd(f, g) = 1 and Res(f, g) 6= 0.
Denoting V the set of the terms in the variables {Uτ ,Wτ , τ ∈ L<{JD}}
we therefore have Res(f, g) =

∑
υ∈V cυυ.

Each cυ depends linearly on the elements in

F := {ωgτ , τ ∈ L<{JD}, ω ∈ Wd},

where d := deg(p) = deg(q), and is independent on Z1: cυ ∈ K[Z2, . . . Zr].
Therefore each cυ depends linearly on the elements in

F ′ := {ωg, g ∈ H,ω ∈ Wd ∩K[Z2, . . . Zr]}

and we have cυ(a2, . . . , ar) = 0, Res(f, g)(Uτ ,Wτ , a2, . . . , ar) = 0 for each
(a2, . . . , ar) ∈ Z(H), so that

gcd (f(Uτ ,Wτ , a2, . . . ar, Z1), g(Uτ ,Wτ , a2, . . . ar, Z1)) 6= 1

id est 1 6= h(Z1, a2, . . . , ar) := gcd(g(Z1, a2, . . . , ar) : g ∈ GD) ∈ K[Z1].
(6) Since this is Gröbner’s Allgemeine Nulldimensional Basissatz (Theo-

rem 34.2.4) I can skip the interesting, but not immediate, proof proposed

by Gunther16. �

16 It begins by considering a substitution

Z1 = U1, Z2 = AU1 + U2, Z3 = U3, . . . , Zr = Ur,

where A is a variable, and the corresponding equations in K[A][U1, . . . , Ur] which
sont de fonction holomorphes de A dans la voisinage de A = 0.
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40. Stetter

The crucial improvement by Gianni and Kalkbener of Trinks’ Algorithm is
dated 1987; the next year, Auzinger and Stetter proposed an alternative al-
gorithm for solving a radical 0-dimensional ideal which was later generalized
by Stetter and Möller to the general setting; the original proposal made no
reference to Gröbner techniques1 being based on Numerical Analysis tech-
niques: given a zero dimensional ideal J ⊂ Q, Auzinger–Stetter’s Theorem
states that, for each f ∈ A := Q/J, the linear form Φf : A → A describing
the multiplication by f in A has the evaluation of f at the roots of J as its
eigenvalues with the proper multiplicity; moreover, if we fix a K-basis of A
b = {b1, . . . , bs} and we denote Af the matrix representing Φf w.r.t. such
basis, then (b1(α), . . . , bs(α))

T is an eigenvector for f(α) for each α ∈ Z(J).
Thus, provided that Af is non-derogatory, id est its Jordan form has a

single Jordan block associated with each eigenvalue, it is sufficient to choose
as b a basis which includes the linear basis of the subspace of A consisting of
all its linear forms and use linear dependency to express each variable Zi in
terms of such linear basis.

After setting the proper notation (Section 40.1) we present Auzinger–
Stetter’s Theorem (Section 40.2) and discuss how to apply it for solving a
0-dimensional radical ideal (Section 40.3). The extension to the general case
being based on duality, I preliminarily discuss the relation between duality
and Auzinger–Stetter’s technique (Section 40.4) before presenting Möller–
Stetter’s extension of Auzinger–Stetter’s Theorem (Section 40.5).

After specializing this result to the univariate case, thus obtaining the
expected statement (Section 40.6) and discussing derogatoriness (Section 40.7
and 40.10), I finally present how Stetter’s Algorithm can be performed using
Gröbner basis techniques (Section 40.8 and 40.9).

1 While, the presentation here is centered around the notion of Gröbner repre-
sentation, one must remark that such notion was introduced later in order to
provide a convenient frame to present Auzinger–Stetter’s Algorithm.
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40.1 Endomorphisms of an Algebra

Let Q := K[Z1, . . . , Zr], W its monomial K-basis and K the algebraic closure
of K. In order to simplify the notation let us wlog assume K = K to be
algebraically closed.

Let J ⊂ Q be a zero-dimensional ideal, deg(J) = s, and A := Q/J the
corresponding quotient algebra, which satisfies dimK(A) = s.

For any f ∈ Q, we will denote [f ] ∈ A its residue class modulo J and Φf

the endomorphism Φf : A → A defined by

Φf ([g]) = [fg] for each [g] ∈ A.

Clearly Φf = Φh iff [f ] = [h].
If we fix any K-basis b = {[b1], . . . , [bs]} of A so that A = SpanK(b), then

for each g ∈ Q, there is a unique (row) vector, the Gröbner description of g
(Definition 29.3.3),

Rep(g,b) := (γ(g, b1,b), . . . , γ(g, bs,b)) ∈ Ks

which satisfies
[g] =

∑

j

γ(g, bj,b)[bj ]

and the endomorphism Φf is naturally represented by the square matrix

M([f ],b) = (γ(fbi, bj ,b)) : Φf (bi) = [fbi] =
∑

j

γ(fbi, bj ,b)[bj ].

Recall that a Gröbner representation (Definition 29.3.3) of J is the as-
signement of

• a K-basis b = {[b1], . . . , [bs]} ⊂ A and

• the square matrices Ah :=
(
a
(h)
ij

)
=M([Zh],b) for each h, 1 ≤ h ≤ s,

and that a Gröbner representation is called a linear representation (Defini-
tion 29.3.3) iff b = {[1], [τ2], . . . , [τs]} = N<(J) wrt a term ordering < and
remark that, for each f(Z1, . . . , Zr) ∈ Q, M([f ],b) = f(A1, . . . , Ar).

An alternative way of representing a zero-dimensional ideal J ⊂ Q and
the related quotient algebra A is via its dual space (Section 28.1)

L(J) := {ℓ ∈ Q∗ : ℓ(g) = 0 for each g ∈ J} ⊂ Q∗

where Q∗ := HomK(Q,K) is the K-vectorspace consisting of all K-linear
functionals ℓ : Q → K.

Clearly we have dimK(L(J)) = s and to each K-basis L := {λ1, · · · , λs} of
L(J) is associated a Lagrange K-basis q = {[q1], . . . , [qs]} which is biorthogo-

nal to L id est λi(qj) = δij =

{
1 if i = j
0 if i 6= j.

In particular, since, for each i, j, h,
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λj(Zhqi) = λj

(
∑

l

a
(h)
il ql

)
=
∑

l

a
(h)
il λj(ql) = a

(h)
ij ,

to each basis L := {λ1, · · · , λs} of L(J) is associated the Gröbner representa-
tion

• q = {[q1], . . . , [qs]} ⊂ A : λi(qj) = δij for each i, j,
• Qh := (λj(Zhqi))ij .

Example 40.1.1. Set Q := C[Z1, Z2] and

J := (Z3
1 − Z2

1 , Z1Z2 − Z1 − Z2 + 1, Z3
2 + Z2

1 − 1)

which is a Gröbner basis wrt the degree compatible ordering induced by
Z1 < Z2.

As a consequence we can choose as Gröbner representation the linear
representation b = {1, Z1, Z2, Z

2
1 , Z

2
2},

A1 =




0 1 0 0 0
0 0 0 1 0
−1 1 1 0 0
0 0 0 1 0
−1 1 0 0 1



, A2 =




0 0 1 0 0
−1 1 1 0 0
0 0 0 0 1
−1 0 1 1 0
1 0 0 −1 0



.

It is easy to verify that L(J) = SpanK(L), L := {λ1, . . . , λ5} with

λ1(p) = p(0, 1), λ2(p) =
∂p
∂Z1

(0, 1),

λ3(p) = p(1, 0), λ4(p) =
∂p
∂Z2

(1, 0), λ5(p) =
∂2p
2∂Z2

2
(1, 0)

whose associated Gröbner representation is q = {q1, q2, q3, q4, q5} with

q1 = −Z2
1 + 1, q2 = −Z2

1 + Z1,
q3 = Z2

1 , q4 = Z2
1 + Z2 − 1, q5 = Z2

1 + Z2
2 − 1,

Q1 =




0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



, Q2 =




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



.

�

Between the two bases b and q there are the basis transformations

Mbq := (γ(bi, qj ,q)) and Mqb := (γ(qi, bj ,b))

so that, for each i,
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[bi] =
∑

j

γ(bi, qj ,q)[qj ] and [qi] =
∑

j

γ(qi, bj,b)[bj ];

naturally, we have Mbq =M−1
qb , and

M([f ],b) =MbqM([f ],q)Mqb =MbqM([f ],q)M−1
bq

so that M([f ],q) and M([f ],b) are similar and share the same eigenvalues
and Jordan normal form.

Example 40.1.2. Continuing Example 40.1.1 we have

Mbq =




1 0 1 0 0
0 1 1 0 0
1 0 0 1 0
0 0 1 0 0
1 0 0 0 1



, Mqb =




1 0 0 −1 0
0 1 0 −1 0
0 0 0 1 0
−1 0 1 1 0
−1 0 0 1 1



,

and it is easy to check the relations Mbq =M−1
qb , MbqQ1 = A1Mbq, MbqQ2 =

A2Mbq. Setting

J1 =




0 1
0

1
1

1



, J2 =




1
1

0 1
0 1

0




;

we have, for i = 1, 2, MbqJi = AiMbq, and hence Ji = Qi.
FromMbqJi = AiMbq, we obtainMqbAi = JiMqb and A

T
i M

T
qb =MT

qbJ
T
i =

MT
qbQ

T
i , thus allowing to easily deduce eigenvalues and Jordan normal forms

also for AT
i .

In fact we have M̌qbJ̌i = AT
i M̌qb with M̌qb =




−1 −1 0 0 1
0 0 0 1 0
0 1 0 0 0
1 1 1 −1 −1
1 0 0 0 0



,

J̌1 =




1
1

1
0 1

0




and J̌2 =




0 1
0 1

0
1

1



.

�
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Remark 40.1.3. Denote P the s-square backward identity matrix

P := (pij), pij =

{
1 if i+ j = s+ 1
0 if i+ j 6= s+ 1

which satisfy P−1 = P .
From a relationMJ = AM whereA is an s-square matrix,M is invertible,

N :=M−1, and J is the Jordan matrix of A, we obtain JN = NA and

AT (NTP ) = NTJTP = (NTP )(PJTP )

so that PJTP is the Jordan matrix of AT — whose eigenvalues thus are the
same (with the same multiplicity) as the ones of A — and Ň := NTP its
eigenspace matrix.

Given a square matrix N = (nij), the matrix Ň = NTP = (ňij) can be
obtained from N by, equivalently, either

• writing from the right to the left the columns of NT ,
• clock-right π

4 -rotating N or

• setting ňij = ns−j i, for each 1 ≤ i, j ≤ s. �

40.2 Toward Auzinger–Stetter’s Theorem

With the same notation as in the previous section let us fix

• a Gröbner representation

b = {[b1], . . . , [bs]} ⊂ A, Ah :=
(
a
(h)
ij

)
=M([Zh],b), 1 ≤ h ≤ r;

• a basis L := {λ1, · · · , λs} of L(J);
• the conjugate Gröbner representation

q = {[q1], . . . , [qs]} ⊂ A, Qh := (λj(Zhqi))ij ,

where q is the Lagrange basis satisfying λi(qj) = δij for each i, j,

and let us denote

• Mbq := (γ(bi, qj ,q)) and Mqb := (γ(qi, bj ,b)) the basis transformation
matrices;

• M̌qb the matrix obtained from Mqb according the construction described
in Remark 40.1.3;

• Jh and J̌h, 1 ≤ h ≤ r the Jordan normal form matrices for Ah and AT
h ;

• for each f ∈ Q/J = A

Af :=M([f ],b) = (γ(fbi, bj ,b)) : Φf (bi) = [fbi] =
∑

j

γ(fbi, bj ,b)[bj ];
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• Jf and J̌f the Jordan normal form matrices for Af and AT
f .

Let us also consider the set

Z(J) := {α ∈ Kr : f(α) = 0 for each f ∈ J}.

Lemma 40.2.1 (Auzinger–Stetter). With the present notation it holds

γ(bi, qj ,q) = λj(bi), 1 ≤ i, j ≤ s.

Proof. For each f ∈ A,
∑

j γ(f, qj ,q)[qj ] = f =
∑

j λj(f)[qj ].
The first equality follows from the definition of γ, the second from the

property of the Lagrange basis. The claim then follows by the linear inde-

pendency of q. �

Corollary 40.2.2. Each ith row of Mbq is the vector (λ1(bi), . . . , λs(bi)) of
the evaluation of the basis element bi at the functional basis L.

Each jth column of Mbq is the vector (λj(b1), . . . , λj(bs))
T
of the evalua-

tion of the basis b at the functional λj. �

Lemma 40.2.3 (Auzinger–Stetter). For each α ∈ Z(J) the vector

(b1(α), . . . , bs(α))
T

is an eigenvector of the matrix Af for the eigenvalue f(α).

Proof. For each i, 1 ≤ i ≤ s, we have [fbi] = Φf ([bi]) =
∑

j γ(fbi, bj,b)[bj ] so

that f(α)bi(α) =
∑

j γ(fbi, bj,b)bj(α). Thus the claim follows trivially. �

Lemma 40.2.4 (Möller). The following holds:

(1) for any λ ∈ K, λ is an eigenvalue for Φf iff J : (f − λ) 6= J;
(2) the corresponding eigenspace is the set {[h] : h ∈ J : (f − λ)};
(3) [h] =

∑
i βi[bi] ∈ J : (f − λ) iff (β1, . . . , βs)

T is an eigenvector of AT
f

for λ.

Proof. For each [h] =
∑

i βi[bi] ∈ A we have

Φf ([h]) =
∑

j

βjΦf ([bj ])

=
∑

j

βj
∑

i

γ(fbj, bi,b)[bi]

=
∑

i


∑

j

βjγ(fbj, bi,b)


 [bi]

so that, for v := (β1, . . . , βs)
T we have
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λ[h] = Φf ([h]) ⇐⇒ λβi =
∑

j

βjγ(fbj, bi,b)∀i ⇐⇒ λv = AT v.

For any h /∈ J we have the obvious equivalences

λ[h] = Φf ([h]) ⇐⇒ λ[h] = [fh]

⇐⇒ (λ− [f ]) [h] = 0

⇐⇒ (λ− f)h ∈ J

⇐⇒ h ∈ J : (f − λ)

whence the claim. �

Definition 40.2.5. A matrix is called non-derogatory if, equivalently,

all its eigenspaces have dimension 1;
its Jordan form has a single Jordan block associated with each eigenvalue.

�

Theorem 40.2.6 (Auzinger–Stetter). The set {f(α) : α ∈ Z(J)} is the
set of eigenvalues of Af . If Af is non-derogatory, each eigenspace of Af for
f(α) is spanned by (b1(α), . . . , bs(α))

T .

Proof. A direct consequence of Lemmata 40.2.3 and 40.2.4. �

Corollary 40.2.7. The set {f(α) : α ∈ Z(J)} is the set of eigenvalues of
AT

f . If Af is non-derogatory, such is also AT
f and, for each i,

(1) the eigenspace of AT
f for f(αi) is spanned by

(γ(qi, b1,b), · · · , γ(qi, bs,b)))T .
(2) J : (f − f(αi)) = J+ (qi).

�

Example 40.2.8. Continuing Example 40.1.1, the eigenspace of A1 (respec-
tively: A2) for the eigenvalue 0 is spanned by (1, 0, 1, 0, 1)T (respectively:
(1, 1, 0, 1, 0)T ) while (1, 1, 0, 1, 0)T (respectively: (1, 0, 1, 0, 1)T ) are just eigen-
vectors for the eigenvalue 1 whose eigenspace has dimension 3 (respectively:
2). The eigenspaces for 0 have dimension 1 for both A1 and A2, those for 1
have dimension respectively 3 and 2; thus neither matrix is non-derogatory.

We also have:

• J : Z1 = (Z1 − Z2
1 ) + J and (0, 1, 0,−1, 0)T spans the eigenspace of AT

1 for
0;

• J : (Z1 − 1) = (Z2
1 , Z2 − 1) + J and the eigenspace of AT

1 for 1 is spanned
by

{(−1, 0, 0, 1, 1)T , (−1, 0, 1, 1, 0)T , (0, 0, 0, 1, 0)T}
= {(0, 0,−1, 0, 1)T , (−1, 0, 1, 0, 0)T , (0, 0, 0, 1, 0)T};
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• J : Z2 = (Z2
2 + Z2

1 − 1) + J and the eigenspace of AT
2 for 0 is spanned by

{(−1, 0, 0, 1, 1)T}.
• J : (Z2 − 1) = (Z1 − 1) + J and the eigenspace of AT

2 for 1 is spanned by

{(0, 1, 0,−1, 0)T , (1, 0, 0,−1, 0)T} = {(1,−1, 0, 0, 0)T , (0, 1, 0,−1, 0)T}.
�

The relevant aspect of Auzinger–Stetter’s Theorem 40.2.6 is that while
both eigenvalues and eigenvectors of Af intrinsecally depend on the roots of
J their actual values are precise functions of the choice of the matrix Af and
of the basis b; one can therefore expects that for a proper choice of f and b
an eigenvalue computation can allow to deduce the roots of J.

40.3 Auzinger–Stetter: The Radical case

Let us preliminarly assume that J is radical and see whether the remark above
leads to something.

The radicality assumption implies that J has s = deg(J) different roots in
Kr:

Z(J) = {α1, . . . , αs} ⊂ Kr, αj = (a
(j)
1 , . . . , a(j)r ).

Thus we can wlog identify each functional λj with the evaluation at the
root αj :

λj : Q → K, p(Z1, . . . , Zr) 7→ λj(p) = p(a
(j)
1 , . . . , a(j)r )

and q is the corresponding Lagrange basis.
A matrix Af is non-derogratory if and only if f(αi) 6= f(αj) for each

i 6= j. Clearly for a generic linear form Y =
∑

h chZh, AY is non-derogatory.
Thus if we choose a linear form which separates Z(J) id est it satisfies the
condition

(AS.1) Y =
∑

h chZh is such that βi :=
∑

h cha
(i)
h 6= ∑

h cha
(j)
h =: βj for

each i 6= j

then AY and AT
Y are non-derogatory and have s distinct eigenvalues

βj :=
∑

h

cha
(j)
h , 1 ≤ j ≤ s

whose associated eigenspaces are generated respectively by

(b1(αj), . . . , bs(αj))
T and (γ(qj , b1,b), · · · , γ(qj , bs,b))T .

In order to deduce the αjs from these eigenvectors, the trick consists in a
clever choice of the basis b. The efficient choice is the original one proposed
by Auzinger–Stetter: let us denote V the K-vectorspace
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V := SpanK{[1], [Z1], . . . [Zr]}

and let δ := dimK(V ) ≤ s; then, up to reenumerating the variables, we can
wlog assume that

• V = SpanK{[1], [Z1], . . . [Zδ−1]}
• {[1], [Z1], . . . [Zδ−1]} is a K-basis of V ,

• there are cil ∈ K, 0 ≤ l < δ ≤ i ≤ r such that [Zi] = ci0 +
∑δ−1

l=1 cil[Zl].

Moreover, the knowledge of the matrices Ah allows to deduce, by easy
linear algebra, both δ and the cils.

We can therefore choose a basis b which satisfies the condition

(AS.2) b = ([b1], . . . , [bs]) is such that

b1 = 1, bi = Zi−1, 1 < i ≤ δ = dimK(V )

so that

V := SpanK{[1], [Z1], . . . [Zr]} = SpanK{[1], [Z1], . . . [Zδ−1]}
= SpanK{[b1], . . . , [bδ]};

thus the eigenvectors corresponding to αj = (a
(j)
1 , . . . , a

(j)
r ) are

(1, a
(j)
1 , . . . , a

(j)
δ−1, bδ+1(αj), . . . , bs(αj))

T

and the other coordinates of αj can be deduced from a
(j)
i = ci0+

∑δ−1
l=1 cila

(j)
l .

In conclusion

Theorem 40.3.1 (Auzinger–Stetter). With the present notation and un-
der the assumption that J is radical, then it holds

(1) each jth column (b1(αj), . . . , bs(αj))
T of Mbq is an eigenvector of each

Af , f ∈ Q, for the eigenvalue f(αj);
(2) each jth row (γ(qj , b1,b), · · · , γ(qj , bs,b))T of Mqb is an eigenvector of

each AT
f , f ∈ Q, for the eigenvalue f(αj);

(3) for each f ∈ Q, it holds
(a) the eigenvalues of Af and AT

f are {f(αj) : 1 ≤ j ≤ s};
(b) the eigenspace of Af for λ ∈ K is

SpanK{(b1(αj), . . . , bs(αj))
T : f(αj) = λ};

(c) the eigenspace of AT
f for λ ∈ K is

SpanK{(γ(qj, b1,b), · · · , γ(qj , bs,b)T ) : f(αj) = λ};

(d) [qj ]f(αj) = [fqj] for each j;
(e) for each λ ∈ K, J : (f − λ) = J iff λ /∈ {f(αi) : 1 ≤ i ≤ s};
(f) for each λ ∈ K J : (f − λ) = J+ {qj : f(αj) = λ}.



38 40. Stetter

If, moreover, Y =
∑

h chZh satisfies condition (AS.1) then:

(4) the jth column (b1(αj), . . . , bs(αj))
T of Mbq is the eigenvector for βj :=∑

h cha
(j)
h of AY ;

(5) the jth row (γ(qi, b1,b), · · · , γ(qj, bs,b))T of Mqb is the eigenvector for

βj :=
∑

h cha
(j)
h of AT

Y ;
(6) J : (Y − βj) = J+ {qj} for each j.

If further b = {[1], [Z1], . . . [Zδ−1], [bδ+1], · · · , bs]} satisfies condition (AS.2)
then:

(7) denoting {(dj1, . . . , djs)T , 1 ≤ j ≤ s} the eigenvectors of AY and

αj :=

(
d−1
j1 dj2, . . . , d

−1
j1 djδ , cδ0 +

δ−1∑

l=1

cδld
−1
j1 djl, . . . , cn0 +

δ−1∑

l=1

cnld
−1
j1 djl

)

for each j, then Z(J) = {αj , 1 ≤ j ≤ s}.

Proof. (1), (3)(a-b) are a direct consequence of Lemma 40.2.3, (2), (3)(c-f)
of Lemma 40.2.4.

For the non-derogatory case, (4) is Theorem 40.2.6 and (5-6) Corol-
lary 40.2.7.

(7) is a direct reformulation of (1) applied to the basis satisfying condition

(AS.2). �

Example 40.3.2. If we consider the ideal J ⊂ C[Z1, Z2, Z3] discussed in Ex-
ample 39.2.3, since we completely know both the roots and the Gröbner
structure all we need to do is to verify Auzinger–Stetter’s Theorem on it.

The natural choices forB and L are (compare Examples 33.2.5 and 33.2.6)

B := {1, Z1, Z2, Z3, Z
2
1 , Z1Z2, Z

2
2 , Z1Z3, Z

2
3}

and λi(p) := p(bi) for all i; under this choice

Mbq =




1 1 1 1 1 1 1 1 1
0 0 2 0 1 1 1 2 2
0 1 0 2 0 1 1 0 0
1 −2 2 −2 3 3 1 1 0
0 0 4 0 1 1 1 4 4
0 0 0 0 0 1 1 0 0
0 1 0 4 0 1 1 0 0
0 0 4 0 3 3 1 2 0
1 4 4 4 9 9 1 1 0




;

and the matrices related to the Gröbner representation are (compare Exam-
ples 33.5.1 and 33.5.2)
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A1 =




0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 −2 0 0 3 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
2 −3 −9 −2 1 6 3 3 0
6 −3 −45 −8 0 30 15 4 2




A2 =




0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
−2 −3 7 2 2 −1 −3 −1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 0 −2 0 0 0 3 0 0
−2 −3 9 2 2 −3 −3 −1 0
−8 −12 40 8 8 −19 −12 −4 0




A3 =




0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
−2 −3 7 2 2 −1 −3 −1 0
0 0 0 0 0 0 0 0 1
2 −3 −9 −2 1 6 3 3 0
−2 −3 9 2 2 −3 −3 −1 0
−2 −3 9 2 2 −1 −5 −1 0
6 −3 −45 −8 0 30 15 4 2
−6 3 −9 4 0 6 3 −3 3




.

They satisfy

A1Mbq = Mbq diag(0, 0, 2, 0, 1, 1, 1, 2, 2)

A2Mbq = Mbq diag(0, 1, 0, 2, 0, 1, 1, 0, 0)

A3Mbq = Mbq diag(1,−2, 2,−2, 3, 3, 1, 1, 0)

and none is non-derogatory. Instead the matrix

AY =




0 −3 1 3 0 0 0 0 0
0 0 0 0 −3 1 0 3 0
−6 −9 21 6 6 −6 −8 −3 0
−2 −3 7 2 2 −1 −3 −4 3
6 −3 −27 −6 −6 19 9 9 0
−6 −9 27 6 6 −11 −9 −3 0
−6 −9 25 6 6 −6 −12 −3 0
10 −3 −99 −16 −1 69 33 2 6
−44 6 148 44 8 −91 −48 −25 3
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related to the linear form Y = −3Z1+Z2+3Z3 is non-derogatory and satisfies

AYMbq =Mbq diag(3,−5, 0,−4, 6, 7, 1,−3,−6).

�

40.4 *Möller: Endomorphisms and dual space

If J is radical, setting b := q and recalling that q is the Lagrange basis for
the functionals λj representing the evaluation at αj ,

λi(qj) = δij =

{
1 if i = j
0 if i 6= j.

we can reformulate Lemma 40.2.3 as

Corollary 40.4.1. For each λj ∈ L the vector

(q1(αj), . . . , qs(αj))
T = (δ1j , . . . , δsj)

T = (0, . . . , 0, 1, 0, . . . , 0)T

is an eigenvector of the matrix Qf for the eigenvalue f(αj).

Proof. For each j, 1 ≤ i ≤ s, we have

[fqj ] = Φf ([qj ]) =
∑

i

λi(fqj)[qi]. (40.1)

In the particular case of a radical ideal, where each λi is an evaluation at the
point αi we further have

λi(fqj) = λi(f)λi(qj) = f(αi)qj(αi) =

{
f(αj) if i = j
0 if i 6= j

so that [fqj ] = Φf ([qj ]) =
∑

i λi(fqj)[qj ] = f(αj)[qj ]. �

In order to extend the argument above to the general case, one needs to
expand Equation (40.1) to a generic dual basis L and to its corresponding
Lagrange basis q.

The natural choice is to take as L a Macaulay representation2. Following
the notation of Chapter 31, for each τ = Ze1

1 · · ·Zer
r ∈ W , we consider the

functionals
M(τ) : Q → K, f =

∑

t∈W
c(f, t)t 7→ c(f, τ)

and we restrict ourselves to the set of Noetherian equations SpanK(M) ⊂ Q∗

where M = {M(τ) : τ ∈ W}.
2 Compare Section 32.1, Corollary 32.3.3, and Definition 33.2.2.
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For any term-ordering <, for each ℓ =
∑

t∈W c(ℓ, t)M(t) we set T<(ℓ) :=
min<{t : c(ℓ, t) 6= 0},L<(ℓ) := max<{t : c(ℓ, t) 6= 0} and we denote T<(L) =
{T<(ℓ) : ℓ ∈ L) and L<(L) = {L<(ℓ) : ℓ ∈ L) for each subset L ⊂ SpanK(M).

We define, for each τ ∈ W , the linear map

στ : SpanK(M) → SpanK(M) :M(ω) 7→
{
M(υ) if ω = τυ
0 if τ ∤ ω;

and, by linearity, for each f =
∑

t∈W c(f, t)t ∈ Q the linear map

σf : SpanK(M) → SpanK(M), ℓ 7→ σf (ℓ) =
∑

t∈W
c(f, t)σt(ℓ).

We recall that a subspace L ⊂ M is called stable (Definition 31.2.2) iff for
each ℓ ∈ L, f ∈ Q, σf (ℓ) ∈ L.

Recall that, for each primary ideal q ⊂ P at the origin, the corresponding
dual space L(q) ⊂ Q∗ is a stable subset of SpanK(M) (Corollary 31.3.3,
Proposition 31.3.5) and satisfies T<(L(q)) = N<(q) (Corollary 32.1.4); both
T<(L(q)) and L<(L(q)) are ordered ideals.

Moreover it holds Leibnitz Formula

Lemma 40.4.2. For any f, g ∈ Q and any ℓ ∈ SpanK(M) we have

ℓ(fg) =
∑

τ∈W
M(τ)(f)στ (ℓ)(g).

Proof. Compare Corollary 31.4.2. �

An alternative description of the dual space of a primary is in terms of
differential functions (Section 31.5): we denote, for each τ = Ze1

1 · · ·Zer
r ∈ W ,

by D(τ) : Q → Q the differential operator

D(τ) :=
1

e1! . . . er!

∂e1+···+er

∂Ze1
1 . . . ∂Zer

r

and we consider the subset SpanK(D) ⊂ Hom(Q,Q) , D = {D(τ) : τ ∈ W}.
There is an obvious identification

ev : SpanK(D) → SpanK(M) : D(τ) 7→ M(τ),

which satisfies, for each δ :=
∑

t∈W c(δ, t)D(t) ∈ SpanK(D)

ev(δ)(·) = δ(·)(0, . . . , 0) =
∑

t∈W
c(δ, t)M(t)(·) (40.2)

under which we can impose on D the same term-ordering < as induced on
M so that D(τ) ≤ D(ω) ⇐⇒ M(τ) ≤ M(ω) ⇐⇒ τ ≤ ω and we
can set T<(δ) := T<(ev(δ)), L<(δ) := L<(ev(δ)) for each δ ∈ SpanK(D)
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and T<(D) = T<(ev(D))), L<(D) = L<(ev(D))) for each subset D ⊂
SpanK(D).

Under this identification we can naturally define the anti-differential op-
erators

στ (D(ω)) :=

{
D(υ) if ω = τυ
0 if τ ∤ ω for each τ, ω ∈ W

and σf (δ) =
∑

t∈W c(f, t)σt(δ) for each f =
∑

t∈W c(f, t)t ∈ Q, δ ∈
SpanK(D); a subspace D ⊂ D is called stable (Definition 31.5.3) iff σf (δ) ∈ D
for each δ ∈ D, f ∈ Q.

For each α = (a1, . . . ar) ∈ Kr denoting mα = (Z1 − a1, . . . , Zr − ar) the
maximal ideal at α and

λα : Q → Q, λα(f) = f(Z1 + a1, . . . , Zr + ar)

so that λα(mα) = m = (Z1, . . . , Zr) is the maximal at the origin, then we
have

(δ(f))(α) = (δ(f))(a1, . . . ar) = δ(λα(f))(0, . . . , 0) = ev(δ)(λα(f))

for each δ ∈ SpanK(D) and f ∈ Q; thus for each mα-primary qα if we denote

Dmα
(qα) := {δ ∈ SpanK(D) : δ(f)(α) = 0 for each f ∈ qα} ⊂ SpanK(D)

then we have ev(Dmα
(qα)) = L(λα(qα)) and Dmα

(qα) is stable (under anti-
differentiation).

Under this notation Leibnitz Formula becomes

Corollary 40.4.3. For any f, g ∈ Q and any δ ∈ SpanK(D) we have

δ(fg) =
∑

τ∈W
D(τ)(f)στ (δ)(g).

We have now the tools needed to describe the dual basis L := {λ1, . . . , λs}
of J and the matrices Qf describing the effect of each endomorphism Φf in
terms of its corresponding Lagrange basis q: using a notation similar to the
one used in Section 33.2 we set

• < any term-ordering,

• Z(J) := {α1, . . . , αs} ⊂ Kr, αi = (a
(i)
1 , . . . , a

(i)
r ), s ≤ s,

• for each i, 1 ≤ i ≤ s

– qi the mαi
-primary component of J, so that J = ∩s

i=1qi;
– si := deg(qi) so that

∑s

i=1 si = s,
– Li := L(λαi

(qi)) ⊂ SpanK(M),
– for each υ ∈ N<(λαi

(qi))

ℓυαi
=M(υ) +

∑

τ∈W
c(τ, ℓυαi

)M(τ) ∈ Li

the unique element (Definition 32.1.3) for which
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◦ τ ∈ N<(λαi
(qi)) = T<(Li) =⇒ c(τ, ℓυαi

) = 0 and
◦ T<(ℓυαi

) = υ
so that
◦ (in particular) ℓ1αi

=M(1) and
◦ {ℓυαi

: υ ∈ N<(λαi
(qi))} is the Macaulay basis of

Li = SpanK{ℓυαi
: υ ∈ N<(λαi

(qi))};

• L := {λ1, . . . , λs} := {ℓυαi
λαi

: υ ∈ N<(λαi
(qi)), 1 ≤ i ≤ s} ordered so

that for λx := ℓυxαix
λαix

, λy := ℓυyαiy
λαiy

holds

x < y ⇐⇒
{
ix < iy or
ix = iy and υx < υy;

• Ni := {h : λh = ℓταi
λαi

} = {ni, . . . , ni+1 − 1} for each i, 1 ≤ i ≤ s, where

n1 := 1, ni+1 := 1 +
∑i

l=1 sl, nr+1 = 1 + s;
• q = {q1, . . . , qs} the set biorthoginal to L so that λi(qj) = δij ;
• for each h, δh ∈ D the element such that λh = ev(δh)λαi

, h ∈ Ni.

We recall that, under these assumptions

(1) [p] =
∑

i λi(p)[qi] for each p ∈ Q;
(2) Jσ = {f ∈ Q : λi(f) = 0, 1 ≤ i ≤ σ} is an ideal for each σ ≤ s, and
(3) J1 ⊃ J2 ⊃ · · · ⊃ Js (cf. Corollary 32.3.3);
(4) by definition, for each i and each f ∈ Q,

ℓ1αi
λαi

(f) =M(1)λαi
(f) = λαi

(f)(0, . . . , 0) = f(αi).

Lemma 40.4.4 (Möller). For each λj = ℓυαi
λαi

∈ L, denoting

Tj := {τ ∈ N<(λαi
(qi)) : τ < υ} \ {1}

the following holds:

(1) for each f, g ∈ Q, it holds

λj(fg) = δj(fg)(αi) = f(αi)δj(g)(αi) +
∑

τ∈Tj

D(τ)(f)στ (δj)(g)(αi)

= f(αi)λj(g) +
∑

τ∈Tj

M(τ)(f)στ (ℓυαi
)λαi

(g)

= f(αi)λj(g) +

j−1∑

x=ni

cxλx(g)

= f(αi)δj(g)(αi) +

j−1∑

x=ni

cxδx(g)(αi)

for suitable cx ∈ K;
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(2) If f = Zι, for each g ∈ Q
λj(Zιg) = δj(Zιg)(αi) = a(i)ι δj(g)(αi) + σZι

(δj)(g)(αi)

= a(i)ι λj(g) + σZι
(ℓυαi

)λαi
(g).

(3) If λ ∈ Li is such that λ(Zιg) = a
(i)
ι λ(g), for each g ∈ Q and each

ι, 1 ≤ ι ≤ r, then λ = λαi
.

Proof.

(1) A direct consequence of Leibnitz Formula (Lemma 40.4.2 and Corol-
lary 40.4.3) and of the remark that

στ (ℓυαi
) ∈ SpanK{ℓςαi

: deg(ς) < deg(υ)} for each τ, υ.

(2) D(τ)(Zι) =M(τ)(Zι) =

{
1 if τ = Zι

0 if τ 6= Zι.
(3) For λ = ℓλαi

, ℓ =
∑

τ∈W c(τ, ℓ)M(τ) ∈ SpanK(M), the assumption is
equivalent to σZι

(ℓ) = 0 for each ι and, in turn, to

c(τ, ℓ) 6= 0 =⇒ Zι ∤ τ for each ι

id est ℓ =M(1) = ℓ1αi
. �

Corollary 40.4.5 (Möller). For Af =M([f ],b), we have

(1) for each l, 1 ≤ l ≤ s, i, 1 ≤ i ≤ s, j ∈ Ni, λj := ℓυαi
λαi

satisfies

Afλj(bl) = Afδj(bl)(αi) = f(αi)δj(bl)(αi) +

j−1∑

x=ni

cxδx(bl)(αi)

= f(αi)λj(bl) +

j−1∑

x=ni

cxλx(bl)

for suitable cx ∈ K.
(2) In particular, for each i,

Afλni
(bl) = Af δni

(bl)(αi) = f(αi)δni
(bl)(αi) = f(αi)λni

(bl), 1 ≤ l ≤ s.

(3) On the other side for each i, 1 ≤ i ≤ s, and each j ∈ Ni, j 6= ni, there is
at least an l, 1 ≤ l ≤ s, and a ι, 1 ≤ ι ≤ r, for which

Aιλj(bl) 6= a(i)ι λj(bl).

�

Proof. (1) follow by applying λj to each equation
∑

i γ(fbl, bi,b)[bi] =
Af [bl] = [fbl] and expanding λj(fbl) via Lemma 40.4.4.(1).

(2) is the special case j = ni in which the summation is empty.

(3) follow directly from Lemma 40.4.4.(3). �
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Denote, for each ρ ∈ N,

∇ρ := SpanK (M(τ), deg(τ) ≤ ρ) and ∆ρ := SpanK (D(τ), deg(τ) ≤ ρ)

and set ∇ := ∇1 \ ∇0 = SpanK (M(Zh), 1 ≤ h ≤ r) , and

∆ := SpanK (D(Zh), 1 ≤ h ≤ r) = SpanK

(
∂

∂Zh
, 1 ≤ h ≤ r

)
.

Proposition 40.4.6 (Möller–Stetter). The following holds

(1) for δ :=
∑r

h=1 ah
∂

∂Zh
∈ ∆ and each linear form g =

∑r
h=1 bhZh ∈ Q it

holds δ(g) = ev(δ)(g) =
∑r

h=1 ahbh and ev(δ) =
∑r

h=1 ahM(Zi) ∈ ∇;
(2) for each i, 1 ≤ i ≤ s, ℓ ∈ Li ∩ ∇, δ = ev(ℓ), g ∈ Q, it holds

Af ℓλαi
(g) = Afδ(g)(αi) = f(αi)ℓλαi

(g) + ℓλαi
(f)g(αi)

= f(αi)δ(g)(αi) + δ(f)(αi)g(αi);

(3) for each i, 1 ≤ i ≤ s, if dim(Li ∩ ∇) > 1 there are ℓ ∈ Li, δ = ev(ℓ) ∈ ∆
which satisfiy, for each g ∈ Q,

Af ℓλαi
(g) = Afδ(g)(αi) = f(αi)ℓλαi

(g) = f(αi)δ(g)(αi);

(4) for each i, 1 ≤ i ≤ s, if dim(Li ∩ ∇) = 1, then δni+j ∈ ∆j for each
j, 1 ≤ j < si;

(5) for each i, 1 ≤ i ≤ s, and each j, 1 ≤ j < si , if dim(Li ∩ ∇) = 1 and
deg(τ) = x, then στ (δni+j) = δni+j−x.

Proof.

(1) trivial.
(2) A direct application of Lemma 40.4.4.(2).
(3) Let us consider two linearly independent elements ℓ1, ℓ2 ∈ Li and set

bι := ℓιλαi
(f), ι ∈ {1, 2} If bι = 0 then ℓι satisfies the required formula.

If b1 6= 0 6= b2 then ℓ := b2ℓ1 − b1ℓ2 satisfies

ℓλαi
(f) = b2ℓ1λαi

(f)− b1ℓ2λαi
(f) = 0

hence Af ℓλαi
(g) = f(αi)ℓλαi

(g) for each g ∈ Q.
(4) Let ≺ be any degree-compatible term-ordering. Then for each ℓ ∈

SpanK(M),
ℓ ∈ ∆ρ \∆ρ−1 ⇐⇒ deg(L≺(ℓ)) = ρ.

Since L≺(Li) is an ordered ideal if, for some ρ ∈ N, dim(Li ∩ ∇ρ) > 1
then dim(Li ∩ ∇) > 1.

(5) is a direct consequence of (4). �
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Corollary 40.4.7 (Möller–Stetter). For each i, 1 ≤ i ≤ s, j, 1 ≤ j < si
and each f, g ∈ Q, if dim(Li ∩ ∇) = 1, it holds

λni+j(fg) = δni+j(fg)(αi)

= f(αi)λni+j(g) +

j−1∑

x=0

λni+j−x(f)λni+x(g)

= f(αi)δni+j(g)(αi) +

j−1∑

x=0

δni+j−x(f)(αi)δni+x(g)(αi).

Proof. It is a reformulation of Lemma 40.4.4.(1) via Proposition 40.4.6(5).

�

40.5 Möller–Stetter: the general case

Let us now consider the general case in which J is not radical and some roots
are not simple.

With the notation of Sections 40.2 and 40.4 let us now also set

• Z(J) := {α1, . . . , αs} ⊂ Kr, αi = (a
(i)
1 , . . . , a

(i)
r ), s ≤ s;

• for each i, 1 ≤ i ≤ r,

– λαi
: Q → Q the translation λαi

(Zj) = Zj + a
(i)
j , for each j,

– mαi
= (Z1 − a

(i)
1 , . . . , Zr − a

(i)
r ), the maximal ideal at αi,

– qi the mαi
-primary component of J, so that J = ∩s

i=1qi;
– si := mult(αi, J) = deg(qi) = dimK(Li) the multiplicity in J of αi so
that s =

∑s

i=1 si,
– Li := L(λαi

(qi)) ⊂ SpanK(M),

– ni+1 := 1 +
∑i

l=1 sl so that n1 = 1 and nr+1 = s+ 1;
– Ni := {ni, . . . , ni+1 − 1};

• L := {λ1, . . . , λs} the basis biorthogonal to q defined in Section 40.4 so
that, in particular, for each i, Li = SpanK{λj : j ∈ Ni}, λni

is the evalua-
tion at αi and λi(qj) = δij for each i, j;

• for each i and each h ∈ Ni, δh ∈ D the element such that λh(·) = δh(·)(αi);
• vlj(b) := λj(bl) = δj(bl)(αi), 1 ≤ l, j ≤ s, j ∈ Ni;
• vj(b) = (λj(b1), . . . , λj(bs))

T = (δj(b1)(αi), . . . , δj(bl)(αi)
T , 1 ≤ j ≤ s, j ∈

Ni;
• U(b) the square s× s matrix U := (vlj(b)).

Proposition 40.5.1 (Möller–Stetter). Under this notation it holds

(1) U(b) =Mbq;
(2) each matrix Af =M([f ],b) satisfies the relation AfU(b) = U(b)Qf ;
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(3) each matrix Qf = M([f ],q) = (qlj) is a block diagonal matrix where
the ith diagonal block, 1 ≤ i ≤ s, is an upper-triangular si × si square
matrix Ui whose diagonal entries are f(αi) and which covers the rows
and columns indexed by Ni := {ni, . . . , ni+1 − 1} for each i, 1 ≤ i ≤ s.

(4) In particulal, under the assumption dim(Li ∩∇) = 1, it holds

qικ =
{
δι−κ(f)(αi) if ni ≤ ι ≤ κ < ni+1

0 otherwise.

(5) For each i, 1 ≤ i ≤ s,

vni
(q) = (δ1ni

, . . . , δsni
))T = (0, . . . , 0, 1, 0, . . . , 0)T

is an eigenvector for f(αi) of Qf for each f ∈ Q.
(6) For each i, 1 ≤ i ≤ s,

vni
(b) = (b1(αi), . . . , bs(αs))

T

is an eigenvector of Af for f(αi) for each f ∈ Q.
(7) For b = {[1], [Z1], . . . [Zδ−1], [bδ+1], · · · , [bs]} satisfying condition (AS.2)

and cιl ∈ K, 0 ≤ l < δ ≤ ι ≤ r are such that [Zι] = cι0 +
∑δ−1

l=1 cιl[Zl],
then for each i, 1 ≤ i ≤ s, if (di1, . . . , dis)

T is an eigenvectors for f(αi)
of a non-derogatory matrix Af , f ∈ Q, then

αi :=

(
d−1
i1 di2, . . . , d

−1
i1 diδ , cδ0 +

δ−1∑

l=1

cδld
−1
i1 dil, . . . , cn0 +

δ−1∑

l=1

cnld
−1
i1 dil

)
.

(8) [qni
]f(αi) = [fqni

] for each i, 1 ≤ i ≤ s;
(9) for each f ∈ Q and λ ∈ K, J : (f − λ) = J iff λ /∈ {f(αi) : 1 ≤ i ≤ s};
(10) for each f ∈ Q if Af is non-derogatory then J : (f − f(αi)) = J + {qni

}
for each i, 1 ≤ i ≤ s.

Proof. (1) and (2) are trivial; (3) is a direct consequence of Corollary 40.4.5
and (4) of Corollary 40.4.7; (5) and (6) are trivial consequences of (3); (7) is
a direct reformulation of (6) applied to the basis satisfying condition (AS.2);

(8-10) is Lemma 40.2.4. �

Corollary 40.5.2. It holds

• the trace of Af is Tr(Af ) :=
∑s

i=1 sif(αi);
• the determinant of Af is det(Af ) :=

∏s

i=1 f(αi)
si ;

• the characteristic polynomial of Af is χf (T ) :=
∏s

i=1 (T − f(αi))
si

• the minimal polynomial of Af is mf (T ) :=
∏s

i=1 (T − f(αi))
ρi where ρi

denotes the characteristic number of qi.

Proof. All the claims are triviall except the one related to the minimal polyno-
mial which is a consequence of the facts that qi ⊇ mρ

αi
⇐⇒ L(λαi

(qi)) ⊆ ∆ρ,
the multiplicity µ of the eigenvalue f(αi) in the minimal polynomial is the
minimal value for which Ui = ker (Φf − f(αi))

µ
= 0 and of Lemma 40.4.4.(1).

�
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Remark 40.5.3 (Monico). For simplicity we have assumedK = K throughout
this chapter but the construction and the stated results hold also if K $ K;
in this case, clearly conjugate roots have the same multiplicity both in χf

and in mf .
Moreover, as a direct application of the Chinese Remainder Theorem, if

χf :=
∏r

i=1 pif (T )
ri is an irreducible factorization in K[T ], then

J =
r⋃

i=1

(J+ (pif (f)
ri))

is an irreducible primary decomposition in K[Z1, . . . , Zr].
Of course if f is an allgemeine coordinate the corresponding primary de-

composition algorithm is the one proposed by Alonso–Raimondo and reported

in Section 35.5.1. �

40.6 The Univariate case

As a short intermezzo before discussing derogatoriness, let us briefly show
how Auzinger–Stetter reformulates the classical elementary linear algebra
results for a univariate polynomial.

For a polynomial

f = Xs +
s−1∑

i=0

aiX
i =

s∑

i=1

(X − ξi)
si , s =

s∑

i=1

si,

the linear representation of J = (q) is the assignement of the normal basis
N(J) := {1, X, . . . , Xs−1} and of the Frobenoius companion matrix

A1 =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −as−1



.

whose characteristic matrix of course is f so that eigenvalues of A1 coincide
(up to multiplicity) with the roots of f .

Recalling that ξi is a root of f of multiplicity si iff f (j)(ξi) = 0 for 0 ≤
j < si, the natural choice for the dual space L = {λ1, . . . , λs} is

λni
(p) := p(ξi), λni+j(p) :=

p(j)(ξi)

j!
, 1 ≤ j < si, 1 ≤ i ≤ s,

where we have set ni+1 := 1 +
∑i

l=1 sl, 0 ≤ i < s and the bihortogonal dual
basis q is the associated Lagrange basis.
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If f is squarefree then Mqb is the Vandermonde matrix

Mqb =




1 1 · · · 1
ξ1 ξ2 · · · ξs
...

...
. . .

...
ξs−1
1 ξs−1

2 · · · ξs−1
s


 ;

in general, each block of the so called generalized Vandermonde matrix Mqb

has the shape




1 0 0 · · · 0 · · · 0
ξi 1 0 · · · 0 · · · 0
ξ2i 2ξi 1 · · · 0 · · · 0
ξ3i 3ξ2i 3ξi · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

ξji jξj−1
i

(
j
2

)
ξj−2
i · · · 1 · · · 0

...
...

...
. . .

...
. . .

...

ξs−1
i (s− 1)ξs−2

i

(
s−1
2

)
ξs−3
i · · ·

(
s−1
j−1

)
ξs−j
i · · ·

(
s−1
si−1

)
ξs−si
i




.

and is related to the ith diagonal block of Q1 which is a classical Jordan block




ξi 1 0
ξi 1

. . .
. . .

. . . 1
0 ξi



.

Example 40.6.1. For

f = X8 −X7 −X6 + 3X5 + 9X4 − 3X3 − 7X2 +X + 2

= (X − 2)(X + 1)4(X − 1)3

we have

A1 =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
−2 −1 7 3 −9 −3 5 1




whose eigenvalues are 2 (simple), -1 (with mulitiplicity 4) and 1 (with muli-
tiplicity 3) the generalized Vandermonde matrix is
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Mqb =




1 1 0 0 0 1 0 0
2 −1 1 0 0 1 1 0
4 1 −2 1 0 1 2 1
8 −1 3 −3 1 1 3 3
16 1 −4 6 −4 1 4 6
32 −1 5 −10 10 1 5 10
64 1 −6 15 −20 1 6 15
128 −1 7 −21 35 1 7 21




related to the Jordan matrix

J1 =




2
−1 1

−1 1
−1 1

−1
1 1

1 1
1




�

Moreover we have

q = (q1, . . . , qs)
T =M−1

qb (1, X, . . . , Xs−1)T

thus allowing to deduce the Lagrange basis by inverting Mqb.
Moreover J1 = Q1 = M([X ],q) is the multiplication matrix of K[X ]/J

w.r.t. Lagrange basis q.

Example 40.6.2. The Example above is to hard to deal by hand, so let us
restrict ourselvs to the easier case f = X5 −X3 = X3(X + 1)(X − 1) where
we have

A1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 1 0



,Mqb =




1 0 0 1 1
0 1 0 −1 1
0 0 1 1 1
0 0 0 −1 1
0 0 0 1 1




J1 =




0 1
0 1

0
−1

1



,M−1

qb =




1 0 0 0 −1
0 1 0 −1 0
0 0 1 0 −1
0 0 0 − 1

2
1
2

0 0 0 1
2

1
2




;

In M−1
qb on reads, along the rows, the Lagrange basis
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{1−X4, X −X3, X2 −X4,−1

2
(X3 −X4),

1

2
(X3 +X4)}.

�

Finally for q ∈ K[X ], the ith diagonal block of Qq related to the root ξi
is 



q(ξi) q(1)(ξj)
q(2)(ξi)

2 · · · q(si−1)(ξi)
(si−1)!

q(ξi) q(1)(ξj)
q(2)(ξi)

2

...
. . .

. . .
. . .

...
. . .

. . . q(2)(ξi)
2

. . . q(1)(ξi)
0 q(ξi)




.

Example 40.6.3. In Example 40.6.2 for q := 1+X2 we have AqMqb =MqbQq

with

Aq =




1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 2 0
0 0 0 0 2



, Qq =




1 0 1
1 0

1
2

2



.

�

40.7 Derogatoriness

The crucial assumption in Theorem 40.5.1 and Proposition 40.5.1 that Φf is
non-derogatory, while it is easily met by a generic linear form in the radical
case, is more involved in the general case.

Example 40.7.1. Continuing Example 40.1.1 we remark that neither Z1 non
Z2 while, being allgemeine coordinates, have a non-derogatory matrix.

On the otherside f = Z1 − Z2 is non-derogatory; in fact with

Af =




0 1 −1 0 0
1 −1 −1 1 0
−1 1 1 0 −1
1 0 −1 0 0
−2 1 0 1 1




and J :=




−1 1
−1

1 −1
1 −1

1




we have MbqJ = AfMbq.

Why f is a good choice will be explained in Corollary 40.10.6 below. �



52 40. Stetter

In general however, the commuting family {Af : f ∈ Q} does not possess
any non-derogatorymatrix as it can be seen in the following, trivial, examples:

Example 40.7.2. Let us consider the ideal

J = (Z1, Z2)
2 = (Z2

1 , Z1Z2, Z
2
2 ) ∈ K[Z1, Z2].

For the generic [f ] := [a+ bZ1 + cZ2], the matrix Φf is represented, via the

basis {1, Z1, Z2}, as Φf =




a b c
0 a 0
0 0 a


 ; it has the single eigenevalue a with

multiplicity 3 and the eigenspace Span{(1, 0, 0)T , (0, c,−b)T } except in the

trivial case b = c = 0 . �

Example 40.7.3. In order to dispell the wrong impression that the bad be-
haviour of the example above could be justified by the reducibility of J, we
repeat the same argument for the irreducible primary ideal

J = (Z2
1 , Z

2
2 ) ∈ K[Z1, Z2].

For the generic [f ] := [a + bZ1 + cZ2 + dZ1Z2], the matrix Φf is repre-

sented, via the basis {1, Z1, Z2, Z1Z2}, as Φf =




a b c d
0 a 0 c
0 0 a b
0 0 0 a


 ; the single

eigenevalue is a with multiplicity 4 and

if b2 + c2 6= 0 the eigenspace is Span{(1, 0, 0, 0)T , (0, c,−b, 0)T};
if b = 0 = c, d 6= 0 the eigenspace is

Span{(1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T}.

�

Remark that in both examples all eigenspaces share the same joint eigen-
vector — (1, 0, 0)T and (1, 0, 0, 0)T respectively.

Example 40.7.4. The same can be said for Example 40.1.1 where (1, 0, 1, 0, 1)T

is an eigenvector of A1 for 0 and of A2 for 1 while (1, 1, 0, 1, 0)T is an eigen-
vector of A1 for 1 and of A2 for 0; more in general it is easy to verify that, for
each f ∈ Q, (1, 0, 1, 0, 1)T is an eigenvector of Af for f(0, 1) and (1, 1, 0, 1, 0)T

is an eigenvector of Af for f(1, 0). �

The fact that the whole families share at least the eigenvectors

{vni
(b), 1 ≤ i ≤ r}

is already granted by Proposition 40.5.1(5). But there is something more: the
set {Ai, 1 ≤ i ≤ n} and so a fortiori {Af , f ∈ Q} cannot share any further
eigenvector as a consequence of Corollary 40.4.5(3).
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In other words in all these examples, each non trivial common eigenspace
for the whole family has dimension 1.

Definition 40.7.5. A commuting familty of matrices A is called non-dero-
gatory if each joint eigenspace has dimension at most 1:

dimK{v ∈ Ks : Av = λv,Bv = µv} ≤ 1 for each λ, µ ∈ K,A,B ∈ A.

A zero-dimensional ideal J ⊂ Q is called a non-derogatory ideal if there
is an endomorphism Φf : A → A for which the matrix Af is non-derogatory.

�

Corollary 40.7.6. The family {Φι : 1 ≤ ι ≤ n} is non-derogatory and

vni
(b) := (b1(αi), . . . , bs(αi))

T , i = 1..r

are joined eigenvectors of all the matrices M([f ],b), with associated eigen-
value f(αi).

Proof. A direct consequence of Corollary 40.4.5(3). �

As a consequence, once the eigenspaces of a matrix AY , Y =
∑r

j=1 cjZj ,

is obtained, if some eigenspaces have dimension greater than 13 one performs
the same computation for different matrices AYi

, Yi =
∑r

j=1 cijZj, i = 2..n,
being linearly independent forms, and repeatedly applies the eigenspace in-
tersection method, based on a direct application of Lemma 40.7.7 below, to
repeatedly compute eigenspace intersections until each eigenspace has dimen-
sion 1.

Lemma 40.7.7. Let M,N be two s-square matrices; λ an eigenvalue of M
with associated eigenspace U ; {u1, . . . , ul} an orthonormal basis of U .

Define, for each i, j, 1 ≤ i, j ≤ l, aij := uTi Nuj and set A := (aij) .
If (d1, . . . , dl)

T is any eigenvector of A for µ, then u :=
∑

j djuj is a
simultaneous eigenvector of M for λ and of N for µ.

3 The possible reasons are two:

(1) either Y is not sufficiently generic and does not satisfy condition (AS.1); in the
next steps the variables Yi will separate the roots via eigenspace intersection
method;

(2) the ideal is not radical and, even if Y satisfies condition (AS.1), the eigenspace

to
∑r

j=1
cja

(i)
j for AY has dimension greater then 1.

The eigenspace intersection method covers also this case thanks of Corol-
lary 40.4.5. However, alternatively, the multiplicity of the roots can be decrased
by a proper application of Gianni’s Algorithm (Proposition 35.6.1), e.g. enlarg-

ing the ideal J to J+(
√

g(Y )) where g(AY ) is the characteristic polynomial of
AY (see Remark 40.8.1).
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Proof. We have

u is an eigenvector to µ for N

⇐⇒ µ
∑

j

djuj = µu = Nu = N
∑

j

djuj =
∑

j

djNuj

⇐⇒ µdi = uTi µ
∑

j

djuj =
∑

j

dju
T
i Nuj =

∑

j

aijdj for each i

⇐⇒ (d1, . . . , dl)
T is an eigenvector to µ for A.

�

40.8 Stetter Algorithm via Grobnerian Technology

We can assume that the zero-dimensional ideal J is given by means of the
Gröbner basis4 wrt an ordering <, thus obtaining also the linear representa-
tion

N<(J) = {τ1, . . . , τs},M([Zh],N<(J))

thus allowing to compute, with good complexity, the corresponding Gröbner
description (cf. Definition 29.3.3)

Rep(g,N<(J)) := (γ(g, τ1,N<(J)), . . . , γ(g, τs,N<(J))) ∈ Ks :

[g] =
∑

j

γ(g, τj,N<(J))[τj ]

for each g ∈ Q.

Remark 40.8.1. Since Stetter Algorithm is improved if J is radical and the
matrix AY is given wrt a linear form Y satisfying condition (AS.1), these
results can be efficiently — O(n2s3) — granted by giving an FGLM-like
linear algebra version of Gianni’s Proposition 35.6.1 obtained merging the
algorithms by Alonso–Raimondo (Algorithm 35.7.1) and Traverso (Algo-
rithm 29.3.8): we choose a linear form Y =

∑
i aiZi and

(1) by linear algebra on the Gröbner descriptions of [1], [Y ], [Y 2], . . . , [Y s]
compute the minimal polynomial f [Y ] ∈ K[Y ] such that

f(Y ) ∈ J+ := J+

(
Y −

∑

i

aiZi

)
;

4 An alternative Gröbner-free approach with good complexity for affine complete
intersection ideals which gives both a Gröbner representation of J and the cor-
responding Gröbner description of g, will be discussed in Section 41.15.

The discussion of this section does not require that the obtained representation
is linear: Algorithm 35.7.1 equally applies to the data of Section 41.15.
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(2) if f is not squarefree, set f :=
√
f ;

(3) if f is squarefree and d := deg(f) < deg(J) then set j = 1 and
(a) while j ≤ n, verify, by linear algebra on the Gröbner descriptions of

[Zj ], [1], [Y ], [Y 2], . . . , [Y d−1],

whether exists a relation Zj − gj(Y ) ∈ J+, deg(gj) < d;
(b) if such a relation exists set j := j + 1 and go to (3.a);
(c) if such relation does not exist

i. set J := J+ (f(
∑

i aiZi)) + (Zl − gl(
∑

i aiZi), 1 ≤ l < j) ;
ii. compute, by linear algebra via Traverso’s Algorithm 29.3.8, the

Gröbner basis of J, and deduce the corresponding linear repre-
sentation and Gröbner descriptions and the value deg J =: s;

iii. set Y := Y + cZj and go to (1)
(4) if f is squarefree and deg(f) = deg(J), then

• J is radical,
• Y satisfies condition (AS.1)
• [Zj ] = [gj(Y )] for j = 1 . . . , n.

�

We can therefore assume of having a linear form Y =
∑

i aiZi satisfying
condition (AS.1) and a radical5 zero-dimensional ideal J, which is given by
means of the Gröbner basis wrt <, and via the linear representation

N<(J) = {τ1, . . . , τs},M([Zh],N<(J))

thus allowing to compute the Gröbner description Rep(g,N<(J)) for each
g ∈ Q. Thus, by linear algebra on the Gröbner representations of

[1], [Z1], . . . , [Zr],

one can obtain with complexityO(ns2), both theK-basis {[1], [Z1], . . . [Zδ−1]}
of V and the linear representations [Zi] = ci0 +

∑δ−1
l=1 cil[Zl], i ≥ δ; further

linear algebra on Gröbner representation extends this set to a basis

b = {1, Z1, . . . , Zδ−1, bδ+1, . . . , bs} = {b1, . . . , bs}

satisfying condition (AS.2).
If we denote now L := {ℓ1, . . . , ℓs} the functionals ℓi(·) := γ(·, bi,b) so

that

[g] = ℓ1(g) +

δ∑

i=2

ℓi(g)[Zi−1] +

s∑

i=δ+1

ℓi(g)[bi], ∀g ∈ Q

5 Notwithstanding these assumptions AY is not necessarily non-derogatory; as it
is shown by Examples 40.7.2 and 40.7.3 and explained by Corollary 40.10.6 this
requires that each primary qi of J has a good shape.
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then L is biorthogonal to b; therefore it is sufficient to simply adapt the
Enhanced Möller Algorithm (Figure 29.4) to obtain, among the other infor-
mations provided by that algorithm, also the matrices M([Zi],b), 1 ≤ i ≤ n.
This is all one needs to obtain the matrix M([Y ],b) =

∑
i aiM([Zi],b).

Once M([Y ],b) is obtained, eigenvalue and eigenspace computation is
dealt by Numerical Analysis and the joint eigenvectors are obtained, if
needed, via the eigenspace intersection method (Lemma 40.7.7).

40.9 Stetter Algorithm

The numerical analysis aspects on the efficiency of the solution of the eigen-
problem are out of mine competence6 , so I limit myself to note that such
efficiency is misured by the condition number

κ(Mbq) = ‖Mbq‖‖M−1
bq ‖ = ‖Mbq‖‖Mqb‖

and is therefore influenced by the arbitrary choise of the basis b; in general κ
becomes large if the column vectors vj(b) = (λj(b1), . . . , λj(bs))

T are nearly
linearly dependent (nearly linearly dependency of rows has naturally the same
effect).

It is interesting to remark that for the choice b := N≺(J) wrt a suitable
termordering ≺, not surprisingly, the choice of a degree-compatible ordering
gives a better condition number than lexicographical orderings.

40.10 Derogatoriness and Allgemeine Coordinates

With the same notation as in Section 40.5, we recall that a linear form

Y :=
r∑

h=1

chZh

is said an allgemeine coordinate (Definition 34.4.7) for the zero-dimensional
ideal J = ∩s

i=1qi iff

(a) there are polynomials gi ∈ K[Y ], 0 ≤ i ≤ n, g0 monic, deg(gi) < deg(g0),
such that

G := (g0(Y ), Z1 − g1(Y ), Z2 − g2(Y ), . . . , Zr − gr(Y ))

is the reduced Gröbner basis of the ideal

J+ := J+

(
Y −

∑

h

chZh

)
⊂ K[Y, Z1, . . . , Zr]

w.r.t. the lex ordering induced by Y < Z1 < . . . < Zr

6 For that, compare Stetter H., Numerical Polynomial Algebra, SIAM (2004).
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and that this condition implies, among the others, that (Corollary 34.4.6)

(b) Q/J ∼= K[Y ]/g0(Y )

(c) for each i, 1 ≤ i ≤ s, βi :=
∑r

h=1 cha
(i)
h is a root of g0 with multiplicity

si and
(d) a

(i)
j = gj(βi) for each i, 1 ≤ i ≤ s, and each j, 1 ≤ j ≤ r,

(e) g0(Y ) =
∏r

i=1(Y − βi)
si ;

(f) f ∈ J ⇐⇒ Rem(f(g1(Y ), . . . , gr(Y )), g0(Y )) = 0.

Moreover, there is a Zarisky open set U ⊂ Kn such that Y :=
∑r

h=1 chZh is
an allgemeine coordinate for J iff (c1, . . . , cr) ∈ U.

For each f =
∑

t∈W c(f, t)t : f(0, . . . , 0) = 0 denote

lin(f) :=
r∑

h=1

c(f, Zi)Zi

and, for each primary ideal q at the origin, let

lin{q} := {lin(f) : f ∈ q} and Λ1(q) := {ℓ ∈ ∇1 : ℓ(g) = 0, g ∈ lin{q}}

where ∇1 denotes ∇1 := SpanK (M(Zi), 1 ≤ h ≤ r).

Proposition 40.10.1. For each primary ideal q ⊂ Q, deg(q) = s, at the
origin the following conditions are equivalent

(1) there is an allgemeine coordinate for q;
(2) dimK(lin{q}) = r − 1;
(3) dimK(Λ1(q)) = 1;
(4) dimK(lin{q}) = r − 1 and for each linear form

Y1 :=

r∑

h=1

chZh /∈ lin{q}

and each basis (Y2, . . . , Yr) of lin{q} there are polynomials gκ ∈ K[Y1], 2 ≤
κ ≤ r, such that

q = (Y s
1 , Y2 − g2, . . . , Yr − gr) ⊂ K[Y1, . . . , Yr] = K[Z1, . . . , Zr];

(5) dimK(Λ1(q)) = 1 and for each linear form Y1 :=
∑r

h=1 chZh /∈ lin{q} and
each basis (Y2, . . . , Yr) of lin{q} there are polynomials gκ ∈ K[Y1], 2 ≤
κ ≤ r, such that

L(q) = {δl, 1 ≤ l ≤ s}, δl(f) :=
f̄ (l−1)(0)

(l − 1)!
, 1 ≤ l ≤ s

where ·̄ : Q → SpanK{1, Y1, . . . , Y s−1
1 } denotes the projection

f(Y1, Y2, . . . , Yr) 7→ f̄ := Rem(f(Y1, g2(Y1), . . . , gr(Y1)), Y
s
1 );
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(6) dimK(lin{q}) = r−1 and for each linear form Y :=
∑r

h=1 chZh /∈ lin{q}
there are polynomials gκ =

∑s−1
l=1 cκlY

l ∈ K[Y ], 1 ≤ κ ≤ n, such that
q = (Y s, Z1 − g1, . . . , Zr − gr);

(7) dimK(Λ1(q)) = 1 and for each linear form Y :=
∑r

h=1 chZh /∈ lin{q}
there are polynomials gκ ∈ K[Y ], 1 ≤ κ ≤ r, such that denoting

·̆ : Q 7→ K[Y ]/(Y s) : f(Z1, . . . , Zr) → f̆ := Rem(g1(Y ), . . . , gr(Y )), Y s)

we have L(q) = {δl, 1 ≤ l ≤ s}, δl+1(f) :=
f̆(l)(0)

l! , 0 ≤ l < s.

Proof. The scheme of the proof is

(1)
ւ տ

(2) ↔ (4) → (6)
l l l
(3) (5) (7)

The implications (2) ⇐⇒ (3), (4) ⇐⇒ (5), (6) ⇐⇒ (7), (4) =⇒ (2)
and (6) =⇒ (1) hold trivially.

If Y is an allgemeine coordinate for q and gκ =
∑s−1

l=1 alhY
l, 1 ≤ h ≤ r

are such that

G := (g0(Y ), Z1 − g1(Y ), Z2 − g2(Y ), . . . , Zr − gr(Y ))

is the reduced Gröbner basis of the ideal

q+ := q+

(
Y −

r∑

h=1

chZh)

)
⊂ K[Y, Z1, . . . , Zr]

w.r.t. the lex ordering induced by Y < Z1 < . . . < Zr then

Y /∈ lin{q+} = SpanK

({
Y −

r∑

h=1

chZh

}
∪ {Zκ − a1κhY ), 1 ≤ κ ≤ n}

)

so that dimK(lin{q}) = dimK(lin{q+}) = 1 and Y =
∑r

h=1 chZh /∈ lin{q}.
Thus we have (1) =⇒ (2).

Moreover for Y1, Y2, . . . , Yr as in (4), the Gröbner basis wrt the lex or-
dering induced by Y1 < Y2 < . . . < Yr of q′ := qK[Y1, . . . , Yr] necessarily
satisfies deg(q′) = deg(q) = s and T(q′) = (Y s

1 , Y2, . . . , Yr} thus giving also
(2) =⇒ (4).

We are therefore left to prove (4) =⇒ (6).
Let us consider lin{q} ⊂ K[Z1, . . . , Zr]. There are two cases: either

(i) lin{q} = SpanK{Z2 − d2Z1, . . . , Zr − drZ1} or
(ii) there is an Zj , wlog say Z1, such that lin{q} = SpanK{Z2, . . . , Zr}.
In case
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(i) we set Yκ := Zκ − dκZ1, 2 ≤ κ ≤ r. By (4) we know that there are

polynomials gκ =
∑s−1

l=1 cκlY
l ∈ K[Y ], 2 ≤ κ ≤ n such that

Yκ − gκ(Y ) = Zκ − dκZ1 − cκ1Y +

s−1∑

l=2

cκlY
l ∈ q

and Zκ − dκZ1 − cκ1Y ∈ lin{q}.
Since

(
c1 +

r∑

κ=2

cκdκ

)
Z1 +

r∑

κ=2

cκYκ =

r∑

h=1

chZh = Y /∈ lin{q},

then c := c1 +
∑r

κ=2 cκdκ 6= 0 and, setting g1 := c−1Y −∑r
κ=2 c

−1cκgκ
we have

c(Z1 − g1) ≡ cZ1 − Y +

r∑

κ=2

cκYκ = 0 (mod q) and Z1 − g1 ∈ q;

(ii) we set Yκ := Zκ, 2 ≤ κ ≤ r and by (4) we know that there are polynomials

gκ =
∑s−1

l=1 cκlY
l ∈ K[Y ], 2 ≤ κ ≤ r such that

Yκ − gκ(Y ) = Zκ − cκ1Y +

s−1∑

l=2

cκlY
l ∈ q and Zκ − cκ1Y ∈ lin{q}.

Since Y = c1Z1 +
∑r

κ=2 cκZκ /∈ lin{q}, then c1 6= 0 and cκ1 = 0 for each
κ > 1; setting g1 := c−1

1 Y −∑r
κ=2 c

−1
1 cκgκ we have

c1(Z1 − g1) ≡ c1Z1 − Y +

r∑

κ=2

cκYκ = 0 (mod q) and Z1 − g1 ∈ q.

�

Example 40.10.2. Let q := (Z5
2 , Z1 − Z3

2 ) ⊂ K[Z1, Z2] which is a Gröbner
basis for the lex ordering indiced by Z2 < Z1. Thus

deg(q) = 5, Λ1{q} = SpanK

{
∂

∂Z2

}
and lin{q} = Z1.

For Y1 := aZ1 + Z2, Y2 = Z1 we have q′ = (Y 5
1 , Y2 − Y 5

1 ).
Instead, Z1 is not an allgemeine coordinate since, for the lex ordering

indiced by Z1 < Z2, we have q = (Z2
1 , Z1Z

2
2 , Z

3
2 − Z1) �
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Remark 40.10.3. As a direct application of Corollary 40.4.7, we have that

the functionals δl+1(f) :=
f̆(l)(0)

l! , 0 ≤ l < s satisfy

δl+1(fg)(αi) = f(αi)δl+1(g)(αi) +

l−1∑

x=0

δ1+l−x(f)(αi)δ1+x(g)(αi).

Thus we have the related matrix

Qf =




f(αi) δ2(f))(αi) δ3(f)(αi) · · · δl+1(f)(αi)

f(αi) δ2(f))(αi) δ3(f)(αi)
...

. . .
. . .

. . .
...

. . .
. . . δ3(f)(αi)
. . . δ2(f))(αi)

0 f(αi)




.

(40.3)

�

Definition 40.10.4. A primary ideal q ⊂ Q at the origin which satisfies the
equivalent conditions of Proposition 40.10.1 is called a curvilinear primary

with derivative δ2(f) := f̆ ′(0). �

For α = (a1, . . . ar) ∈ Kr, denote

λα : Q → Q, λα(f) = f(Z1 + a1, . . . , Zr + ar)

and mα = (Z1 − a1, . . . , Zr − ar) the maximal ideal at α.

Theorem 40.10.5. Let J be a zero-dimensional ideal.
Denote Z(J) := {α1, . . . , αs} ⊂ Kr, and, for each i, αi = (a

(i)
1 , . . . , a

(i)
r ),

qi the mαi
-primary component of J, si := mult(αi, I) = deg(qi), so that

J = ∩s
i=1qi and deg(J) =

∑s

i=1 si := s.
A linear form Y :=

∑r
h=1 chZh is an allegemeine coordinate for J if and

only if, denoting βi :=
∑r

h=1 cha
(i)
h , the following conditions hold

(1) each primary component qi of J either
(a) is simple so that qi = mαi

and si = 1
(b) or the primary ideal q := λαi

(qi) at the origin is curvilinear and
Y /∈ lin{qi};

(2) βi 6= βj if i 6= j.

Proof. Assumption (1) implies that for each primary component qi of J, the
ideal

q+i := qi +

(
Y −

r∑

h=1

chZh

)
⊂ K[Y, Z1, . . . , Zr]

has a basis
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(a) (Y − βi, Z1 − a
(i)
1 , . . . Zr − a

(i)
r ) if qi is maximal; in this case we set

fih(Z1) := 0 for each h, 1 ≤ h ≤ r;

(b)
(
(Y − βi)

si , Z1 − a
(i)
1 − fi1(Y ) . . . Zr − a

(i)
r − fin(Y )

)
if qi is multiple,

with fih(Y ) := gh(Y ) where gh(Y ) are the polynomials whose existence
is implied in Proposition 40.10.1(6).

Since, by assumption (2), the βis are all different, J ∩K[Y ] is generated
by g0(Y ) =

∏
j(Y − βi)

si .
By the Chinese Remainder Theorem there is then for each h ≤ 1 a unique

polynomial gh(Y ), deg(gh) < s = deg(g0) such that

gh ≡ a
(i)
h + fih mod (Y − βi)

si for each i.

Then (g0(Y ), Z1 − g1(Y ), . . . , Zr − gr(Y )) is the required Gröbner basis
of J+ = J+ (Y −∑h chZh) implying that Y is an allgemeine coordinate for
J.

Conversely if J+ has a basis (g0(Y ), Z1 − g1, . . . , Zr − gr), then for each
primary component qi, of J, q

+
i has a basis (f(Y ), Z1−f2, . . . , Zr−fr) where

f runs among the irreducible-power factors of g0 and fh = Rem(gh, f) for
each h. Thus each component which is not simple has Y as an allgemeine

coordinate. �

A finer description of derogatoriness of Φf is the following

Corollary 40.10.6 (Möller–Stetter). Let J be a zero-dimensional ideal
and let f ∈ Q. With the notation of Theorem 40.10.5, Φf is non-derogatory
if and only if the following conditions hold:

(1) f(αi) 6= f(αj) if i 6= j,
(2) each primary component qi of J either

(a) is simple so that qi = mαi

(b) or the primary ideal λαi
(qi) at the origin is curvilinear with derivative

ℓi
(3) for each multiple component qi, ℓi(f) 6= 0.

Proof. Assume that Φf is non-derogatory. Then:

(1) for αi 6= αj we have vni
(b) 6= vnj

(b); thus necessarily f(αi) 6= f(αj)
otherwise the two vectors are independent eigenvectors for f(αi) = f(αj).

(2) For a multiple component qi, Proposition 40.4.6(3) implies that if Li ∩
∇ = Λ1(λαi

(qi)) has dimension > 1, then there is an eigenvector for
f(αi) linearly independent with vni

(b); thus qi must be curvilinear.
(3) If instead Li ∩ ∇ = Λ1(λαi

(qi)) has dimension 1, Corollary 40.4.7 shows
that if ℓi(f) = 0 then vni+1(b) is a further eigenvector for f(αi).

Conversely, by (2) the matrix Qf has s blocks; the ith one has Equa-
tion (40.3) as shape; thus, since, by (3), ℓi(f) = δ2(f)(αi) 6= 0, each block
contributes a single eigevector; finally (1) grants that different eigenvectors

correspond to different eigenvalues. �
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Remark 40.10.7 (Möller–Stetter). If δ2(f)(αi) = · · · = δj(f)(αi) = 0 6=
δj+1(f)(αi) then the ith block (40.3) contributes j linearly independent eigen-

vectors. �

Corollary 40.10.8. A zero-dimensional ideal is a non-derogatory ideal if
each multiple primary component is curvilear.

Proof. Each linear form Y =
∑

h chZh is non-derogatory provided it satisfies
Y (αi) 6= Y (αj) for each i 6= j and7 δ2(Y ) 6= 0.

Both conditions define a Zarisky open set. �

7 Since both Y and δ2 are linear, then δ2(Y ) is a constant.
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The device that follows [. . . ] finally eliminates

from algebraic geometry the last traces of Elim-

ination Theory

A. Weil

Eliminate, eliminate, eliminate,

Eliminate the eliminators of elimination theory.

S.S. Abhyankar

After having discuss the two ‘standard’ recent algorithms for solving, this
chapter is devoted to the old fashoned tools of resultants and resolvants.

After recalling the notion and the main properties of resultants (Sec-
tion 41.1) we mainly discuss Macaulay’s approach1 for computing it: Macaulay
defines the resultant as the gcd of all determinants of a matrix, Macaulay’s
matrix (Section 41.3) obtained by expanding a proper generating set which
can be deduced by a result of Bézout (Section 41.2) and proves that the re-
sultant is obtained by dividing out from any such determinant an extraneous
factor (Section 41.4) which he is able to precisely characterize; finally we are
able to prove that Macaulay’s definition is really the resultant (Section 41.5).

The knowledge of the resultant of a set of forms allows to compute the
roots of the ideal

J := I(f1, . . . , fr} ⊂ K[Z1, . . . , Zr]

by computing in K[U1, . . . , Ur][Z] the resultant (u-resultant) of the polyno-
mials f1, . . . , fr, fu, fu := Z−∑r

i=1 UiZi and factorizing it into linear factors
Z −∑r

i=1 Uiαi; each such linear factor returns a root (α1, . . . , αr) ∈ Z(J)
(Section 41.6).

1 Where I mainly follows the original result

Macaulay F. S., Some Formulae in Elimination, Proc. London Math. Soc.
(1) 35 (1903), 3–27

supported by his book

Macaulay F. S. , The Algebraic Theory of Modular Systems, Cambridge
Univ. Press (1916)
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I next discuss2 another Nineteenth Century solver, Kronecker’s resolvant
(Section 41.7); if given an ideal

I := I(f1, . . . , fs} ⊂ k[X1, . . . , Xn]

one computes the resolvant (u-resolvant) in k[Λ1, . . . , Λn][X1, . . . , Xn−1][X ]
of the polynomials

Λdeg(fl)
n fl

(
X1, . . . , Xn−1, Λ

−1
n

(
X −

n−1∑

i=1

ΛiXi

))
, 1 ≤ l ≤ s;

and factorizes it into linear factors

X − Λ1X1 − · · · − Λν−1Xν−1 − Λνξν − · · · − Λnξn;

each factor for which each ξi is independent of the Λs corresponds to an
Ω(k)-prime component of dimension ν − 1 (Section 41.8).

Notwithstanding Macaulay strongly criticizes Kronecker’s resolvant for
its being doubly exponential in comparison with the simply exponential
resultant, Kronecker’s approach provided (in the Nineteenth Century!) a
parametrization





q(X1, . . . , Xν−1, U) = 0,

Xν = wν(X1,...,Xν−1,U)
∂q
∂U

(X1,...,Xν−1,U)

...

Xn = wn(X1,...,Xν−1,U)
∂q
∂U

(X1,...,Xν−1,U)

(41.1)

of a radical equidimensional ideal (Section 41.9) which is at the core of the
most efficient to-day solvers: Rouillier’ s Rational Univariate Representation
(Section 42.9) and TERA’s Kronecker Package (Chapter 44).

After an intermezzo where I cover the history of the resultants from
Bézout to the English algebra school (Section 41.10) and, in particular, I
report Cayley’s interpretation of the resultant of two polynomials

U(X), V (X) ∈ k[X ], deg(U) = deg(V ) = n

as the determinant of the matrix (αρσ) defined by the relation

U(X)V (Y )− U(Y )V (X)

X − Y
=

n−1∑

ρ=0

n−1∑

σ=0

αρσX
n−ρ−1Y n−σ−1

I briefly discuss a different representation of the resultant due to Dixon which
extended Cayley’s interpretation to more than 2 polynomials (Section 41.11).

Dixon’s resultant was recently revised and reproposed by Kapur et al.; at
the same time, also Cardinal considered Cayley’s formula and Dixon’s matrix

2 Still following the guideline provided by Macualay’s book
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(Section 41.12) and proposed an algorithm (Section 41.13) which performed a
series of transformations on the Dixon’s matriices defined by the polynomials

f1, . . . , fn, Xi, 1 ≤ i ≤ n, fl ∈ k[X1, . . . , Xn];

he conjectured that, if f1, . . . , fn is a complete intersection the output of his
algorithm is a Gröbner representation of the ideal

J := I(f1, . . . , fn) ⊂ k[X1, . . . , Xn].

Recently Mourrain proposed an improved version of Cardinal’s algorithm
and gave a complete proof of Cardinal’s conjecture for this abridged version
of the algorithm (Section 41.14).

The result, not only returns, with good complexity, a Gröbner representa-
tion of the ideal J but, with the same complexity allows to test ideal member-
ship and for a polynomial f ∈ J returns also a representation f =

∑n
i=1 gifi

(Section 41.15).

41.1 The resulatant of r forms in r variables

Let Q := K[Z1, . . . , Zr], W := {Za1
1 · · ·Zar

r : (a1, . . . , ar) ∈ Nr} its monomial
K-basis and K the algebraic closure of K.

For each d ∈ N we also set

Wd := {t ∈ W : deg(t) = d} and W(d) := {t ∈ W : deg(t) ≤ d}.

Let us also set r integers d1, . . . , dr. Our aim being considering r ’generic’
forms (homogeneous polynomials) f1, . . . , fr ∈ Q, deg(fi) = di, we apply the
same notation and approach of the English algebra school (cf. Sections 6.4-7).

Since each homogeneous polynomial f ∈ P , deg(f) = d, can be uniquely
expressed as f =

∑
τ∈Wd

c(f, τ)τ, we introduce indeterminate coefficients
ai,τ , 1 ≤ i ≤ r, τ ∈ Wdi

, and we consider

the domain D := Z[ai,τ , 1 ≤ i ≤ r, τ ∈ Wdi
],

its quotient field K := Q(ai,τ , 1 ≤ i ≤ r, τ ∈ Wdi
), and

the ’generic’ forms Fi =
∑

τ∈Wdi
ai,ττ, 1 ≤ i ≤ r;

for any set f := {f1, . . . , fr} of r concrete homogeneous forms

fi =
∑

τ∈Wdi

c(fi, τ)τ

of degree di we denote Ξf : D[Z1, . . . , Zr] → K[Z1, . . . , Zr] the ansatz

Ξf (ai,τ ) = c(fi, τ) for each 1 ≤ i ≤ r, τ ∈ Wdi
,

so that Ξf (Fi) = fi for each i.
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Definition 41.1.1. A polynomial

Res := Res(d1, . . . , dr) := Res(F1, . . . , Fr) ∈ D

is called the resultant of F1, . . . , Fr if for any set f := {f1, . . . , fr} of r ho-
mogeneous forms fi of degree di

Ξf (Res) = 0 ⇐⇒ exists α ∈ Pr−1(K) : f1(α) = · · · = fr(α) = 0.

�

Fix a variable, say Zr, and define a weight on the variables ai,τ by setting
wt(ai,τ ) = degr(τ) id est wt(ai,τ ) = ar for each τ = Za1

1 · · ·Zar
r .

Set D :=
∏r

i=1 di, Di := D/di for each i and

d := 1− r +
r∑

i=1

di = 1 +
r∑

i=1

(di − 1).

Fact 41.1.2. With the present notations the following holds:

(1) For each r − 1 homogeneous polynomials f1, . . . , fr−1 ∈ K[Z1, . . . , Zr]
which generate a homogeneous ideal J := (f1, . . . , fr−1) having only a

finite number of (projective) zeroes, we have #Z(J) = Dr =
∏r−1

i=1 di.
(2) The resultant Res(F1, . . . , Fr) is

(a) homogeneous of degree Di in the varaibles ai,τ for each i and
(b) isobaric3 of weight D.

Proof.

(1) It is trivial for r = 2 and is obtained, for r > 2, by considering the
polynomials fi as elements in K[Z1][Z2, Z3, . . . , Zr]; thus (2) implies that
Res(f1, . . . , fr−1) ∈ K[Z1] is a univariate polynomial of degree Dr.

(2) For r = 2, it is a homogeneous reformulation of the description of the
structure of the Sylvester resultant: for

F1(Z1, Z2) = a0

d1∏

i=1

(Z1 − αiZ2) = a0Z
d1
1 + a1Z

d1−1
1 Z2 + · · ·+ ad1Z

d1
2 ,

F2(Z1, Z2) = b0

d2∏

j=1

(Z1 − βjZ2) = b0Z
d2
1 + b1Z

d2−1Z2 + · · ·+ bd2Z
d2
2 ,

if we consider the Fis as elements of K[Z2][Z1], (a) comes from Proposi-
tion 6.6.8 and (b) from Proposition 6.7.1 which returns

3 A function D ∈ D is called isobaric iff all of its terms are of the same weight.
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Res(F1, F2)

= ad2
0 b

d1
0

d1∏

i=1

d2∏

j=1

((αi − βj)Z2) = ad2
0 b

d1
0 Z

d1d2
2

d1∏

i=1

d2∏

j=1

(αi − βj)

= ad2
0

d1∏

i=1

F2(αiZ2) = ad2
0 Z

d1
2

d1∏

i=1

g(αi) =

= (−1)d1d2bd1
0

d2∏

j=1

f(βjZ2) = (−1)d1d2bd1
0 Z

d2
2

d2∏

j=1

f(βj);

thus, Res(F1, F2) = Zd1d2
2 Res(f, g) is obtained by substituting each in-

stance of ai, bj by Zi
2ai, Z

j
2bj respectively.

For r > 2, we obtain4 (2) by applying (1) to the polynomials f1, . . . , fr−1,
for each ansatz Ξ(Fi) = fi, 1 ≤ i < r: denoting

(1, λ
(i)
2 , . . . , λ(i)r ), 1 ≤ i ≤ Dr =

r−1∏

i=1

di

their roots, let us then define R :=
∏Dr

i=1 Fr(1, λ
(i)
2 , . . . , λ

(i)
r ) ∈ D which

clearly satisfies R = Ξ(Res(F1, . . . , Fr)) and which is the numerator of
a symmetric function of the roots and thus can be expressed in terms
of the coefficients of the fis. Thus Res(F1, . . . , Fr) is isobaric of degree

drDr = D and is homogeneous of degree Dr in the variables ar,τ . �

41.2 Bézout’s Generating Set

Let us denote J := (F1, . . . , Fr) ⊂ D[Z1, . . . , Zr] the homogeneous ideal gen-
erated by the generic forms Fi and for each δ ∈ N,

Jδ := J ∩Wδ = {F ∈ J homogeneous, deg(F ) = δ},

and let us remark that5

B := {ωFi : ω ∈ Wδ−di
, 1 ≤ i ≤ r}

is a D-generating set of Jδ, so that, for each homogeneous polynomial F ∈ Jδ,
there are homogeneous polynomials

Si =
∑

ω∈Wδ−di

c(Si, ω)ω ∈ D[Z1, . . . , Zr], deg(Si) = δ − di for each i

4 I limit myself here to sketch Poisson’s proof of this result which is never used
in the argument which leeds to Theorem 41.5.3. For a proof of Fact 41.1.2(2) I
refer to Remark 41.5.1.

5 With a slight abuse of notations, Wz = ∅ for each z ∈ Z, z < 0.
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such that F =
∑r

i=1 SiFi; such representations are, of course, not unique.
Uniqueness can be however forced, restricting the spans of the Fis: let us

denote, for each i ≤ r + 1,

W(i)
δ := {Za1

1 · · ·Zar
r ∈ Wδ−di

: aj < dj for each j < i}
so that

W(1)
δ = Wδ−d1 ;

W(2)
δ consists of all terms of degree δ − d2 which are not divisable by Zd1

1 ;

W(3)
δ consists of all terms of degree δ − d3 which are not divisable by Zd1

1

nor by Zd2
2 ;

. . .
W(i)

δ consists of all terms τ of degree δ − di such that τ /∈ (Zd1

1 , . . . , Z
di−1

i−1 );
. . .
W(r+1)

δ := {Za1
1 · · ·Zar

r ∈ Wδ : aj < dj for each j ≤ r}.

Remark 41.2.1. For each δ ≥ d = 1 +
∑r

i=1(di − 1), we have W(r+1)
δ = ∅

since for Za1
1 · · ·Zar

r ∈ W(r+1)
δ we have the contradiction

1 +
∑

i

ai ≤ 1 +

r∑

i=1

(di − 1) = d ≤ δ =

r∑

i=1

ai.

�

Lemma 41.2.2. With the notation above, for any ν ≤ r, Wδ has the parti-
tion

Wδ =
{
τZd1

1 , τ ∈ W(1)
δ

}
⊔ · · · ⊔

{
τZdν

ν , τ ∈ W(ν)
δ

}
⊔W(ν+1)

δ

= V(1)
δ ⊔ · · · ⊔ V(i)

δ ⊔ · · · V(ν)
δ ⊔W(ν+1)

δ

where, for each i ≤ r,

V(i)
δ := {Za1

1 · · ·Zar
r ∈ Wδ−di

: ai ≥ di, aj < dj for each j < i}.

�

Theorem 41.2.3 (Bézout). For any ν ≤ r, each homogeneous polynomial
F ∈ D[Z1, . . . , Zr] of degree δ can be uniquely expressed as

∆F =

ν∑

i=1

QiFi +Qν+1

where ∆ ∈ D, ∆ 6= 0, and

Qi =
∑

ω∈W(i)

δ

c(Qi, ω)ω ∈ D[Z1, . . . , Zr] for each i.
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Proof. Let us begin by remarking that, by Lemma 41.2.2 above,

ν+1∑

i=1

#W(i)
δ =

ν∑

i=1

#V(i)
δ +W(ν+1)

δ = #Wδ;

this counting argument can be also deduced by considering the polynomial∑ν
i=1QiZ

di

i +Qν+1 where each term of degree δ comes in once and once only.
Equating, for each τ ∈ Wδ, the coefficient of τ in F with the one in∑ν

i=1QiFi + Qν+1 we obtain #Wδ equations in the
∑ν+1

i=1 #W(i)
δ = #Wδ

unknowns c(Qi, ω), ω ∈ W(i)
δ , 1 ≤ i ≤ ν + 1.

The corresponding determinant ∆ cannot vanish, otherwise we would ob-
tain a non trival solution of the equation

∑ν
i=1QiFi + Qν+1 = 0; it would

then be sufficient to make the ansatz Fi := Zdi

i , 1 ≤ i ≤ ν, in order to deduce

a contraddictory identity
∑ν

i=1QiZ
di

i +Qν+1 = 0 where some Qi is not van-

ishing. Hence the theorem is proved. �

Remark 41.2.4. Denote Sr the symmetric group of all the permutations π :
{1, . . . , r} → {1, . . . , r} over {1, . . . , r}.

The result of Theorem 41.2.3 being independent of the ordering chosen
by the variables, for each permutation π ∈ Sr, each homogeneous polyno-
mial F ∈ D[Z1, . . . , Zr] of degree δ can be uniquely expressed as ∆F =∑ν

i=1QiFπ(i) + Qν+1 where ν ≤ r, ∆ ∈ D, ∆ 6= 0, and Qi ∈ Span
K
(W(i)

πδ )
where

W(i)
πδ := {Za1

1 · · ·Zar
r ∈ Wδ−dπ(i)

: aπ(j) < dπ(j) for each j < i}.

�

41.3 Macaulay’s Matrix

Let us now represent the D-generating set

B := {ωFi : ω ∈ Wd−di
1 ≤ i ≤ r}

of Jd by a matrix, the Macaulay’s matrix whose columns are indexed by the(
d+r−1
r−1

)
terms τ ∈ Wd and each of whose rows is indexed by one of the

elements ∑

τ∈Wd

c(ωFi, τ)τ = ωFi ∈ B

and has c(ωFi, τ) :=

{
ai,υ if τ = υω
0 if ω ∤ τ as its τ -entry.
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Fig. 41.1. Macaulay’s Matrix
x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3

xF1 X x x x x x 0 0 0 0
yF1 0 X 0 x x 0 x x x 0

zF1 0 0 X 0 x x 0 x x x
xF2 x x x X x x 0 0 0 0
yF2 0 x 0 x x 0 X x x 0

zF2 0 0 x 0 x x 0 X x x

x2F3 x x X 0 0 0 0 0 0 0
xyF3 0 x 0 x X 0 0 0 0 0
xzF3 0 0 x 0 x X 0 0 0 0
y2F3 0 0 0 x 0 0 x X 0 0
yzF3 0 0 0 0 x 0 0 x X 0
z2F3 0 0 0 0 0 x 0 0 x X

Example 41.3.1. Let us set Q = K[x, y, z], d1 = d2 = 2, d3 = 1 and δ = 3.
In Figure 41.1 we represent such matrix. Each 0 indicates that the entry is
0; each x indicates that the entry is a variable ai,υ. The elements a

i,Z
di
i

are

represented X. �

Definition 41.3.2 (Macaulay). The (Macaulay’s) resultant of F1, . . . , Fr

is the greatest common divisor of all the determinants of the above matrix.

�

Denoting
R := R(d1, . . . , dr) := R(F1, . . . , Fr) ∈ D

the Macaulay’s resultant of F1, . . . , Fr, let us consider the determinant D of
the square matrix6 obtained by selecting the rows indexed by the polynomials
in the basis

B := {ωFi : ω ∈ W(i)
d , 1 ≤ i ≤ r}

and let us study its properties:

Example 41.3.3. In Figure 41.1 the two rows in sans serif (indexed by x2F3

and y2F3) are the ones to be removed in order to obtain the matrix D. �

Proposition 41.3.4 (Macaulay). Setting, for each i ≤ r

ai := a
i,Z

di
i

, ci := ai,Zd
r
, µi := #W(i)

d

the following holds

(1) c(D, aµ1

1 · · ·aµr
r ) = ±1;

(2) Ξf (ci) = Ξf

(
ai,Zd

r

)
= c(fi, Z

d
r ) = 0 for each i =⇒ Ξf (D) = 0;

6 The matrix is square as a consequence of Lemma 41.2.2 and Remark 41.2.1.
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(3) for each τ ∈ Wd, Dτ ∈ J;

(4) µr := #(W(r)
d ) =

∏r−1
i=1 di = Dr;

(5) D is homogeneous of degree Dr in the coefficients of Fr while
(6) D is homogeneous in the coefficients of Fi with a degree > Di :=

D
di

for
each i < r.

(7) D is isobaric with weight D :=
∏r

i=1 di.

Proof.

(1) Clearly in each row appears one and only one ai; in order to prove the
claim we must show that no two such ai can appear in the same column.

This is a trivial consequence of two remarks above, namely thatW(r+1)
d =

∅ and that, making in the expression
∑r

i=1QiFi + Qr+1 =
∑r

i=1QiFi

the ansatz Fi := aiZ
di

i , 1 ≤ i ≤ r we obtain
∑r

i=1QiaiZ
di

i where each
term of degree d comes in once and once only.

(2) The column indexed by Zd
r contains all zeros excepts in the rows indexed

by Zd−di
r Fi where the value is a

i,Z
di
r
.

(3) Denoting Di,ω the subdeterminant obtained crossing the column indexed
by τ and the row corresponding to the polynomial ωFi we have

∑

τ∈Wd

Dτ =
∑

τ∈Wd

∑

i,ω

Di,ωc(ωFi, τ)τ

=
∑

i,ω

Di,ω

∑

τ∈Wd

c(ωFi, τ)τ

=
∑

i,ω

Di,ωωFi

≡ 0 mod J.

(4) deg(Qr) = d− dr = 1+
∑r

i=1(di − 1)− dr =
∑r−1

i=1 (di− 1) and the terms
of Qr consist of the set of all terms in the expansion

r−1∏

i=1

(
Zdi−1
r + ZiZ

di−2
r + · · ·+ Zdi−2

i Zr + Zdi−1
i

)

whence µr = #(W(r)
d ) = # supp(Qr) =

∏r−1
i=1 di = Dr.

(5) Is a trivial consequence of the resut above.
(6) In general, the terms τ = ωυ of Qj consist of the set of all terms ω in

the expansion
∏j−1

i=1

(
1 + Zi + · · ·+ Zdi−1

i

)
each multiplied by a term

υ = Z
aj

j · · ·Zar
r , deg(υ) = d− dj − deg(ω) so that

µi = #(W(i)
d ) = # supp(Qi) ≥ Di =

r∏

i=1
i6=j

di.
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(7) For any element

ωFi =
∑

υ∈W(r)

d−di

ai,υωυ =
∑

τ∈Wd

c(ωFi, τ)τ ∈ B

we have, for each c(ωFi, τ) 6= 0,

wt(c(ωFi, τ) = wt(ai,υ) = degr υ = degr τ − degr ω;

hence, on expanding D the weight of each term is

∑

τ∈Wd

degr τ −
r∑

i=1

∑

ω∈W(i)

d

degr ω;

thus D is isobaric and, by (1), with weight

wt(aµ1

1 · · · aµr
r ) = µr wt(ar) = Drdr = D.

�

Lemma 41.3.5 (Macaulay). Any other determinant D′ of the above ma-
trix has a common factor with D which is homogeneous of degree Dr in the
coefficients of Fr.

Proof. Let us denote Hj , 1 ≤ j ≤
(
d+r−1
r−1

)
the polynomials corresponding to

the chosen rows of the above matrix; according Theorem 41.2.3, any arbi-
trarily K-linear combination

∑

j

αjHj =
r∑

i=1

AiFi ∈ Span
K
(Wd)

has a unique representation

r∑

i=1

AiFi =

r∑

i=1

QiFi, Qi ∈ Span
K
(W(i)

d ).

There is therefore a matrix M ∈ GL(
(
d+r−1
r−1

)
,K) such that D det(M) = D′.

We can now compute each Qi ∈ Span
K
(W(i)

d ) and therefore the matrix M,
by the following recursive procedure:

• compute the polynomials (whose existence is implied by Theorem 41.2.3)

Y
(r)
i ∈ Span

K

(
W(i)

d−dr

)
, i ≤ r, such that Ar =

∑r−1
i=1 Y

(r)
i Fi + Y

(r)
r ; since
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r∑

i=1

AiFi =

r−1∑

i=1

AiFi +ArFr

=

r−1∑

i=1

AiFi +

r−1∑

i=1

Y
(r)
i FiFr + Y (r)

r Fr

=

r−1∑

i=1

(Ai + Y
(r)
i Fr)Fi + Y (r)

r Fr

we can set Qr := Y
(r)
r and reduce the problem of solving the equation

r∑

i=1

AiFi =
r∑

i=1

QiFi

to the one of solving
∑r−1

i=1 (Ai + Y
(r)
i Fr)Fi =

∑r−1
i=1 QiFi;

• Qr−1 is then obtained by computing the polynomials (whose existence is

implied by Theorem 41.2.3) Y
(r−1)
i ∈ Span

K

(
W(i)

d−dr−1

)
, i ≤ r − 1, such

that

Ar−1 + Y
(r)
r−1Fr =

r−2∑

i=1

Y
(r−1)
i Fi + Y

(r−1)
r−1 ,

allowing to obtain, setting Qr−1 := Y
(r−1)
r−1 ,

r∑

i=1

AiFi

= QrFr +
r−1∑

i=1

(Ai + Y
(r)
i Fr)Fi

= QrFr +
r−2∑

i=1

(Ai + Y
(r)
i Fr)Fi +

r−2∑

i=1

Y
(r−1)
i FiFr−1 + Y

(r−1)
r−1 Fr−1

=
r−2∑

i=1

(Ai + Y
(r)
i Fr + Y

(r−1)
i Fr−1)Fi +

r∑

i=r−1

QiFi;

• inductively we assume to have

r∑

i=1

AiFi =

r−j∑

i=1


Ai +

r∑

l=r−j+1

Y
(l)
i Fl


Fi +

r∑

i=r−j+1

QiFi

and we compute the polynomials Y
(r−j)
i ∈ Span

K

(
W(i)

d−dr−j

)
, i ≤ r − j,

such that
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Ar−j +

r∑

l=r−j+1

Y
(l)
r−jFl =

r−j−1∑

i=1

Y
(r−j)
i Fi + Y

(r−j)
r−j ,

so that, setting Qr−j := Y
(r−j)
r−j , we obtain

r∑

i=1

AiFi

=

r−j∑

i=1


Ai +

r∑

l=r−j+1

Y
(l)
i Fl


Fi +

r∑

i=r−j+1

QiFi

=

r−j−1∑

i=1


Ai +

r∑

l=r−j+1

Y
(l)
i Fl


Fi

+

r−j−1∑

i=1

Y
(r−j)
i FiFr−j + Y

(r−j)
r−j Fr−j +

r∑

i=r−j+1

QiFi

=

r−j−1∑

i=1


Ai +

r∑

l=r−j

Y
(l)
i Fl


Fi +

r∑

i=r−j

QiFi

• und so weiter.

The point is that in this procedure all the polynomials Y
(l)
i are completely

independent from the coefficients ar,τ of Fr and the same is true for det(M) ∈
K whence the claim. �

The choice of the determinant D being dependent on an ordering on the
variables, we can in fact choose r! diffierent determinants Dπ, π ∈ Sr, each
satisfying (cf. Remark 41.2.4) a proper reformulation of Theorem 41.2.3.

In particular

Corollary 41.3.6. It holds:

(1) for each i ≤ r and each π ∈ Sr such that π(r) = i the determinant Dπ is
homogeneous of degree Di in the coefficients of Fi;

(2) any other determinant D′ has a common factor with such determinant
which is homogeneous of degree Di in the coefficients of Fi.

(3) R is homogeneous of degree Di = µi in the coefficients of Fi for each i.

Example 41.3.7. In Example 41.3.1 if we consider the permutation (132) the

construction would return Figure 41.2 �

Definition 41.3.8. The element A ∈ D such that D = AR is called the
extraneous factor of D.
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Fig. 41.2. Macaulay’s Matrix (2)

x3 x2y x2z xy2 xyz xz2 y3 y2z yz2 z3

x2F3 x x X 0 0 0 0 0 0 0
xyF3 0 x 0 x X 0 0 0 0 0
xzF3 0 0 x 0 x X 0 0 0 0

y2F3 0 0 0 x 0 0 x X 0 0
yzF3 0 0 0 0 x 0 0 x X 0
z2F3 0 0 0 0 0 x 0 0 x X

xF1 X x x x x x 0 0 0 0
yF1 0 X 0 x x 0 x x x 0
zF1 0 0 X 0 x x 0 x x x

xF2 x x x X x x 0 0 0 0
yF2 0 x 0 x x 0 X x x 0
zF2 0 0 x 0 x x 0 X x x

Denoting χν : D[Z1, . . . , Zr] → D[Z1, . . . , Zν−1] the evaluation

F (Z1, . . . , Zr) 7→ χν(F ) = F (Z1, . . . , Zν−1, 0, . . . , 0),

we have:

Corollary 41.3.9. The following holds

(1) c(R, aD1
1 · · · aDr

r ) = ±1;
(2) R is homogeneous of degree Di in the coefficients of Fi for each i;
(3) R is isobaric of degree D;
(4) A is isobaric of degree 0;
(5) c(A, ai,τ ) = 0 for each τ ∈ W : Zr | τ ;
(6) A is independent of the coefficients ar,τ of Fr;
(7) A depends only on the coefficients of the generic polynomials

χr(F1), . . . , χr(Fr−1) ∈ Z[ai,τ , 1 ≤ i < r, τ ∈ Wdi
][Z1, . . . , Zr−1];

(8) Ξf (ci) = Ξf

(
ai,Zd

r

)
= c(fi, Z

d
r ) = 0 for each i =⇒ Ξf (R) = 0.

Proof. (1) follows from Proposition 41.3.4(1) and from the equality Di = µi

for each i; (2) is a direct consequence of Corollary 41.3.6.
Ad (3): each factor of an isobaric function is isobaric too; the weight of R

is wt(aD1
1 · · · aDr

r ) = D.
(4) is a direct corollary of (3) and (5) of (4); (6) is the statement at the

end of the proof of Lemma 41.3.5 and (7) resumes (5-6).
(8) follows from Proposition 41.3.4(2), which implies Ξf (D) = 0 and on

(5) which implies that A is independent of each ci = ai,Zd
r
. �
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41.4 The Extraneous Factor

In order to give an explicit and effective representation of the extraneous
factor A of D, Macaulay needed a deeper analysis and a convenient notation,
starting from Bézout’s formula (Theorem 41.2.3). Thus considering, for each
ν ≤ r and each δ ≥ min(d1, . . . , dν), the submatrix obtained by selecting the
columns indexed by the terms in

Wδ \W(ν+1)
δ =

{
τZd1

1 , τ ∈ W(1)
δ

}
⊔ · · · ⊔

{
τZdν

ν , τ ∈ W(ν)
δ

}

and the rows indexed by the elements

ωFi =
∑

τ∈Wd

c(ωFi, τ)τ ∈ B := {ωFi : ω ∈ W(i)
δ , 1 ≤ i ≤ ν}.

Macaulay denotes D(ν, δ) its determinant and7

R(ν, δ) := gcd(Dπ(ν, δ) : π ∈ Sν}.

He also sets D(ν, δ) = R(ν, δ) = 1 for each δ < min(d1, . . . , dν).

Remark 41.4.1. The following conditions are equivalent:

(1) Ξf (D(ν, δ)) = 0
(2)

∑ν
i=1Qiχν(fi) = Qν+1 for suitable Qi =

∑
ω∈W(i)

δ

c(Qi, ω)ω ∈ Q, i ≤
ν + 1.

Moreover, it is sufficient to repeat the same argument which led to the
proof of Corollary 41.3.6, in order to obtain that R(ν, δ) is homogeneous, for
each i ≤ ν, in the coefficients of Fi with degree

#{Za1
1 · · ·Zar

r ∈ Wδ−di
: aj < dj for each j 6= i}.

�

This notation allows to state

Theorem 41.4.2 (Macaulay). It holds

∣∣∣∣
D(r, δ)

R(r, δ)

∣∣∣∣ =

∣∣∣∣∣∣

dr−1∏

j=0

D(r − 1, δ − j)

R(r − 1, δ − j)

∣∣∣∣∣∣
·

∣∣∣∣∣∣

δ−1∏

j=dr

D(r − 1, δ − j)

∣∣∣∣∣∣
.

7 In this construction the value ν fixes the precise set {Z1, · · · , Zν} of the first ν
variables; therefore, in this setting Remark 41.2.4 is appliable to those variables
only.
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Proof. R(r, δ) is a factor of D(r, δ) and (Corollary 41.3.9(6)) the other factors
are independent of the coefficients of Fr.

Let us consider an arbitrary combination

r∑

i=1

QiFi = 0, Qi =
∑

ω∈W(i)

δ

x(Qi, ω)ω, 1 ≤ i ≤ r

in terms of the unknowns x(Qi, ω), where

W(i)
δ := {Za1

1 · · ·Zar
r ∈ Wδ−di

: aj < dj for each j < i}

and denote a := ar,Zdr
r

and w := #W(r)
δ .

The element a appears w times in the matrix, namely in the positions

satisfying c(ωFr, ωZ
dr
r ) = a = ar,Zdr

r
where ω runs in the elements of W(r)

δ ;
more precisely, for each such ω, a appears in the position corresponding to
the column indexed by ωZdr

r and the row representing ωFr.
The columns where a does not appear are those indexed by the terms

{
τZd1

1 , τ ∈ W(1)
δ

}
⊔ · · · ⊔

{
τZ

dr−1

r−1 , τ ∈ W(r−1)
δ

}
.

Hence the coefficient of aw in the expansion of D(r, δ) is the determinant
whose vanishing is the condition that the identity

r−1∑

i=1

QiFi = Qr Qi =
∑

ω∈W(i)

δ

x(Qi, ω)ω, 1 ≤ i ≤ r

can be satisfied.
In order to evaluate such determinant, assume the identity is satisfied and

set Zr = 0 obtaining the identity

r−1∑

i=1

χr(Qi)χr(Fi) = χr(Qr).

Therefore, for each f := {f1, . . . , fr}, either
• such identity is non-trivially satisfied, i.e. Ξf (D(r − 1, δ)) = 0, or
• χr(Q1) = · · · = χr(Qr) = 0, which means that Zr | Qi for each i.

In the latter case we obtain a similar identity

r−1∑

i=1

Q′
ifi = Q′

r, Q′
i =

∑

ω∈W(i)

δ−1

x(Qi, Zrω)ω, 1 ≤ i ≤ r.

Repeating the same argument we obtain that either Ξf (D(r−1, δ−1)) = 0,
or there is an identity



78 41. Macaulay IV

r−1∑

i=1

Q′′
i fi = Q′′

r , Q′′
i =

∑

ω∈W(i)

δ−2

x(Qi, Z
2
rω)ω, 1 ≤ i ≤ r.

Since we have only the limitation

max
{
ar : Z

a1

1 · · ·Zar
r ∈ ∪r−1

i=1W
(i)
δ

}
= δ

by iteration we deduce that the sought determinant is
∏δ−1

j=0 D(r − 1, δ − j)
so that

D(r, δ) =




δ−1∏

j=0

D(r − 1, δ − j)


 aw + · · ·

Let us therefore now evaluate the coefficient of aw in R(r, δ); to do so we
consider another permutation, say the cyclic one, π(i) ≡ i− 1 (mod r) and
the corresponding identity

Q1Fr +Q2F1 + · · ·+QrFr−1 = 0, Qi =
∑

ω∈W(i)

πδ

x(Qi, ω)ω, 1 ≤ i ≤ r

where W(i)
πδ := {Za1

1 · · ·Zar
r ∈ Wδ−dπ(i)

: aπ(j) < dπ(j) for each j < i} and, in
particular,

W(1)
πδ := {Za1

1 · · ·Zar
r ∈ Wδ−dr

: ar < dr}.

The variable a := ar,Zdr
r

appears s := #W(1)
πδ times in the positions

satisfying c(ωFr, ωZ
dr
r ) = a and corresponding to the column indexed by

ωZdr
r and the row representing ωFr, where ω runs in the elements of W(1)

πδ .
The remaining columns are those indexed by the terms

{
τZd1

1 , τ ∈ W(2)
πδ

}
⊔ · · · ⊔

{
τZ

dr−1

r−1 , τ ∈ W(r−1)
πδ

}

and the coefficient of as in the expansion of Dπ(r, δ) is the determinant whose
vanishing is the condition that the identity

n−1∑

i=1

Qi+1Fi = Q1 Qi =
∑

ω∈W(i)

πδ

x(Qi, ω)ω, 1 ≤ i ≤ r

can be satisfied.
We can therefore reapply the same argument as above, setting Zr = 0

and obtaining that, for each f := {f1, . . . , fr}, either Ξf (Dπ(r − 1, δ)) = 0 or
each Qi is divisible by Zr; however, since we have the stricter limitation

max
{
ar : Z

a1
1 · · ·Zar

r ∈ ∪r−1
i=1W

(i)
δ

}
= dr

we obtain only
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Dπ(r, δ) =




dr−1∏

j=0

Dπ(r − 1, δ − j)


 as + · · · .

Since the same argument can be applied for each permutation π′, π′(1) = r,
we obtain

R(r, δ) =




dr−1∏

j=0

R(r − 1, δ − j)


 as + · · · .

Since R(r, δ) is a factor of D(r, δ) and the other factors are independent of

the coefficients of Fr we thus obtain the claim. �

Definition 41.4.3. A term Za1
1 · · ·Zar

r ∈ W satisfying

aj < dj for each j ∈ {i1, . . . , ih} ⊂ {1, . . . , r}

is said to be reduced in {Zi1 , . . . , Zih}.

Let

S ⊂ W be the semigroup ideal generated by {Zdi

i , 1 ≤ i ≤ r};
S⋆ ⊂ W be the semigroup ideal generated by {Zdi

i Z
dj

j , 1 ≤ i < j ≤ r};
W⋆ ⊂ W be the set of terms which is divisible by a single term Zdi

i ;

W(i)
⋆δ := {Za1

1 · · ·Zar
r ∈ W(i)

δ : aj < dj for each j > i}
U (i)
δ := {Za1

1 · · ·Zar
r ∈ W(i)

δ : exists h > i : ah ≥ dh}.
and set Sδ := S ∩Wδ, W⋆δ := W⋆ ∩Wδ and S⋆δ := S⋆ ∩Wδ. Then

Lemma 41.4.4. It holds

(1) W \ S =
⋃

δ W
(r+1)
δ is the set of all terms reduced in {Zi, 1 ≤ i ≤ r};

(2) W = W⋆ ⊔ S⋆ ⊔ ∪δW(r+1)
δ ;

(3) Wδ \W(r+1)
δ = W⋆δ ⊔ S⋆δ;

(4) Wδ = W⋆δ ⊔ S⋆δ, for each δ ≥ d;

(5) W⋆ =
⋃r

i=1{Za1
1 · · ·Zar

r ∈ W \⋃δ W
(r+1)
δ : aj < dj for each j 6= i};

(6) W⋆ is the set of all terms which are reduced in {Zj, j 6= i} for some i but
are not reduced in {Z1, . . . , Zr};

(7) W(i)
⋆δ = {Za1

1 · · ·Zar
r ∈ Wδ−di

: aj < dj for each j 6= i} is the set of terms
of degree δ − di which are reduced in {Z1, . . . , Zi−1, Zi+1, . . . , Zr};

(8) Wδ := W⋆δ ∪W(r+1)
δ =

⋃
i W

(i)
⋆δ ; W

(r+1)
δ =

⋂
i W

(i)
⋆δ ;

(9) W(i)
δ = W(i)

⋆δ ⊔ U (i)
δ ;

(10) U (i)
δ = {Za1

1 · · ·Zar
r ∈ Wδ−di

: aj < dj∀j < i, ∃h > i : ah ≥ dh};
(11) W(r)

⋆δ = W(r)
δ ;

(12) for each τ ∈ W⋆δ there is i ≤ r and ω ∈ W(i)
⋆δ such that c(ωFi, τ) = a

i,Z
di
i

.
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(13) for each i ≤ r and ω ∈ W(i)
⋆δ : c(ωFi, τ) = a

i,Z
di
i

=⇒ τ = ωZdi

i ∈ W⋆δ.

�

Definition 41.4.5. The extraneous factor of D(r, δ), A(r, δ), is the determi-
nant of the minor of D(r, δ) obtained removing the columns indexed by the
terms in W⋆δ and the rows indexed by the polynomials which contains the
elements a

i,Z
di
i

, 1 ≤ i ≤ r, in the omitted columns, id est the rows indexed by

the set
{ωFi : ω ∈ W(i)

⋆d , 1 ≤ i ≤ r}.
Alternatively the surviving columns are the ones indexed by the terms

τ ∈ S⋆δ and the surviving rows are the ones related to the elements in

{ωFi : ω ∈ U (i)
d , 1 ≤ i ≤ r}.

�

Example 41.4.6. In Figures 41.1 and 41.2 the elements of the extraneous
factor are represented · .

Note that in Figures 41.2 variables and polynomials are ordered as z, x, y

(respectivley F3, F1, F2). �

Remark 41.4.7. Since, in the construction of D(ν, δ) and R(ν, δ), the value
ν fixes the precise set {Z1, · · · , Zν} of the first ν variables, the definition of

extraneous factor can be naturally extended to define A(ν, δ). �

Theorem 41.4.8 (Macaulay). It holds:

(1) |A(r, δ)| =
∣∣∣
∏dr−1

j=0 A(r − 1, δ − j)
∣∣∣ ·
∣∣∣
∏δ−1

j=dr
D(r − 1, δ − j)

∣∣∣ .
(2) D(2, δ) = A(2, δ)R(2, δ);
(3) D(r, δ) = A(r, δ)R(r, δ).

Proof. Since (2) requires just a trivial verification and allows to deduce (3)
from (1), we just need to prove (1).

The vanishing of A(r, δ) is the condition that the identity

r−1∑

i=1

QiFi = Qr, Qi =
∑

ω∈U(i)

δ

x(Qi, ω)ω, 1 ≤ i < r, Qr =
∑

ω∈Wδ

x(Qr, ω)ω,

can be solved in terms of the unknowns x(Qi, ω).
The number of linear equations and unknown are equal and A(n, δ) is not

zero since, for the ansatz ΞZ(Fi) := Zdi

i , in the polynomial
∑r−1

i=1 QiZ
di

i +Qr

each term in Wδ occurs once and once only.
Assume, again, that the identity is satisfied, set Zr = 0 obtaining the

identity
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r−1∑

i=1

χr(Qi)χr(Fi) = χr(Qr),

and reapply the same argument as in Theorems 41.4.2, obtaining, for each
f := {f1, . . . , fr}, that either Ξf (A(r−1, δ)) = 0 or each Qi is divisible by Zr;
repeating the same argument we can obtain that either Ξf (A(r− 1, δ− i)) =

0, 0 ≤ i < dr , or there is an identity
∑r−1

i=1 Q
′′
i fi = Q′′ where

Q′′
i =

∑

ω∈U
(i)

δ−dr

x(Qi, Z
dr
r ω)ω, 1 ≤ i < r, Q′′ =

∑

ω∈Wδ−dr

x(Qi, Z
dr
r ω)ω,

U
(i)
δ−dr

:= {ω : Zdr
r ω ∈ U (i)

δ } and Wδ−dr
:= {ω : Zdr

r ω ∈ Wδ} = W(r)
δ−dr

.
We have a similar relation

U
(i)
δ−dr

:= {ω : Zdr
r ω ∈ U (i)

δ } = W(i)
δ−dr

also for i < r since

Zdr
r ω ∈ W(i)

⋆δ = {Za1
1 · · ·Zar

r ∈ Wδ−di
: aj < dj for each j 6= i} =⇒ i = r

whence

U
(i)
δ−dr

= {ω : Zdr
r ω ∈ U (i)

δ }
= {ω : Zdr

r ω ∈ W(i)
δ \W(i)

⋆δ }
= {ω : Zdr

r ω ∈ W(i)
δ }

= W(i)
δ−dr

.

Thus, we can conclude that either Ξf (A(r − 1, δ − i)) = 0, 0 ≤ i < dr , or
there is an identity

r−1∑

i=1

Q′′
i fi = Q′′

r , Q′′
i =

∑

ω∈W(i)

δ−dr

x(Qi, X
dn
n ω)ω, 1 ≤ i ≤ r,

id est (by Theorems 41.4.2)
∏δ−1

j=dn
Ξf (D(n− 1, δ − j)) = 0. �

Corollary 41.4.9. The extraneous factor A of D = D(n, d) satisfying A =
D
R
= D(n,d)

R(n,d) is A := A(n, d). �
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41.5 Macaulay’s Resultant

Remark 41.5.1. If the resultant Res(f1, . . . , fr) vanish, then f = {f1, . . . , fr}
have a common root α ∈ Pr−1(K) and all polynomials in

Ξf(B) := {ωfi : ω ∈ W(i)
d , 1 ≤ i ≤ n}

vanish when evaluated at such root; thus, setting xτ := τ(α) for each τ ∈ W ,
(xτ : τ ∈ Wd) is a common root of the linear equations

∑

τ∈Wd

xτωc(fi, τ) = 0, ω ∈ W(i)
d , 1 ≤ i ≤ n

and Ξf(Dπ) = 0 for each π ∈ Sr.
Thus Res(d1, . . . , dr) divides each Dπ, π ∈ Sr and hence divides R; since

both R (Corollary 41.3.9) and Res(d1, . . . , dr) (Fact 41.1.2(2)) are isobaric of
weigt D, in principle, we can conclude that R is the sought-after resultent.
However, since we have not given a complete proof of Fact 41.1.2(2), we
prefer to explicitly proof that R is the resultent, and deduce Fact 41.1.2(2)

from Theorem 41.5.3 below. �

Lemma 41.5.2 (Macaulay). The coefficients of a generic member of Jd−1

satisfy one and only one identical linear relation.8

Proof. We need to prove that dimK(Jd−1) = #Wd−1 − 1.
In fact the equation

r∑

i=1

AiFi =

r∑

i=1

QiFi, Qi ∈ Span
K
(W(i)

d−1)

can be solved by the method used in Lemma 41.3.5 for arbitary given poly-
nomials Ai; thus dimK(Jd−1) is less or equal on the number of coefficients in
the expression

∑r
i=1QiZ

di

i which is #Wd−1 − 1 since each term in #Wd−1

except Ω :=
∏r

i=1 Z
di−1
i occurs once and only once in that expression.

In order to prove that this equality is strict, it is sufficient to show that
that it is satisfied by at least a specific ansatz . Macaulay consider’s the ansatz
Ξ1(Fi) := fi, 1 ≤ i ≤ r where

fi := (Zi − Zi+1)Z
di−1
i , 1 ≤ i < r, fr := (Zr − Z1)Z

dr−1
r ;

clearly Ξ1(R) = 0 since the system f1 = · · · fr = 0 has the common root
(1, 1, . . . , 1).

8 Both this result and the Theorem below requires d ≥ 2 id est the existence of at
least a non-linear polynomial.

On the other side, if di = 1 for each i so that d = 1, this Lemma is empty but
the Theorem below claims that the determinant of a system of r linear equations
in r variables vanishes if and only if the system has a common root.
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In order to prove that dimK(Ξ1(J)d−1) = #Wd−1 − 1, Macaulay shows
that for each term τ := Za1

1 · · ·Zar
r , τ−Ω ∈ (f1, . . . , fn) = Ξ1(J) by proposing

an interesting rewriting procedure which is worthwhile to quote; given τ , set
ι := 1 and repeatedly perform the following transformation:

• if aι ≥ dι set τ := Za1
1 · · ·Zaι−1

ι−1 Z
dι−1
ι Z

aι+1+aι−dι+1
ι+1 · · ·Zar

r which is equiv-
alent to transform τ to

τ − (Zaι
ι − Zaι−dι+1

ι+1 )
τ

Zaι
ι

= τ − (Zaι−dι+1
ι − Zaι−dι+1

ι+1 )Zdι−1
ι

τ

Zaι
ι

= τ − Zaι−dι+1
ι − Zaι−dι+1

ι+1

Zι − Zι+1

τ

Zaι
ι
(Zι − Zι+1)Z

dι−1
ι

= τ − Zaι−dι+1
ι − Zaι−dι+1

ι+1

Zι − Zι+1

τ

Zaι
ι
Ξ1(fι)

• ι := ι+ 1 mod r

going round the cycle9 Z1, Z2, . . . , Zr, Z1 as many time as needed until we

obtain the term Ω. �

Theorem 41.5.3 (Macaulay). R = Res(F1, . . . , Fr).

Proof. We have (Proposition 41.3.4(3)) ARZd
r ∈ J; setting Zr := 1 and ap-

plying Kronecker substitution which changes ci to ci − Fi, 1 ≤ i ≤ r, then A

is not changed (as a consequence of Proposition 41.3.4(5)) while R is changed
in R−∑r

i=1AiFi; as a consequence R ∈ (F1, . . . , Fr , Zr − 1) .
Hence Ξf (R) = 0 if the equations f1 = . . . = fn = 0 have a proper solution

(z1, . . . , zr−1, 1) ∈ Pr−1(K).
Let us assume that Ξf (R) = 0 is a relation among the coefficients of

f1, . . . , fr so that there are less then #Wd linearly independent members in

Ξf (B) := {ωfi : ω ∈ W(i)
δ , 1 ≤ i ≤ r}.

Hence the coefficients xτ of the generic element

∑

τ∈Wd

xτ τ ∈ Ξf (J)d = (f1, . . . , fn)d

must satisfy a linear relation
∑

τ∈Wd
xτ cτ = 0.

Moreover, by Lemma 41.5.2, also the generic element

9 For r = 4 di = 4 and d− 1 = 12 we have e.g.

Z7
1Z

5
4 → Z3

1Z
4
2Z

5
4 → Z3

1Z
3
2Z3Z

5
4 →

Z5
1Z

3
2Z3Z

3
4 → Z3

1Z
5
2Z3Z

3
4 → Z3

1Z
3
2Z

3
3Z

3
4
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f :=
∑

υ∈Wd−1

xυυ ∈ Ξf (J)d−1 = (f1, . . . , fn)d−1

satisfies a linear relation
∑

υ∈Wd−1
xυcυ = 0.

Since each Zif =
∑

υ∈Wd−1
xυZiυ ∈ (f1, . . . , fn)d the unknowns xυ must

satisfy the r equations ∑

υ∈Wd−1

xυcυZi
= 0

which are necessarily equivalent so that for each υ ∈ Wd−1 the continued
ratio cυZ1 : cυZ2 : · · · : cυZr

is the same; denoting it α1 : α2 : · · · : αr it
follows that for each τ := Za1

1 · · ·Zar
r ∈ Wd cτ is proportional to αa1

1 · · ·αar
r

id est α := (α1, . . . , αr) ∈ Pr−1(K) satisfies f1(α) = . . . = fn(α) = 0. �

Corollary 41.5.4. With the notation of Corollary 41.3.9 and denoting

Rρ := Res (χρ(F1), . . . , χρ(Fρ−1))

also the following holds

(9) c(R, aD1
1 · · · aDr−1

r−1 ) = aDr
r ;

(10) c(R, aDr
r ) = Rdr

r ;

(11) c(R, a
Dρ
ρ · · · aDr

r ) = R
dρ···dr
ρ .

Proof. (9) is obvious and (11) is a repreated applications of (10).
Ad (10): if we consider an ansatz Ξ : Ξ(ar,τ ) = 0 for each τ 6= Zdr

r , then
Ξ(Fr) = Zdr

r and Ξ(D) = aDn
n R̄ where R̄ is the sub-determinant whose rows

correspond to the basis elements {ωFi : ω ∈ W(i)
δ , 1 ≤ i < r} and whose

columns are labelled by the terms
{
τZd1

1 , τ ∈ W(1)
δ

}
⊔ · · · ⊔

{
τZ

dr−1

r−1 , τ ∈ W(r−1)
δ

}
;

the vanishing of such determinant under an ansatz Ξ : Ξ(Fr) = Zdr
r is a

condition that the identity

r−1∑

i=1

QiΞ(Fi) = QrZ
dr
r Qi =

∑

ω∈W(i)

δ

x(Qi, ω)ω, 1 ≤ i ≤ r

can be satisfied.
In order to evaluate such determinant, assume the identity is satisfied and

set Zr = 0 obtaining the identity

r−1∑

i=1

χr(Qi)χr(Fi) = 0;

thus R̄ is necessarily a multiple of Rdr
r ; evaluating the weight gives that the

multiplicity is dr. �
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Proposition 41.5.5. It holds

(1) Res(F1, . . . , Fr−1, F
′
rF

′′
r ) = Res(F1, . . . , Fr−1, F

′
r)Res(F1, . . . , Fr−1, F

′′
r );

(2) Res(F1, F2, . . . , Fr−1, Fr) is irreducible.

Proof.

(1) Since for each ansatz

Res(f1, . . . , fr−1, f
′
r)Res(f1, . . . , fr−1, f

′′
r )

vanishes if and only if f1 = f2 = · · · = f ′
rf

′′
r = 0 have a common root, we

obtain

Res(F1, . . . , Fr−1, F
′
rF

′′
r ) | Res(F1, . . . , Fr−1, F

′
r)Res(F1, . . . , Fr−1, F

′′
r );

equality is then obtained since both are isobaric of the same weight.
(2) By contradiction let dr be the least value for which Res(d1, . . . , dr) =

Res(F1, . . . , Fr) has a non trivial factorization Res(d1, . . . , dr) = R1R2.
Choose any two positive values d′r and d′′r such that dr = d′r + d′′r .
By the minimality of dr both Res(d1, . . . , d

′
r) = Res(F1, . . . , F

′
r) and

Res(d1, . . . , d
′′
r ) = Res(F1, . . . , F

′′
r ) are irreducible. Denote aτ := c(τ, Fr),

a′ω := c(ω, F ′
r) and a

′′
υ := c(υ, F ′′

r ) for each τ ∈ Wdr
, ω ∈ Wd′

r
, υ ∈ Wd′′

r
.

From the ansatz
Ξ(aτ ) =

∑

ω∈T
d′r

ω|τ

a′ωa
′′
τ
ω

which implies Ξ(Fr) = F ′
rF

′′
r we have, by (1)

Ξ(R1)Ξ(R2) = Res(F1, . . . , F
′
rF

′′
r ) = Res(F1, . . . , F

′
r)Res(F1, . . . , F

′′
r );

the irreducibility of R1, R2,Res(F1, . . . , F
′
r) and Res(F1, . . . , F

′′
r ) which

is a consequence of the minimality of dr implies, say,

Ξ(R1) = Res(F1, . . . , F
′
r), Ξ(R2) = Res(F1, . . . , F

′′
r ).

Since both R1 and R2 depend on the aτ s, Ξ(R1) = Res(F1, . . . , F
′
r) depends

not only on a′ω but also on a′′υ. This clearly leads to a contradiction. �

Remark 41.5.6 (Lazard). Given h ≥ r ’generic’ forms

F1, . . . , Fh ∈ D[Z1, . . . , Zr], deg(Fi) := di, D := Z[ai,τ , 1 ≤ i ≤ h, τ ∈ Wdi
],

d1 ≥ d2 ≥ · · · ≥ dr ≥ · · · ≥ dh, d = 1 − r +
∑r

i=1 di, the construction of
Macaulay’s matrix M, discussed in page 69, can be generalized in order to
obtain h blocks, the ith block consisting of the

(
d−di+r−1

r−1

)
rows related to the

K-generators ωfi, ω ∈ Wd−di
.

Consequently the notion of Macaulay’s resultant (Definition 41.3.2) gen-
eralizes naturally to this setting, still being the greatest common divisor of all
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determinants of the
(
d+r−1
r−1

)
×∑h

i=1

(
d−di+r−1

r−1

)
Macaulay’s matrix. It is clear

that such Macaulay’s resultant R := R(F1, . . . , Fh) is the greatest common
divisor of the

(
h
r

)
original Macaulay’s resultants R(Fj1 , Fj2 , . . . , Fjr ) obtained

choosing any subset {j1, . . . , jr} ⊂ {1, . . . , h} of r indices.
Equally trivially, denoting, for each set of forms f := {f1, . . . , fh} ∈ P ,

Ξf the ansatz Ξf (Fi) = fi, f has a common root if and only if Ξf (R) = 0
10. �

Remark 41.5.7. In the non-homogeneous setting11

the resultant of n given non-homogeneous polynomials in n− 1 vari-
ables is the resultant of the corresponding homogeneous polynomials
of the same degree obtained by introducing a variable x0 of homo-
geneity.

In other words, given h ≥ r non-homogeneous polynomials

f1, . . . , fk ∈ K[Z1, . . . , Zr], di := deg(fi)

and introducing the homogenaizing variable Z0, we consider the generic forms

Fi ∈ D[Z0, Z1, . . . , Zr], deg(Fi) := di

and the ansatz

Ξ : D[Z0, Z1, . . . , Zr] → K[Z0][Z1, . . . , Zr] : Ξ(Fi) := Zd
0fi(

Z1

Z0
, . . . ,

Zr

Z0
);

more precisely, we consider the
(
d+r
r

)
× ∑h

i=1

(
d−di+r

r

)
Macaulay’s matrix

whose columns are indexed by the set W(d) of all terms of degree bounded
by d and whose rows represent the polynomials

ωZd
0fi(

Z1

Z0
, . . . ,

Zr

Z0
), ω ∈ W(d− di), 1 ≤ i ≤ h,

the corresponding resultant being an element of K[Z0]. �

10 Macaulay’s statements consider only the case h = r but such result is already
implicit in the introduction of the determinants D(ν, δ) (page 76).

Moreover, the construction of the u-resultants, in the next Section, freely uses
these implicit definitions and constructions.

11 F. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge Univ.
Press (1916), pg. 3.
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41.6 Macaulay: The u-resultant.

Let us consider r ≤ n homogeneous polynomials

f := {f1, . . . , fr} ⊂ k[x1, . . . , xn]

of degrees d1 ≤ · · · ≤ dr.
One can therefore expect that the ideal M := (f1, . . . , fr) has rank r, in

which case Macaulay considers12 its extension/contraction ideal

M (r) :=Mk(xr+1, . . . , xn)[x1, . . . , xr] ∩ k[x1, . . . , xn]

and is aware that, if a ’generic’ change of coordinates has been already
performed, each fi ∈ M (r) is homogeneous of degree di in the variables13

x1, . . . , xr and the assumption on the rank is satisfied if and only if the resul-
tant of the r fis w.r.t. the r−1 variables x1, . . . , xr−1, Ff ∈ k[xr+1, . . . , xn][xr]
does not vanish, thus granting the existence of a root.

In this context and under these assumptions, adapting the notation of
Chapters 31-32 and 39 we set

k[x1, . . . , xn] = k[Z1, . . . , Zr, V1, . . . , Vd] = k[xr+1, . . . , xn][x1, . . . , xr],

denote14 π : k[x1, . . . , xn] = k[V1, . . . , Vd][Z1, . . . , Zr] → k[Z1, . . . , Zr] the
projection defined by π(F ) = F (Z1, . . . , Zr, 0, . . . , 0], for each

F (x1, . . . , xr , xr+1, . . . , xn) = F (Z1, . . . , Zr, V1, . . . , Vd),

K = k(V1, . . . , Vd), R = k[V1, . . . , Vd], and consider

(f1, . . . , fr) =M (r) ⊂ R[Z1, . . . , Zr],

remarking that with this new notation we have Ff ∈ R[Zr].
We begin by remarking that the polynomials

f̄i := fi(Z0V1, . . . , Z0Vd, Z1, . . . , Zr−1, Z0Zr) ∈ R[Z0, Z1, . . . , Zr−1, Zr],

are homogeneous in the variables Z1, . . . , Zr−1, Z0 and that Ff ∈ R[Zr] is
the resultant Ff̄ w.r.t. Z1, . . . , Zr−1, Z0 of f̄ := {f̄1, . . . , f̄r}; moreover Ff is
a homogeneous polynomial in the variables V1, . . . , Vd, Zr of degree D :=∏r

i=1 di so that T(Ff̄) = Rr+1Z
D
r where (by the assumption on the rank)

Rr+1 = Res (π(f1), . . . , π(fr)) 6= 0.

Instead of solving for one of the unknown variables Zi, we solve for their
Liouville substitution

12 Compare the discussion in Section 30.5.
13 xr being chosen as variable of homogeneity.
14 Compare Section 30.5, n. 48.
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Z = U1Z1 + U2Z2 + · · ·+ UrZr

setting fu := Z − U1Z1 − U2Z2 − · · · − UrZr, considering the polynomial
set f(u) := {f1, . . . , fr, fu} as a subset of R[U1, . . . , Ur][Z,Z1, . . . , Zr] and

computing their resultant F
(u)
f ∈ R[U1, . . . , Ur][Z] w.r.t. Z1, . . . , Zr.

Definition 41.6.1 (Macaulay). F
(u)
f is called the u-resultant of f. �

With an argument similar to the one we gave for Ff , setting

f̂i := fi(Z0V1, . . . , Z0Vd, Z1, . . . , Zr), 1 ≤ i ≤ r and f̂u := Z0Z −
r∑

i=1

UiZi

and denoting

f̂(u) := {f̂1, . . . , f̂r, f̂u} ⊂ R[U1, . . . , Ur][Z0, Z1, . . . , Zr, Z],

we have that F
(u)
f is the resultant F

(u)

f̂
of f̂(u) w.r.t. Z1, . . . , Zr, Z0 and, being

homogeneous in the variables V1, . . . , Vd, Z of degree D :=
∏r

i=1 di, we have

T(F
(u)

f̂
) = R′

r+1Z
D where R′

r+1 = Res (π(f1), . . . , π(fr), π(fu)) .

If we consider in the expansion of F
(u)

f̄
the indeterminate coefficient a,

representing the coefieient c(Z, fu) of Z in fu, degree considerations allow to
deduce that aD | R′

r+1 and R′
r+1 = aDRr+1 whence R′

r+1 = Rr+1 since the
ansatz evaluates a as c(Z, fu) = 1.

With the same kind of argument as in Theorem 41.5.3, we can deduce

that to each root α
(j)
r of Ff corresponds a root (α

(j)
1 , . . . , α

(j)
r ) of f̄; there are

D solutions altogether all being ’finite’15 since Rr+1 6= 0. Similarly to each

of the D roots z(j) of F
(u)
f corresponds a root (β

(j)
1 , . . . , β

(j)
r , z(j)) of f̂(u);

clearly, up to a reenumerating we have

(α
(j)
1 , . . . , α(j)

r ) = (β
(j)
1 , . . . , β(j)

r )

and since f̂u(β
(j)
1 , . . . , β

(j)
r , z(j)) = 0 we have z(j) =

∑r
i=1 Uiα

(j)
i so that

F
(u)
f = R′

r+1

D∏

i=1

(
Z −

r∑

i=1

Uiα
(j)
i

)
.

In conclusion

Proposition 41.6.2 (Macaulay). The u-resultant F
(u)
f is a product of D

factors which are linear in Z,U1, . . . , Ur and the coefficients of U1, . . . , Ur in
each factor supply a solution of the system f.

Also the number of solution is either D =
∏r

i−1 di or infinite, the latter

being the case when Ff vanishes identically. �

15 Id est affine points (α
(j)
1 , . . . , α

(j)
r ) ∈ Kr corresponding to the projective point

(1, α
(j)
1 , . . . , α

(j)
r ) ∈ Pr(K).
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Remark 41.6.3 (Macaulay). (1) Denoting D the determinant for the generic
forms F̂1, . . . , F̂r, F̂u regarding Z1, . . . , Zr, Z0 as variables and A its ex-
traneous factor, we have D = ARes(F̂1, . . . , F̂r, F̂u) and, setting Z0 = 0,
that (Corollary 41.3.9(7)) A depends only on the coefficients of the
generic polynomials χr+1(F1), . . . , χr+1(Fr). Hence A is independent of
V1, . . . , Vd and U1, . . . , Ur.

(2) In case of non-homogeneous polynomials the preliminary generic change
of coordinates does not affect the homogeneity variable; thus it is possible
for Rr+1 to vanish identically. The consequence is a diminution in the
number of finite solutions for Z but not in the number of linear factors of
Ff ; such factors have the shape

∑r
i=1 Uiαi and correspond to an infinite

solution16 in the ratio α1 : α2 : · · · : αr. �

In the generalized setting of Remarks 41.5.6 and 41.5.7, Macaulay’s result
can be read as follows:

Proposition 41.6.4 (Lazard). Given h (non-homogeneous) polynomials

f1, . . . , fh ∈ Q, deg(fi) := di, h ≥ r, d1 ≥ d2 ≥ · · · ≥ dh, d = 1− r +

r∑

i=1

di,

and setting

• fh+1 := U0 +
∑r

i−1 UiZi,
• M ∈ K[Z0, U0, U1, . . . , Ur] the Macaulay’s matrix constructed, according
to Remark 41.5.6 and 41.5.7, via f1, . . . , fh, fh+1,

• R the corresponding Macaulay’s resultant,
• G := R(1, U0, U1, . . . , Ur) ∈ K[U0, U1, . . . , Ur],

we have

(1) f1, . . . , fh have a finite number of common roots if and only if M has
rank

(
d+r
r

)
id est G 6= 0;

(2) If G 6= 0, deg(G) is the number of common roots of f1, . . . , fh counting
multiplicity and zeros at infinitiy;

(3) G is homogeneous and, in K[U0, U1, . . . , Un], is a product of lineear poly-
nomials;

(4) if α0U0 + α1U1 + · · ·+ αnUn is a linear factor of G, then

• if α0 6= 0 then
(

α1

α0
, · · · , αn

α0

)
∈ kn is a root of the fis;

• if α0 = 0, (α0, α1, · · · , αn) is a common zero at infinity. �

16 Id est a projective point (0, α1, α2, · · · , αr).
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41.7 Kronecker’s Resolvent

Let us consider a finite set

Fn := {f (n)
1 , . . . , f (n)

sn } ⊂ P = k[X1, . . . , Xn] = k[X1, . . . , Xn−1][Xn]

of non-homogeneous polynomials generating an ideal I := I(Fn) which we
assume to be in sufficiently ’generic’ position, the variables having been sub-
jected to a change of coordinate beforehand. As a consequence, in particular,

each f
(n)
i is regular in Xn

17.
Also I is in allgemeine position (Definition 34.4.3) so that for each primary

component q of I, dim(q) = d, we have I ∩ k[X1, . . . , Xd] = (0) thus, the
construction of Chapter 39, page 13, can be compacted and extended: we
can introduce the fields Kd := k(X1, . . . , Xd) and their algebraic closures
Kd ⊂ Ω(k) knowing that to each primary component q of rank r = n− d the
corresponding roots have the shape (X1, . . . , Xd, β1, . . . , βr), βi ∈ Kd.

We can iteratively, for ν := n, n− 1, .., 1, compute18:

• Dν := gcd(Fν) ∈ k[X1, . . . , Xν−1][Xν ];

• g
(ν)
i := f

(ν)
i /Dν ∈ k[X1, . . . , Xν−1][Xν ], 1 ≤ i ≤ sν ;

• Gν := {g(ν)i , 1 ≤ i ≤ sν} ⊂ k[X1, . . . , Xν−1][Xν ];

• f :=
sν∑
i=1

Uig
(ν)
i ∈ k[X1, . . . , Xν−1][U1,W1, . . . , Usν ,Wsν ][Xν ];

• g :=
sν∑
i=1

Wig
(ν)
i ∈ k[X1, . . . , Xν−1][U1,W1, . . . , Usν ,Wsν ][Xν ];

• Rν := Res(f, g) =:
∑

υ∈U(sν) fυυ ∈ k[X1, . . . , Xν−1][U1,W1, . . . , Usν ,Wsν ]
where, for each value j ∈ N, we use the notation

U (j) :=
{
Ua1
1 · · ·Uaj

j W b1
1 · · ·W bj

j : (a1, . . . , aj , b1, . . . , bj) ∈ N2j
}
;

• Fν−1 :=
{
f
(ν−1)
1 , . . . , f

(ν−1)
sν−1

}
:=
{
fυ, υ ∈ U (sν)

}
⊂ k[X1, . . . , Xν−1]

and remark that

(1) 1 = gcd(Gν) ∈ k[X1, . . . , Xν−1][Xν ], so that
(2) Rν 6= 0;
(3) each f (ν) is regular in Xν since we are assuming that each variable has

been subjected to a generic change of coordinate;
(4) each common root of Fν is either a root of Dν or a common root of Gν

and
(5) each common root α of Gν is a common root of Fν−1 since Rν ∈ I(f, g).

17 A polynomial f =
∑

τ∈T c(f,τ
τ ∈ P ,deg(f) = d is regular in Xi iff c(f,Xd

i ) 6= 0.
18 Compare Section 20.4
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(6) On the other side if β := (X1, . . . , Xν−1, β1), β1 ∈ Kν−1 is such that
Dν(X1, . . . , Xν−1, β1) = 0 then Rν+1(X1, . . . , Xν−1, β1) = 0,

f :=

sν+1∑

i=1

Uig
(ν+1)
i (β1, Xν+1) and g :=

sν+1∑

i=1

Wig
(ν+1)
i (β1, Xν+1)

have a common root β2 ∈ Kν−1 so that, for each i, 1 ≤ i ≤ sν+1 we have

g
(ν+1)
i (X1, . . . , Xν−1, β1, β2) = 0 and f

(ν+1)
i (X1, . . . , Xν−1, β1, β2) = 0

(7) and, by iterating this argument, each root (X1, . . . , Xν−1, β1) of Dν lifts
to a root (of rank n− ν + 1 and dimension ν − 1) of I.

Definition 41.7.1. The polynomial
∏n

1 Dν is called the complete (total) re-
solvent of I(Fn); each factor Dν is called the complete partial resolvent of

I(Fn) of dimension ν − 1 and rank n− ν + 1. �

Proposition 41.7.2. The complete resolvent of I(Fn) is a member of I(Fn).

Proof. In fact, for each ν there are

pν , qν ∈ k[X1, . . . , Xν−1][U1,W1, . . . , Usν ,Wsν ][Xν ]

such that Rν = pν

(
sν∑
i=1

Uig
(ν)
i

)
+ qν

(
sν∑
i=1

Wig
(ν)
i

)
so that Fν−1 ⊂ I(Gν) and

DνFν−1 ⊂ I(Fν ) whence, by inductive argument F1

∏n
ν=1Dν ⊂ I(Fn) where

either F1 ∈ k or s1 > 1 and F1 = {f1, . . . , fs1} ∈ k[X1] with gcd(F1) = 1
so that there are polynomials qi(X1) ∈ k[X1] such that 1 =

∑sn
i=1 qifi and

∏n
ν=1Dν =

∑sn
i=1 (qi

∏n
ν=1Dν) fi ∈ I(Fn). �

Remark 41.7.3 (Macaulay). (1) As a direct consequence we have Hilbert’s
Nullstellensatz: if J has no root, the complete resolvent is 1 so that 1 ∈ I.

(2) Let us be given n forms fi in n variables each of degree l which have no
proper solution so that the complete resolvent is19 D1 = Xµ

1 . Since the
elements of Fn have all degree l, the elements of Fn−1 have all degree
δ2, those of Fn−2 degree (l2)2; in general the terms of Fν have all degree

(l2
ν−1

)2 = l2
ν

so that µ = l2
n−1

.
We should arrive at a similar result if we change xi to xi + ai
(i = 1, 2, . . . , n) beforehand, thus making the polynomials non-

homogeneous. The complete resolvent would be (xn + an)
l2

n−1

.
The resultant would be (xn + an)

ln . The difference in the two
results is explained by the fact that the resultant is obtained by a
process applying uniformly to all the variables, and the resolvent
by a process applied to the variables in succession.20

19 The construction reads the forms as polynomials and the sought roots are con-
sidered affine so if there is no proper solution, the origin is to be considered a
root with a proper multiplicitly.

20 F. S. Macaulay, The Algebraic Theory op. cit., ppg. 21-2.
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�

41.8 Kronecker: the u-resolvent

Given a basis F := {f1, . . . , fs} ⊂ k[X1, . . . , Xn], let us consider new variables
X,Λ1, . . . , Λn such that X stands for

X = Λ1X1 + · · ·+ ΛnXn

and perform the Liouville substitution21

Xi =

{
X−Λ1X1+···+Λn−1Xn−1

Λn
if i = n

Xi otherwise;

thus obtaining

• the polynomials22

f ′
i := Λln

n Fi

(
X1, . . . Xn−1,

X −∑n−1
1 ΛiXi

Λn

)
, ln := degn(Fi),

• the basis F ′ := {f ′
1, . . . , f

′
s} ⊂ k[Λ1, . . . , Λn][X1, . . . , Xn−1][X ],

• the ideal I′ := I(F ′) ⊂ k[Λ1, . . . , Λn][X1, . . . , Xn−1, X ].

Clearly there is a one-to-one correspondence between

• the roots (ξ1, . . . , ξn) ∈ Z(F ) and
• the roots (ξ1, . . . , ξn−1, ξ) ∈ Z(F ′)

the relation being given by ξ = Λ1ξ1 + · · ·+ Λnξn.

Definition 41.8.1. The complete resultant Fu :=
∏n

1 D
′
ν of I(F ′) is called

the complete u-resolvent of I(F ).

21 Clearly

x := Λ1x1 + · · ·+ Λnxn ∈ k(Λ1, . . . , Λn)[x1, . . . , xn]

:= k(Λ1, . . . , Λn)[X1, . . . , Xn]/I(F )e

is a primitive element in k[x1, . . . , xn] := k[X1, . . . , Xn]/I(F ) for any ’generic’
evaluation of the Λis.

22 The multiplier Λln
n

being introduced to make [f ′
i ] integral in [Λn].

F. S. Macaulay, The Algebraic Theory op. cit., pg. 24.
id est to grant that each f ′

i ∈ k[Λ1, . . . , Λn][X1, . . . , Xn].
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We have Fu(X1, . . . , Xn−1, Λ1X1 + · · · + ΛnXn) ∈ I(F ) since (Proposi-
tion 41.7.2) Fu ∈ I(F ′); moreover Fu considered as a univariate polynomial,

Fu ∈ k[Λ1, . . . , Λn][X1, . . . , Xn−1][X ]

factors into linear factors, those of dimension ν − 1, id est the factors of the
component Dν , having the shape

X − Λ1X1 − · · · − Λν−1Xν−1 − Λνξr − · · · − Λnξ1. (41.2)

Remark 41.8.2. The linear factors (41.2) of the complete partial resolventDν

is related to components of dimension d := ν − 1 and rank r := n− ν + 1.
According our notation the irreducible components

R ∈ k[Λ1, . . . , Λn][X1, . . . , Xn−1][X ]

of Dν should be read as elements R ∈ k[Λ1, . . . , Λn][V1, . . . , Vd, Z1, . . . , Zr][X ]
and the linear factors (41.2) as

X − Λ1V1 − · · · − Λν−1Vd − Λd+1ξ1 − · · · − Λnξr.

According the notation introduced by Macaulay 23 and reported in Sec-
tion 30.5 and here in Section 41.6, R must be read as an element

R ∈ k[Λ1, . . . , Λn][xn, . . . , xr+1][xr, . . . , x1][X ]

and the linear factors (41.2) as

X − Λ1xn − · · · − Λdxr+1 − Λd+1ξr − · · · − Λnξ1.

�

41.9 Kronecker Parametrization

In general the splitting factorization of Dν could contain linear factors (41.2)
where some ξi depends on the Λs.

Definition 41.9.1. A linear factor (41.2) of Dν where each ξi is independent

of the Λs is called true24. �

23 To be more precise, the Liouville substitution performed by Macaulay was

x = u1x1 + . . .+ unxn.

As we already pointed in 36.3, footnote 15, in order to adapt Macaulay’s
notation to the current usage of chosing the first variables as parameters, one
has to set xi := Xn−i

24 In this case, in relation wiith Remark 41.8.2, the ξis are elements, with our
notations of the algebraic closure of K = k(V1, . . . , Vd), with Macaualay’s of of
the algebrtaic closure of k(xn, . . . , xr+1).
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Remark 41.9.2 (Macaulay). Kronecker stated, without proving it, that each
factor is true: “whether this is so or not must be considered doubtful.”25

It could however be proved that

• a solution supplied by a non-true factor is necessarily embedded;
• any irreducible component R of a partial resultant Dν either factors in true

linear factors only or has no true factor. �

Historical Remark 41.9.3. Today the natural way for restricting ouselves to
true factors is to get rid of embedded components via a radical computation;
the more so since Macaulay already gave a procedure (Algorithm 30.7.3) for
recovering embedded components and their multiplicity.

But I guess that Seidenberg’s Algorithm (Corollary 35.2.3) is the first

procedure proposed for radical computation. �

So let us consider an irreducible component

R(X) ∈ k[Λ1, . . . , Λn][X1, . . . , Xν−1][X ]

of the partial resultant Dν having a linear factorization into true factors of
dimension d := ν − 1 and rank r := n− ν + 1:

R(X) =

δ∏

j=1

(X − Λ1X1 − · · · − Λν−1Xν−1 − Λνξ1j − · · · − Λnξrj)

= (X − Λ1V1 − · · · − Λν−1Vd − Λd+1ξ1j − · · · − Λd+rξrj)

where ξij ∈ Kν−1, and let us evaluate it at

Λ1X1 + · · ·+ ΛnXn = Λ1V1 + · · ·+ ΛdVd + Λd+1Z1 + Λd+rZr

obtaining

R′ := R(Λ1V1 + · · ·+ ΛdVd + Λd+1Z1 + Λd+rZr)

=

δ∏

j=1

(Λd+1(Z1 − ξ1j) + · · ·+ Λd+i(Zi − ξij) + · · ·+ Λn(Zr − ξrj))

so that R′ ∈ k[Λν, . . . , Λn, Z1, . . . , Zr] = k[Z1, . . . , Zr][Λν , . . . , Λn].

To [R] corresponds what is called an irreducible spread, viz. the
spread of all points [ξn, . . . , ξr+1, ξrj , . . . , ξ1j ] in which [ξn, . . . , ξr+1]
take all finite values, and [xirj, . . . , ξ1j ] the [δ] sets of values supplied
by the linear factors of [R] which vary as [ξn, . . . , ξr+1] vary.
[. . . ]
No linear factor of [R] can be repeated, unless [X1, . . . , Xν−1] are
given special values; for otherwise [R] and

[
∂R
∂X

]
would have an H.C.F.

involving [X ], and [R] would be the product of two factors26.

25 F. S. Macaulay, The Algebraic Theory op. cit., pg. 26.
26 F. S. Macaulay, The Algebraic Theory op. cit., pg. 27.
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In other words, to the irreducible component R of the partial resultant
Dν corresponds a prime component f := fR of I(F ) and an associated variety
Z(R) := Z(fR) of dimension d := ν − 1 and rank r := n− d.

Moreover, in the expansion of R′ ∈ k[Z1, . . . , Zr][Λν , . . . , Λn] the coeffi-
cient of each term in {Λaν

ν · · ·Λan
n : (aν , . . . , an) ∈ Nr}

all vanish at every point of the spread [Z(R)] and do not all vanish
at any other point27.

In particular the coefficient of

• Λδ
d+1 is q(V1, . . . , Vd, Z1) :=

∏δ
j=1(Z1 − ξ1j),∈ k[V1, . . . , Vd][Z1]

• Λd+iΛ
δ−1
d+1, 1 < i ≤ r, is

q(V1, . . . , Vd, Z1)
∑

j

Zi − ξij
Z1 − ξ1j

=
∂q

∂Z1
(V1, . . . , Vd, Z1)Zi − wi(V1, . . . , Vd, Z1),

where wi(V1, . . . , Vd, Z1) = q(V1, . . . , Vd, Z1)
∑

j
ξij

Z1−ξ1j
;

moreover we also have

q(V1, . . . , Vd, Z1) =
∂q

∂Z1
(V1, . . . , Vd, Z1)Z1 − w1(V1, . . . , Vd, Z1),

w1(V1, . . . , Vd, Z1) = q(V1, . . . , Vd, Z1)
∑

j

ξ1j
Z1 − ξ1j

.

Thus the roots (ξ1, . . . , ξr) ∈ Z(R) satisfy the parametrization28





q(V1, . . . , Vd, T ) = 0,

Z1 = w1(V1,...,Vd,T )
∂q
∂T

(V1,...,Vd,T )

...

Zr = wr(V1,...,Vd,T )
∂q
∂T

(V1,...,Vd,T )

(41.3)

Definition 41.9.4. A parametrization (41.3) of a prime ideal

I ⊂ P , dim(I) = ν − 1,

in ’generic’ position is called a Kronecker parametrization of I. �

27 F. S. Macaulay, The Algebraic Theory op. cit., pg. 27.
28 Where we have simply substituted Z1 with T .
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41.10 *Historical Intermezzo: from Bézout to Cayley

In connection to Sylvester’s resultant, both Sylvester and Cayley quote29

Bézout’s abridged method to obtain the resultant or30 Bézout’s abbreviated
method of elimination. Without pretending to give a survey on Bézout’s re-
sult, I think helpful to give some pointers to it for the interested reader.

His method for computing resultants is preliminarly described by Bézout31

in the case of three homogeneous linear equations32
∑4

j=1 aijXj , 1 ≤ i ≤ 3 :

he considers the product
∏4

j=1Xj and successively, for i = 1..3, substutes

each Xj with aij observing the signe rule.33 We thus obtain

a11X2X3X4 − a12X1X3X4 + a13X1X2X4 − a14X1X2X3 i = 1

(a11a22 − a21a12)X3X4 − (a11a23 − a21a13)X2X4
+ (a11a24 − a21a14)X2X3 + (a12a23 − a22a13)X1X4 i = 2
− (a12a24 − a22a14)X1X3 + (a13a24 − a23a14)X1X2

[(a11a22 − a21a12)a33 − (a11a23 − a21a13)a32 + (a12a23 − a22a13)a31]X4
− [(a11a22 − a21a12)a34 − (a11a24 − a21a14)a32 + (a12a24 − a22a14)a31]X3
+ [(a11a23 − a21a13)a34 − (a11a24 − a21a14)a33 + (a13a24 − a23a14)a31]X2 i = 3
− [(a12a23 − a22a13)a34 − (a12a24 − a22a14)a33 + (a13a24 − a23a14)a32]X1

whence he deduces




X1 = X4
−[(a12a23−a22a13)a34−(a12a24−a22a14)a33+(a13a24−a23a14)a32]
(a11a22−a21a12)a33−(a11a23−a21a13)a32+(a12a23−a22a13)a31

X2 = X4
[(a11a23−a21a13)a34−(a11a24−a21a14)a33+(a13a24−a23a14)a31]
(a11a22−a21a12)a33−(a11a23−a21a13)a32+(a12a23−a22a13)a31

X3 = X4
−[(a11a22−a21a12)a34−(a11a24−a21a14)a32+(a12a24−a22a14)a31]
(a11a22−a21a12)a33−(a11a23−a21a13)a32+(a12a23−a22a13)a31

id est Cramer’s formula.
As Muir34 put it

the unreal product
∏4

j=1Xj at the very outset must have been a sore
puzzle to students. [. . . ]
To throw light upon the process, let us compare the above solution
of a set of three linear equations with the following solution, which
from one point of view may be looked upon as an improvement on
the ordinary determinantal modes of solution as presented to modern
readers.

29 J.J. Sylvester On a theory of the syzygietic relations of two rational integral func-
tions, comprising an application to the theory of Sturm’s functions, and that of
the greatest algebraic common measure. Phil . Trans. Royal Soc. London CXLIII
(1853) pg. 407–548

30 A. Cayley, A fourth memory upon quantics Phil . Trans. Royal Soc. London
CXLVIII (1858) 415–427

31 E. Bézout Théorie generale des èquations algébriques (1771) Pierres, Paris, §200–
3 ppg.174–6.

32 I consider more suitable not to follow the original notation but properly adapt
it.

33 The reference being to Cramer’s rule of signes.
34 T. Muir The Theory of Detirminants in the Historical Order of Development

MacMillan (1906) London, pg. 44
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[. . . ] The numerators of the values of X1, X2, X3 and the common
denominator are [. . . ] the coefficients of X1, X2, X3, X4 in the deter-
minant ∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
X1 X2 X3 X4

∣∣∣∣∣∣∣∣
:= [X1X2X3X4]

More precisely, Muir explains, if we denote

[XiXj ] :=

∣∣∣∣
a3i a3j
Xi Xj

∣∣∣∣ and [XiXjXh] :=

∣∣∣∣∣∣

a2i a2j a2h
a3i a3j a3h
Xi Xj Xh

∣∣∣∣∣∣

we have (by developing along the first line)

a11 [X2X3X4]− a12 [X1X3X4] + a13 [X1X2X4]− a14 [X1X2X3]

and, developing, again along the first line, the four determinants [XiXjXh]

(a11a22 − a21a12) [X3X4]− (a11a23 − a21a13)) [X2X4]

+ (a11a24 − a21a14)) [X2X3] + (a12a23 − a22a13)) [X1X4]

− (a12a24 − a22a14) [X1X3] + (a13a24 − a23a14) [X1X3]

and, finally, expanding the six determainants and recollecting the result
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
X4 −

∣∣∣∣∣∣

a11 a12 a14
a21 a22 a24
a31 a32 a34

∣∣∣∣∣∣
X3

+

∣∣∣∣∣∣

a11 a13 a14
a21 a23 a24
a31 a33 a34

∣∣∣∣∣∣
X2 −

∣∣∣∣∣∣

a12 a13 a14
a22 a23 a24
a32 a33 a34

∣∣∣∣∣∣
X1.

The same method, id est an expansion of proper determinants expressed
with a similar notation and process, is then applied by Bézout to resolve
different systems of polynomial equations, including35 computing the resul-
tant in k[X1] of two polynomials in k[X1, X2] and then is specialized to the
computation of the resultant in k of two polynomials

35 Among the instances discussed, we can list the resultant

• in k[X] of a quadratic and a linear polynomial in k[X, Y ] (§278–280, ppg. 215–
229);

• in k[X] of two polynomials XY − aX − bY − c (§281–284, ppg. 230–5);
• in k[X] of two quadratic polynomials in k[X, Y ] (§285–91, ppg. 235–43; 303–5,

ppg. 252–5);
• in k[X] of a quadratic and two linear polynomials in k[X,Y, Z] (§292, ppg. 244–5);
• in k[X] of three quadratic polynomials

aX2 + bXY + cXZ + dX + eY + fZ + g

in k[X, Y, Z] (§320, ppg. 269–71);
• in k of three polynomials XY − aX − bY − c (§373–4, ppg. 235–6);
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φ :=
n∑

i=0

ai+1X
n−i, φ′ :=

m∑

i=0

a′i+1X
m−i ∈ k[X ].

The specialized method, which is the one the English School called the
Bézout’s abridged/abbreviated method, consists in

(1) multiplying φ and φ′ respectively by the polynomials

Φ :=
ν∑

i=0

Ai+1X
ν−i and Φ′ :=

µ∑

i=0

A′
i+1X

µ−i

whose degree (actually we have µ := n − 1 and ν := m − 1) is deduced
by means of results similar to Theorem 41.2.336;

(2) summing such two product, considering the linear system whose equa-
tions are the coefficients of the resulting polynomial and whose unknowns
are the Ai, A

′
is and

(3) solving it by the method discussed above, id est via determinant expan-
sion.

Example 41.10.1. Let us illustrate the easiest case of two quadratic univariate
polynomials

ax2 + bx+ c, a′x2 + b′x+ c′ ∈ k[x] :

multiplying them by (respectively) Ax+B and A′x+B′ we obtain37

une équation de cette forme

Aax3 + (Ab+Ba)x2 + (Ac+Bb)x+Bc = 0.

Egalant à zero le coefficient total de x3, celui de x2, &c. je procède
au calcul de AA′BB′, comme il suit:
Première ligne aA′BB′

Seconde ligne (ab′)BB′ − aA′aB′

Troisiéme ligne (ab′)bB′ − (ac′)aB′

• in k of three quadratic polynomials in k[X, Y ] (§375, ppg. 326–8);
• in k of three quadratic polynomials in k[X] (§462, ppg. 389–90);
• in k of three cubic polynomials in k[X] (§463-4, ppg. 390–2).

36 The point is to reach a degree in which, equating the opportune coefficients of
the terms in the equation φΦ+φ′Φ′ = 0, one obtains at least as many equations
as unknowns. If the difference is positive leaving some freedom alternatively one
can either equate some unknown to 0 or, in order to preserve symmetry, add
equations of the shape aiA

′
j − a′

iAj = 0 for convenient i, j (for an illustration
compare Example 41.10.2).

37 Remark that Bézout uses the shorthand (ab′) to denote the determinant∣∣∣∣
a b
a′ b′

∣∣∣∣.
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en rejettant le terme où resteroit A′ qui n’étant point dans la dernière
équation, ne peut plus influer sur l’equation finale.
Quatriéme ligne (ab′)(bc′)− (ac′)2.
On a donc pour équation finale (ab′)(bc′)− (ac′)2 = 0.38

If we expand Bézout’s computation using the same notation as above we
have

aA′BB′ −Aa′BB′,
(ab′ − a′b)BB′ − aA′aB′ + aA′Ba′ +Aa′aB′ −Aa′Ba′,
(ab′ − a′b)(bB′ −Bb′)− (ac′ − ca′)(aB′ −Ba′) + (aA′ −Aa′)(ab′ − ba′),
(ab′ − a′b)(bc′ − cb′)− (ac′ − ca′)2,

which can be interpretated as the expansion of the determinant
∣∣∣∣∣∣∣∣∣∣

a a′ 0 0
b b′ a a′

c c′ b b′

0 0 c c′

A A′ B B′

∣∣∣∣∣∣∣∣∣∣

corresponding to the linear system




Aa+A′a′ = 0
Ab+Ba+A′b′ +B′a′ = 0
Ac+Bb +A′c′ +B′b′ = 0

Bc+B′c′ = 0.

Remark that in the last expansion the terms A and A′ are substituted
by the corresponding coefficient 0 annihilating the last summand of the third
expansion, justifying Bézout’s comment that the terms containing A′ (and
A) can be removed, since in the fourth equations they don’t appear thus not
influiencing the expansion.

Finally remark that the matrix whose determinant has been computed is

equivalent to Sylvester’s matrix

∣∣∣∣∣∣∣∣

a b c 0
0 a b c
a′ b′ c′ 0
0 a′ b′ c′

∣∣∣∣∣∣∣∣
. �

Example 41.10.2. Let us now consider the system39





ax2 + bxy + cy2 + dx+ ey + f = 0
d′x+ e′y + f ′ = 0
d”x+ e”y + f” = 0

where the three equations are multiplied, respectively, by C, A′x+B′y+C′

and A”x+B”y +C”; considering, orderly, the coefficients of x2 and xy, the

38 E. Bézout op. cit., §347 pg.300.
39 E. Bézout op. cit., §369 ppg.319–20.
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équation arbitraire B′d′ + B”d” = 0, the coefficients of y2, x, y, 1 we have 7
equations in connection with 7 variables and we thus obtain the resultant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d′ d” 0 0 a 0 0
e′ e” d′ d” b 0 0
0 0 d′ d” 0 0 0
0 0 e′ e” c 0 0
f ′ f” 0 0 d d′ d”
0 0 f ′ f” e e′ e”
0 0 0 0 f f ′ f”

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which Bézout presents as

(d′e”)
(
c(d′f”)2 + (d′e”)(de′f”)− b(e′f”)(d′f”) + a(e′f”)2

)

where he uses the shorthand notation (de′f”) =

∣∣∣∣∣∣

d e f
d′ e′ f ′

d” e′ f”

∣∣∣∣∣∣
. �

Historical Remark 41.10.3. A similar method is applied by Bézout also in
order to compute resultants in k[X ] of two polynomials in k[X,Y ].

The main differences are that

(2) the linear system is obtained considering only the coefficients divisible
by Y ,

(3) the solution of the system returns the coefficients Ai, A
′
i as rational func-

tions in the ais and a
′
is;

(4) the resolvent is obtained by setting, in the polynomial obtained in step
(2), Y = 0, id est removing the coefficients used in step (3), and substi-
tuting each Ai, A

′
i with their expression in the aijs and a

′
is.

�

Example 41.10.4. Let us illustrate Bézout’s approach by considering40 the
polynomials ax2 + bxy + cy2 + dx + ey + f and d′x + e′y + f ′ which are
respectively multiplied by F and D′x+ E′y + F ′ giving

(Fa+D′d′)x2 + (Fb+D′e′ + E′d)xy + (Fc+ E′e′)y2 (41.4)

+ (Fd+D′f ′ + F ′d′)x+ (Fe+ E′f + F ′e′)y + fF

We then consider the equations (connected with y2, xy and y)




Fc+ E′e′ = 0
Fb+D′e′ + E′d = 0
Fe+ E′f ′ + F ′e′ = 0.

40 E. Bézout op. cit., §278 ppg.225–8.
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and we expand the expression D′E′FF ′ obtaining41

−D′e′FF ′ +D′E′cF ′,

−e′e′FF ′ +D′e′bF ′ + e′E′cF ′ −D′d′cF ′,

−e′e′eF ′ + e′e′Fe′ −D′e′be′ + e′f ′cF ′ − e′E′ce′ +D′d′ce′,

and the solution (sic!) D′ = d′ce′ − e′be′, E′ = −e′ce′, F = e′e′e′, F ′ = e′f ′c;
substituing it in (41.4) and setting y = 0 we obtain

(e′e′e′a+ d′ce′d′)x2 + (e′e′e′d+ d′ce′f ′ + e′f ′cd′)x+ fe′e′e′

= e′

∣∣∣∣∣∣

c bx+ e ax2 + dx+ f
e′ d′x+ f ′ 0
0 e′ d′x+ f ′

∣∣∣∣∣∣

id est, up to the extraneous factor e′, the expected Sylvester resultant. �

The Sylvester resultant was, at least implicitly, introduced by Euler42. His
approach is essentially a variation of the one illustrated in Example 41.10.1:
given

φ :=

m∑

i=0

ai+1(X)Y m−i, φ′ :=
n∑

i=0

a′i+1(X)Y n−i ∈ k(X)[Y ]

he multiplies them, respectively, by

Φ := a′1Y
n−1 +

n−2∑

i=0

Ai+1Y
n−2−i and Φ′ := a1Y

m−1 +
m−2∑

i=0

A′
i+1Y

m−2−i

and subtracts the result, obtaining a polynomial of degree m + n − 2
— the coefficient of Y m+n−1 being 0; thus equating the coefficients of
Y, Y 2, . . . , Y m+n−2 we obtain m + n − 2 linear equations into (m − 1) +
(n − 1) variables; the solution is then substituted in the constant coefficient
An−1am+1 −A′

m−1a
′
n+1 giving E(X) ∈ k(X).

The equation system can be expressed as

M · (a′1, A1, . . . , An−1, a1, A
′
1, . . . , A

′
m−1)

T = (0, . . . , 0, E(X))T

where M is the Sylvester matrix.
It is clear that the procedure proposed by Euler is equivalent to the com-

putation of the Sylvester resultant, so that E(X) = Res(φ, φ′) is the required
resultant.

41 Compare the corresponding matrix

∣∣∣∣∣∣∣

0 e′ c 0
e′ d′ b 0
0 f ′ e e′

D′ E′ F F ′

∣∣∣∣∣∣∣
.

42 L. Euler, Introductio in Analysin Infinitorum Tom. 2 (1748) Lausanne Chapter
XIX, §483-5
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In order to present the English School view of Bézout’s abridged method,
I refer to Salmon’s Higher Algebra43.

Given two polynomials of the same degree

U :=

m∑

i=0

ai+1X
m−i,∈ k[X ], V :=

n∑

i=0

a′i+1X
n−i,m = n

and denoting

Vρ :=

ρ∑

i=0

a′i+1X
ρ−i, Uρ :=

ρ∑

i=0

ai+1X
ρ−i, for each ρ, 0 ≤ ρ < n,

we compute the n polynomials of degree bounded by m− 1

Fρ := Vρ−1U − Uρ−1V :=

m∑

σ=1

αρσX
m−σ, 1 ≤ ρ ≤ n;

we thus obtain the square matrix (αρσ) whose determinant is the required
resultant; in order to extend this construction of a square matrix whenm > n,
we need to have e := m− n more polynomials of degree bounded by m− 1;
the choice is to take Fρ := Xn−ρV, n < ρ ≤ m so that the resultant44

is, therefore, as it ought to be, of the nth degree in the coefficients of
[U ], and of the mth in those of [V ].

Example 41.10.5. It is sufficient to apply this recipe to the case of Exam-
ple 41.10.1 to realize the equivalence with Bézout’s result.

We have

F1 = a(a′x2 + b′x+ c′)− a′(ax2 + bx+ c)

= (a, b′)x+ (a, c′)

F2 = (ax+ b)(a′x2 + b′x+ c′)− (a′x+ b′)(ax2 + bx+ c)

= (a, c′)x+ (b, c′)

whence the required determinant is

∣∣∣∣
(ab′) (ac′)
(ac′) (bc′)

∣∣∣∣. �

43 G. Salmon, Lessons introductory to the Modern Higher Algebra, Fifth Ed.,
Chelsea Pub. Co. (1885) New York, §84-6, ppg. 81–3.

The method can be found in E. Bézout Recherches sur le degré des équations
résultantes de l’évanouissement des inconnues, et sur les moyens qu’il convient
d’employer pour trouver ses équations. Mém. Acad. Roy. Sci. Paris (1964) 288-
338.

I was unable to read this paper so I rely to the description by Salmon and by
H.K. Wimmer, On the History of the Bezoutian and the Resultant Matrix Linear
Algebra and its Application 128 (1990) 27–34

44 Salmon, op. cit., §86, pg.83
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The first which studied the bezoutic matrix B := (αρσ) was Jacobi
45 which,

among other comments, remarked that

• ∑ρσX
ραρσX

σ = U(X)∂V (X)
∂X − V (X)∂U(X)

∂X
46 (pg.103);

• B is symmetric (pg.102) and
• has no factore superfluo (pg.104);
• if det(B) 6= 0 the inverse of B is a Hankel matrix47 (pg. 104);
• if det(B) = 0 the common roots α of U and V are in relations with the
linear solutions (1, α, . . . , αn−1) of B (pg. 104).

Sylvester48 gave in 1842 a formula49 to express the coefficients of the Fρ

(in case n = m) in terms of the determinants

(i, j) := (aia
′
j) :=

∣∣∣∣
ai aj
a′i a′j

∣∣∣∣ , 1 ≤ i < j ≤ n+ 1,

as follows:

[Conceive] a number of cubic blocks each of which has two numbers,
termed its characteristics, inscribed upon one of its faces, upon which
the values of such a block (itself called an element) depends.
For instance, the value of the element, whose characteristics are r, s,
is the difference between two products: the one of the coefficient rth

45 Jacobi, C.G.I., De eliminatione variabilis e duabus aequationibus algebraicas J.
Reine und Ang. Math. XV (1836) 101–24.

46 With the present notation, Jacobi remarked that

m∑

ρ=1

m∑

σ=1

Xm−ραρσX
m−σ

=

m∑

ρ=1

Xm−ρF ρ

=

(
m∑

ρ=1

Xm−ρ

ρ−1∑

i=0

a′
i+1X

ρ−1−i

)
U −

(
m∑

ρ=1

Xm−ρ

ρ−1∑

i=0

ai+1X
ρ−1−i

)
V

=

(
m−1∑

i=0

(m− i)a′
i+1X

m−i−1

)
U −

(
m−1∑

i=0

(m− i)ai+1X
m−i−1

)
V

=
∂V (X)

∂X
U − ∂U(X)

∂X
V.

47 id est the matrix det(B)−1B−1 := (aρσ) satisfies, for each ρ, σ, aρσ = Aρ+σ−2 for
suitable Ai, 0 ≤ i ≤ 2n.

48 J.J. SylvesterMemoir on the dialytic method of elimination. Part I. Philosophical
Magazine XXXI (1842) 534–9

49 Sylvester’s matrix was given two years before: J.J. Sylvester A method of de-
termining by mere inspection the derivatives from two equations of any degree.
Philosophical Magazine XVI (1840) 132–5
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in order occurring in the polynomial U , by that which comes sth in
order of the polynomial V ; the other product is that of the coefficient
sth in order of the polynomials U , by that rth in order of V ; so that
if the degree of each equation be n, there will be altogether 1

2n(n+1)
such elements.
The blocks are formed into squares or flats (plafonds) of which the
number is n

2 or n+1
2 , according as n is even or odd. The first of these

contains n blanks in a side, the next (n−2), the next (n−4), till finally
we reach a square of four blocks or of one, according as n is even or
odd. These flats are laid upon one another so as to form a regularly
ascending pyramid, of which the two diagonal planes are termed the
planes of separation and symmetry respectively. The former divides
the pyramid into two halves, such that no element on the one side of
it is the same as that of any block in the other. The plan of symmetry,
as the name denotes, divides the pyramid into two exactly similar
parts; it being a rule, that all elements lying in any given line of
a square (platfond) parallel to the plane of separation are identical;
moreover the sum of the characteristics is the same for all elements
lying anywhere in a plane parallel to that of separation.

The formula behind this rule is

αρσ = ασρ =

n+1∑

j=σ+1

(aρ+σ+1−j , a
′
j). (41.5)

Example 41.10.6. For n = 2 we have the same formula as the one produced
by Bézout (Example 41.10.1) (ab′ − a′b)(bc′ − cb′)− (ac′ − ca′)2.

We illustrated Sylvester’s formula and construction for n = 350: we have

∣∣ 2, 3
∣∣
∣∣∣∣∣∣

1, 2 1, 3 1, 4
1, 3 1, 4 2, 4
1, 4 2, 4 3, 4

∣∣∣∣∣∣

giving the determinant
∣∣∣∣∣∣

(a1a
′
2) (a1a

′
3) (a1a

′
4)

(a1a
′
3) (a1a

′
4) + (a2a

′
3) (a2a

′
4)

(a1a
′
4) (a2a

′
4) (a3a

′
4)

∣∣∣∣∣∣

50 The cases n = 4, 5 can be found in Salmon op. cit. §84-5, ppg. 81-2; all cases up
to 6 in J.J. Sylvester Memoir op. cit.
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣
a1 a2
a′1 a′2

∣∣∣∣
∣∣∣∣
a1 a3
a′1 a′3

∣∣∣∣
∣∣∣∣
a1 a4
a′1 a′4

∣∣∣∣
∣∣∣∣
a1 a3
a′1 a′3

∣∣∣∣
∣∣∣∣
a1 a4
a′1 a′4

∣∣∣∣+
∣∣∣∣
a2 a3
a′2 a′3

∣∣∣∣
∣∣∣∣
a2 a4
a′2 a′4

∣∣∣∣
∣∣∣∣
a1 a4
a′1 a′4

∣∣∣∣
∣∣∣∣
a2 a4
a′2 a′4

∣∣∣∣
∣∣∣∣
a3 a4
a′3 a′4

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which is to be compared with Sylvester determinant
∣∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3 a4 0 0
0 a1 a2 a3 a4 0
0 0 a1 a2 a3 a4
a′1 a′2 a′3 a′4 0 0
0 a′1 a′2 a′3 a′4 0
0 0 a′1 a′2 a′3 a′4

∣∣∣∣∣∣∣∣∣∣∣∣

.

�

If m > n the same formula is applied simply by expressing V as

V :=

n∑

i=0

a′i+1X
n−i =

m∑

i=0

bi+1X
m−i

with bi+1 =

{
0 0 ≤ i < m− n
a′i+1−m+n m− n ≤ i ≤ m.

In 1857 Cayley51 gave in Crelle

la forme la plus simple sous laquelle on peut présenter cette méthode.

Pour éliminer [x]52 entre deux équations du nième degré

n∑

i=0

ai+1x
n−i = 0,

n∑

i=0

a′i+1x
n−i = 0

on n’a qu’a former l’équation identique
∑n

i=0
ai+1x

n−i
∑n

i=0
a′i+1y

m−i −
∑n

i=0
a′i+1x

m−i
∑n

i=0
ai+1y

n−i

x − y

= (y
n−1

, y
n−2

, . . . , 1)




a0,0 a1,0 . . . an−1,0
a0,1 a1,1 . . . an−1,1

.

.

.
.
.
.

. . .
.
.
.

a0,n−1 a1,n−1 . . . an−1,n−1







xn−1

xn−2

.

.

.
1




51 A. Cayley, Note sur la méthode d’élimination de Bezout J. Reine und Ang. Math.
LIII (1857) 366–7.

The result is however earlier. It is explicitly reported in 1853 by Sylvester in
On a theory op. cit. § 62.

52 Cayley gives the formula for two homoigeneous forms; I adapt his formulas to the
non-homogeneous case and I use a modern notation instead of the one introduced
by him.
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oú l’expression qui forme le second membre représente la fonction
suivant

(
a0,0x

n−1 + a1,0x
n−2 + · · ·+ an−1,0

)
yn−1

+
(
a0,1x

n−1 + a1,1x
n−2 + · · ·+ an−1,1

)
yn−2

· · ·
+

(
a0,n−1x

n−1 + a1,n−1x
n−2 + · · ·+ an−1,n−1

)
;

le résultat de l’élimination sera
∣∣∣∣∣∣∣∣∣

a0,0 a1,0 . . . an−1,0

a0,1 a1,1 . . . an−1,1

...
...

. . .
...

a0,n−1 a1,n−1 . . . an−1,n−1

∣∣∣∣∣∣∣∣∣
.

Example 41.10.7. For n = 2 we have

(ax2 + bx+ c)(a′y2 + b′y + c′)− (a′x2 + b′x+ c′)(ay2 + by + c)

x− y

= (ab′ − ba′)xy + (ac′ − ca′)x+ (ac′ − ca′)y + (bc′ − cb′)

again returning the matrix

(
(ab′) (ac′)
(ac′) (bc′)

)
.

For n = 3 and U(x) = (ax3+ bx2+ cx+d), V (x) = (a′x3+ b′x2+ c′x+d′)
we have

U(x)V (y)− V (x)U(y)

x− y

= (ab′)x2y2 + (ac′)(x2y + xy2) + (ad′)x2

+ ((ad′) + (bc′))xy + (ad′)y2 + (bd′)x+ (bd′)y + (cd′)

giving the determinant

∣∣∣∣∣∣

(a, b′) (ac′) (ad′)
(ac′) (ad′) + (bc′) (bd′)
(ad′) (bd′) (cd′)

∣∣∣∣∣∣
. �

Sylvester53, in the case n = m, denotes the polynomials Fρ, 1 ≤ ρ ≤ n
the bezoutians of U and V and remarks that

The determinant formed by arranging in a square the n sets of co-
efficients of the n Bezoutians, and which I shall term the Bezoutian

53 J.J. Sylvester On a theory op. cit. § 5.
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matrix54, gives, as is well known, the Resultant (meaning thereby
the Result in its simplest form of eliminating the variables out) of U
and V .
Eliminating dialytically, first Xn−1 between the first and the second,
then Xn−1 and Xn−2 between the first, second and the third, and
so on, and finally, all the powers of X between the first, second,
third,. . . ,nth of these Bezoutians, and repeating the first of them, we
obtain a derived set of n equations, the right-hand members of which
I shall term the secondary Bezoutains to U and V .

The ’dialytical elimination’ performed by Sylvester on the expressions

Vρ−1U − Uρ−1V = Fρ, 1 ≤ ρ ≤ m

returns

V0U − U0V = F1 =: B1

(α21V0 − α11V1)U − (α21U0 − α11U1)V = α21F1 − α11F2 =: B2

. . .
SρU − TρV =: Bρ

. . .
Sm−1U − Tm−1V =: Bm−1.

where we have deg(Sρ) = deg(Tρ) = ρ− 1, deg(Bρ) = m− ρ; thus, assuming
U, V to be55

perfectly unrelated, and each the most general function that can be
formed of the same degree

and in case m = n56 then if we repeatedly perfom the Division Algorithm
and change the sign of each remainder, as in Section 13.3, we obtain the

54 But he also uses the term Bezoutic square. The term than stabilizies as be-
zoutic matrix (Compare Cayley’s entryMathematics, recent terminology in in the
English Cyclopædia, vol. V (1860) pgg.534-42). In particular Cayley (A fourth
memory op.cit. § 88) labels the Bezoutic Emanant of U and V the polynomial
U(x)V (y)−V (x)U(y)

x−y
introduced by him.

The term bezoutiant in fact, as we will see below, has been already associated
to the quadratic function which (A. Cayley, A fourth memory op.cit. § 91)
Professor Sylvester forms with the matrix of the Bezoutic emanant.

55 J.J. Sylvester On a theory op. cit. §1
56 This argument and construction is in § 5. In the sequent § 6, Sylvester explains

how to extend it in the case m = n+ e, e > 0.
He defines

Vρ :=

ρ∑

i=0

a′
i+1X

ρ−i, Uρ+e :=

ρ+e∑

i=0

ai+1X
ρ+e−i, for each ρ, 0 ≤ ρ < n

and computes the n polynomials (all of degree bounded by m− 1)
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polynomial sequence57 U, V,R2, . . . , Rm where each Ri necessarily satisfies
deg(Ri) = m− i+ 1. Thus, the58

n successive Secondary Bezoutians to the system U, V [. . . ] will (sav-
ing at least a numerical factor of a magnitude and algebraic sign
to be determined, but which, when proper conventions are made,
will be subsequently proved to be +1) represent the simplified [. . . ]
residue[s] to U

V .

id est Bρ = Rρ+1 for each ρ.
Once obtained the Bezoutic square of two polynomials f, φ of the same

degree m, Sylvester remarks that59

this square [. . . ] is symmetrical about one of its diagonals, and cor-
responds therefore (as every symmetrical matrix must do) to a ho-
mogeneous quadratic function of m variables of which it expresses
the determinant. This quadratic function, which plays a great part
in [. . . ] the theory of real roots, I term the Bezoutiant.
[. . . ]
In Section V. Arts. 56.57, I show that the total number of effective
intercalations between the roots of two functions of the same degree
is given by the inertia of that quadratic form60 which we agreed to

Fρ := Vρ−1U − Uρ−1V :=

m∑

σ=1

αρσX
m−σ, 1 ≤ ρ ≤ n;

next he introduces the e polynomials XµV, 0 ≤ µ < e and, for ρ, 1 ≤ ρ ≤ n,
using these e polynomials and the ρ polynomials Fr, 1 ≤ r ≤ ρ he produces a
relation

SρU − TρV = Bρ,deg(Sρ) = ρ− 1,deg(Tρ) = e+ ρ− 1, deg(Bρ) = m− ρ;

thus the argument given in case n = m applies verbatim.
57 which is the Sturm sequence (Definition 13.3.1) if V = U ′.
58 J.J. Sylvester On a theory op. cit. §5
59 J.J. Sylvester On a theory op. cit. Introduction
60 Sylvester introduced the notion of inertia and proved its Law of Inertia in On a

theory op. cit. § 44-5.
Recall that given a quadratic form f(x1, . . . , xn) =

∑
i

∑
j
βijxixj , βij = βji

and denoting, for each two vectors u = (c1, . . . , cn), v = (d1, . . . , dn) in kn

f(u, v) :=
∑

i

∑

j

βijcidj

then the vectorspace N := {w ∈ kn : f(w, u) = 0 for each u ∈ kn} is invariant
for linear transformation and such is also its dimension n− r.

Thus kn has an orthogonal basis v1, . . . , vr, vr+1, . . . , vn so that

N = Spank(vr+1, . . . , vn) and f(vi, vj) =

{
0 i 6= j
γi 6= 0 i = j ≤ r
0 i = j > r
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term the Bezoutiant to f and φ; and in the following article (58) the
result is extended to embrace the case contemplated in M.Sturm’s
theorem; that is to say, I show, that on replacing the function of x
by a homogeneous function of x and y, the Bezoutiant of the two
functions, which are respectively the differential derivates of f with
respect to x and with respect to y, will serve to determine by its form
or inertia the total number of real roots and of equal roots in f(x)61.
The subject is pursued in the following Arts. 59,60. [. . . ] In Arts. 61,
62, 63, it is proved that the Bezoutiant is an invariative function of
the functions from which it is derived; and in Art. 64 the important
remark is added, that it is an invariant of that particular class to
which I have given the name of Combinants, which have the property
of remaining unaltereted, not only for linear transformations of the
variables, but also for linear combinations of the functions containing
the variables62, possessing thus a character of double invariability. In
Arts. 65, 66 I consider the relation of the Bezoutiant to the differential
determinant, so called by Jacoby, but which for greater brevity I call

so that for each u =
∑

i
civi ∈ kn we have f(u, u) :=

∑
i
c2i γi.

Sylvester’s Law of Inertia states that, if k = R, the ’number of integers in
the excess of positive over negative signs which adheres to a quadratic form
expressed as the sum of positive and negative squares’ (which Sylvester names
the inertia of the quadratic form) is ’unchangeable notwithstanding any real
linear transformation impressed upon such form’ id est the inertia is the invariant

#{γi > 0, 1 ≤ i ≤ r} −#{γi < 0, 1 ≤ i ≤ r}.

61 In other words, Sylvester
• considers the polynomial f(x) =

∑m

i=0
aix

m−i and its derivate f ′(x),
• performs Division Algorithm obtaining

f1(x) = mf(x)− xf ′(x) =

m∑

i=1

iaix
m−i

• computes the Bezoutian secondaries of f1 and f ′, B1, . . . , Bm−1 which in this
case are exactly the Sturm sequence and

• evaluates ’the number of pairs of imaginary roots in f(x)’ by counting ’the
number of variations of sign betwen consecutive terms’ obtained evaluating
f1, f

′, B1, . . . , Bm−1 at +∞.
Remark that, setting g(x, y) =

∑m

i=0
aix

m−iyi we actually have

∂g

∂y
=

m∑

i=1

iaix
m−iyi−1, f1(x) =

∂g

∂y
(x, 1)

justifying Sylvester’s reference to the derivate with respect to y.
62 Id est he considers the Bezoutiant of the functions kf + iφ and k′f + i′φ and

remarks that each entry on the Bezoutic matrix is multiplied by (ki′ − k′i) so
that the Bezoutiant (§64)
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the Jacobian. On proper substitutions being made in the Bezoutiant
for the m variables which it contains [. . . ], the Bezoutiant becomes
identical with the Jacobian of f and Φ.

To illustrate the ‘proper substitution to be done’ I give again the word to
Sylvester63

[The Bezoutiant] B(u1, . . . , um) being a covariant of the system f
and φ [. . . ] on making u1, . . . , um equal to [xm−1, xm−2y, . . . , ym−1],
B will become [. . . ] what I am in the habit of calling the Jacobian
(after the name of the late but ever-illustrious Jacobi), a term capable
of application to any number of homogeneous functions of as many
variables. In the case before us, where we have two functions of two
variables, the Jacobian

J(f, φ) =

∣∣∣∣∣
df
dx ,

dφ
dx

df
dy ,

dφ
dy

∣∣∣∣∣ =
df

dx

dφ

dy
− df

dy

dφ

dx
.

[. . . ] So in the case of a single function F of the degree m, the Be-
zoutoid, that is the Bezoutiant to dF

dx ,
dF
dy , on making the (m − 1)

variables which it contains identical with xm−2, xm−3y, . . . , ym−2 re-
spectively, becomes identical with the Jacobian to dF

dx ,
dF
dy , that is the

Hessian of F , namely
∣∣∣∣∣

d2F
dx2 ,

d2F
dxdy

d2F
dxdy ,

d2F
dy2

∣∣∣∣∣ .

As an example of this property of the Bezoutiant, suppose

f = ax3 + bx2y + cxy2 + dy3,

φ = αx3 + βx2y + γxy2 + δy3.

The Bezoutiant matrix becomes

aβ − bα, aγ − cα, aδ − dα,

aγ − cα,




aδ − dα
+

bγ − cβ


 , bγ − cβ,

aδ − dα, bγ − cβ, cδ − dγ.

The Bezoutiant accordingly will be the quadratic function

becomes increased in the ratio of (ki′−k′i)m, that is remains always unal-
terated in point of form and absolutely immutable, provided that ki′ − k′i
be taken, as we may always suppose to be the case, equal to 1.

63 J.J. Sylvester On a theory op. cit. § 65
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(aβ − bα)u21 + {(aδ − dα) + (bγ − cβ)} u22 + (cδ − dγ)u23

+ 2(aγ − cα)u1u2 + 2(aδ − dα)u3u1 + 2(bγ − cβ)u2u3,

which on making

u1 = x2, u2 = xy, u3 = y2

becomes
Lx4 +Mx3y +Nx2y2 + Pxy3 +Qy4,

where L,M,N, P,Q respectively will be the sum of the terms lying
in the successive bands drawn parallel to the sinister diagonal of the
Bezoutiant matrix, that is

L = (aβ − bα),

M = 2(aγ − cα),

N = 3(aδ − dα) + (bγ − cβ),

P = 2(bγ − cβ),

Q = (cδ − dγ).

The biquadratic function in x and y[. . . ] will be found on computa-
tion to be identical in point of form with the Jacobian to f ,φ, namely

(3ax2 + 2bxy + cy2)(βx2 + 2γxy + 3δy2)− (3αx2 + 2βxy + γy2)(bx2 + 2cxy + 3dy2)

this latter being in fact

3Lx4 + 3Mx3y + 3Nx2y2 + 3Pxy3 + 3Qy4.

and concludes commenting:

The remark is not without some interest, that in fact the Bezoutiant,
which is capable (as has been shown already) of being mechanically
constructed, gives the best and readiest means of calculating the
Jacobian; for in summing the sinister bands transverse to the axis of
symmmetry the only numerical operation to be performed is that of
addition of positive integers, whereas the direct method involves the
necessity of numerical subtractions as well as additions, inasmuch as
the same terms will be repeated with different signs.

and remarks, in a different example, that, unlike the computation via Be-
zoutiant, the direct evaluation requires to effectively employ also division
in order to reduce the Jacobian to its simplest form, being divisible by
deg(f) = deg(φ).
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41.11 Dixon’s Resultant

The computation of a resultant of r forms in r variables was already solved
by Bézout as an instance of this general approach.

An alternative proposal was put forward by Cayley64 based on what today
we could call a solution via linear syzygies.

He assumes to have m1 variables connected by m2 linear equations, not
being all independent, but connected by m3 linear equations, again not nec-

essarily linearly independent; we thus obtain s matrices Mσ =
(
a
(σ)
ij

)
, the

ith matrix having mσ columns and mσ+1 rows, the mσs being related by∑s+1
σ=1(−1)σmσ = 0:

the number of quantities [m1] will be equal to the number of really
independent equations connecting them, and we may obtain by the
elimination of these quantities a result ∆ = 0.

The approach, denoting µ̺ :=
∑s+1

σ=̺(−1)σ−̺mσ = 0, consists in

• selecting µs+1 = ms+1 indexes Is ⊂ {1, . . . ,ms} and computing the deter-
minant Qs of the µs+1–square minor of Ms obtained by selecting the rows
indexed by Is;

• selecting µs = ms−µs+1 indexes Is−1 ⊂ {1, . . . ,ms−1} and computing the
determinant Qs−1 of the µs–square minor of Ms−1 obtained by selecting
the rows indexed by Is−1 and the columns indexed by {1, . . . ,ms} − Is

• . . .
• selecting µ̺ = m̺−µ̺+1 indexes I̺−1 ⊂ {1, . . . ,m̺−1} and computing the
determinant Q̺−1 of the µ̺–square minor of M̺−1 obtained by selecting
the rows indexed by I̺−1 and the columns indexed by {1, . . . ,m̺} − I̺

• . . .
• selecting µ3 = m3−µ4 indexes I2 ⊂ {1, . . . ,m2} and computing the deter-
minant Q2 of the µ2–square minor of M2 obtained by selecting the rows
indexed by I2 and the columns indexed by {1, . . . ,m3} − I3

• computing, on the basis of the remark that m1 = µ2 = m2 − µ3, the
determinant Q1 of the µ2–square minor of M1 obtained by selecting the
columns indexed by {1, . . . ,m2} − I2;

finally, if each Qi is not zero, one obtaind ∆ by computing

∆ = Q1Q
−1
2 Q3Q

−1
4 · · · =

s∏

σ=1

Q(−1)σ−1

σ .

The application considers a set of forms {f1, . . . , fu} and, fixed a proper
degree d ∈ N intends to eliminate all terms of degree d among the equations
F = 0 where F runs among the forms in the set

64 A. Cayley, On the theory of elimination Cambridge and Dublin Math. J. III
(1848) 116-20
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F := {τfi, 1 ≤ i ≤ u, τ ∈ T , deg(τfi) = d};

it consists in computing a linear resolution of the elements in F and applying
on it the computation suggested above. Cayley however remarks that

I am not in possession of any method of arriving at once at the final
result in its more simplified form; my process, on the contrary, leads
me to a result encumbered by an extraneous factor, which is only got
rid of by a number of successive divisions.

The first solution, apart Bèzout, for computing the resultant of more than
2 polynomials is due to A.L. Dixon65 which generalized Cayley’s interpreta-
tion of the Bezoutic/Bezoutian matrix in terms of the Bezoutic Emanant,
proposing such Emanant for 3 polynomials in two variables and remarking
that the constuction easily generalizes to polynomials in any number of vari-
ables.

Given three polynomials

φ(X1, X2) =
n∑

r=1

m∑

s=1

ArsX
r
1X

s
2 ,

ψ(X1, X2) =

n∑

r=1

m∑

s=1

BrsX
r
1X

s
2 ,

χ(X1, X2) =

n∑

r=1

m∑

s=1

CrsX
r
1X

s
2

Dixon considers the determinant

∆ :=

∣∣∣∣∣∣

φ(X1, X2) ψ(X1, X2) χ(X1, X2)
φ(X1, Y2) ψ(X1, Y2) χ(X1, Y2)
φ(Y1, Y2) ψ(Y1, Y2) χ(Y1, Y2)

∣∣∣∣∣∣

and, remarking that it vanishes if we put X1 = Y1 and also if we put X2 = Y2,
and so it is divisible by (X1 − Y1)(X2 − Y2), he considers the polynomial

D(X1, X2, Y1, Y2) =
∆(X1, X2, Y1, Y2)

(X1 − Y1)(X2 − Y2)

which is of degree





2n− 1 in X1

m− 1 in X2

n− 1 in Y1
2m− 1 in Y2

so that

65 The eliminant of three quatics in two independent variables, Proc. London Math.
Soc. 7 (1908) 49–69



114 41. Macaulay IV

equating to zero the cofficients of [Y r
1 Y

s
2 ], for all values of r and s,

[D = 0] is equivalent to 2mn equations in [X1, X2] and the number of
terms in these equations is also 2mn. Thus the eliminant66 can be at
once written down as a determinant of order 2mn, each constituent
of which is the sum of determinants of the third order of the type

∆ :=

∣∣∣∣∣∣

Apq Ars Atu

Bpq Brs Btu

Cpq Crs Ctu

∣∣∣∣∣∣

In other words, denoting a := {Xr
1X

s
2 ; r < 2n, s < m}, and b :=

{Y r
1 Y

s
2 ; r < n, s < 2m}, we have

D(X1, X2, Y1, Y2) =
∑

τ∈a

∑

υ∈b

dτυτυ, dτυ ∈ Z[Apq, Brs, Ctu].

Clearly the vanishing of the determinant of the matrix (dτυ) is equivalent
of the existence of a common root of φ, ψ, χ.

Finally Dixon remarks that such method is

applicable to the problem of elimination when the number of vari-
ables is greater than two.

Denote, for each i, 0 ≤ i ≤ n,

g(Xi) := g(Y1, . . . , Yi, Xi+1, . . . , Xn) for each g(X1, . . . , Xn) ∈ P ,

so that, in particular g(X0) = g(X1, . . . , Xn) and g(Xn) = g(Y1, . . . , Yn).
Given n + 1 polynomials f1, . . . , fn+1 ∈ k[X1, . . . , Xn] each of degree ni

in the variable Xi, one can consider the determinant 67

∆ :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(X0) . . . fn+1(X0)
f1(X1) . . . fn+1(X1)

...
. . .

...
f1(Xi) . . . fn+1(Xi)

...
. . .

...
f1(Xn) . . . fn+1(Xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(41.6)

which is divisible by
∏n

i=1(Xi − Yi) giving a polynomial

D(X1, X2, . . . , Xn, Y1, . . . , Yn)

of degree mi := (n+ 1− i)ni − 1 in Xi and µi := ini − 1 in Yi so that

66 Salmon used the term eliminant to denote what we call resultant.
67 It is Dixon himself which reversed the order in which the variables are trans-

formed from X to Y ; for two variables he transformed from right to left; in the
final remark he makes the example of four polynomials in three variables and
tranforms them from left to right.
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D(X1, X2, . . . , Xn, Y1, . . . , Yn) =
∑

τ∈a

∑

υ∈b

dτυτυ

where a := {Xa1
1 . . . Xan

n : ai ≤ mi}, and b := {Y α1
1 . . . Y αn

n : αi ≤ µi} and

#a = #b = n!

n∏

i=1

ni := s.

Definition 41.11.1 (Kapur–Saxena–Yang). The polynomial D is called
the Dixon polynomial of f1, . . . , fn+1.

The matrix D := (dτυ) is called the Dixon matrix and its determinant the

Dixon resultant. �

Remark 41.11.2 (Kapur–Saxena–Yang). Let D := (cτυ) be the Dixon matrix
of f1, . . . , fn+1 and let us enumerate the elements of a as

τ1 := 1, τ2 := X1, . . . , τn+1 := Xn, τn+2, . . . , τs.

If α := (a1, . . . , an) ∈ Z(f1, . . . , fn+1) then

(1, a1, . . . , an, τn+2(α), . . . , τs(α))

is a solution of the linear system D (τ1, . . . , τs)
T
. �

Remark 41.11.3. If n = 1 Dixon matrix and polynomial coincide with what
Sylvester and Cayley called the bezoutic (or bezoutian) matrix and bezoutic

eminent. �

Remark 41.11.4 (Kapur–Saxena–Yang). Dixon considered ’generic’ polyno-
mials all having the same degree in each variable; as a consequence the Dixon
matrix is square and one can speaks of determinant and introduce the Dixon
resultant.

In specific instances, the default approach is the classical one already
used by Sylvester and Cayley, namely assuming that the missing terms have
coefficient zero.

For an alternative solution based on restricting oneself to complete inter-

section ideals, see below. �

In a previous paper68 Dixon gave another interesting computational ap-
proach to evaluate the resultant69 in terms of Cayley’s formula: given two
polynomials of the same degree70

68 Dixon, A.L. On a form of the eliminant of two quatics, Proc. London Math. Soc.
6 (1908) 468–78

69 Which he called Bezout’s determinant.
70 A polynomial of lower degree is forced, as usual to reach the highest degree by

adding 0Xm+1 + . . .+ 0Xn.
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U :=
n∑

i=0

ai+1X
n−i,∈ k[X ], V :=

n∑

i=0

a′i+1X
n−i,

and denoting C(X,Y ) := U(X)V (Y )−V (X)U(Y )
X−Y he states that

Lemma 41.11.5. It holds

Res(U, V ) = ∆ :=

∣∣∣∣∣∣∣

d11 · · · d1n
...

. . .
...

dn1 · · · dnn

∣∣∣∣∣∣∣

where

di,j =
1

i!j!

∂i+jC(X,Y )

∂X i∂Y j

∣∣∣∣
X=Y =0

.

Proof. One has

C(X,Y ) =
∑

p>q

(an−p+1a
′
n−q+1 − a′n−p+1an−q+1)

XpY q − Y pXq

X − Y

=
∑

p>q

(an−p+1a
′
n−q+1 − a′n−p+1an−q+1)

(
p−q−1∑

i=0

Xp−1−iY q+i

)
;

thus di,j , which is the coefficient of X iY j in C(X,Y ) satisfies di,j = αij where

αij is the result of Sylvester’s construction (41.5). �

He then fixes “two sets of arbitrary quantities” x1, . . . , xn and y1, . . . , yn
and states

Proposition 41.11.6 (Dixon). It holds

Res(U, V ) =

∣∣∣∣∣∣∣

C(x1, y1) · · · C(x1, yn)
...

. . .
...

C(xn, y1) · · · C(xn, yn)

∣∣∣∣∣∣∣
∏

i>l(xi − xj)
∏

i>l(yi − yj)

Proof. If we expand each C(xi, yi)
in ascending powers of (xi −X) by Taylor’s theorem

and the result in ascending powers of (yj − Y ) we have
∣∣∣∣∣

C(x1, y1) · · · C(x1, yn)

.

.

.

.
.
.

.

.

.
C(xn, y1) · · · C(xn, yn)

∣∣∣∣∣

=

∣∣∣∣∣

1 (y1 − Y ) · · · (y1 − Y )n−1

.

.

.

.

.

.

.
.
.

.

.

.

1 (yn − Y ) · · · (yn − Y )n−1

∣∣∣∣∣
·

∣∣∣∣∣

1 (x1 − X) · · · (x1 − X)n−1

.

.

.

.

.

.

.
.
.

.

.

.

1 (xn − X) · · · (xn − X)n−1

∣∣∣∣∣
· ∆

=

∏

i>l

(xi − xj) ·

∏

i>l

(yi − yj ) · Res(U, V )

�
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Example 41.11.7. Let us consider

U = (X − 1)X(X − a) and V := (X + 1)(X + 2)(X − b)

and choose

x1 = 1, x2 = −1, x3 = −2, y1 = 1, y2 = −2, y3 = 2

so that

|C(xi, yj)|

=

∣∣∣∣∣∣

6(ab− a− b+ 1) −12(ab− a+ 2b− 2) 12(ab− a− 2b+ 2)
6(ab− a+ b− 1) 0 8(ab− 2a+ b− 2)

24(ab− a+ 2b− 2) −12(ab+ 2a+ 2b+ 4) 36(ab− 2a+ 2b− 4)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

6(a− 1)(b− 1) −12(a+ 2)(b− 1)) 12(a− 2)(b− 1)
6(a+ 1)(b− 1) 0 8(a+ 1)(b− 2)
24(a+ 2)(b− 1) −12(a+ 2)(b+ 2) 36(a+ 2)(b− 2)

∣∣∣∣∣∣
= 2633(b − 1)b(a− b)(a+ 1)(a+ 2).

�

41.12 Toward Cardinal’s Conjecture

Cayley’s formulation of the bezoutic matrix in terms of U(X)V (Y )−V (X)U(Y )
X−Y

which was interpreted by Dixon in matricial terms as

∣∣∣∣
U(X) V (X)
U(Y ) V (Y )

∣∣∣∣
(X−Y ) has

been expressed by Cardinal in different (but equivalent) ways as:

U(X)V (Y )− V (X)U(Y )

X − Y
=

∣∣∣∣
U(X)−U(Y )

X−Y
U(Y )

V (X)−V (Y )
X−Y

V (Y )

∣∣∣∣ =
∣∣∣∣

U(X)−U(Y )
X−Y

U(X)
V (X)−V (Y )

X−Y
V (X)

∣∣∣∣ .

In a similar way, given a set of n polynomials

F := {f1, . . . , fn} ∈ k[X1, . . . , Xn]

and denoting, for each polynomial g ∈ k[X1, . . . , Xn]

• D(g,F) and D(g,F) respectively the Dixon polynomial and matrix of
f1, . . . , fn, g,

• g(Xi) := g(Y1, . . . , Yi, Xi+1, . . . , Xn), for each i, 0 ≤ i ≤ n,

• δi(g) :=
g(Xi)−g(Xi−1)

Xi−Yi
, for each i and

• δi(g, h) :=
g(Xi)h(Xi−1)−h(Xi)g(Xi−1)

Xi−Yi
, for each i and each h ∈ k[X1, . . . , Xn],

Cayley’s interpretation by Cardinal was extended by himself in order to give
an alternative representation of the Dixon polynomialsD(1,F) andD(Xi,F)
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Lemma 41.12.1 (Cardinal). We have,

D(1,F) :=

∣∣∣∣∣∣∣

δ1(f1) . . . δ1(fn)
...

. . .
...

δn(f1) . . . δn(fn)

∣∣∣∣∣∣∣

and, for each i, 1 ≤ i ≤ n,

D(Xi,F) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ1(f1) . . . δ1(fn)
...

. . .
...

δi−1(f1) . . . δi−1((fn)
δi(Xi, f1) . . . δi(Xi, fn)
δi+1(f1) . . . δi+1((fn)

...
. . .

...
δn(f1) . . . δn(fn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Proof. If, in (41.6), we set fn+1 = 1, we subtract the (j)th row to the j + 1th

row and divide it by Xj − Yj for each j, 1 ≤ j ≤ n, we obtain

D(1,F) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(X1, . . . , Xn) . . . fn(X1, . . . , Xn) 1
δ1(f1) . . . δ1(fn, ) 0

...
. . .

...
...

δi(f1) . . . δi((fn, ) 0
...

. . .
...

...
δn(f1, ) . . . δn(fn, ) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

If in (41.6), we set, instead, fn+1 = Xi and, after subtracting the (j)th

row to the j + 1th row and dividing it by Xj − Yj for each j, 1 ≤ j ≤ n ,we
multiply the ith row by Yi and add to it the (i − 1)th row of (41.6) since∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(X0) . . . fn+1(X0)
...

. . .
...

f1(Xi−1) . . . fn+1(Xi−1)
f1(Xi−1) . . . fn+1(Xi−1)
f1(Xi+1) . . . fn+1(Xi+1)

...
. . .

...
f1(Xn) . . . fn+1(Xn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 and

Yi
fj(Xi)− fj(Xi−1)

Xi − Yi
− fj(Xi−1) =

Yifj(Xi)−Xifj(Xi−1)

Xi − Yi
= δi(Xi, fj),

we obtain
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YiD(Xi,F) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ1(f1) . . . δ1(fn, ) 0
...

. . .
...

...
δi−1(f1) . . . δi−1((fn, ) 0
δi(Xi, f1, ) . . . δi(Xi, fn) 0
δi+1(f1) . . . δi+1((fn, ) 0

...
. . .

...
...

δn(f1, ) . . . δn(fn, ) 0
f1(Y1, . . . , Yn) . . . fn(Y1, . . . , Yn) Yi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and we are through. �

With a similar proof we also have

Lemma 41.12.2 (Cardinal–Mourrain). For each polynomial g it holds

D(g,F) =

∣∣∣∣∣∣∣∣∣

f1(X0) . . . fn(X0) g(X0)
f1(X1) . . . fn(X1) g(X1)

...
. . .

...
...

f1(Xn) . . . fn(Xn) g(Xn)

∣∣∣∣∣∣∣∣∣
∏n

j=1Xj − Yj

=

∣∣∣∣∣∣∣∣∣

f1(X0) . . . fn(X0) g(X0))
δ1(f1) . . . δ1(fn) δ1(g)

...
. . .

...
...

δn(f1) . . . δn(fn) δn(g)

∣∣∣∣∣∣∣∣∣
(41.7)

=

∣∣∣∣∣∣∣∣∣

δ1(f1) . . . δ1(fn) δ1(g)
...

. . .
...

...
δn(f1) . . . δn(fn) δn(g)
f1(Xn) . . . fn(Xn) g(Xn))

∣∣∣∣∣∣∣∣∣
(41.8)

�

Remark 41.12.3 (Becker, Cardinal et al.). Jacobi’s interpretation of the be-
zoutic matrix in terms of Jacobians (pg. 103) can be extended to more than
two forms: with the present notation since

Y ν
i −Xν

i

Yi −Xi
=

ν−1∑

j=0

Y j
i X

ν−1−j
i

for the polynomial

δi(h)(Xi, Yi) =
h(Xi)− h(Xi−1)

Xi − Yi
∈ k[Y1, . . . , Yi−1, Xi+1, . . . , Xn][Xi, Yi]



120 41. Macaulay IV

we have

δi(h)(Xi, Xi) =
∂h(Y1, . . . , Yi−1, Xi, Xi+1, . . . , Xn

∂Xi

so that if in D(1,F) we substitute each Yi with Xi we obtain the Jacobian

matrix of F . �

Given the polynomial ring P := k[X1, . . . , Xn] and its monomial k-basis T
we introduce n futher variables Y1, . . . , Yn and we denote PY := k[Y1, . . . , Yn],
TY the monomial k-basis of PY , and P⊗ the ring

P⊗ := P ⊗ PY = k[X1, . . . , Xn, Y1, . . . , Yn],

whose k basis is {τ ⊗ ω : τ ∈ T , ω ∈ TY }.
Let us consider a set of n polynomials F := {f1, . . . , fn} ∈ P generating

an ideal I and denote A := P/I; with a slight abuse of notation we denote
I also the ideal in PY generated by {f1(Y1, . . . , Yn), . . . , fn(Y1, . . . , Yn)} and
A := PY /I.

With this notation we have

A⊗k A = P⊗/I (fi(X1, . . . , Xn), fi(Y1, . . . , Yn), 1 ≤ i ≤ n) ;

in connection we also denote IX := I⊗ PY ⊂ P⊗ and IY := P ⊗ I ⊂ P⊗.
For each g ∈ P denote D(g) := D(g,F) ∈ P⊗; denote also D0 := D(1)

and Di := D(Xi), 1 ≤ i ≤ n.
Let a ⊂ T and b ⊂ TY be suitable ordered finite sets such that we can

express each Di, 0 ≤ i ≤ n, as

Di :=
∑

τ∈a

∑

ω∈b

d(i)τωτ ⊗ ω =
∑

τ∈a

∑

ω∈b

d(i)τωτω ∈ P⊗

and denote Di :=
(
d
(i)
τω

)
the corresponding Dixon matrix.

Lemma 41.12.4. D(f) = 0 for each f ∈ F . �

Lemma 41.12.5 (Cardinal). For each g ∈ P it holds

D(g)− g(X1, . . . , Xn)D0 ∈ IX and D(g)− g(Y1, . . . , Yn)D0 ∈ IY .

Proof. By expanding D(g,F) along the first (respectively: last) row of (41.7)
(respectively: (41.8)) we obtain D(g) − g(X1, . . . , Xn)D0 ∈ IX (respectively:

D(g)− g(Y1, . . . , Yn)D0). �

Corollary 41.12.6 (Cardinal). For each g ∈ P, denoting

D(g) :=
∑

τ∈a

∑

ω∈b

dτωτ ⊗ ω,

we have
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∑

τ∈a

dτωτ ≡ g(X1, . . . , Xn)
∑

τ∈a

d(0)τωτ mod IX for each ω ∈ b

and ∑

ω∈b

dτωω ≡ g(Y1, . . . , Yn)
∑

ω∈b

d(0)τωω mod IY for each τ ∈ a.

�

Corollary 41.12.7. For each g ∈ P it holds
(
g(Y1, . . . , Yn)− g(X1, . . . , Xn)

)
D0 ∈ I (fi(X0), fi(Xn), 1 ≤ i ≤ n) .

�

Corollary 41.12.8. For each i, 1 ≤ i ≤ n, ω ∈ b and τ ∈ a, there are

polynomials k
(i)
ω (X1, . . . , Xn) ∈ P and h

(i)
τ (Y1, . . . , Yn) ∈ PY such that

(1) Di −XiD0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(X0) . . . fn(X0) 0
δ1(f1) . . . δ1(fn) 0

...
. . .

...
...

δi(f1) . . . δi(fn) 1
...

. . .
...

...
δn(f1) . . . δn(fn) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑

ω∈b k
(i)
ω ω;

(2) k
(i)
ω (X1, . . . , Xn) ∈ I for each ω ∈ b;

(3) Di − YiD0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ1(f1) . . . δ1(fn) 0
...

. . .
...

...
δi(f1) . . . δi(fn) 1

...
. . .

...
...

δn(f1) . . . δn(fn) 0
f1(Xn) . . . fn(Xn) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
∑

τ∈a τh
(i)
τ ;

(4) h
(i)
τ (X1, . . . , Xn) ∈ I for each τ ∈ a. �

Let us now assume that that I := I(F) is an affine complete intersection
(Definition 36.1.1); as a consequence we have71

Fact 41.12.9. With the present notation and under the assumption that I :=
I(F) is an affine complete intersection, it holds:

(1) A is a finite k-dimensional vector space;
(2) the morphism D0| : Hom(A, k) → A which associates to the functional

Λ : A → k the element
∑

τ∈a

∑
ω∈b d

(0)
τωτΛ(ω) ∈ A is actually an A-

isomorphism;

71 Compare B.Mourrain, Bezoutian and quotient ring structure J. Symb. Comp. 39
(2005), 397-415.
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(3) Hom(A, k) is a free A-module whose basis element ℓ ∈ Hom(A, k) satisfies
D0|ℓ = 1;

(4) D0 ≡∑D
i=1 ai⊗ bi in A⊗A where D = dimk(A) and {ai, 1 ≤ i ≤ D} and

{bi, 1 ≤ i ≤ D} are suitable k-bases of A;

(5) both a and b are k-generating sets of A. �

41.13 Cardinal–Mourrain Algorithm

Let P , PY , P⊗, T , TY , F := {f1, . . . , fn} ∈ P a set of n polynomials gener-
ating the affine complete intersection ideal I, A, IX , IY , Di, 0 ≤ i ≤ r, a, b,

Di :=
(
d
(i)
τω

)
, 0 ≤ i ≤ r, be as defined in page 120.

Let us morevoer denote V := Spank(a),W := Spank(b),

K0 := Spank{k(i)ω : 1 ≤ i ≤ n, ω ∈ b} ∩ V ⊂ V ∩ I ⊂ P

and
H0 := Spank{h(i)τ : 1 ≤ i ≤ n, τ ∈ a} ∩W ⊂W ∩ I ⊂ PY

where k
(i)
ω , h

(i)
τ are the polynomials whose existence is stated in Corol-

lary 41.12.8.
We present an algorithm, which iteratively extends the vectorspaces K0,

H0, returning, at terminantion,

• vectorspaces K,H , K0 ⊆ K = I ∩ V , H0 ⊆ H = I ∩W ;
• the supplementary vectorspaces A,B, A ⊗ K = V , B ⊗ H = W , which
satisfy the relation dimk(A) = dimk(B) =: δ;

• the bases a := {a1, . . . , aδ}, {b1, . . . , bδ} of A and B respectively;
• δ-square matrices Mi, 0 ≤ i ≤ n,

such that

(1) M0 is invertible,

(2) Mp :=M−1
0 Mp :=

(
m

(p)
ji

)
satisfy

Xpai ≡
δ∑

j=1

mjiaj mod I, ∀i, p, 1 ≤ i ≤ δ, 1 ≤ p ≤ n

so that, in particular

(3) A = P/I ∼= V/K ∼= Spank(a) and
(4) the assignement of the k-basis a and the square matrices

Mp :=M([Xp], a), 1 ≤ p ≤ n,

is a Gröbner representation of I.
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Recall that the Dixon polynomials Di are decomposed with respect to the
same ordered sets of polynomials a ⊂ P and b ⊂ PY which are indexing the
rows and the columns of the Dixon matrices Di so that

Di = aTDib.

The algorithm in each step performes simultaneously the same operation on
the n+ 1 matrices Di appying invertible transformations P,Q on their rows
and columns, thus returning

PD0Q,PD1Q, . . . , PDnQ

and transforming the bases of V and W so that the indexes of the common

rows and columns of the matrices PDiQ are respectively P−1T a and Q−1b.
We present in Figure 41.3 the general scheme of the algorithm whose

single operations we discuss here through an example.

Fig. 41.3. Cardinal–Mourrain Algorithm

i := 0
Repeat
⋆ Apply the saturation step on Ki returning K′ : Ki ⊆ K′ ⊆ I ∩ V,

Pertorm the quartering step on the matrices Di,
Pertorm the column reduction step returning Ki+1 : K′ ⊆ Ki+1 ⊂ I ∩ V ,
Pertorm the diagonalization step,
Pertorm the row step returning Hi+1;Hi ⊆ Hi+1 ⊆ I ∩W ,

until Hi+1 = Hi and Ki+1 = Ki.

Example 41.13.1 (Cardinal). As an example let us consider the ideal gener-
ated by F = {f1, f2} ∈ k[X1, X2] where

f1 = X2
1 +X1X

2
2 − 1, f2 = X2

1X2 +X1.

We thus have

D0 = −X1X
2
2Y1 − X1X2Y1Y2 − X2Y

2
1 Y2 + X1Y

2
1 + Y 3

1 − X2Y1 − Y1Y2,

D1 = −X1X
2
2Y

2
1 − X1X2Y

2
1 Y2 + X1Y

3
1 + Y 2

1 ,

D2 = −X1X
2
2Y1Y2 − X2

2Y
2
1 Y2 + X1X2Y

2
1 + X2Y

3
1 − X2

2Y1

− X2Y1Y2 − X1X2 − X1Y1 − X2Y1 − 1;

D1 − X1D0 = (X2
1X

2
2 + X1X2)Y1 + (−X1X

2
2 − X2

1 + 1)Y 2
1 + (X2

1X2 + X1)Y1Y2,

D2 − X2D0 = (X3
2X1 − X2 − X1)Y1 + (−X2X1 − 1);

D1 − Y1D0 = X2(Y2Y
3
1 + Y 2

1 ) + (Y2Y
2
1 − Y 4

1 + Y 2
1 ),

D2 − Y2D0 = X2
2 (−Y2Y

2
1 − Y1) + X2X1(Y

2
2 Y1 + Y 2

1 − 1) + X2(Y
2
2 Y 2

1 + Y 3
1 − Y1)

− X1(Y2Y
2
1 + Y1) + (Y 2

2 Y1 − Y2Y
3
1 − 1)

whence

a = {1, X2, X
2
2 , X1, X1X2, X1X

2
2}, b = {1, Y1, Y1Y2, Y 2

1 , Y
2
1 Y2, Y

3
1 },

K0 = {X2X1 + 1} and H0 = {Y2Y 2
1 + Y1}. �
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Saturation step It consists in replacing Ki with K
′ := K+

i ∩ V where, for
a vectorspace K, K+ indicates the vectorspace

K+ := {v0 +
n∑

i=1

Xivi, vi ∈ K, 0 ≤ i ≤ n}

and the notation K [p] means p iterations of the operator ·+, staring from K
so that K [p] = (K [p−1])+.

Definition 41.13.2 (Mourrain). A vectorspace V ⊂ P is said to be con-
nected to e ∈ V if, denoting E := Spank{e}, for each v ∈ V \ E,
there exists l > 0 such that v ∈ E[l] and v = v0 +

∑n
i=1Xivi, vi with

vi ∈ E[l−1] ∩ V, 0 ≤ i ≤ n. �

Example 41.13.3 (cont.). We have

K ′ := {X2X1 + 1, X2(X2X1 + 1)}.

�

Quartering step Set

d := dimk(V ) = dimk(W ), D := d− dimk(K
′),

choose a basis {a1, . . . , aD, aD+1, . . . , ad} of V such that {aD+1, . . . , ad} is a
basis of K ′ and set A := Spank{a1, . . . , aD}.

Let L(K ′) = {Λ ∈ Hom(P , k) : Λ(k) = 0 for each k ∈ K ′} and

B := {Λ|D0 : Λ ∈ L(K ′)} ⊃ {Λ|D0 : Λ ∈ L(I)}

where |D0 : Hom(P , k) → PY is the morphism which associates to the func-

tional Λ : P → k the element
∑

τ∈a

∑
ω∈b d

(0)
τωΛ(τ)ω ∈ PY .

Choose a basis {b1, . . . , br, br+1, . . . , bd} of W such that {b1, . . . , br} is a
basis of B; denote H ′ := Spank{br+1, . . . , bd}.

Remark that since K ′ ⊂ I, B ⊃ L(I) is a generating set of A so that H ′

could be chosen as a subset of I.
Based on the decompositions V = A⊗K ′ and W = B′ ⊗H ′ the matrices

Di can be decomposed quarterly as

D0 =

(
M0 0
H0 L0

)
,Di =

(
Mi Ki

Hi Li

)
, 1 ≤ i ≤ n.

Example 41.13.3 (cont.). We set D = 4 and

a1 = 1, a2 = X2, a3 = X2
2 , a4 = X1, a5 = X1X2 + 1, a6 = X1X

2
2 +X2,

so that D0 = a1Y
3
1 − a2Y

2
1 Y2 + a4Y

2
1 − a5Y1Y2 − a6Y1.

We thus get



41.13 Cardinal–Mourrain Algorithm 125

b1 = Y 3
1 , b2 = Y 2

1 Y2, b3 = Y 2
1 , b4 = 1, b5 = Y1Y2, b6 = Y1 + Y 2

1 Y2,

and
D0 b1 b2 b3 b4 b5 b6
a1 1 0 0 0 0 0
a2 0 −1 0 0 0 0
a3 0 0 0 0 0 0
a4 0 0 1 0 0 0
a5 0 0 0 0 −1 0
a6 0 1 0 0 0 −1

D1 b1 b2 b3 b4 b5 b6
a1 0 1 1 0 0 0
a2 0 0 1 0 0 0
a3 0 0 0 0 0 0
a4 1 0 0 0 0 0
a5 0 −1 0 0 0 0
a6 0 0 −1 0 0 0

D2 b1 b2 b3 b4 b5 b6
a1 0 0 −1 0 0 0
a2 1 1 0 0 0 −1
a3 0 0 0 0 0 −1
a4 0 1 0 0 0 −1
a5 0 0 1 −1 0 0
a6 0 0 0 0 −1 0

�

Column reduction step By Lemma 41.12.5 if a column of D0 represents
a polynomial f ∈ P , the corresponding column of Di represents Xif mod I

so that we can deduce that the columns of

(
Ki

Li

)
and actually of Ki give

elements in I allowing to extend K ′ returning a vectorspace Ki+1 : K ′ ⊆
Ki+1 ⊂ I ∩ V .

Example 41.13.3 (cont.). The sixth column of D2 returns X
2
2+X2+X1. �

Diagonalization step By construction the number r = dim(B) of columns
of M0 is equal to its rank; so there is an r × D matrices M⋆

0 such that
M⋆

0M0 = Idr.

We thus multiply each Di by the matrix P :=

(
IdD 0

−H0M
⋆
0 Idd−D

)

obtaining the following decompositions

D0 =

(
M0 0
0 L0

)
,Di =

(
Mi Ki

H ′
i L′

i

)
, 1 ≤ i ≤ n.

This corresponds to a change of the basis a := {a1, . . . , ad} of V which

becomes P−1T a.
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Example 41.13.3 (cont.). We have M⋆
0 =




1 0 0 0
0 −1 0 0
0 0 0 1


 and we have

to multiply by the matrix




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1




returning with

a1 = 1, a2 = −X1X
2
2 , a3 = X2

2 , a4 = X1, a5 = X1X2 + 1, a6 = X1X
2
2 +X2,

D0 b1 b2 b3 b4 b5 b6
a1 1 0 0 0 0 0
a2 0 −1 0 0 0 0
a3 0 0 0 0 0 0
a4 0 0 1 0 0 0
a5 0 0 0 0 −1 0
a6 0 0 0 0 0 −1

D1 b1 b2 b3 b4 b5 b6
a1 0 1 1 0 0 0
a2 0 0 1 0 0 0
a3 0 0 0 0 0 0
a4 1 0 0 0 0 0
a5 0 −1 0 0 0 0
a6 0 0 0 0 0 0

D2 b1 b2 b3 b4 b5 b6
a1 0 0 −1 0 0 0
a2 1 1 0 0 0 −1
a3 0 0 0 0 0 −1
a4 0 1 0 0 0 −1
a5 0 0 1 −1 0 0
a6 1 1 0 0 −1 −1

�

Row step We perform on the rows the same construction we have performed
on the columns, thus enlarging Hi to Hi+1 : Hi ⊆ Hi+1 ⊆ I ∩W .

Example 41.13.3 (cont.). The sixth row of D2 returns −Y2Y1+Y 3
1 −Y1. �

Lemma 41.13.4 (Mourrain). At the end of the algorithm denoting

K := Ki+1 ⊂ I ∩ V,H := Hi+1 ⊂ I ∩W,
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A ⊂ V and B ⊂ W , the vectorspaces such that K ⊗ A = V,H ⊗ B = W ,

d := dimk(V ) = dimk(W ), δ := d−dimk(K), then it holds K
+ ∩V = K and

there exist linearly independent polynomials

{a1, . . . , aδ, aδ+1, . . . , ad} ⊂ V, ai ∈ K, δ < i ≤ d

and a basis {b1, . . . , bδ, bδ+1, . . . , bd} of W with bi ∈ H, δ < i ≤ d, with respect
to which the Dixon matrices Di have the decompositions

D0 =

(
Idδ 0
0 L0

)
,Di =

(
M i 0
0 Li

)
, 1 ≤ i ≤ n.

Proof. At the end of the algorithm72,

• the saturation step does not increase K so that K
+ ∩ V = K;

• the quartering step returns the decompositions

D0 =

(
M0 0
H0 L0

)
,Di =

(
Mi Ki

Hi Li

)
, 1 ≤ i ≤ n;

• since the column reduction step does not increaseK, this means that Ki =
0 for each i;

• a variation of the diagonalization step in which we left-multiply by
(

M−1
0 0

−H0M
−1
0 Idδ

)

returns the decompositions

D0 =

(
Idδ 0
0 L0

)
,Di =

(
M i 0
H ′

i Li

)
, 1 ≤ i ≤ n,

with respect to a suitable basis;
• since the row step does not increase H, this means that H ′

i = 0 for each i

thus completing the argument. �

Example 41.13.1 (cont.). We now have

K = {X1X2 + 1, X1X
2
2 +X2, X

2
2 +X2 +X1}

and H = {Y1 + Y 2
1 Y2,−Y2Y1 + Y 3

1 − Y1} and we thus choose as basis for V
and W respectively

a1 = 1, a2 = −X1X
2
2 , a3 = X1, a4 = X2

2+X2+X1, a5 = X1X2+1, a6 = X1X
2
2+X2,

and

b1 = Y 3
1 , b2 = Y 2

1 Y2, b3 = Y 2
1 , b4 = 1, b5 = −Y2Y1 + Y 3

1 − Y1b6 = Y1 + Y 2
1 Y2;

72 Meening: in the last Repeet-loop at whose endKi+1 and Hi+1 are not increased.
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with respect to these bases we have

D0 b1 b2 b3 b4 b5 b6
a1 1 0 0 0 0 0
a2 0 −1 0 0 0 0
a3 0 0 1 0 0 0
a4 0 0 0 0 0 0
a5 −1 −1 0 0 1 1
a6 0 0 0 0 0 −1

D1 b1 b2 b3 b4 b5 b6
a1 0 1 1 0 0 0
a2 0 0 1 0 0 0
a3 1 0 0 0 0 0
a4 0 0 0 0 0 0
a5 0 −1 0 0 0 0
a6 0 0 0 0 0 0

D2 b1 b2 b3 b4 b5 b6
a1 0 0 −1 0 0 0
a2 1 1 0 0 0 0
a3 0 1 0 0 0 0
a4 0 0 0 0 0 −1
a5 0 0 1 −1 0 0
a6 0 0 0 0 1 1

The next loop will prove that we have already reached the required solu-
tion since neither K nor H are enalarged and can be also used to illustrate
the claim of the Lemma.

K is not enlarged neither by the saturation step nor by the column re-
duction step and we now left-multiply the Di by




1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 −1 0 0 1 0
0 0 0 0 0 1




obtaining the basis

a1 = −X1X2, a2 = X1X
2
2 −X1X2 − 1,

a3 = X1, a4 = X2
2 +X2 +X1,

a5 = X1X2 + 1, a6 = X1X
2
2 +X2

and the matrices
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D0 b1 b2 b3 b4 b5 b6
a1 1 0 0 0 0 0
a2 0 1 0 0 0 0
a3 0 0 1 0 0 0
a4 0 0 0 0 0 0
a5 0 0 0 0 1 1
a6 0 0 0 0 0 −1

D1 b1 b2 b3 b4 b5 b6
a1 0 1 1 0 0 0
a2 0 0 −1 0 0 0
a3 1 0 0 0 0 0
a4 0 0 0 0 0 0
a5 0 0 0 0 0 0
a6 0 0 0 0 0 0

D2 b1 b2 b3 b4 b5 b6
a1 0 0 −1 0 0 0
a2 −1 −1 0 0 0 0
a3 0 1 0 0 0 0
a4 0 0 0 0 0 −1
a5 −1 −1 0 −1 0 0
a6 0 0 0 0 1 1

.

�

Claim 41.13.4 (Cardinal–Mourrain). The δ-square matrices M
T

i (re-
spectively M i) are the matrices M([Xi], a) (respectively M([Yi],b)) of multi-
plication by the variables Xi (resp. Yi) in the basis a := {a1, . . . , aδ} (resp.

b := {b1, . . . , bδ}) of A. �

Historical Remark 41.13.5. A preliminary version of the algorithm, without
the saturation step, was proposed in his these by Cardinal in 1993 which
conjectured the claim above.

The insertion of the saturation step and the proof of the claim, under the
further assumption that V is connected to 1, is due to Mourrain in 2003.

As regard the saturation step Mourrain73 comments

The reason why we need to introduce this saturation step is that if
we multiply all the [Dixon polynomials] by an element of the form
1+ fg, f ∈ P , g ∈ PY with f, g conveniently chosen, we could obtain

matrices of the form

(
Di 0
0 Di

)
. Applying only the [. . . ] steps as

described by Cardinal, would not allow us to avoid the duplication

73 B.Mourrain, Bezoutian and quotient ring structure J. Symb. Comp. 39 (2005),
397-415
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of the structure of A. Moreover, if f and g are in I, the polynomials
(1 + fg)Di share the same properties, modulo I, as the [Dixon poly-
nomials] Di. To handle this problem, we add the saturation step,
which will “connect” the two blocks, provided that the vector space
V is connected to an element e. This is the hypothesis that will be
made hereafter to prove the main theorem.
This hypothesis is easy to check in practice, and usually we have
e = 1. Moreover, it is satisfied when the polynomials fi are mono-
mials. We do not have a proof that this extends by linearity to any
polynomial fi.
[. . . ]
To simplify the proof, we will assume hereafter that e = 1. The proof
can be extended to any e, by showing that, in this case, e is invertible

in A74 and by dividing by e. �

Example 41.13.1 (cont.). Gauss-reducing {a1, a2, a3} and {b1, b2, b3} with re-
spect the basis elements of, respectively, K and H we can set

a′1 := a5 + a1 = 1, a′2 := a2 − a6 + a5 = −X2, a
′
3 := X1

and
b′1 := Y 3

1 , b
′
2 := b2 − b6 = −Y1, b′3 = Y 2

1

and we have75

M1 =




0 1 1
0 0 −1
1 0 0


 and M2 =




0 0 −1
−1 −1 0
0 1 0


 .

�

74 By assumption we have A = Spank(a) and ai = ea′
i for some a′

i so that

A ∋ 1 =
∑

i

ciai =

(
∑

i

cia
′
i

)
e.

75 The reader can check the result using the deglex Gröbner basis of I induced by
X1 < X2 which is

{X1X2 + 1, X2
1 −X2 − 1, X2

2 +X2 +X1}

so that, in particular, Y 3
1 ≡ Y1 − 1 and Y 2

1 ≡ Y2 + 1.
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41.14 Mourrain: Proving Cardinal’s Conjecture

Let us use the same notation as in the last sections; in particular we have
a := {a1, . . . , aδ}, b := {b1, . . . , bδ} A = Spank(a), B = Spank(b) and we set

Mp :=M−1
0 Mp :=

(
m

(p)
ji

)
.

Proposition 41.14.1 (Mourrain). It holds

(1) Xpai =
∑δ

l=1m
(p)
li al − κ

(p)
i , κ

(p)
i ∈ K for each p, i, 1 ≤ p ≤ n, 1 ≤ i ≤ δ;

(2) Ypbi =
∑δ

l=1m
(p)
il bl − σ

(p)
i , σ

(p)
i ∈ H for each p, i, 1 ≤ p ≤ n, 1 ≤ i ≤ δ;

(3) D(XpXq) = XqD(Xp) + Yp (D(Xq)−XqD(1)) for p < q;
(4) D(XpXq) = YpD(Xq) +Xq (D(Xp)− YpD(1)) for p < q;

(5) D(XpXq) =
∑

1≤i,j,l≤δ m
(q)
li m

(p)
ij al ⊗ bj +Xqχ

(p,q)
1 + Ypχ

(p,q)
2 + χ

(p,q)
3 for

p < q and suitable elements, χ
(p,q)
1 , χ

(p,q)
2 , χ

(p,q)
3 ∈ K ⊗K;

(6) D(XpXq) =
∑

1≤i,j,l≤δ m
(p)
li m

(q)
ij al ⊗ bj +Xpχ

(p,q)
4 + Yqχ

(p,q)
5 + χ

(p,q)
6 for

p < q and suitable elements χ
(p,q)
4 , χ

(p,q)
5 , χ

(p,q)
6 ∈ K ⊗K.

Proof.

(1) We have

Dp = XpD0 +
δ∑

i=1

κ
(p)
i bi +

d∑

l=δ+1

κ
(p)
l bl, κ

(p)
i , κ

(p)
l ∈ K0.

By identifying the coefficients of each bi, 1 ≤ i ≤ δ we have

δ∑

l=1

m
(p)
li al = Xpai + κ

(p)
i , κ

(p)
i ∈ K0 ⊂ K.

(2) Similar proof as (1).
(3) We have

D(XpXq) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(X1, . . . , Xn) . . . fn(X1, . . . , Xn) XpXq

δ1(f1) . . . δ1(fn) 0
...

. . .
...

...
δp(f1) . . . δp(fn) Xq

...
. . .

...
...

δq(f1) . . . δq(fn) Yp
...

. . .
...

...
δn(f1) . . . δn(fn) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= Xq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(X1, . . . , Xn) . . . fn(X1, . . . , Xn) Xp

δ1(f1) . . . δ1(fn) 0
...

. . .
...

...
δp(f1) . . . δp(fn) 1

...
. . .

...
...

...
. . .

...
...

δn(f1) . . . δn(fn) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ Yp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(X1, . . . , Xn) . . . fn(X1, . . . , Xn) 0
δ1(f1) . . . δ1(fn) 0

...
. . .

...
...

...
. . .

...
...

δq(f1) . . . δq(fn) 1
...

. . .
...

...
δn(f1) . . . δn(fn) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(4) Similarly as (3), we have to develop

D(XpXq) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ1(f1) . . . δ1(fn) 0
...

. . .
...

...
δp(f1) . . . δp(fn) Xq

...
. . .

...
...

δq(f1) . . . δq(fn) Yp
...

. . .
...

...
δn(f1) . . . δn(fn) 0

f1(Y1, . . . , yn) . . . fn(Y1, . . . , Yn) YpYq

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5) By (2) we have

D(XpXq) = XqD(Xp) + Yp (D(Xq)−XqD(1))

=
∑

1≤i,j≤δ

m
(p)
ij Xqai ⊗ bj +Xqχ1 + Yp

∑

1≤i≤δ

κ
(q)
i ⊗ bi + Ypχ2

=
∑

1≤i,j≤δ

m
(p)
ij


 ∑

1≤l≤δ

m
(q)
li al − κ

(q)
i


 ⊗ bj +Xqχ1

+
∑

1≤i≤δ

κ
(q)
i ⊗


 ∑

1≤l≤δ

m
(p)
il bl − σ

(p)
i


+ Ypχ2

=
∑

1≤i,j,l≤δ

m
(q)
li m

(p)
ij al ⊗ bj −

∑

1≤i,j≤δ

m
(p)
ij κ

(q)
i ⊗ bj
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+
∑

1≤i,l≤δ

m
(p)
il κ

(q)
i ⊗ bl +Xqχ1 + Ypχ2 + χ3

=
∑

1≤i,j,l≤δ

m
(q)
li m

(p)
ij al ⊗ bj +Xqχ1 + Ypχ2 + χ3.

(6) Similarly as (5). �

Corollary 41.14.2 (Mourrain). The matrices Mp =
(
m

(p)
ji

)
commute.

�

With a slight abuse of notation we will also denote Mp the map

Mp : A→ A, ai 7→
δ∑

l=1

m
(p)
mlal

which corresponds to the multiplication by Xp modulo K.
Since these operations commute, for each f(X1, . . . , Xn) ∈ P we define

f(M) := f(M1, . . . ,Mn) : A→ A

and N(f) = f(M)(1) so that N is a map N : P → A.

Proposition 41.14.3 (Mourrain). If V is connected to 1, the ideal H :=
I(K) ⊂ P generated by K satisfies H = I.

Proof. By construction we have H ⊂ I.
The assumption that V = A⊗K is connected to 1 implies the existence of

c1, . . . , cδ ∈ k, κ ∈ K such that u =
∑δ

i=1 ciai = 1− κ, so that, in particular,
u is invertible in A and there exists Λ ∈ Hom(P , k) such that D0|Λ = u.

By expanding (41.7) along the last column, we have 0 = D(fi) =
fi(X1, . . . , Xn)D0 +

∑n
j=1(−1)jδj(fi)Ej for suitable Ej ∈ K ⊗ PY .

Thus, for each i,

fi = fiκ+ fiu = fiκ+ fiD0|Λ = fiκ−
n∑

j=1

(−1)jδj(fi)Ej |Λ ∈ H.

�

Proposition 41.14.4 (Mourrain). Assume V is connected to 1 and 1 /∈
K. Then

(1) for each f ∈ V , f − f(M)(1) ∈ K;
(2) for each a ∈ A, N(a) = a and N(K) = {0};
(3) f − f(M)(1) ∈ H for each f ∈ P ;
(4) ker(N) = H.
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Proof.

(1) Assume that for each g ∈ Spank{1}[l−1]∩V we have g−g(M)(1) ∈ K and
let f ∈ Spank{1}[l]∩V . Since V is connected to 1, we have f =

∑s
i=1Xligi

with 1 ≤ li ≤ n and gi ∈ Spank{1}[l−1] ∩ V . Thus

f − f(M)(1) =

s∑

i=1

Xli

(
gi − gi(M)(1)

)
+
(
Xligi(M)(1)−M ligi(M)(1

)
.

We have gi− gi(M)(1) ∈ K by induction assumption and Xligi(M)(1)−
M ligi(M)(1) ∈ K by Lemma 41.12.5. Therefore f−f(M)(1) ∈ K

+∩V =
K, the last equality being due to the saturation step. Since the induction
hypothesis is true for f = 1, then the claim follows.

(2) For any polynomial a ∈ A and any polynomial κ ∈ K we have
• a− a(M)(1) ∈ K ∩ A = {0} and
• κ(M)(1) = κ− (κ− κ(M)(1)) ∈ K ∩ A = {0}
which implies that, for each a ∈ A, N(a) = a and N(K) = {0}.

(3) Just a few slight adapations allow to use the same argument76 used for
(1) to prove, again by induction, that f − f(M)(1) ∈ H for each f ∈ P .

(4) Since N(K) = {0}, H ⊂ ker(N). Conversely, for each f ∈ ker(N),

f = f −N(f) = f − f(M)(1) ∈ H;

thus ker(N) ⊂ H. �

Theorem 41.14.5 (Mourrain). Assume V is connected to 1. The δ-square

matrices M
T

i (respectively M i) are the matrices M([Xi], a) (respectively
M([Yi],b)) of multiplication by the variables Xi (resp. Yi) in the basis
a := {a1, . . . , aδ} (resp. b := {b1, . . . , bδ}) of A.

Proof. If 1 ∈ K ⊂ I, then A = {0} and, by the saturation step, K = V and
the claim is trivial.

Since V is connected to 1, if 1 /∈ K we may assume 1 to be an element of
the basis A. Then by the proposition above ker(N) = H = I and Im(N) = A

so that A ∼= P/I = A. �

41.15 Mourrain: A Gröbner-free Solver

Remark 41.15.1. If V is connected to 1, Cardinal–Moirrain Algorithm thus
returns a Gröbner representation a,Mp, 1 ≤ p ≤ n, of I.

These data are the ones required by Auzinger–Stetter Algorithm (Com-

pare Section 40.8). �

76 P is connected to 1; the claim holds for f = 1; gi − gi(M)(1) ∈ H by induction;

Xligi(M)(1)−M ligi(M)(1) ∈ I by Lemma 41.12.5.



41.15 Mourrain: A Gröbner-free Solver 135

Remark 41.15.2 (Mourrain). Let us now set di := deg(fi), D := maxi{di}
and d := 1 +

∑n
i=1(di − 1).

Denote ν a bound of the size of the matrices Di, which is at most the num-
ber of terms of degree bounded by d, that is, by Stirling’s formula, O(enDn).

If V is connected to 1, a Gröbner representation a,Mp, 1 ≤ p ≤ n, of
I where the basis elements ai ∈ a satisfy deg(ai) ≤ d, can be computed in
O(nν4) arithmetical operations.

In fact Cardinal–Moirrain Algorithm requires to perform at most ν loops

each performing linear transformations over n matrices of size ν. �

Cardinal–Moirrain Algorithm can also efficiently substitute Buchberger’s
Algorithm to provide a good complexity procedure to solve the membership
test.

Proposition 41.15.3 (Mourrain). For each f ∈ P it is possible to test
whether f ∈ I in O(nν4L) where L denotes the cost of evaluating g(M) for
g ∈ F ∪ {f}.

Moreover, denoting

d̄ := deg(f) +
n∑

i=1

(di − 1), D̄ := max{deg(fi), deg(f)} and ν̄ = O(enD̄n)

with complexity O(nν̄4) it is possible to decide whether f ∈ I and, if this is
the case, to produce a representation

f · u =
n∑

i=1

figi : u, gi ∈ P , u ≡ 1 mod I, deg(u) ≤ d, deg(gi) ≤ d̄.

Proof. Adapt Cardinal–Mourrain’s Algorithm (Figure 41.3) by substituting
the saturation step with the inclusion in Ki and Hi of the n polynomials
corresponding to the non-zero columns (respectively: rows) of the matrices
fi(M), 1 ≤ i ≤ n; the effect, even if V is not connected to 1, is that fi(M) =
0, 1 ≤ i ≤ n.

Thus if we define σ the map

σ : P → kδ×δ, f 7→ σ(f) = f(M),

we have I ⊂ ker(σ) since, by construction fi(M) = 0, 1 ≤ i ≤ n.
On the other hand, denoting u ∈ V ⊂ P the element such that77 u =

D0|ℓ ≡ 1 mod I we have, for f ∈ ker(σ) ⊂ P

f(X1, . . . , Xn) = f(X1, . . . , Xn)− f(M)(u) ∈ I.

Thus we have I = ker(σ) and f ∈ I ⇐⇒ f(M) = 0.

77 The existence of such u, if V is connected to 1 is granted by Proposition 41.14.3
but even without this assumption is a consequence of the fact that D0| is an
isomorphism being F a complete interesction.
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The modified algorithm requires to perform at most ν loops each per-
forming linear transformations over n matrices of size ν and evaluations of
matrices fi(M) thus its complexity is O(nν4L).

Let us now modify Cardinal–Mourrain’s Algorithm (Figure 41.3) in a
different way: namely we consider also the matrix D(f) and apply the modi-
fications performed by the algorithm not only on the Di but also on D(f). The
effect is that we obtain, not only a basis a of A and with respect to it the ma-
tricesM([Xi], a) representing the multiplication by the variables, but also the
matrixMf :=M([f ], a) representing the multiplication by f . Such algorithm
has complexity O(nν̄4) where ν̄ = O(enD̄n) and D̄ := max{deg(fi), deg(f)}.

We thus have f ∈ I ⇐⇒ Mf = 0 and if we expand D(f) along the first
row we have

D(f) = f(X1, . . . , Xn)D0 −
n∑

i=1

fiEi

for suitable Ei ∈ P⊗
Lemma 41.12.4 implies D(f)|Λ = 0 for each f ∈ I and Λ ∈ L(I) so that

we have

f · u = f(X1, . . . , Xn)D0|ℓ =
n∑

i=1

fiEi|ℓ

where gi := Ei|ℓ ∈ P and u ∈ P satisfies u = D0|ℓ ≡ 1 mod I and is thus
invertible in I.

The degree bound is obvious by construction. �
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The introduction of Gröbner basis in the computer algebra community acti-
vated a new interest toward some older bases like Macaulay’s (Sections 23.5
and 23.6) and his algorithms (see Chapter 30), Hironaka’s standard bases
(Sections 24.5-8) and Ritt’s characteristic sets.

Ritt’s results (dated 1932), strongly influenced by Noether’s results on
the Decomposition Theorem, were aimed to give an algebraic standpoint to
differential equations, but, as it was already usual for the Riquier’s follow-
ers (Delassus, Janet, Gunther) he translated his results also in the algebraic
varaiety setting where he gave an effective decomposition algorithm which,
through the further application of univiariate factorization, returned an irre-
dundant prime decomposition of a radical ideal.

While the computer algebra community became aware of Buchberger’s re-
sult, in ChinaWuWen-tsün was applying a weaker (but sufficient for his aims)
version of Ritt’s algorithm as a tool toward a “mechanization” of theorem-
proving in elementary geometry; Wu’s version of Ritt’s result omit the hard
and useless (for his aims) factorization step, thus returning a decomposition
of a radical ideal into unmixed ideals.

In the Early Nineties, within the PoSSo frame, Lazard, which is the
stronger expaunder and developer of the Kronecker–Duval Philosophy, refor-
mulated Ritt’s solver avoiding the required factorization by means of Duval’s
splitting via his Theorem 11.3.2 thus producing a decomposition into radical
unmixed ideals, each defined via a triangular set, id est what we called (in
Definition 11.4.1) a Duval admissible sequence.

Later, Möller proposed an algorithm which applies only to zero-dimensio-
nal ideals, decomposing them into ideals presented through a triangular set;
the theory is based on ideas related to Gianni-Kalkbrener’s Theorem and the
algorithm is an adaptation of Traverso’s Algorithm 29.3.8.

Once a zero-dimensional ideal is represented through a triangular set,
Kronecker–Duval Philosophy requires to transform this data into a form suit-
able for the computation with arihmetical expressions of its roots; suitable
representations of such roots are available in older literature, for instance
Gröbner’s algemaine representation and Kronecker’s parametrization; as it
was proved by Alonso et al. Kronecker’s idea is more suitable than Gröbner’s
since it gives a representation with lesser bit-size complexity.
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An efficient algorithm to deduce, from a triangular set, a Kronecker’s
parametrization or Rational Universal Representation (RUR) via suitable
computation of matrix traces due to Rouillier crowns Kronecker–Duval Phi-
losophy.

After having presented Ritt’s decomposition theory (Section 42.1 and 42.2)
and the corralted solvers prosed by Ritt and Wu (Section 42.3), I dis-
cuss Lazard’s reformulation and expension of triangular sets (Section 42.4
and 42.5), the related solver (Section 42.6) and the relation between Lazard’s
triangular sets and Gröbner bases (Section 42.7).

Next I discuss Möller’s Algorithm (Section 42.8) and Rouillier’s Rational
Universal Representation (Section 42.9), postponing the discussion of the
effective algorithms computing with arihmetical expressions of roots given
via algemaine and RUR representation to Chapter 45.

42.1 Ritt: Characteristic sets for differential polynomial
ideals

Let k be a differential 1 field of characteristic zero.
Once an indeterminate, such as Y is introduced, it is implicitly considered

as the first element of an infinite sequence of symbols Y, Y ′, Y ”, · · · , Y (p), · · · ;
Y is then a differential indeterminate whose pth derivative is Y (p)2.

Once we consider n differential indeterminates Y1, . . . , Yn we will denote
Yij the jth derivative of Yi. We will denote

k{Y1, . . . , Yn} := k[Yij : 1 ≤ i ≤ n, j ∈ N]

the polynomial ring in the infinite set of variables {Yij : 1 ≤ i ≤ n, j ∈ N},
whose elements we call differential polynomials. For each A ∈ k{Y1, . . . , Yn}
its derivative is the differential polynomial obtained applying the rules

(1) (a+ b)′ = a′ + b′,

1 Id est a field which is endowed of an operation (differentiation) ·′ : k → k which
satisfies, for each a, b ∈ k,

(1) (a+ b)′ = a′ + b′,
(2) (ab)′ = a′b+ ab′.

The elements a ∈ k for which a′ = 0 are called constants. Note that, setting

• b := 0 in (1) we have 0′ = 0, and
• b := 1, a 6= 0 in (2) we have 1′ = 0.

It is then easy to deduce that from the equalities

• (m+ 1)′ = m′ + 1′ = m′,
• 0 = 0′ = (m+ (−m))′ = m′ + (−m)′ =⇒ (−m)′ = −(m′),

• 0 = (m ·m−1)′ = m(m−1)′ +m−1m′ =⇒ (m−1)′ = −m′

m2 ,

satisfied by each m 6= 0, that each a ∈ Q ⊂ k is a constant.
2 And the pth derivative of Y (q) is Y (q+p) for each integers p and q.
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(2) (ab)′ = a′b+ ab′,

(3) (Y
(q)
i )′ := Y

(q+1)
i for each i and q.

Example 42.1.1. If k is the constant field Q(X) and A := XY 2
1 +X2Y21 ∈

k{Y1, Y2} then A′ := Y 2
1 + 2XY1Y11 + 2XY21 +X2Y22, and

A” := 4Y1Y11 + 2XY 2
11 + 2XY1Y12 + 2Y21 + 4XY22 +X2Y23.

�

Definition 42.1.2. A subset I ⊂ k{Y1, . . . , Yn} is called a differential ideal
if it is an ideal and satisfies

f ∈ I =⇒ f ′ ∈ I.

Remark 42.1.3. Note that given any set Λ ⊂ k{Y1, . . . , Yn} the (polynomial)
ideal generated by Λ does not necessarily coincide with the differential ideal
which can be only defined as, equivalently,

(1) the set I ⊂ k{Y1, . . . , Yn} such that
• Λ ⊂ I

• G1, G2 ∈ I =⇒ G1 +G2 ∈ I

• G ∈ I, A ∈ k{Y1, . . . , Yn} =⇒ AG ∈ I

• G ∈ I =⇒ G′ ∈ I;
(2) the smallest differential ideal containing Λ;
(3) the intersection of all differential ideals containing Λ.

�

Historical Remark 42.1.4. In connection with Historical Remark 30.2.6 it is
worthwhile to compare Ritt’s notation which, for a set Λ ⊂ k{Y1, . . . , Yn},
denotes

(Λ) the polynomial ideal generated by it;
[Λ] the differential ideal generated by it3;
{Λ} the radical of [Λ] which is in fact a differential ideal4.

3 which in fact (compare (3) in the remark above) is an intersection of differential
ideals.

4 The argument consists in proving that, for each π ∈ N, π 6= 0, and each differen-
tial polynomial A ∈ k{Y1, . . . , Yn} the following holds:

(1) Aπ−1A′ ∈ [Aπ];
(2) Aπ−δA′2δ−1 ∈ [Aπ] =⇒ Aπ−δ−1A′2δ+1 ∈ [Aπ], for each δ ∈ N, 1 ≤ δ < π,
(3) A′2π−1 ∈ [Aπ],
(4) A ∈ {Λ} =⇒ A′ ∈ {Λ}.

In fact:
(1) Aπ−1A′ = π−1(Aπ)′ ∈ [Aπ];

(2) B := (π − δ)Aπ−δ−1A′2δ + (2δ − 1)Aπ−δA′2δ−2A” =
(
Aπ−δA′2δ−1

)′ ∈ [Aπ] so
that,
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Personally, I think that this notation is not a remainder of Steinitz’ but

an elementary direct use of the obvious sequence (·), [·], {·}. �

Definition 42.1.5 (Ritt). For a polynomial A ∈ k{Y1, . . . , Yn}
• the class of A, class(A), is the value p ≤ n such that

A ∈ k{Y1, . . . , Yp} \ k{Y1, . . . , Yp−1};

• the order of A w.r.t. Yi is the value j such that5

A ∈ F [Yi, Yi1, . . . , Yij ] \ F [Yi, Yi1, . . . , Yi j−1]

where we set F := k{Y1, . . . , Yi−1, Yi+1, . . . , Yn}.
If A ∈ k, A is said to be of class 0.
If A ∈ k{Y1, . . . , Yi−1, Yi+1, . . . , Yn}, its order w.r.t. Yi is 0.
For A1, A2 ∈ k{Y1, . . . , Yn}, A1 is said to be of higher rank than A2 in Yi

if either A1 is of higher order than A2 w.r.t. Yi or A1 and A2 have the same
order δ but the degree of A1 in the variable Yiδ is higher than that of A2.

If class(A1) = p > 0, A2 will be said reduced w.r.t. A1 if it is of lower

rank in Yp than A1. �

Definition 42.1.6 (Ritt). Let A1, A2 ∈ k{Y1, . . . , Yn} and denote, for i ∈
{1, 2}
pi := class(Ai) the class of Ai,
δi the order of Ai w.r.t. Ypi

,
di the degree of Ai in the variable Ypiδi .

A1 is said to be of higher rank than of A2 (denoteds as: A1 ≻ A2) if

{ p1 > p2 or
p1 = p2, δ1 > δ2 or
p1 = p2, δ1 = δ2 and d1 > d2.

A1 and A2 are said to be of the same rank (denoted as: A1 ∼ A2) if

p1 = p2, δ1 = δ2 and d1 = d2. �

(π − δ)Aπ−δ−1A′2δ+1 = A′B − (2δ − 1)Aπ−δA′2δ−1A” ∈ [Aπ].

(3) Since Aπ−δA′2δ−1 ∈ [Aπ] for δ = 1 by (1) iteratively (2) implies

Aπ−δ−1A′2δ+1 ∈ [Aπ ]

for δ = π − 1 id est A′2π−1 ∈ [Aπ].
(4) Let π be such that Aπ ∈ [Λ]; then by the previous result A′2π−1 ∈ [Aπ ] ⊂ [Λ]

whence A′ ∈ {Λ}.
5 We must consider also the case j = 0, where, with a slight abuse of notation, we
set Yi0 := Yi.
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Both � and ∼ are equivalences.
Remark also that the only termordering which is compatible with ≺ is

the lexicographical order < induced by

Y1 < Y12 < · · · < Y1j < · · · < Y2 < Y22 < · · · < Yn < Yn2 < · · ·

Lemma 42.1.7. Each set of differential polynomials A contains a member
A ∈ A such that A � B for each B ∈ A.

Proof. If A ∩ k 6= ∅ any element there answers the requirement. Otherwise
denote

• p the minimal value such that A ∩ k{Y1, . . . , Yp} 6= ∅,
• δ the minimal value such that B := A∩k{Y1, . . . , Yp−1}[Yp, Yp1, . . . , Ypδ] 6=
∅

and choose in B the element of minimal degree in Ypδ. �

Definition 42.1.8 (Ritt). A finite set {A1, . . . , Ar} of differenatial polyno-
mials is called a chain if either

• r = 1 and A1 6= 0 or
• r > 1, class(A1) = p > 0, and, for each j > i, class(Aj) > class(Ai) and
Aj is reduced w.r.t. Ai

6.

The chain A := {A1, . . . , Ar} is said to be of highest rank than the chain
B := {B1, . . . , Bs} (denoted A ≻ B) if either

(1) there is j, j ≤ min{r, s} such that Ai ∼ Bi for i < j and Aj ≻ Bj, or
(2) s > r, and Ai ∼ Bi for i ≤ r

The chains A := {A1, . . . , Ar} and B := {B1, . . . , Bs} are said to be of
the same rank (denoted A ∼ B) iff s = r, and Ai ∼ Bi for each i.

If A := {A1, . . . , Ar} is a chain for which class(A1) = p > 0, a differetial
polynomial F will be said reduced w.r.t. A if it is reduced w.r.t. each Ai ∈ A.

�

Lemma 42.1.9. Let

A := {A1, . . . , Ar},B := {B1, . . . , Bs}, C := {C1, . . . , Ct}

be three chains. Then

A ≻ B,B ≻ C =⇒ A ≻ C.

Proof. There are four cases:

• Both A ≻ B and B ≻ C for the reason (1): denote j the smallst value such
that Bj ≻ Cj . Either
– Ai ∼ Bi ∼ Ci for i < j and Aj � Bj ≻ Cj ; or

6 Of course r ≤ n.
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– there is h ≤ j such that Ai ∼ Bi ∼ Ci for i < h and Ah ≻ Bh � Ch.
In both cases A ≻ C by (1).

• A ≻ B by (2), while B ≻ C by (1), and let j the smallest value such that
Bj ≻ Cj :
– If r < j ≤ t, then A ≻ C by (2);
– If r ≥ j, then Ai ∼ Bi ∼ Ci for i < j and Aj ∼ Bj ≻ Cj , so that A ≻ C
by (1);

• A ≻ B by (1), while B ≻ C by (2) and let j the smallest value such that
Aj ≻ Bj : then Ai ∼ Bi ∼ Ci for i < j and Aj ≻ Bj ∼ Cj ; therefore A ≻ C
by (1);

• both A ≻ B and B ≻ C by (2) so that r < s < t, Ai ∼ Bi ∼ Ci for i ≤ r

and A ≻ C by (2). �

Lemma 42.1.10. Each set of chains A contains a member A ∈ A such that
A � B for each B ∈ A.

Proof. We form a subset A1 ⊂ A putting in A1 the chains A := {A1, . . . , Ar}
which satisfy A1 � B1 for each B := {B1, . . . , Bs} ∈ A.

If each chain A ∈ A1 satisfies #A = 1 any chain in A1 satisfies our
requirement.

Otherwise, we form a subset A2 ⊂ A1 collecting the chains A :=
{A1, . . . , Ar} which satisfy A2 � B2 for each B := {B1, . . . , Bs} ∈ A1. If
each chain A ∈ A2 satisfies #A = 2 any chain in A2 serves our purpose.

Otherwise we repeat the same construction; since each chain has at most

n elements, in the worst case An returns the required chains. �

Definition 42.1.11. For any (finite or infinite) set G ⊂ k{Y1, . . . , Yn}, any
chain A ⊂ G such that A � B for each chain B ⊂ G, whose existence is
proved in the Lemma above, is called a characteristic set of G.

Note that (A) ⊆ (G) but equality does not necessarily hold.

Lemma 42.1.12. Let G ⊂ k{Y1, . . . , Yn} and A := {A1, . . . , Ar} ⊂ G be a
chain, where class(A1) > 0. The following conditions are equivalent:

(1) A is a characteristic set of G,
(2) G contains no G ∈ k{Y1, . . . , Yn} \ {0} which is reduced w.r.t. A.

Proof. Assume that A is not a characteristic set and let B := {B1, . . . , Bs} be
a characteristic set, so that B ≺ A. If A ≻ B by (1), there is some Bi, i ≤ r,
such that Bi ≺ Ai so that is reduced by A; if, instead, A ≻ B by (2), Br+1

is reduced by A.
Suppose now that G contains a differential polynomial G 6= 0 which is

reduced w.r.t. A. If class(G) > class(Ar), then the chain B := {A1, . . . , Ar, G}
is lower than A; otherwise, denoting j be the highest value for which the
class(Aj) ≤ class(G), the chain B := {A1, . . . , Aj , G,Aj+1, . . . , Ar} is lower

than A. �
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Lemma 42.1.13. Let G ⊂ k{Y1, . . . , Yn} and A := {A1, . . . , Ar} ⊂ G be
a characteristic set of G, where class(A1) > 0. Let G /∈ G be a nonzero
differential polynomial which is reduced w.r.t. A, G′ := G ∪ {G} and B be a

characteristic set of G′. Then B ≺ A. �

Algorithm 42.1.14. Let G ⊂ k{Y1, . . . , Yn} \ {0} be a finite set. The following
algorithm allows to extract a characteristic set A := {A1, . . . , Ar} ⊂ G.

Let us begin by picking an element A1 ∈ G which is of least rank. If
class(A1) = 0, A := {A1} is the required characteristic set. If class(A1) > 0
and no element in G is reduced w.r.t. {A1}, again A := {A1} is the required
characteristic set.

Otherwise, each element in G which is reduced w.r.t. {A1} is such that
class(G) > class(A1); choose as A2 any such element of less rank.

Again, either G contains no other element which is reduced w.r.t. A :=
{A1, A2} which is the required characteristic set; or one can choose as A3 any
element which is reduced w.r.t. A := {A1, A2} and of minimal rank among
all possible choices.

Inductively repeating the same constructions, a characeristic set A :=
{A1, . . . , Ar} is obtained in a finite number of steps.

�

Definition 42.1.15. For a differential polynomial G ∈ k{Y1, . . . , Yn} of
class p > 0 and of order m in Yp the separant of G is the differential
polynomial ∂G

∂Ypm
and its initial the cofficient of the highest power of Ypm in

G.
More precisely, expressing G as a univariate polynomial

G :=

d∑

i=0

ciY
i
pm ∈ k{Y1, . . . , Yp−1}[Yp, Yp1, . . . , Ypm−1][Ypm],

with cd 6= 0, its separant is ∂G
∂Ypm

=
∑d

i=1 iciY
i−1
pm and its initial is cd. �

Let A := {A1, . . . , Ar} be a chain and let us denote, for each i, Si and Ii
the separant and initial of Ai.

If a differential polynomial G is not reduced w.r.t. A, let us denote

j the greatest value such that G is not reduced w.r.t. Aj ,
p the class of Aj ,
m the order of Aj in Yp;
h ≥ m the order of G in Yp;

we can therefore associate to each differential polynomial G, which is not
reduced w.r.t. A, a couple Φ(G) := (j, h), 1 ≤ j ≤ r, h ∈ N and assume that
the set of such couples is well-ordered by the ordering < defined by

(j, h) > (j′, h′) ⇐⇒ either j > j′ or j = j′ and h > h′.

Let us consider the possible cases:
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(1) If h > m, denote l := h −m and remark that A
(l)
j is of order h in Yp,

linear in Yph and with Sj as initial. The division algorithm performed in

k{Y1, . . . , Yp−1}[Yp, Yp1, . . . , Ypm−1][Ypm]

(Compare vol. 1, page 12) allows to compute a value v ∈ N and differential
polynomials C,D satisfying

Sv
jG = CA

(l)
j +D;

remark that D is
(a) uniquely determined, if v is chosen as small as possible,
(b) of order less than h in Yp,
(c) of rank not higher then G in Ya, p < a ≤ n7,
(d) and so reduced w.r.t. Ai, i > j.
Thus Φ(D) := (j′, h′) < (j, h) = Φ(G) since, either h′ < h or h′ = m,
and D is reduced by Ai for each i > j so that j′ ≤ j

(2) If h = m, then both G and Aj can be considered as univariate polyno-
mials in

k{Y1, . . . , Yp−1, Yp+1, . . . , Yn}[Yp, Yp1, . . . , Ypm−1][Ypm],

where the division algorithm allows to compute a value v ∈ N and differ-
ential polynomials C,D satisfying

IvjG = CAj +D;

remark that D is
• uniquely determined, if v is chosen as small as possible,
• reduced w.r.t. both Aj

• and each Ai, i > j.
Thus Φ(D) := (j′, h′) < (j, h) = Φ(G) since j′ < j.

Since < is noetherin, in a finite number of applications of this algorithm
we can compute a sequence of differential polynomials G := D0, D1, . . . , Dt

where Dt is reduced w.r.t. A and which satisfy relations

P vi
i Di = CiBi +Di+1,

with

vi ∈ N,
7 In fact, since Sj is free of Ya, we need only to treat the case in which G depends
on Ya and its derivates; denoting g the order of G in Ya, clearly the order of D in
Ya does not exceed g and, in case its value is exactly g, the assumption that his
degree δ in Yag is higher of the one of G implies that some term of C is divisible

by Y δ
ag so that some term of CA

(l)
j is divisible by YphY

δ
pg; this is a contradiction

since no such term occurs neither in Sv
jG — G has no term divisible by Y δ

pg —
nor in D which has no term divisible by Yph.
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Pi ∈ {Sj , Ij , 1 ≤ j ≤ r},
Ci ∈ k{Y1, . . . , Yn},
Bi ∈ {A(h)

j , 1 ≤ j ≤ r, h ∈ N}.
As a consequence

Theorem 42.1.16 (Ritt). Let A := {A1, . . . , Ar} be a chain and let us de-
note, for each i, Si and Ii the separant and initial of Ai. For each differential
polynomial G it is possible to compute

values vi ∈ N,
and wi ∈ N,
polynomials Cjh ∈ k{Y1, . . . , Yn},
a polynomial R ∈ k{Y1, . . . , Yn},

such that

(1) R is reduced w.r.t. A,
(2) and is uniquely determined by the values vi and wi

(3) the set {(j, h) : Cjh 6= 0} is finite,

(4) Sv1
1 · · ·Svr

r Iw1
1 · · · Iwr

r G = R+
∑

j,h CjhA
(h)
j .

Moreover, the values vj and wj can be assumed to be the minimal values

satisfying a relation of this kind. �

Definition 42.1.17 (Ritt). The unique polynomial R determined by the
minimal values vi and wi satisfying Theorem 42.1.16.(4) is called the re-
mainder of G w.r.t. A.

Theorem 42.1.18 (Ritt). Let

I ⊂ k{Y1, . . . , Yn} be a differential ideal,
A := {A1, . . . , Ar} be a characteristic set of I,
Si and Ii, 1 ≤ i ≤ r, the separant and initial of Ai,
X :=

∏r
i=1 SiIi.

For each G ∈ k{Y1, . . . , Yn}, denoting R the remainder of G w.r.t. A, we
have

G ∈ I =⇒ R = 0 =⇒ G ∈ I : X∞.

If, moreover I is prime, then G ∈ I ⇐⇒ R = 0 and (A) = I.

Proof. If G ∈ I then R ∈ I; therefore, being reduced w.r.t. A, it is necessarily
0 by Lemma 42.1.12.

Conversely if R = 0 then, with the notation of Theorem 42.1.16 we have

Sv1
1 · · ·Svr

r Iw1
1 · · · Iwr

r G = R+
∑

j,h

CjhA
(h)
j ∈ I

and G ∈ I : X∞.
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Remark now that the Sis and Iis being reduced w.r.t. A are not members
of I (Lemma 42.1.12). Therefore, if I is prime and R = 0,

Sv1
1 · · ·Svr

r Iw1
1 · · · Iwr

r G = R+
∑

j,h

CjhA
(h)
j ∈ I =⇒ G ∈ I.

�

Remark 42.1.19. For any prime differential ideal I ⊂ k{Y1, . . . , Yn}, one can
pick a maximal set of variables {V1, . . . , Vd} ⊂ {Y1, . . . , Yn} such that

• I ∩ k{V1, . . . , Vd} = 0,
• for each Z ∈ {Y1, . . . , Yn} \ {V1, . . . , Vd} there is a nonzero differential
polynomial GZ ∈ I ∩ k{V1, . . . , Vd, Z}.

Up to a relabeling the variables, we have an identification

k{Y1, . . . , Yn} ∼= k{V1, . . . , Vd, Z1, . . . , Zr}

so that

• I ∩ k{V1, . . . , Vd} = 0,
• for each i, 1 ≤ i ≤ r, there is a nonzero differential polynomial in I ∩
k{V1, . . . , Vd, Zi}.
If for each i, 1 ≤ i ≤ r, we pick any element Ai ∈ I ∩ k{V1, . . . , Vd, Zi}

then the set {A1, . . . , Ar} is naturally a chain, since each Ai is reduced w.r.t.
{A1, . . . , Ai−1}.

Analogously, if we pick any element A1 ∈ I∩k{V1, . . . , Vd, Z1} and, recur-
sively, for i, 1 < i ≤ r, any element Ai ∈ I∩k{V1, . . . , Vd, Z1, . . . , Zi} which is
reduced w.r.t. {A1, . . . , Ai−1} and of least rank among all possible choices8,
then {A1, . . . , Ar} is a characteristic set of I.

We will call {V1, . . . , Vd} — following Weispfening (cf. Definition 27.11.1)
— a maximal set of independent indeterminates or — following Ritt — a
parametric set of indeterminates or — following Lazard — the set of the

trascendental variables for I. �

8 This means that we must pick a reduced polynomial

Ai ∈ k{V1, . . . , Vd, Z1, . . . , Zi−1}[Zi, Zi1, · · · , Zi q−1][Ziq ]

of minimal degree in Ziq among all possible choices, where q, the order of Ai in
Zi, is the minimal value for which

I ∩ k{V1, . . . , Vd, Z1, . . . , Zi−1}[Zi, Zi1, · · · , Zi q−1][Ziq ] 6= ∅.
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42.2 Ritt: Characteristic sets for polynomial ideals

Let us now restrict ourselve to an (algebraic) field k of characteristic zero,
without requiring the existence of a differential structure and the polynomial
ring P := k[X1, . . . , Xn] and reinterpret the theory developped in the previous
Section, assuming that k is a differential field in which all derivatives are zero
and P as a subring of k{X1, . . . , Xn}:

k[X1, . . . , Xn] ⊂ k{X1, . . . , Xn}.

Then for any set Λ ⊂ k[X1, . . . , Xn] we restrict ourselves to consider the
polynomial ideal

I(Λ) := [Λ] ∩ k[X1, . . . , Xn] = (Λ) ∩ k[X1, . . . , Xn].

In this context the same notation and results introduced in the previous
Section are still availale. In particular:

• for a polynomial A ∈ k[X1, . . . , Xn] the class of A, class(A), is the value
p ≤ n such that

A ∈ k[X1, . . . , Xp] \ k[X1, . . . , Xp−1],

the polynomials of class 0 being the elements in k;
• for any two polynomials A1, A2 ∈ k[X1, . . . , Xn], A1 is said to be of higher
rank than A2 in Xi if the degree of A1 in the variable Xi is higher than
that of A2;

• if class(A1) = p > 0, A2 will be said reduced w.r.t. A1 if it is of lower degree
in Xp than A1;

• for any two polynomials A1, A2 ∈ k[X1, . . . , Xn], denoting, for i ∈ {1, 2},
pi the class of Ai and di the degree of Ai in the variable Xpi

,

A1 ≻ A2 ⇐⇒
{ p1 > p2 or
p1 = p2 and d1 > d2

and
A1 ∼ A2 ⇐⇒ p1 = p2, d1 = d2;

• a finite set
A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn]

is called a chain (or ascending set, or reduced triangular set) if either r = 1
and A1 6= 0 or
– class(A1) = p > 0,cl
– for each j > i, class(Aj) > class(Ai), and
– Aj is reduced w.r.t Ai;
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• given any (finite or infinite) set G ⊂ k[X1, . . . , Xn], in the chain

A := {A1, . . . , Ar} ⊂ G

produced by Algorithm 42.1.14, each element Ai is not only reduced w.r.t.
{A1, · · · , Ai−1} and of minimal rank among all possible choices, but neces-
sarily his class is higher of the one of Ai−1;

• for two chains in k[X1, . . . , Xn], we have

{A1, . . . , Ar} := A ≻ B := {B1, . . . , Bs}

if either
(1) there is j, j ≤ min{r, s} such that Ai ∼ Bi for i < j and Aj ≻ Bj , or
(2) s > r, and Ai ∼ Bi for i ≤ r
and

A ∼ B ⇐⇒ s = r, and Ai ∼ Bi for each i;

• if A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn] is a chain for which class(A1) = p >
0, a polynomial F ∈ k[X1, . . . , Xn] is reduced w.r.t. A if it is reduced w.r.t.
each Ai ∈ A;

• for any set G ⊂ k[X1, . . . , Xn], any chain A ⊂ G such that A � B for each
chain B ⊂ G is called a characteristic set (or: basic set) of G;

• for a polynomial

G :=

d∑

i=0

ciX
i
p ∈ k[X1, . . . , Xp−1][Xp], ci ∈ k[X1, . . . , Xp−1], cd 6= 0

of class p > 0 its initial is its leading polynomial cd = Lp(G).
• For a chain A := {A1, . . . , Ar} and a polynomial G not reduced w.r.t. A,
denoting, for each i, Ii the initial of Ai, let j the greatest value such that G
is not reduced w.r.t. Aj , and p the class of Aj , then the division algorithm
in

k[X1, . . . , Xp−1, Xp+1, . . . , Xn][Xp],

allows to compute a value v ∈ N and polynomials C,D satisfying

IvjG = CAj +R,

where R is
– uniquely determined, if v is chosen as small as possible,
– reduced w.r.t. both Aj

– and each Ai, i > j.
• Then (compare Theorem 42.1.16) for each such G it is possible to compute

values wi ∈ N,
polynomials Cj ∈ k[X1, . . . , Xn],
a polynomial R ∈ k[X1, . . . , Xn],

such that
(1) R is reduced w.r.t. A,
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(2) and is uniquely determined by the values wi

(3) Iw1
1 · · · Iwr

r G = R+
∑

j CjAj .
Moreover, the values vi can be assumed to be the minimal values satisfying
a relation of this kind.

• The remainder of G w.r.t. A is the unique polynomial R determined by
the minimal values vi in the formula above.

• For any prime ideal I ⊂ k[X1, . . . , Xn], we can relabel the variables so that

k[X1, . . . , Xn] ∼= k[V1, . . . , Vd, Z1, . . . , Zr]

and {V1, . . . , Vd} is a maximal set of independent indeterminates for I, d :=
dim(I).
Then each characteristic set of I consists (Remark 42.1.19) of r polynomials
Ai ∈ I ∩ k[V1, . . . , Vd, Z1, . . . , Zi] which are reduced w.r.t. {A1, . . . , Ai−1}
and of minimal degree in Zi among all possible choices.

In this context it is worthwhile to record an old-fashioned proof of the
following well-known result:

Proposition 42.2.1. Let I ⊂ k[X1, . . . , Xn] be a prime ideal, dim(I) := d,
{V1, . . . , Vd} be a maximal set of independent indeterminates] for I and K ∈
k[X1, . . . , Xn] a polynomial not contained in I.

Then the ideal I′ := I+ I(K) is such that I′ ∩ k[V1, . . . , Vd] 6= {0}.
Proof (Ritt). Using the same notation as above, this is Ritt’s argument9:

We start with the observation that the polynomials in I which involve
no Zi with i > j, where 1 ≤ j < n−d, constitute a prime polynomial
ideal; we describe this prime ideal10 by Ij .
I′ contains the remainder of K with respect to {A1, . . . , Ar}. Of
all nonzero polynomials in I′ which are reduced with respect to
{A1, . . . , Ar}, let B the one which is of lowest rank. We say that
B is free of the Z.
Suppose that this is not so, and let B of class d+ p with p > 0. The
initial C of B is not in I. There is a relation

CmAp = DB + E

where E, if not zero, is of lower degree than B in Zp. We say that
E is in I. Let this be false. If p > 1, the remainder of E with respect
to A1, . . . , Ap−1 is a non zero polynomial contained in I′, which is
reduced with respect to {A1, . . . , Ar} and of lower rank than B. If
p = 1, a similar statement can be made of E itself. Thus11 E is in

9 Ritt J.F., Differential Algebra, A.M.S. Colloquium Publications 33 (1950) p.84.
I just adapted the notation.

10 which is Ij := I ∩ k[V1, . . . , Vd, Z1, . . . , Zj ].
11 Remark that, by assumption, B is a nonzero polynomial contained in I′, which is

reduced with respect to {A1, . . . , Ar} and of lower rank. So we have just reached
a contradiction.
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I, so that DB is in I. Then12 D is in I. D is of positive degree13 in
Zp. As the initial of DB is that of CmAp, the initial I of D is not
in I. If we had p = 1, D would be a nonzero polynomial in I which is
reduced with respect to {A1, . . . , Ar}; this is because D is of lowest
degree in Xp than Ap. Thus p > 1. The remainder of D with respect
to A1, . . . , Ap−1 is zero14. Thus JD, with J some product of powers
of the initials of A1, . . . , Ap−1, is linear

15 in A1, . . . , Ap−1. If we write
JD as a polynomial in Zp its coefficients will be in Ip−1. Thus JI is
in Ip−1. This is false because neither J nor I is in Ip−1.

Thus B is free of the Z and our statement is proved. �

Remark 42.2.2. Since any polynomial P = P0 can be uniquely expressed as

P = P0 = Lp(P0)X
δ0
j0

+R0

where j0 = class(P0), P1 := Lp(P ) ∈ k[X1, . . . , Xj0−1] and degj0(R0) < δ0 =
degj0(P0), recursively, we can define

• values ji := class(Pi) < ji−1, and δi ∈ N,
• polynomials Ri ∈ k[X1, . . . , Xji ] and
• Pi+1 := Lpi(P ) := Lp(Lpi−1(P ) = Lp(Pi) ∈ k[X1, . . . , Xji−1] such that

Pi = Lpi(P )X
δi
ji

+Ri, degji(Ri) < δi = degji(Pi)

until i reachs a value ι for which Pι+1 = Lpι(P ) ∈ k.
Then, we have

P = Lpι(P )X
δι
jι
X

δι−1

jι−1
· · ·Xδ1

j1
Xδ0

j0
+Rι

ι−1∏

i=0

Xδi
ji

+

ι−1∑

h=0

Rh

h−1∏

i=0

Xδi
ji
.

Recalling that the only termordering which is compatible with ≺ is the
lexicographical order < induced by X1 < X2 < · · · < Xn, we necessarily have

lc<(P ) = Lpι(P ), T<(P ) = Xδι
jι
X

δι−1

jι−1
· · ·Xδ1

j1
Xδ0

j0
.

�

If we consider a chain

A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn] ∼= k[V1, . . . , Vd, Z1, . . . , Zr],

each Ai being of class d+i, we can find conditions for A to be a characteristic
set of a prime ideal.

Let us denote

12 B ∈ k[V1, . . . , Vd] =⇒ B /∈ I.
13 Necessarily the degree in Zp of B is lower of that of Ap.
14 D ∈ I.
15 Id est JD ∈ (A1, . . . , Ap−1) = I(A1, . . . , Ap−1).
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I the ideal generated by A in k(V1, . . . , Vd)[Z1, . . . , Zr],
Ij := I ∩ k(V1, . . . , Vd)[Z1, . . . , Zj ],
Lj := k(V1, . . . , Vd)[Z1, . . . , Zj ]/Ij ,
πj : k(V1, . . . , Vd)[Z1, . . . , Zr] → Lj [Zj+1, . . . , Zr],
I :=

∏
i Ii, each Ii denoting the initial of AI .

Then:

Proposition 42.2.3. With the present notation, A is a characteristic set of
the prime ideal I : I∞ iff the following conditions hold:

(1) if r = 1, A1 is irreducible in k(V1, . . . , Vd)[Z1].
(2) if r > 1, {A1, . . . , Ar−1} is a characteristic set of the prime ideal Ir−1

and πr−1(Ar) is irreducible in Lr−1[Zr].

Proof. A reformulation of Theorem 34.1.2 and Theorem 34.3.2. �

Algorithm 42.2.4 (Ritt). Let G ⊂ k[X1, . . . , Xn] be a finite set generating an
ideal I.

The following algorithm allows to compute a characteristic set A :=
{A1, . . . , Ar} of I and a polynomial I such that, denoting L the ideal gen-
erated by A we have

L ⊂ I ⊂ L : I∞ =: H;

if moreover I is prime, then I = L.
One begins by extracting from G a characteristic set A with the methode

described in Algorithm 42.1.14, so that (A) ⊆ I16. Next he computes the
remainders w.r.t. A of each member in G and includes the nonzero ones in G

producing a larger set G′ which however satisfies I(G′) = I(G) = I.
If not all such remainders are zero, then (Lemma 42.1.13) a characteristic

set A′ of G′ satisfies A′ ≺ A.
Thus the same procedure can be repeated until giving a set G∗ which sat-

isfies I(G∗) = I(G) = I and a characteristic set A∗ := {A1, . . . , Ar} extracted
from (G∗), for which either

• A1 is of class zero so that I = (1), or
• all the remainders w.r.t. A∗ of each member in G∗ is zero. Then (Theo-
rem 42.1.18), denoting I :=

∏r
i=1 Ii the product of all initials Ii of the Ais,

we have
I(A∗) ⊂ I ⊂ I(A∗) : I∞;

if moreover I is prime, I(A∗) = I. �

16 We can of course assume that A1 is of positive class, otherwise I = (1) and we
are through.
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Historical Remark 42.2.5. To put in better historical perspective, I think it
is worthwhile to quote the words of Ritt17 referring also to his older book18:

The form in which the results of differential algebra are being pre-
sented has thus being deeply influenced by the teachings of Emmy
Noether, a prime mover of our period, who, in continuing Julius
König’s development of Kronecker’s ideas, brought mathematicians
to know algebra as it was never known before.
In this connection, I should like to say something concerning basis
theorems. The basis theorem [. . . ] will be see to play, in the present
theory, the role held by Hilbert’s theorem in the theories of poly-
nomials ideals and of algebraic manifolds. When I began to work
on algebraic differential equations, early in 1930, van der Waerden’s
excellent Modern Algebra had not yet appeared. However, Emmy
Noether’s work of the twenties was available, and there was nothing
to prevent one from learning in her papers the value of basis theo-
rems in decomposition problems. Actually, I became acquainted with
the basis theorem principle in the writings of Jules Drach on logical
integration19.

�

42.3 Ritt’s and Wu’s Solvers

Algorithm 42.3.1 (Ritt). Ritt applied Proposition 42.2.3, Algorithm 42.2.4
and Theorem 42.1.18 as tools for proposing a solver20 which, given a finite
set G ⊂ k[X1, . . . , Xn] generating an ideal I, applyes Algorithm 42.2.4 in
order to extract a characteristic set A∗ satisfying the properties stated by
Theorem 42.1.18 and tests whether21 it satisfies the properties of Proposi-
tion 42.2.3.

17 In the Preface of his book Differential Algebra, A.M.S. Colloquium Publications
33 (1950), p.iv

18 Ritt J.F., Differential Equations from the Algebraic Standpoint, A.M.S. Collo-
quium Publications 14 (1932).

19 The reference is to J. Drach, Essai sur la théorie général de l’integration et sur

la classification des Trascendentes Ann. Éc. Norm. 3e série 15 (1898) 245–384.
20 Ritt J.F., Differential Algebra, A.M.S. Colloquium Publications 33 (1950), p.95-

98.
21 Essentially Ritt proposes the primality test discussed in Section 35.4:

• the rôle used there by the Gröbner basis G′ is taken here by the characteristic
set A∗;

• the test I : I∞ = I is not required since, in this setting

I : I∞ =
(
I(A∗) : I∞

)
: I∞ = I(A∗) : I∞ = I.
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If the answer is positive then A∗ is a characteristic set of the prime ideal
H := I(A∗) : I∞ and, in this case22

Z(I) = Z(H) ∪ Z(I+ I(I1)) ∪ · · · ∪ Z(I+ I(Ir));

the same algorithm is to be recursively applied to each set G ∪ {Ii}.
If, instead, the answer is negative, then23, we have found (using the no-

tation of Proposition 42.2.3) some factorization

πr−1(Ar) = c

s∏

i=1

π(gi)
ei

in Lr−1 where gi ∈ k[V1, . . . , Vd][Z1, . . . , Zr−1][Zr] and c ∈ k(V1, . . . , Vd) is a
unit; therefore

Z(I) = Z(I+ I(g1)) ∪ · · · ∪ Z(I+ I(gs)).

The result corresponds to an irredundant prime decomposition of I. �

Historical Remark 42.3.2. In other words, Ritt (in 1950) is applying the no-
tion of ’solving’ discussed in Section 34.5. In 1978, Wu Wen-tsün relaxed
this notion of ’solving’ preserving the structure of the corresponding basis
(ascending set) which has a similar shape as a Primbasis (Definition 34.3.3)
or an admissible sequence (Definition 8.2.2 and 11.4.2) but requiring less
strong properties (essentially just those implied by Theorem 42.1.18 and Al-
gorithm 42.2.4).

In fact, in his research toward a Theorem-Proving algorithm in differential
(and elementary) geometry, as a tool for testing whether f(α) = 0 for each
root24 α of I, where f ∈ k{X1, . . . , Xn} is a given differential polynomial
and I := I(G) ⊂ k{X1, . . . , Xn} a given differential ideal, Wu applied directly
Ritt’s theory reducing the problem to the test whether

(1) the remainder of f w.r.t. A∗ is zero and,
(2) by recursive application of the same algorithm, f(α) = 0 for each root α

of I+ {Ii}, i ≤ r.

In fact, for each root α of I,

(1) if
∏r

i=1 Ii(α) 6= 0, then, by Theorem 42.1.16, f(α) = 0 iff the remainder
of f w.r.t. A is zero;

(2) if Ii(α) = 0, then α is a root of I+ I(Ii).
22 It is worthwhile to note that this formula which is today improperly attributed

to Wu Wen-tsün is Equation (32) in Ritt J.F., op. cit. p. 98.
23 As in the prime decomposition algorithm discussed in Section 35.2
24 If K ⊃ k is a differential field extension of k, α := (a1, . . . , an) ∈ Kn and f ∈

k{X1, . . . , Xn} is a differential polynomial, the evaluation f(α) is by definition
the value Φα(f), where Φα : k{X1, . . . , Xn} → K is the morphism defined by

Φα(Xij) = a
(j)
i for each i, j.
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For his application, there was therefore no need of performing factoriza-
tion of the characteristic set A∗ in order to deduce an irredundant prime
decomposition of I; all one needs is to decompose

√
I as an intersection of

(unmixed) ideals generated by a characteristic set, in order to apply the re-
sults implied by Theorem 42.1.18 and Algorithm 42.2.4 reducing the problem
to zero-testing of ’normal forms’ of each element in G w.r.t. each such char-
acteristic set.

In the algebraic setting k[X1, . . . , Xn], such characteristic set is a set

A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn] ∼= k[V1, . . . , Vd][Z1, . . . , Zr],

where (compare Definition 22.0.1), for each i,

• the degree of Ai in Xj is less than the one of Aj , for each j < i, and
• Ai ∈ k[V1, . . . , Vd][Z1, . . . , Zi−1][Zi]

id est it is exactly what we informally called a weak admissible sequence25.

�

Algorithm 42.3.3 (Wu). Within this approach, Algorithm 42.3.1 is simplified
as follows: given a finite set G ⊂ k[X1, . . . , Xn] generating an ideal I, one

• applyes Algorithm 42.2.4 in order to extract a basic setA∗ := {A1, . . . , Ar};
• returns A∗ and the polynomial I :=

∏r
i=1 Ii where Ii denotes the initial of

Ai,

• and apply the same algorithm to each set G ∪ {Ii}, 1 ≤ i ≤ r �

whose rationale is based on the following

Lemma 42.3.4. Let

• A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn] a characteristic set,
• L the ideal generated by A,
• Ij the initial of Aj, for each j,
• I :=

∏r
i=1 Ii,

• Rem(A) the set26 of all polynomials whose remainder w.r.t. A is 0,
• Sat(A) := L : I∞,
• Z(A) := Z(A) \ Z(I(I)) = {α ∈ kn : A1(α) = · · · = Ar(α) = 0 6= I(α)} .

Then Z(Sat(A)) = Z(A). �

25 Throughout this chapter, I will preserve the language used in the previous books;
so I will substitute with the neologisms of admissible Ritt/Lazard sequence the
terminology introduced by Lazard and his students, which is in any case reported
between parenthesis.

26 Not necessarily an ideal!
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Proof. We have27

Z(Sat(A)) = Z(
√
(A) : I) = Z(

√
(A) \ Z({I}) = Z(A).

�

Corollary 42.3.5 (Ritt). With the same notation and assumptions as in
Lemma 42.3.4 let G ⊂ k[X1, . . . , Xn] be a finite set generating an ideal I such
that A ⊂ I and G ⊂ Rem(A). Then:

(1) L ⊂ I ⊆ Rem(A) ⊆ Sat(A);
(2) if I is prime, then L = I = Rem(A) = Sat(A);
(3) Z(Sat(A)) = Z(A);
(4) Z(A) ⊆ Z(I) ⊆ Z(L);

(5) Z(I) = Z(A) ∪ Z(I+ I(I1)) ∪ · · · ∪ Z(I+ I(Ir)). �

Proof. (1) and (2) are just a reformulation of Theorem 42.1.18 and (3) is
Lemma 42.3.4

Ad (4): Z(A) = Z(Sat(A)) ⊆ Z(I) ⊆ Z(L).
Ad (5): for each α ∈ Z(I):

• ∏r
i=1 Ii(α) 6= 0 ⇐⇒ α ∈ Z(A);

• for some i ≤ r, we have Ii(α) = 0 ⇐⇒ α ∈ Z(I+ {Ii}). �

Corollary 42.3.6 (Wu). With the same notation and assumptions as in
Lemma 42.3.4 and Corollary 42.3.5, for any g ∈ k[X1, . . . , Xn], g ∈ I if and
only if

• the remainder of g w.r.t. A is 0 and

• g ∈ I+ I(Ii) for each i, 1 ≤ i ≤ r. �

Example 42.3.7. Let

G := {X6
1 −X4

1 , (X
4
1 − 2X2

1 )X3, (X
2
1 − 1)X2X4 +X3} ⊂ k[X1, X2, X3, X4].

27 The formula

Z
(√

(A) : I
)
= Z

(√
(A)
)
\ Z ({I})

is a specialization of Z(I : f) = Z(I) \ Z({f})) — where I is a radical polynomial
ideal and f a polynomial in k[X1, . . . , Xn], — whose proof is the following: for
g ∈ I : f and α ∈ Z(I) \ Z({f}) we have 0 = fg(α) = f(α)g(α) and f(α) 6= 0 so
that g(α) = 0. Therefore Z(I) \ Z({f}) ⊂ Z(I : f).

Conversely, assume g satisfies g(α) = 0 for each α ∈ Z(I) \ Z({f})); in other
words, for each α ∈ Z(I), f(α) 6= 0 =⇒ g(α) = 0; thus fg(α) = f(α)g(α) = 0

for each α ∈ Z(I); as a consequence fg ∈
√
I = I and g ∈ I : f .

Thus {g ∈ k[X1, . . . , Xn] : g(α) = 0, α ∈ Z(I) \ Z({f}))} ⊂ (I : f) and
Z(I : f) ⊂ Z(I) \ Z({f}).
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G, being a characteristic set of the ideal it generates, according Ritt’s
solver (Algorithm 42.3.1) we test the irreducibility of X6

1 − X4
1 discovering

the decomposition

Z(G) = Z(G+ {X1 − 1}) ∪ Z(G+ {X1 + 1}) ∪ Z(G+ {X1});

the characteristic set of Z(G+{X1−1}) being {X1−1, X3} which is prime we
have found a root (1, 0) ∈ k(X2, X4)

2; in the same way, Z(G+{X1+1}) gives
the root (−1, 0) ∈ k(X2, X4)

2; the characteristic set A := {X1, X2X4 −X3}
of Z(G+ {X1}) returns a root (0, X3

X2
) ∈ k(X2, X3)

2 of the prime (A) = (A) :
X∞

2 and the decomposition

Z(G) = Z(G+ {X1 − 1})∪Z(G+ {X1 + 1})∪Z((A) : X∞
2 )∪Z(A+ {X2});

the characteristic set B := {X1, X2, X3} of A+ {X2}) is prime and gives the
root (0, 0, 0) ∈ k(X4)

3. So in conclusion we have found the (redundant) prime
decomposition

(G) = (X1 − 1, X3) ∩ (X1 + 1, X3) ∩ (X1, X2X4 −X3) ∩ (X1, X2, X3)

and the manifold decomposition

Z(G) = {(1, a, 0, b), : a, b ∈ k} ∪ {(−1, a, 0, b) : a, b ∈ k}

∪ {(0, a, b, b
a
), a, b ∈ k, a 6= 0} ∪ {(0, 0, 0, b), b ∈ k}.

Wu’s solver (Algorithm 42.3.3) instead returns the root decompositions

Z(G) = Z(G) ∪ Z(G+ {X4
1 − 2X2

1}) ∪ Z(G+ {X2
1 − 1}),

Z(G+ {X4
1 − 2X2

1}) = Z(C1) ∪ Z(C1 + {X2}),
Z(C1 + {X2}) = Z(C3),

Z(G+ {X2
1 − 1}) = Z(C2),

where

C1 = {X2
1 , X2X4 −X3},

C2 = {X2
1 − 1, X3},

C3 = {X2
1 , X2, X3},

and

Z(G) = Z(G) \ Z({(X4
1 − 2X2

1 )(X
2
1 − 1)}) = ∅,

Z(C1) = Z(C1) \ Z({X2}) = {(0, a, b, b
a ), a, b ∈ k, a 6= 0},

Z(C2) = Z(C2) = {(1, a, 0, b), (−1, a, 0, b), a, b ∈ k}.
Z(C3) = Z(C3) = {(0, 0, 0, b), b ∈ k},

�
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42.4 Lazard: Triangular sets

Preserving the same notation as in Sections 42.2 and 42.3, computational
considerations suggested to relax the notion of reduction as follows:

Definition 42.4.1 (Moreno Maza). For any two polynomials A1, A2 ∈
k[X1, . . . , Xn], where A1 is of class p > 0, A2 will be said initially reduced
w.r.t. A1 if its initial is of lower degree in Xp than A1.

Definition 42.4.2 (Aubry et al.). A finite non-empty set

{A1, . . . , Ar} ⊂ k[X1, . . . , Xn]

is called

a triangular set if each Ai is of positive class and there are no two elements
having the same class;

an initially reduced triangular set if
• A1 is of positive class,
• for each j > i, Aj is of higher class than Ai, and
• initially reduced w.r.t Ai;

a fine triangular set if
• A1 is of positive class,
• for each j > i, Aj is of higher class than Ai,
• for each j, the remainder of Ij w.r.t. {A1, . . . , Aj−1} is not zero.

Remark 42.4.3 (Lazard). In connection with this generalization, it is easy to
realize that all the results stated by Ritt for chains and characteristic sets
hold verbatim for any triangular set, non dissimilarly as for Buchberger’s
reduction, where the absence of interreduction of the basis does not effect
the result on normal forms zero-testing.

This justifies also the relaxation of the notion of reduction.
In particular the notion of fine triangular set allows to avoid interreduc-

tion, while preserving the degree in Xp of an element of class p and so the

rank relation between members of triangualar sets. �

Definition 42.4.4 (Aubry et al.). Let G ⊂ k[X1, . . . , Xn] \ {0} be a finite
set generating the ideal I. A finite non-empty triangular set

A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn]

is called

an admissible Ritt sequence (or: Ritt characteristic set) of G if A ≺ B for
each fine triangular set B ⊂ G;

a strong admissible Ritt sequence (or: Wu characteristic set) of G if there
exists a finite set G∗ ⊂ I such that I(G∗) = I and G∗ ⊆ Rem(A).
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Historical Remark 42.4.5. Clearly, the notion of Ritt characteristic set is an
elementary adaptation to triangular sets of the notion of characteristic set
(Definition 42.1.11) and that of Wu characteristic set a precise description of
the particular triangular sets which are produced by Algorithm 42.2.4; both
ideas, therefore are explicitly present in Ritt’s Theory and none is related
with Wu’s results.

Wu’s results are not related with the notion and properties of character-
istic sets; as discussed in Historical Remark 42.3.2, his relevant contributions
consist in using such theory, no more as a solving tool, but as a tool for testing
membership (Corollary 42.3.6), and, in this context, to relax the irrelevant
requirement of primality.

It is Lazard28 the person which, within the Kronecker–Duval philosophy-
cal frame discussed in the first volume and of which he was one of the main
advocates, suggested to reconsider Ritt’s solver in Wu’s relaxed context and
introduced the notion of ’triangular sets’ thus strongly improving the old
notion of ’solving’ as used by Kronecker, Macaualy, Gröner and Ritt and

presented in Section 34.5. �

In this setting, let us now consider

• a triangular set A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn] generating the ideal L,
• Ij the initial of Aj , for each j,
• I :=

∏r
i=1 Ii,

• Rem(A) the set of all polynomials whose remainder w.r.t. A is 0,
• Sat(A) := L : I∞,
• Z(A) := Z(A) \ Z({I}) = {α ∈ kn : A1(α) = · · · = Ar(α) = 0 6= I(α)},
• G ⊂ k[X1, . . . , Xn] be a finite set generating an ideal I such that A ⊂ I and
G ⊂ Rem(A).

Corollary 42.4.6. With the present notation, if A is a strong admissible
Ritt sequence of G, then

(1) L ⊂ I ⊆ Rem(A) ⊆ Sat(A);
(2) if I is prime, then L = I = Rem(A) = Sat(A);
(3) Z(Sat(A)) = Z(A);
(4) Z(A) ⊆ Z(I) ⊆ Z(L);
(5) Z(I) = Z(A) ∪ Z(I+ I(I1)) ∪ · · · ∪ Z(I+ I(Ir));

28 In

Lazard D., Solving zero-dimensional algebraic systems J. Symb. Comp. 15
(1992), 117–132
Lazard D., A new method for solving algebraic systems of posisitive dimen-
sion Disc. Appl. Math. 33 (1991), 147–160
Lazard D. Systems of algebraic equations (algorithms and complexity) Sym-
posia Mathematica 34 (1993), 84–105, Cambridge Univ. Press
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(6) for each g ∈ k[X1, . . . , Xn],

g ∈ I ⇐⇒ g ∈ Rem(A) ∩ I+ I(I1) ∩ · · · ∩ I+ I(Ir).

�

Proposition 42.4.7. If, with the present notation, A is fine, then the fol-
lowing conditions are equivalent

(1) A is an admissible Ritt sequence of G;
(2) I ⊂ Rem(A).

Moreover it implies

(3) A is a strong admissible Ritt sequence of G

Proof. It is just a reformulation of Lemma 42.1.12. �

42.5 Admissible Lazard Sequence

Lazard reconsidered the notion of triangular sets in the same frame as ad-
missible sequences (Definition 8.2.2) and admissible Duval sequences (Sec-
tion 11.4).

Let us begin by explicitly interpreting the field k as a quotient field L0 := k
of some domian R0; id est we assume that we are given a domain R0 and a
multiplicative system S0 ⊂ R0 such that29

k =: L0 := {a
b
: a ∈ R0, b ∈ S0}.

Then let us consider a triangular set30

A := {f1, . . . , fr} ⊂ R0[X1, . . . , Xn]

where, by definition, we can wlog assume that

0 < class(f1) < . . . < class(fi) < class(fi+1) < . . . < class(fr).

We also set di := degj(fi) where j := class(fi).
We can then now partition the variables among ’parameters’ (or: ’inde-

pendent indeterminates’) and the others:

29 we can for instance take R0 := L0 := k and S0 := {1}; but for k := Q we could
consider instead R0 := Z, S0 := N \ {0}.

The reason why we choose to represent the field elements as explicit fractions
with denominators in a restricted chosen multiplicative system S0 is in order to
force uniqueness: see the note below.

30 Each element fi is chosen with coefficients not in L0 but in R0; as a consequence
among all possible associated polynomials we can restrict our choice to those such
that their leading coefficient is in S0. If we take R0 := L0 := k and S0 := {1}
this simply means to require that each fi is monic.
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Definition 42.5.1 (Lazard). A variable Xj is called

algebraic for A if j = class(fi) for some fi ∈ A which is said31 to introduce
Xj;

trascendental for A if j 6= class(fi) for each fi ∈ A. �

As usual we relabel the variables as

k[X1, . . . , Xn] ∼= k[V1, . . . , Vd, Z1, . . . , Zr]

so that {V1, . . . , Vd} (respectively {Z1, . . . , Zr}) is the set of the trascendental
(respectively: algebraic) variables for A.

Then we can recursively define, for each j,

i the value such that A∩R0[X1, . . . , Xj] = {f1, . . . , fi} or, equivalently, the
maximal value for which class(fi) ≤ j,

δ the value such that {V1, . . . , Vδ} = {X1, . . . , Xj} ∩ {V1, . . . , Vd},
Rj := R0[X1, . . . , Xj]/(f1, . . . , fi),
Sj := {a ∈ Rj : a is not a zero-divisor};
Lj the quotient ring Lj := {a

b : a ∈ Rj , b ∈ Sj};
πj := R0[X1, . . . , Xj] → Rj and πj := L0[X1, . . . , Xj] → Lj the canonical

projections.

In particular, for each j

if Xj = Zi is algebraic, so that it is introduced by fi and j = class(fi), we
have
Rj = Rj−1[Xj ]/πj−1(fi) ∼= R0[X1, . . . , Xj ]/(f1, . . . , fi),
Sj = Sj−1 = S0[V1, . . . , Vδ],
Lj = Lj−1[Xj ]/πj−1(fi) ∼= L0(V, . . . , Vδ)[Z1, . . . , Zi]/(f1, . . . , fi);

if Xj = Vδ is instead trascendental, we have
Rj = R0[X1, . . . , Xj ]/(f1, . . . , fi) ∼= Rj−1[Xj ],
Sj = Sj−1[Xj ] = S0[V1, . . . , Vδ],
Lj = Lj−1(Xj) ∼= L0(V1, . . . , Vδ)[Z1, . . . , Zi]/(f1, . . . , fi).

Definition 42.5.2. We say that

A := {f1, . . . , fr} ⊂ R0[X1, . . . , Xn]

is an admissible Lazard sequence if, for each h, 1 ≤ h ≤ r, setting j :=
class(fh), it holds

(i) [triangular] class(fh) > 0 and class(fh) > class(fi), for each i < h32;
(ii) [reduced] the degree of fh in the algebraic variable Xj = Zi is strictly

less than the one of fi, degj(fh) < di for each i < h;

31 This concept is present in Ritt, op. cit. p.34.
32 As a consequence A is a triangular set; we therefore use the same notation

as above denoting (π1, . . . , πn) and (L0, . . . , Ln) the corresponding fields and
projections.
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(iii)[normalized] T<(fh) ∈ k[V1, . . . , Vd][Zh], (compare Remark 42.2.2);
(iv) [R0-normalized] lc(fh) ∈ S0;
(v) [squarefree] Res(πj−1(fh), πj−1(f

′
h)) ∈ Lj−1 is invertible33;

(vi) [primitive] Cont(πj−1(fh)) = 1 in Lj−1[Xj ].

A is called a weak admissible Lazard sequence (or: a regular set) whose
associated map is (π1, . . . , πn) and whose associated tower of simple exten-

sions is (L0, . . . , Ln) if it satisfies only conditions (i-iv). �

Definition 42.5.3 (Lazard). Let

• A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn] be an admissible Lazard sequence,
• L the ideal generated by A,
• Ij the initial of Aj, for each j,
• I :=

∏r
i=1 Ii.

Then the set

Z(A) := Z(A) \ Z({I}) = {α ∈ kn : A1(α) = · · · = Ar(α) = 0 6= I(α)}

is called the quasi-component associated to A and the ideal

Sat(A) := L : I∞ := H

is called the quasi-prime ideal associated to A.

Remark 42.5.4 (Lazard). Condition (iii) requires (compare Remark 42.2.2)
that, for each h and i, denoting j := class(Lpi(fh)) we haveXj ∈ {V1, . . . , Vd}.
If this is not the case and Xj = Zι for some ι, then, either

• gcd(Lpi(fh), fι) 6= 1 and we find a partial factorization of fι or
• gcd(Lpi(fh), fι) = 1 = sLpi(fh) + tfι for suitable polynomials s, t ∈
k[X1, . . . , Xj ] so that Fh := sfh is such that class(Lpi(Fh)) < class(Lpi(fh).

�

Remark 42.5.5. If

• the ideal I(A) ⊂ k[X1, . . . , Xn] is zero-dimensional and we choose R0 :=
L0 := k, S0 := {1}, or

• we restrict our considerations to its extension I(A)k(V1, . . . , Vd)[Z1, . . . , Zr]
and we choose R0 := L0 := k(V1, . . . , Vd), S0 := {1}

in both cases all variables are algebraic and a setA := {f1, . . . , fr} where each
fi is chosen monic, is an admissible Lazard sequence iff it is an admissible
Duval sequence.

In fact, if A is an admissible Lazard sequence, then (v) allows to deduce
that, since Res(f1, f

′
1) ∈ L0, (Proposition 6.6.4) f1 is squarefree in L0[X1]

and L1 is a Duval field (Definition 11.4.2); and, inductively, that

33 As a consequence πj−1(fh) is squarefree.
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• Lj−1 is a direct sum of fields Lj−1 = ⊕ιLj−1 κ, so that, denoting πj−1 κ :
Lj−1 → Lj−1 κ the canonical projection,

• condition (v), Res(πj−1(fj), πj−1(fj)
′) ∈ Lj−1, implies that

Res(πj−1 κπj−1(fj), πj−1 κπj−1(fj)
′) ∈ Lj−1 κ

• and that each πj−1 κπj−1(fh) is squarefree in Lj−1κ[Zj ]
• so that Lj is a Duval field.

Conversely (i-ii) is satisfied by any admissible sequence and (v) by an
admissible Duval sequence, (iii-iv) are equivalent to the requirement that the

fi’s are monic, and (vi) is trivially satisfied since we assume S0 := {1}. �

Remark 42.5.6 (Lazard). The relation with admissible Ritt sequence is thus
expounded by Lazard34:

The notion of [admissible Lazard sequence] is stronger than the no-
tion of characteristic set in the Ritt–Wu Wen-tsün method: Charac-
teristic sets are only subject to conditions (i) and (ii); but we will
see that this is not sufficient; in particular a characteristic set may
correspond to an empty ”component” of the zero-set. This is avoided
by condition (iii). The conditions (iv) to (vi) are needed in order
to obtain the unicity of the traiangular set associated with a quasi-
component.

and35

Wu Wen-tsün’s algorithm, like Buchberger’s one, depends on many
choices; moreover, the result of Wu Wen-tsün’s algorithm is not
uniquely determined. [...] Thus there is a need for a more canonical
algorithm, that is an algorithm in which the result (or even better
the intermediate results) is more intrinsic, that is, depends on the
algebraic structure of the input and not on the algorithm itself. This
definition of ”intrinsic” is rather imprecise; it may be better under-
stood by considering the example of an algorithm which is intrinsic,
namely the subresultant algorithm, which has the property that the
coefficients of the successive remainders may be defined as subdeter-
minants of Sylvster matrix.
[..]
For getting a canonical result, [Lazard] strengthen the definition of
a triangular set by asking that the polynomials in it are squarefree,
primitive and monic in some technical sense. With these conditions,
the set of the solutions of an algebraic system is uniquely decomposed

34 Lazard D., A new method for solving algebraic systems of posisitive dimension
Disc. Appl. Math. 33 (1991), p.151.

35 Lazard D. Systems of algebraic equations (algorithms and complexity) Symposia
Mathematica 34 (1993), 84–105, Cambridge Univ. Press .
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in so called quasi-components which are themselves in one to one
corrispndence with these strengtened triangular systems.

Historical Remark 42.5.7. The existence in Wu’s solver of empty components
Z(A) := Z(A) \ Z(I(I)) = {α ∈ kn : A1(α) = · · · = Ar(α) = 0 6= I(α)} is il-
lustrated by Example 42.3.7 where for the characteristic set

G := {f1, f2, f3} := {X6
1 −X4

1 , (X
4
1 − 2X2

1 )X3, (X
2
1 − 1)X2X4 +X3}

we have

I =

3∏

i=1

Ii = (X4
1 − 2X2

1 )(X
2
1 − 1) =

√
f1 · (X3

1 − 2X1)

so that Z(G) = ∅.
This of course cannot happen in the old-fashioned Ritt’s solver where

each ’solution’ is the characteristic set of a prime. As I already remarked
in Historical Remark 42.4.5, Lazard’s contribution consists in relaxing the
notion of ’characteristic sets’ in order to avoid factorization while preserving
both the general structure and the relevant properties.

In order to reach this result, it is clearly sufficient to impose condition (iii),
which, as we have observed in Remark 42.5.4, can be forced just performing
the Extended Euclidean Algorithm to Lpi(fh) and fι in all cases in which
Xj = Zι for j := class(Lpi(fh).

The comparison with the notion of ’solving’ discussed in Section 34.5 is
striking: what Lazard did was simply substituting regular sets to admissible
sequences, quasi-primes to primes and quasi-components to irreducible vari-

eties! �

Theorem 42.5.8 (Aubry et al.). Let

A := {f1, . . . , fr} ⊂ R0[X1, . . . , Xn]

be a weak admissible Lazard sequence whose associated map is (π1, . . . , πn)
and whose associated tower of simple extensions is (L0, . . . , Ln). Then for
each p ∈ R0[X1, . . . , Xn], the following conditions are equivalent

(1) πn(p) = 0,
(2) p ∈ Rem(A),
(3) p ∈ Sat(A).

Proof. The proof is by induction by n. We begin by remark that if we set π0
the identity on R0 and A := ∅ the statements become

(1) p = π0(p) = 0,
(2) p ∈ Rem(∅),
(3) p ∈ Sat(∅) = {0}
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which are obviously equivalent.
So we can assume n > 0 and that the theorem holds for R0[X1, . . . , Xn−1]

and we denote S := Sat(A) ⊂ R0[X1, . . . , Xn−1].

If Xn is trascendental, for each p =
∑d

i=0 aiX
i
n ∈ R0[X1, . . . , Xn−1][Xn]

the result follows by induction since we have

(1) πn(p) = 0 ⇐⇒ πn−1(ai) = 0 for each i,
(2) p ∈ Rem(A) ⇐⇒ ai ∈ Rem(A) for each i,
(3) p ∈ Sat(A) ⇐⇒ ai ∈ S for each i.

If, instead Xn = Zi is algebraic denote r the remainder of p w.r.t. fi and
express it as r =

∑d
l=0 alX

l
n ∈ R0[X1, . . . , Xn−1][Xn]. Then the result is a

consequence of the following claims:

(1) πn(p) = 0 ⇐⇒ πn(r) = 0;
(2) πn(r) = 0 ⇐⇒ πn−1(r) = 0;
(3) πn−1(r) = 0 ⇐⇒ πn−1(al) = 0 for each l;
(4) r ∈ Rem(A) ⇐⇒ al ∈ Rem(A) for each l;
(5) πn−1(r) = 0 ⇐⇒ r ∈ Rem(A);
(6) πn(p) = 0 ⇐⇒ p ∈ Rem(A);
(7) πn(p) = 0 ⇐⇒ p ∈ Sat(A),

whose proof is the following:

(1) By definition πn(Lp(fi)) = πn−1(Lp(fi)) ∈ Ln is a unit, while πn(fi) = 0;
therefore from r = Lp(fi)

wp+ qfi we have

πn(r) = πn(Lp(fi))
wπn(p) + πn(q)πn(fi) = πn(Lp(fi))

wπn(p)

whence the claim.
(2) Since πn(r) = 0 ⇐⇒ πn−1(r) ∈ (πn−1(fi)), the claim follows because

degn(r) < degn(fi) and πn−1(Lp(fi)) ∈ Ln is a unit.
(3) obvious;
(4) obvious;
(5) by inductive assumption;
(6) by the list of implications and by the remark that the remainders of r

and p are the same;
(7) since Rem(A) ⊂ Sat(A), it is sufficient to prove that p ∈ Sat(A) =⇒

πn(p) = 0.
We have Imp ∈ I(A) where m is a suitable integer and I is the product
of all initials of the elements in A.
Clearly πn(I) is a unit, so that πn(I

mp) = 0 implies πn(p) = 0. �

Theorem 42.5.9. Let A := {A1, . . . , Ar} ⊂ k[X1, . . . , Xn] be a triangular
set generating the ideal L.

Then the following condition are equivalent:

(1) A is a weak admissible Lazard sequence;
(2) A is an admissible Ritt sequence of Sat(A);
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(3) Sat(A) = Rem(A).

Proof.

(1) =⇒ (3) is Theorem 42.5.8.
(2) ⇐⇒ (3) is a consequence of Lemma 42.1.12.
(3) =⇒ (1) Assume that (3) holds while (1) does not. Inductively we can

assume that B := A ∩ R0[X1, . . . , Xn−1] is a weak admissible Lazard
sequence whose associated map is (π1, . . . , πn−1) and whose associated
tower of simple extensions is (L0, . . . , Ln−1).
Clearly Xn = Zr is algebraic and, since (1) does not hold, the initial
Ir of Ar is such that πn−1(Ir) is a zero divisor in Ln−1, so there is
p ∈ k[X1, . . . , Xn−1] such that πn−1(Irp) = 0 and πn−1(p) 6= 0. Therefore
Irp ∈ Sat(B) and the remainder r of p w.r.t. A is not zero. Clearly
also Irr ∈ Sat(B) and r ∈ Sat(A). Thus r ∈ k[X1, . . . , Xn−1] satisfies

r ∈ Sat(A) and r /∈ Rem(A) giving the required contradiction. �

An ideal [Sat(A)] which is the saturated ideal of a [weak admissible
Lazard sequence A = {A1, . . . , Ar)] is said triangularizable; it is al-
ways equi-dimensional of dimension [n − r], where n is the number
of variables and [r] the length of [A]. A prime ideal is always tri-
angularizable, and the primes associated to a triangularizable ideal
are simply obtained by factoring recursively each [Ai] in the field
extensions definied by the factors of [A1, . . . , Ai−1].
It should be remarked here that [weak admissible Lazard sequences]
are a good alternative to Gröbner base for representing triangular-
izable and prime ideals in computers: the number of polynomials in
a triagular set is always bounded by the number of variables, which
is not the case for generating sets of Gröbner bases of prime ideals.
Computing a Gröbner basis from a triangular set may be done by any
Gröbner base algorithm, and is usually not too difficult. The inverse
transformation is very easy for prime ideals. 36

Actually, the standard way for a complete resolution of a polynomial
system consists in the following scheme.
1 Compute a lex Gröbner base, either directly or through a change
base ordering. This step checks zero-dimensionality.

2 Deduce from it a set of [weak admissible Lazard sequences].
3 For each of these triangular systems, compute a RUR [Rational
Univariate Representation].

4 For each RUR compute a numerical approximation of the solu-
tions together with a bound of the error. 37

36 D. Lazard, Resolution of polynomial systems Proc. ASCM 2000, World Scientific
(2000) 1–8

37 D. Lazard, On the specification for solvers of polynomial systems Proc. ASCM
2001, World Scientific (2001) 1–10
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In the next sections we will discuss efficient algorithms to compute trian-
gular sets; the first, due to Lazard returns a weak admissible Lazard sequences
and applyies also in the non-zero-dimensional case; the second, by Möller re-
quires zero-dimensionality. In the last section we discuss the notion of RUR
and the related algorithms.

42.6 Lazard’s Solver

Let us begin by remarking that, since admissible Lazard sequences and ad-
missible Duval sequences coincide, arithmetical operations in each member
Li of a tower of simple extensions, can be performed à la Duval.

In particular:

• when πj(p) ∈ Lj — where p ∈ k[X1, . . . , Xj]\k[X1, . . . , Xj−1] and Xj = Zi

is algebraic — is a zero-divisor, then it is sufficient to compute, in Lj−1[Zi],

f ′ := gcd(πj−1(p), πj−1(fi)) and f” :=
πj−1(fi)

f ′ in order to obain a Duval
splitting

Lj
∼= Lj−1[Zi]/f

′ ⊕ Lj−1[Zi]/f
′

where, denoting π′ : Lj → Lj−1[Zi]/f
′ and π” : Lj → Lj−1[Zi]/f” the

canonical projections, π′πj(p) = 0 and π”πj(p) is invertible;
• testing invertibility of πj(p) ∈ Lj, for a polynomial

p ∈ k[X1, . . . , Xj ] \ k[X1, . . . , Xj−1]

consists in testing invertibility of
– πj−1(Lp(p)) ∈ Lj−1 if Xj is trascendental,
– Res(πj−1(fh), πj−1(fi)) ∈ Lj−1 if Xj = Zi is algebraic;

• computing the inverse of an invertible element πj(p) ∈ Lj — where p ∈
k[X1, . . . , Xj ] \ k[X1, . . . , Xj−1] and Xj = Zi is algebraic — in principle
requires to compute gcd(p, fi) in Lj−1[Xj ] but

38

two difficulties arise: the first one is that the Euclidean algorithm
and its generalizations are defined only for polynomials on integer
rings. Fortunately, [Duval’s Model] permits us to compute as if the
coefficients were in a field if we split when we encounter a zero-divisor.
The second difficulty is to decide which Euclidean algorithm to use: the
coefficients being polynomials, an elementary algorithm will generate a
swell of coefficients; thus we have to use the subresultant algorithm39;
but it needs exact quotients which are not well defined in our context.

38 Lazard D., A new method for solving algebraic systems of posisitive dimension
Disc. Appl. Math. 33 (1991), p. 154

39 id est the version of the Euclidean Algorithm proposed by Collins and Brown
and briefly discussed in Example 1.6.1 and Historical Remarks 1.6.2.

It consists, given two polynomials P0, P1 ∈ D[X], where D is a domain, in
producing, by means of pseudo-division algorithm, a PRS

P0, P1, . . . , Pr = gcd(P0, P1) ∈ D[X]
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We suggest the following approach: apply the subresultant algorithm
to the input viewed as multivariate polynomials in [k[X1, . . . , Xj]]; re-
duce the subresultants, starting from low degrees; the first which does
not reduce to zero reduces to a factor of [fi] viewed as a polynomial
[in Lj−1[Xj ] = Lj−1[Zi]].

• Condition (vi) requires to perform gcd computations over a Duval field
Lj−1[Xj ] = Lj−1[Zi]; however condition (iv) implies that one of the coef-
ficients of fi is a member of k[V1, . . . , Vd] thus no splitting occurs.

The central procedure of Lazard’s Solver is an algorithm intersect(p,A)
where p ∈ k[X1, . . . , Xn] and A ⊂ k[X1, . . . , Xn] is an admissible Lazard
sequence, and whose output is a finite family B := {B1, . . . ,Bl} of admissible
Lazard sequences which satisfy

Z(I(p)) ∩ Z(A) ⊆ ∪l
i=1Z(Bi) ⊆ Z(I(p)) ∩ Z(A).

Given a finite family A := {A1, . . . ,Al} of admissible Lazard sequences
we denote

intersect(p,A) := ∪l
i=1intersect(p,Ai)

Finally, given a finite set

G := {g1, . . . , gm} ⊂ k[X1, . . . , Xn],

the procudere

solve(G) := intersect(g1, intersect(g2, intersect(· · · intersect(gm, ∅))))

returns, as output, a finite family B := {B1, . . . ,Bl} of admissible Lazard
sequences which satisfy

which satisfes the relations

Pi+2/ci = biPi −Qi+1Pi+1

for suitable Qi+1 ∈ D[X] and bi ∈ D, and predictable elements ci ∈ D. These
data allow also to compute (essentially as in Proposition 1.3.1) polynomials Si, Ti

satisfying the Bezout’s Identities Pi = P0Si + P1Ti.
In the quoted passage, the proposed approach is to apply the algorithm

to πj−1(fi) and πj−1(p) in Lj−1[Xj ] = Lj−1[Zi], where p ∈ k[X1, . . . , Xj ] \
k[X1, . . . , Xj−1] and Xj = Zi is algebraic. The technical problem consists that
the computation requires zero-testing; the proposal solution requires to

– compute a PRS fi, p, P2, . . . , Pr of fi and p in k[X1, . . . , Xj−1][Xj ],
– evaluate πj−1(Pr), πj−1(Pr−1), . . . until a non-zero element πj−1(Pρ) is produced

which therefore satisfies

πj−1(Pρ) = gcd(πj−1(fi), πj−1(p)) ∈ Lj−1[Xj ] = Lj−1[Zi].
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Z(G) = ∩iZ(I(gi))

= Z(I(g1)) ∩
(
Z(I(g2)) ∩

(
· · ·
(
Z(I(gm)) ∩ Z(∅)

)))

= ∪l
i=1Z(Bi).

Algorithm 42.6.1 (Lazard). intersect(p,A) applies another procedure

(r) := normalize(p,A)

whose input is the polynomial p ∈ k[X1, . . . , Xn] and the admissible Lazard
sequence

A := {f1, . . . , fr} ⊂ R0[X1, . . . , Xn] = R0[V1, . . . , Vd][Z1, . . . , Zr]

w.r.t. which we use the same notation as in Section 42.540 and which computes
two polynomials q and r such that

(1) πn(qp) = πn(r),
(2) πn(p) = 0 ⇐⇒ πn(r) = 0 and
(3) r is reduced, normalized and R0-normalized.

Here is the procedure:

set q := 1,
[reduced] we compute the remainder r of p w.r.t. A,
[normalized] while

T<(r) := Xδι
jι
X

δι−1

jι−1
· · ·Xδ1

j1
Xδ0

j0
/∈ k[V1, . . . , Vd], δι 6= 0

then
• compute (compare Remark 42.5.4) a polynomial41 s ∈ k[X1, . . . , Xjι ]
for which class(Lpι(sr) < class(Lpι(r),

• compute the remainder r of sr w.r.t. A and
• set q := sq,

[R0-normalized] if lc(r) /∈ S0 choose42 c ∈ R0 such that lc(cr) ∈ S0 and set

r := cr, q := cq. �

Algorithm 42.6.2 (Lazard). We can now present the procedure

B := intersect(p,A)

where A is the admissible Lazard sequence

40 In particular {V1, . . . , Vd} (respectively {Z1, . . . , Zr}) is the set of the trascen-
dental (respectively: algebraic) variables for A.

41 Here a Duval splitting could happen.
42 If we have R0 := L0 := k and S0 := {1}, this simply requires to choose c :=

lc(r)−1.
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A := {f1, . . . , fr} ⊂ R0[X1, . . . , Xn] = R0[V1, . . . , Vd][Z1, . . . , Zr]

and we use the same notation as in Section 42.543:

(1) B := ∅, (r) := normalize(p,A)
(2) If

• r = 0: set B := {A} and exit;
• r ∈ k \ {0}: set B := ∅ and exit;
• r /∈ k: goto (3);

(3) expressing r as
r = Lp(r)Xδ

j + r

where j = class(r), Lp(r) ∈ k[X1, . . . , Xj−1], degj(r) < δ = degj(r), set

B := B ∪ intersect(r, intersect(Lp(r),A)).

(4) Compute Cont(r) ∈ k[X1, . . . , Xj−1][Xj ] and set r := r
Cont(r) , thus forc-

ing r to be primitive.
(5) Setting j = class(r), denote i, δ the values such that

• A ∩R0[X1, . . . , Xj ] = {f1, . . . , fi}
• class(fi) < j
• {V1, . . . , Vδ} = {X1, . . . , Xj} ∩ {V1, . . . , Vd}
• Xj = Vδ is trascendental,
and set

A−
j := {f1, . . . , fi}, A+

j := {fi+1, . . . , fr}.
(6) Compute R := Res(πj−1(r), πj−1(r

′)) ∈ Lj−1.
• If R is invertible, so that πj−1(r) is squarefree in Lj−1[Xj ], goto (7)
• If, instead, R is not invertible, then
– compute44, using the subresultant algorithm, a factor r0 | r such
that, in Lj−1[Xj ],

πj−1(r0) = gcd(πj−1(r), πj−1(r
′)),

– set r := r/r0
– goto (3)

(7) If A+
j = ∅ set C := A−

j ∪ {r}
(8) If A+

j 6= ∅
• compute C := intersect(fi+1, intersect(· · · intersect(fr,A−

j ∪{r}))).
• Set C := {C ∈ C : normalize(fl, C−) 6= 0 for each l, i < l ≤ r}45.

(9) B := B ∪ intersect(p,C). �

43 In particular {V1, . . . , Vd} (respectively {Z1, . . . , Zr}) is the set of the trascen-
dental (respectivelty: algebraic) variables for A.

44 This can produce a Duval splitting.
45 Where C− = C ∪R0[X1, . . . , Xj ], j = class(r).
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Example 42.6.3. Let us compute solve(G) where (compare Example 42.3.7)

G := {f1, f2, f3} ⊂ k[X1, X2, X3, X4]

and

f1 := X6
1 −X4

1 , f2 := (X4
1 − 2X2

1 )X3, f3 := (X2
1 − 1)X2X4 +X3

We have

normalize(f3, ∅) = f3,
C1 := {f3} = {(X2

1 − 1)X2X4 +X3}, normalize(f3, C−
1 ) = f3,

intersect(f3, ∅) = {C1} =: C1,
normalize(f2, C1) = f2

r1 := Lp(f2) = X4
1 − 2X2

1

normalize(r1, C1) = r1;
r2 :=

√
r1 = X3

1 − 2X1

C2 := C−
1 ∪ {r2} = {r2} = {X3

1 − 2X1}
normalize(f3, C2) = X2X4 +X3(X

2
1 − 1) =: r3

46,
r4 := Lp(r3) = X2, r5 := r3 − r4X4 = (X2

1 − 1)X3

normalize(r4, C−
2 ) = r4

C3 := C−
2 ∪ {r4} = {r2, r4} = {X3

1 − 2X1, X2},
intersect(r4, {C2}) = {C3}
normalize(r5, C−

3 ) = X3 =: r6
47,

C4 := C−
3 ∪ {r6} = {r2, r4, r6} = {X3

1 − 2X1, X2, X3},
normalize(r5, C−

3 ) = r5,
intersect(r5, {C3}) = {C4}
C5 := C2∪{r3} = {r2, r3} = {X3

1 −2X1, X2X4+X3(X
2
1 −1)}

C2 := {C4, C5}
intersect(f3, C2) = C2

normalize(r1, C−
i ) 6= 0, i ∈ {4, 5}

intersect(r1,C1) = C2
f2

Cont(f2)
= X3 = r6,

C6 := C−
1 ∪ {r6} = {r6} = {X3}

normalize(f3, C6) = (X2
1 − 1)X2X4 =: r7

Lp(r7) = (X2
1 − 1)X2 =: r8

normalize(r8, C6) = r8
Lp(r8) = (X2

1 − 1) =: r9
normalize(r9, C6) = r9

C7 := C−
6 ∪ {r9} ∪ C+

6 = {r9, r6} = {X2
1 − 1, X3}

intersect(r9, {C6}) = {C7}
r8

Cont(r8)
= X2 = r4,

C8 := C6 ∪ {r4} = {r4, r6} = {X2, X3}
intersect(r8, {C6}) = {C7, C8}

46 We have (X2
1 − 1)f3 −X1X2X4r2 = X2X4 +X3(X

2
1 − 1).

47 We have (X2
1 − 1)r5 −X1X3r2 = X3.
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r7
Cont(r7)

= X4 = r10,

C9 := C−
6 ∪ {r10} = {r6, r10} = {X3, X4}

intersect(f3, {C6}) = {C9}
C2 := {C4, C5, C7, C8, C9}
normalize(f2, C−

i ) 6= 0, i ∈ {4, 5, 7, 8, 9}
intersect(f2,C1) = intersect(f2, C1) = C2

Rem(f1, r2) = 2X2
1 := r11,

by Duval splitting we get
r12 := X1,

normalize(r11, {r12}) = r12,
normalize(r4, {r12}) = r4,
normalize(r6, {r12, r4}) = r6
C11 = {r12, r4, r6} = {X1, X2, X3},

r13 := X1 − 2
normalize(r11, {r13}) = 4

intersect(f1, C4) = C11,
Rem(f1, r2) = 2X2

1 := r11,
by Duval splitting we get

r12 := X1,
normalize(r11, {r12}) = r12
normalize(r3, {r12}) = X2X4 −X3 =: r14,
C12 := {r11, r14} = {X1, X2X4 −X3}

r13 := X1 − 2
normalize(r11, {r13}) = 4

intersect(f1, C5) = C12
normalize(f1, C7) = 0,
normalize(f1, C8) = f1,√
f1 = X3

1 −X1 =: r15,
intersect(f1, C8) = {r15, r4, r6} = {X3

1 −X1, X2, X3} =: C13
normalize(f1, C9) = f1,√
f1 = X3

1 −X1 =: r15,
intersect(f1, C9) = {r15, r6, r10} = {X3

1 −X1, X3, X4} =: C14
solve(G) = intersect(f1,C2) = C3 := {C11, C12, C7, C13, C14}

so that

Z(C11) = Z({X1, X2, X3}) = {(0, 0, 0, a), a ∈ k, },
Z(C12) = Z({X1, X2X4 −X3}) = {(0, a, b, b

a
), a, b ∈ k, a 6= 0},

Z(C7) = Z({X2
1 − 1, X3}) = {(x, a, 0, b), x ∈ {1,−1}, a, b ∈ k, },

Z(C13) = Z({X3
1 −X1, X2, X3}) = {(x, 0, 0, a), x ∈ {0, 1,−1}, a ∈ k, },

Z(C14) = Z({X3
1 −X1, X3, X4}) = {(x, a, 0, 0), x ∈ {0, 1,−1}, a ∈ k, },

where
Z(C13) ∪ Z(C14) ⊂ Z(C12) ∪ Z(C7).
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Algorithm 42.6.4 (Lazard). For to removing redundant components, Lazard
proposes an algorithm inclusion?(T, U) which is performed to the set of the
quasi-components ordered by increasing dimension and in which each quasi-
component T is compared with each component U of higher dimension to
test whethere T ⊂ U .

The procedure consists in checking whether normalize(f, T ) = 0 for each
f ∈ U , the answer being positive iff all tests have success.

Of course the tests produce a Duval-splitting in T . �

Example 42.6.5. For instance, with the present example, the tests

inclusion?(Z(Ci),Z(C12)), i ∈ {13, 14},

return the splittings

Z(C13) = Z(C7) ∪ Z(C′
13), C′

13 = Z({X1, X2, X3}) = {(0, 0, 0, a), a ∈ k, }
Z(C14) = Z(C7) ∪ Z(C′

14), C′
14 = Z({X1, X2, X3}) = {(0, a, 0, 0), a ∈ k, }

the answer being positive for the components Z(C′
i).

42.7 Ritt bases and Gröbner bases

Let k be a field of characteristic zero, P := k[X1, . . . , Xn],

T := {Xa1
1 · · ·Xan

n : (a1, . . . , an) ∈ Nn},

< be the lexicographical ordering on T induced by X1 < . . . < Xn.
Let I ⊂ P and let G := {g1, . . . , gs} be the reduced Gröbner basis of I

ordered so that

T(g1) < T(g2) < . . . < T(gs−1) < T(gs);

and denote, for each i, 1 ≤ i ≤ n, Gi := G ∩ k[X1, . . . , Xi].
Adapting Definition 42.5.1, we say that a variable Xi is called

algebraic for I if there is g ∈ Gi \Gi−1

trascendental for I if Gi = Gi−1.

As usual we relabel the variables as

k[X1, . . . , Xn] ∼= k[V1, . . . , Vd, Z1, . . . , Zr]

so that {V1, . . . , Vd} (respectively {Z1, . . . , Zr}) is the set of the trascendental
(respectively: algebraic) variables for G.

To each reduced lex Gröbner basis G we associate a set M(G) inductively
(on the rank r := r(I(G)) of the ideal generated by G as follows:

if r = 1, then set M(G) := {g1},
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if r > 1, denoting i the value for which Zr = Xi, so that Gi \Gi−1 6= ∅ and
(as we will prove below) M(Gi−1) is a triangular set, then we set
• M(G) := M(Gi−1), if Gi ⊂ Rem(M(Gi−1));
• if, instead, Gi 6⊂ Rem(M(Gi−1) then we set M(G) := M(Gi−1) ∪
{gj} where j is the minimal value for which the remainder of gi w.r.t.
M(Gi−1) is not zero.

Definition 42.7.1 (Aubry et al.). The set M(G) defined above is called
the median set of I, where I is the ideal generated by the lex reduced Gröbner

basis G. �

Example 42.7.2. For

G := {X1X2, X2X3, X3X4} ∈ k[X1, X2, X3, X4] ∼= k[V1][Z1, Z2, Z3]

we set

M(G2) = {X1X2},
M(G3) = M(G2) since X2X3 ∈ Rem(M(G2)),

M(G) = M(G2) ∪ {X3X4} = {X1X2, X3X4}. �

Proposition 42.7.3 (Aubry et al.). Let G ⊂ P be a reduced lex Gröbner
basis generating an ideal I and let M(G) be its medial set. Then

(1) M(G) is a non empty triangular set;
(2) M(G) ⊆ I ⊆ Rem(M(G));
(3) M(G) is a fine triangular set;
(4) M(G) is an admissible Ritt sequence;
(5) M(G) is initially reduced.

Proof.

(1) Obvious,
(2) The only non trivial result is the inclusion I ⊆ Rem(M(G)). Assume

that there is f ∈ I for which f /∈ Rem(M(G)) and denote r its remainder
w.r.t. M(G) remarking that r ∈ I.
Therefore there is g ∈ G such that T(g) | T(r). Since r (and so also
T(r)) is reduced, the same is true for T(g). Let i := class(g), and A :=
{h ∈ M(G) : class(h) < i}. Remark that either
• Gi ⊂ Rem(A) and A = M(Gi), or
• Gi 6⊂ Rem(A) and there is h ∈ Gi such that {h} = M(Gi) \ A
so that there are three cases: either
(a) g ∈ Rem(A), or48

(b) g = h ∈ M(G) \ A or
(c) g 6= h =⇒ T(g) > T(h) 49

48 g /∈ Rem(A) so that Gi 6⊂ Rem(A) and M(Gi) \ A = {h}.
49 We assume lc(f) = 1 for each f ∈ G so that T(g) = T(h) =⇒ g = h.
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but all these cases reduce to a contradiction:
(a) contradicts the assumption that T(g) is reduced;
(b) ditto;
(c) cannot hold for the same reason: in fact, class(h) = i = class(g) and

T(g) > T(h) implie degi(T(g)) ≥ degi(T(h)) = degi(h) which in

turn implies that T(g) is reduced by h. �

(3) Assume that for some g ∈ M(G) the remainder of Lp(g) w.r.t.

A := {h ∈ M(G) : T(h) < T(g)} = {h ∈ M(G) : class(h) < class(g)}

is zero, so that, denoting j := class(g) and g′ ∈ k[X1, . . . , Xj] the poly-

nomial such that g = Lp(g)X
degj(g)

j + g′, degj(g
′) < degj(g), the re-

maider r of g and the one of g′ w.r.t. A are the same. In particular
r ∈ I ⊆ Rem(M(G)) whence r = 0, and g ∈ Rem(A) contradicting the
construction of M(G).

(4) If follows form (2) and Proposition 42.4.7.
(5) If not, there is a smallest (w.r.t. j := class(g)) element g ∈ G which is

not initially reduced w.r.t.

A := {h ∈ M(G) : T(h) < T(g)}
= {h ∈ M(G) : class(h) < j}
=: {A1, . . . , Aρ}.

On the other side the remainder of Lp(g) is not zero w.r.t. A. Then,
Theorem 42.1.18 implies that, for suitable integers wi, and denoting Ii
the initilal of Ai

Iw1
1 · · · Iwr

r g = Iw1
1 · · · Iwr

r Lp(g)X
degj(g)

j + Iw1
1 · · · Iwr

r g′

reduces w.r.t. A to a polynomial t := RX
degj(g)

j + g′′ ∈ I which is
• reduced w.r.t. A,
• class(t) = j, degj(t) = degj(g),

• T(t) = T(R)X
degj(g)

j < T(Lp(g))X
degj(g)

j = T(g).
Then, necessarily, T(t) is divided by T(h) for some h ∈ Gj for which
Lp(h) ∈ Rem(A); therefore T(h) ∈ Rem(A) and T(t) ∈ Rem(A) contra-

dicting the assumption that t is reduced. �

It is possible to recover Ritt’s Corollary 42.3.5 as follows: for each algebraic
variable Zi = Xj denote Ai the smallest50 polynomial in Gj\Gj−1 and denote
A(G) := {A1, . . . , Ar}.

With this notation we have:

50 Recall that the elements in G are enumerated so that T(gi) < T(gi+1) so the
’smallest’ polynomial in Gj \Gj−1 is also the polynomial g ∈ Gj \Gj−1 having
the <-minimal value T(g).
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Theorem 42.7.4. If G generates a prime ideal I, then:

(1) M(G) = A(G),
(2) I = Rem(M(G)) = Sat(M(G)),
(3) Z(M(G)) = Z(I);
(4) Z(M(G)) 6= ∅.

Proof.

(1) It is sufficient to show that for each j the remainder of the initial Lp(Aj)
w.r.t. B := {A1, . . . , Aj−1} is not zero.
If it were zero, we would get a contradiction from Lp(Aj) ∈ I which is
impossible since Aj is a member of a reduced Gröbner basis.

(2) Since I ⊂ Rem(M(G)) by the Proposition above, the result follows from
Corollary 42.3.5.

(3) Again by Corollary 42.3.5.(4).

(4) Z(I) 6= ∅. �

Example 42.7.5. If G generates just a radical ideal I, it could happen that
Z(M(G)) = ∅.

Let

F := {X2
1 − 2, X2

2 − 2, (X1 −X2)X3, (X1 +X2)X4} ∈ k[X1, X2, X3, X4].

The Gröbner basis is G := F ∪ {X3X4} and M(G) = F . Clearly the
product of the initials

(X1 −X2)(X1 +X2) = X2
1 −X2

2 ∈ (X2
1 − 2, X2

2 − 2)

Thus Z(M(G)) = ∅.

42.8 Möller’s Zero-dimensional Solver

Lemma 42.8.1. Let J ⊂ Q be a zero-dimensional ideal and let h ∈ Q. It
holds

Z(J : h∞) = {α ∈ Z(J) : h(α) 6= 0}.

Proof. Let us consider the irredeundant primary decomposition J =
⋃r

i=1 qi
where, for each i, pi denotes the associate maximal pi =

√
q
i
.

We have (Theorem 26.3.2 (19)) J : h∞ =
⋃r

i=1 qi : h∞ and (Corol-

lary 27.2.12) qi : h
∞ =

{
Q iff h ∈ pi
qi iff h 6∈ pi

whence the claim follows easily. �
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Proposition 42.8.2 (Möller). Let J ⊂ Q be a zero-dimensional ideal and
let H := {h1, . . . , ht} ⊂ Q be a set of polynomials such that

Z(H) ⊂ Z(J).

Denoting Jt := J and Ji := J+ I(hi+1, . . . , ht), 1 ≤ i < t, it holds

Z(J) = Z(H)
⊔ t⊔

i=1

Z(Ji : h
∞
i ).

Proof. Clearly

Z(J) \ Z(H) = {α ∈ Z(J) : exists i, i ≤ t, hi(α) 6= 0}

=

t⊔

i=1

{α ∈ Z(J) : ht(α) = · · · = hi+1(α) = 0 6= hi(α)}

=
t⊔

i=1

Z(Ji : h
∞
i )

the last equality following from Lemma 42.8.1. �

The intendend application of Proposition 42.8.2 requires efficient algo-
rithms in order to compute, given a zero-dimensional ideal J ⊂ Q and a
polynomial h ∈ Q \ {0} both J + (h) and J : h∞; different techniques are
discussed in Sections 26.3–7. In connection, Möller anticipated some version
of Caboara–Traverso ideas (Section 26.6); in particular he stated

Lemma 42.8.3 (Möller). Let a = I(g1, . . . , gs) ⊂ Q and h ∈ Q\{0}. Then,

M := {(u, v) ∈ Q2 : u− hv ∈ a}

is a module with basis F := {(gi, 0), 1 ≤ i ≤ s} ∪ {(h, 1)}.
Moreover, fixing any termordering ≺ on W and denoting

• {e1, e2} the canonical basis of Q2,
• W(2) = {τei, : τ ∈ W , i ∈ {1, 2}},
• ≺2 the ≺-compatible termordering on W(2) defined by

τei ≺2 τ
′ej ⇐⇒

{
i > j or
i = j and τ ≺ τ ′,

• G the Gröbner basis of M wrt ≺2,
• G0 := {b ∈ Q : (0, b) ∈ G},
• G1 := {a ∈ Q : (a, b) ∈ G}.
Then (a : h) = I(G0) and a+ (h) = I(G1).
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Proof. Obviously F ⊂ M. For each (u, v) ∈ M there are fi ∈ Q such that
u−hv =

∑
i figi so that (u, v) =

∑
i fi(gi, 0)+ v(h, 1); this proves M = I(F ).

The relation I(G1) = I(g1, . . . , gs, h) = a+ (h) is obvious.
The other claim is a direct consequence of the trivial equivalence

(0, v) ∈ M ⇐⇒ −hv ∈ a ⇐⇒ v ∈ (a : h).

�

In order to deduce a : h∞, Möller proposed to iteratively apply the same
algorithm in order to iteratively deduce a : hi; the result is then obtained at
stabilization51.

Remark 42.8.4. If, as it is assumed, J is zero-dimensional, Möller also pro-
poses to apply Traverso’s Algorithm 29.3.8 in order to deduce J+ (h) and a
proper variation of the FGLM algorithm in order to compute (J : h).

Namely, denoting {τ1, . . . , τu} = N(J), and, for each f ∈ Q

Rep(f,N(J)) := (γ(f, τ1,N(J)), . . . , γ(f, τu,N(J)))

its Gröbner description, in order to obtain (J : h), Möller’s Algorithm is to
be applied to the functionals

ℓi : Q → k : f 7→ γ(fh, τi,N(J))

in the same way in which FGLM Algorithm is obtained by applying Möller’s
to the functionals

ℓi : Q → k : f 7→ γ(f, τi,N(J)).

�

Let J ⊂ Q be a zero-dimensional ideal and let G := {g1, . . . , gs}, lc(gi) =
1, be its Gröbner basis with respect the lex ordering induced by Z1 < Z2 <
. . . < Zr ordedered so that T(g1) < T(g2) < . . . < T(gs).

The assumption that the ideal is zero-dimensional trivially implies that
gs ∈ K[Z1, . . . , Zr]\K[Z1, . . . , Zr−1] and that degr(gi) := di < ds := degr(gs)
for each i < s.

As a consequence (Compare Kalkbener’s Theorem 26.5.4)52 {Lp(gi), 1 ≤
i < s} is a Gröbner basis w.r.t. <; moreover, since J is zero-dimensional we
also have Lp(gs) ∈ k.

Theorem 42.8.5 (Möller). With the present notation we have

I(g1, . . . , gs−1) : gs = I(Lp(g1), . . .Lp(gs−1)).

51 Compare the discussion after Lemma 26.3.9.
52 Apparently Kalkbener’s Theorem 26.5.4 and the weaker Möller’s Theorem 42.8.5

are independent.
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Proof. If h ∈ J and T(h) < T(gs), then there is j < s such that T(gj) | T(h)
and there are c ∈ k \ {0}, τ ∈ W , such that h′ := h− cτgj satisfies h′ ∈ J and
T(h′) < T(h) < T(gs).

Thus for each h ∈ J, for which T(h) < T(gs), it holds h ∈ I(g1, . . . , gs−1).
For each i, 1 ≤ i < s, set hi := Lp(gi)gs − Zds−di

r gi; since

T(Lp(gi))T(gs) = T(Lp(gi)Z
ds
r = T(Lp(gi)Z

di
r )Zds−di

r = T(gi)Z
ds−di
r

we have T(hi) < T(gs) and, since hi ∈ J, we have hi ∈ I(g1, . . . , gs−1)
whence Lp(gi)gs ∈ I(g1, . . . , gs−1) and Lp(gi) ∈ I(g1, . . . , gs−1) : gs. We have
thus proven the inclusion I(Lp(g1), . . .Lp(gs−1)) ⊆ I(g1, . . . , gs−1) : gs.

Conversely, let us consider a polynomial g ∈ I(g1, . . . , gs−1) : gs, g 6= 0.
Since ggs ∈ I(g1, . . . , gs−1), there is i < s such that T(gi) | T(ggs) =

T(g)Zds
r and there are c ∈ k \ {0}, τ ∈ W ∩ k[Z1, . . . , Zr−1] such that

T(ggs) = cτZds−di
r T(gi) = cτT(Lp(gi))Z

ds
r = cτT(Lp(gi)gs).

Denoting g′ := g − cτ Lp(gi) and remarking that53

g′ ∈ (I(g1, . . . , gs−1) : gs) + I(Lp(g1), . . .Lp(gs−1)) ⊆ I(g1, . . . , gs−1) : gs

we have that either

• T(g′) < T(g) and g − g′ ∈ I(Lp(g1), . . .Lp(gs−1)) or
• g′ = 0 and g ∈ I(Lp(g1), . . .Lp(gs−1)).

Thus, by <-indiction we can deduce that

I(g1, . . . , gs−1) : gs ⊆ I(Lp(g1), . . .Lp(gs−1).

�

Corollary 42.8.6 (Möller). With the present notation and setting H :=
{Lp(gi), 1 ≤ i < s} ∪ {gs} we have

Z(H) ⊂ Z(J).

�

Algorithm 42.8.7 (Möller). With the present notation, the algorithm de-
scribed in Figure 42.1 produces a triangular set decomposition of the zero-
dimensional ideal J.

In fact T is obtained, according Proposition 42.8.2 by the disjoint union
of

53 Recall that we have just proved the inclusion

I(Lp(g1), . . .Lp(gs−1) ⊆ I(g1, . . . , gs−1) : gs.
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Fig. 42.1. Möller’s Algorithm

T := Solve(J)
where

J ⊂ Q is a zero-dimensional ideal,
< is the lex ordering induced by Z1 < . . . < Zr

{g1, . . . , gs}, lc(gi) = 1, T(g1) < . . . < T(gs) is the reduced Gröbner basis
of J wrt <.
T = {t1, . . . , tv} is a finite set of triangular sets such that

Z(J) =

v⊔

j=1

Z(I(tj).

Let G be the reduced Gröbner basis wrt < of I(Lp(g1), . . .Lp(gs−1));
U := Solve(I(Lp(g1), . . . ,Lp(gs−1)))
T′ := {t ∪ {NF(gs, t)} : t ∈ U}
i = 1, Gs−1 := {g1, . . . , gs};
While Lp(gs−i) /∈ J do

Compute a reduced Gröbner basis G′
s−i of I(Gs−i) : Lp(gs−i)

∞,
Compute a reduced Gröbner basis Gs−i−1 of I(Gs−i) + I (Lp(gs−i)),
Ti := Solve(I(G′

s−i))
T := T′ ∪ Ti

i := i+ 1

• T′ which gives the triangular set decomposition of I(H), and
• Ti which gives the triangular set decomposition of Ji : Lp(gi)

∞, for i, l <
i < s54 where l is the value for which {g1, . . . , gl} = H ∩K[Z1, . . . , Zr−1].

The correctness of the While-loop is a direct consequence of the ordering
of the basis elements55 and on the fact that

Lp(gs−i) ∈ J =⇒ (I(Gs−i : Lp(g
∞
s−i) = Q ⇐⇒ Z

(
I(Gs−i : Lp(g

∞
s−i)

)
= ∅.

�

Example 42.8.8. To illustrate the algorithm let us consider Example 39.2.3
where, denoting

54 Remark that Proposition 42.8.2(6) apparently requires, before the While-loop,
to compute

– a reduced Gröbner basis G′
s of I(g1, . . . , gs) : g

∞
s ),

– a reduced Gröbner basis Gs−1 of I(g1, . . . , gs) + I(gs),
– the triangular set decomposition of I(G′

s)
but this computation is trivilal and returns G′

s = {1} and Gs−1 = {g1, . . . , gs}.
55 For each l ≥ i we have

Lp(gs−i) ∈ J ⇐⇒ gs−i ∈ k[Z1, . . . , Zr−1]

=⇒ gs−l ∈ k[Z1, . . . , Zr−1]

⇐⇒ Lp(gs−l) ∈ J
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H1 := {Z2
1 − Z1, g3, g4}

∪ {2Z1Z3 − 2Z3 + 3Z2
2 + 6Z1Z2 − 9Z2 − 2Z1 + 2}

∪ {2Z2Z3 − 2Z3 + 3Z2
2 − 4Z1Z2 − 5Z2 + 4Z1 + 2}

h1 := 2Z2
3 − 8Z3 + 15Z2

2 + 30Z1Z2 − 45Z2 + 6

H2 := {Z2
1 − Z1, Z1Z2}

h2 := Z2
2 − 2Z2,

h3 := 2Z3 + 3Z2 − 4Z1 − 2,

H3 := {Z2
1 − Z1, Z1Z2}

h4 := Z2
2 − Z2

h5 := Z3 + 3Z2 − 2Z1 − 1

we obtain

J1 := {g1, . . . , g8}
J2 := I({Lp(gi), 1 ≤ i ≤ 7}) = I(Z1 − 2, Z2)

t1 := {Z1 − 2, Z2}
Solve(J2) := {t1}
t1 := {Z1 − 2, Z2, Z

3
3 − 3Z2

3 + 2Z3}
J3 := J1 : (Z1 − 2) = I(H1 ∪ {h1})

J5 := I({Lp(h) : h ∈ H1}) = I(Z1 − 1, Z2 − 1)
t2 := I({Z1 − 1, Z2 − 1})

Solve(J5) := {t2}
t2 := {Z1 − 1, Z2 − 1, Z2

3 − 4Z3 + 3}
J6 := J3 : (Z2 − 1) = I(H2 ∪ {h3, h2})

J7 := I({Lp(h) : h ∈ H2}) = I(Z1, Z
2
1 − Z1) = I(Z1)

t3 := {Z1, h2, h3} = {Z1, Z
2
2 − 2Z2, 2Z3 + 3Z2 − 2}

J8 := J6 : Z1 = I(Z1 − 1, Z2)
t4 := {Z1 − 1, Z2, h3} = {Z1 − 1, Z2, 2Z3 − 6}

Solve(J6) := {t3, t4}
J9 := (J3 + I(Z2 − 1)) : (Z1 − 1) := I(Z1, Z2 − 1, Z3 + 2)

t5 := {Z1, Z2 − 1, Z3 + 2}
Solve(J9) := {t5}

Solve(J3) := {ti, 2 ≤ i ≤ 5}
J4 := (J3 + I(Z2 − 1)) : (Z1 + Z2 − 2) = Q
Solve(J4) := ∅

Solve(J1) := {ti, 1 ≤ i ≤ 5}

and

Z(J) = {bj : 1 ≤ j ≤ 9} =

5⊔

i=1

Z(ti)

with
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Z(t1) = {b3, b8, b9} Z(t2) = {b6, b7}
Z(t3) = {b1, b4} Z(t4) = {b5} Z(t5) = {b2}

�

42.9 Rouillier: Rational Univariate Representation

Let us assume we are given a zero-dimensional ideal J ⊂ Q via a Gröbner
representation

b = {[b1], . . . , [bs]} ⊂ A = Q/J, Ah :=
(
a
(h)
ij

)
=M([Zh],b), 1 ≤ h ≤ r

and let us remark that, via a direct application of Alonso–Raimondo–Traverso
Algorithm (Remark 40.8.1) we can reduce ourselves with good complexity to
the case in which

(1) J is radical,
(2) we have a linear form Y :=

∑
h chZh which is a separating element of

Z(J).

where we recall that

Definition 42.9.1. A polynomial f ∈ Q is called a separating element of

Z(J) iff, for each α, β ∈ Z(J), we have α 6= β =⇒ f(α) 6= f(β). �

The application of Alonso–Raimondo–Traverso Algorithm has the further
advantage that the obtained separating linear form Y :=

∑
h chZh is an

allgemeine coordinate for J so that (Corollary 34.3.4) Alonso–Raimondo–
Traverso Algorithm returns a triangular set

(g0(Y ), Z1 − g1(Y ), . . . , Zr − gr(Y ) ⊂ K[Y, Z1, . . . , Zr], (42.1)

of the ideal J+ := J + (Y −∑h chZh) ⊂ K[Y, Z1, . . . , Zr], where gi ∈ K[Y ],
deg(gi) < deg(g0) = #(Z(J)) and (J being radical) g0 is squarefree.

Example 42.9.2. For the radical ideal J ⊂ C[Z1, Z2, Z3] discussed in Ex-
amples 39.2.3 and 40.3.2 and the separating element/allgemeine coordinate
Y = −3Z1 + Z2 + 3Z3 we have

g0 = Y 9 + Y 8 − 90Y 7 − 142Y 6 + 2489Y 5

+ 4689Y 4 − 20880Y 3 − 31428Y 2 + 45360Y,

389188800g1 = −8611Y 8 + 29288Y 7 + 697698Y 6

− 2278040Y 5 − 15347699Y 4 + 56296512Y 3

+ 44649972Y 2 − 473227920Y + 778377600,

640640g2 = 19Y 8 − 108Y 7 − 1426Y 6 + 7808Y 5
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+ 31851Y 4 − 167652Y 3 − 185004Y 2 + 955152Y,

778377600g3 = −24917Y 8 + 102316Y 7 + 1972926Y 6

− 7718320Y 5 − 43595053Y 4 + 180492084Y 3

+ 164226564Y 2 − 1073833200Y + 1556755200.

�

Proposition 42.9.3 (Alonso–Becker–Roy–Wörmann). With the cur-
rent notation and setting

Z(J) := {α1, . . . , αs} ⊂ Kr, αi = (a
(i)
1 , . . . , a(i)r ), βi :=

∑

h

cha
(i)
h

there are polynomials h1(Y ), . . . , hr(Y ) ∈ K[Y ], deg(hi) < deg(g0), such that

J+ = I (g0(Y ), g′0(Y )Z1 − h1(Y ), . . . , g′0(Y )Zr − hr(Y )) ⊂ K[Y, Z1, . . . , Zr].
(42.2)

Moreover, for each ι, 1 ≤ ι ≤ r, we have

hι(Y ) =

s∑

i=1

a(i)ι

∏

j 6=i

(Y − βj) . (42.3)

Proof. g0(Y ) being squarefree, g′0(Y ) is invertible in K[Y ]/g0; thus hi :=
Rem(g′0gi, g0) satisfy the required property.

Since g′0(Y ) =
∑s

i=1

∏
j 6=i (Y − βj), for each l, 1 ≤ l ≤ s we have

g′0(βl)a
(l)
ι = a(l)ι

s∑

i=1

∏

j 6=i

(βl − βj))

= a(l)ι

∏

j 6=l

(βl − βj)

=
s∑

i=1

a(i)ι

∏

j 6=i

(βl − βj)

= hι(βl).

�

Remark 42.9.4. Compare Proposition 42.9.3 with Kronecker’s result (41.3);
the only difference is that here the assumption of the primality of the ideal J

is relaxed to radicality. �

Remark 42.9.5 (Alonso–Becker–Roy–Wörmann). Denoting S the size of the

elements a
(ι)
ij in the matrices Aι, clearly (42.3) grants that the coefficients

in the Kronecker parametrization (42.2) have size O(Ss) giving a strong
advantage with the O(Ss2) size of the coefficients of the allgemeine basis

(42.1). �
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Example 42.9.6. In the setting discussed in Examples 42.9.2 we have

g′0(Y ) = 9Y 8 + 8Y 7 − 630Y 6 − 852Y 5 + 12445Y 4

+ 18756Y 3 − 62640Y 2 − 62856Y + 45360,

h1(Y ) = 9Y 8 + 5Y 7 − 638Y 6 − 668Y 5 + 13655Y 4

+ 15591Y 3 − 92178Y 2 − 76896Y + 90720,

h2(Y ) = 5Y 8 − 348Y 6 − 62Y 5 + 7155Y 4 + 2790Y 3 − 39852Y 2 − 20088Y,

h3(Y ) = 7Y 8 + 65Y 7 − 380Y 6 − 3966Y 5 + 3455Y 4

+ 56421Y 3 − 5562Y 2 − 191160Y + 90720.

Corollary 42.9.7 (Alonso–Becker–Roy–Wörmann).
For each f ∈ Q, there is hf (Y ) ∈ K[Y ] such that

g′0(Y )f(Z1, . . . , Zr)− hf(Y ) ∈ J+, deg(hf ) < deg(g0).

Proof. It is sufficient to set hf (Y ) := Rem(f(h1(Y ), . . . , hr(Y )), g0(Y )).

�

Both Proposition 42.9.3 and Corollary 42.9.7 are existential results; thus
we need a computational definition of hf(Y ); to obtain it we consider a new
variable S, the extension field K(S), the ideal

Je := JK(S)[Z1, . . . , Zr] ⊂ K(S)[Z1, . . . , Zr] = Q⊗K K(S),

the algebra Ā := K(S)[Z1, . . . , Zr]/J
e = A ⊗K K(S), the element f̄ := Y +

Sf ∈ Ā, the matrix Af̄ .

Theorem 42.9.8 (Alonso–Becker–Roy–Wörmann). With the current
notation, it holds:

(1) the minimal polynomial mf̄(T ) ∈ K(S)[T ] of Af̄ is

mf̄ (T ) =

s∏

i=1

(T − βi − Sf(αi)) ∈ K[S, T ];

(2) denoting p(S, T ) :=
∂mf̄

∂S , we have

p(0, T ) = −
s∑

i=1

f(αi)

r∏

j=1
j 6=i

(T − βj);

(3) for each α ∈ Z(J) it holds f(α) = p(0,α)
g′
0(α)

;

(4) hf (T ) = p(0, T ).
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Proof. (1) is obvious, (2) requires a trivial verification and (4) is a direct
consequence of (3); so we have just to prove (3): for each ι, 1 ≤ ι ≤ s we have

p(0, αι) = −
s∑

i=1

f(αi)
s∏

j=1
j 6=i

(βι − βj)

= −f(αι)

r∏

j=1
j 6=ι

(βι − βj)

= −f(αι)g
′
0(αι).

�

Remark 42.9.9 (Alonso–Becker–Roy–Wörmann).
The computation of the Kronecker parametrization (42.2) does not require
to assume that J is radical; assuming as known s = #Z(J) (an efficient way
for computing it is discussed in Corollary 42.9.13 below) and denoting χ(T )
and m(T ) respectively the characteristic and the minimal polynimials of AY

we have
g0(T ) =

√
χ(T ) =

√
m(T ).

Once a linear form Y is fixed, the minimal polynomial m(T ) of AY which
coincides with the minimal polynomial of the element Y ∈ A can be directly
obtained by checking the successive powers [1], [Y ], [Y 2], . . . for linear depen-
dency; Y is then a separating element if and only if deg(

√
m) = #Z(J).

In order to make this approach effictive, all one needs is the availability
of a finite set of linear forms which is granted to contain at least a separating
element. Such a finite set is provided by Chistov–Grigoriev Corollary 35.6.4.

�

Remark 42.9.10. Alternatively, once #Z(J) is known, a separating linear
form Y can be obtained by an easy adaptation of Alonso–Raimondo Al-
gorithm 35.7.156aimed to avoid the evaluation of the swelling coefficients of
the gis, i > 0:

(1) by linear algebra on the Gröbner descriptions of [1], [Y ], [Y 2], . . . compute
the minimal polynomial m[Y ] ∈ K[Y ] such that m(Y ) ∈ J+.

(2) if d := deg(
√
m) < #Z(J) then set j = 1 and

(a) while j ≤ r, verify, whether [Zj ], [1], [Y ], [Y 2], . . . , [Y d−1] are linearly
dependent;

(b) if so set j := j + 1 and go to (2.a);
(c) if instead they are linearly dependent set Y := Y + cZj and go to (1)

(3) if deg(
√
m) = #Z(J), then

• J+ + (
√
m) is radical,

• Y is a separating linear form and

56 Compare also Remark 40.8.1.
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• √
m is its minimal polynomial.

�

Lemma 42.9.11. Let f ∈ Q be a separating element of Z(J) and let s =
#Z(J). Then {1, [f ], [f2], . . . , [f s−1]} is a K-linearly independent set of A.

Proof. Assume thatm(T ) :=
∑s−1

i=0 aiT
i ∈ k[Y ] is such thatm(f) ≡ 0 mod J;

since f a separating element of Z(J), the polynomial m(T ) has the s distinct

roots {f(α), α ∈ Z(J)} giving a contradiction. �

For every polynomial h ∈ Q, we can consider the bilinear map

ℓh : A× A → K, (p, q) 7→ Tr(Ahpq)

and the corresponding quadratic form associated to ℓh

Qh(x1, . . . , xs) :=
∑

j,l

γ
(h)
j,l xjxl

which satisfies ℓh(p, p) = Tr(Ahp2 ) =
∑

j,l γ
(h)
j,l cjcl = Qh(c1, . . . , cs) for each

p =
∑s

i=1 ci[bi] ∈ A = SpanK{[b1], . . . , [bs]}.

Proposition 42.9.12 (Rouillier). For a polynomial h ∈ Q, the quadratic
form Qh has #{α ∈ Z(J) : h(α) 6= 0} as rank.

Proof. Let f ∈ Q be a separating element of Z(J). By the Lemma above,
the set {1, [f ], [f2], . . . , [f s−1]} is K-linearly independent and thus can be
completed to a basis

{1, [f ], [f2], . . . , [f s−1], [bs+1], . . . , [bs]} = {[b1], . . . , [bs]}

of A. For each p ∈ Q let cj ∈ K be such that

[p] =

s−1∑

j=0

cj[f ]
j +

s∑

j=s+1

cj[bj ].

Thus, setting Yi :=
∑s

j=1 cjbj(αi), 1 ≤ i ≤ s, by Corollary 40.5.2 we have

Qh = Tr(Ahp2 ) =

s∑

i=1

sih(αi)




s∑

j=1

cjbj(αi)




2

=

s∑

i=1

sih(αi)Y
2
i .

The matrix



1 f(α1) f(α1)
2 · · · f(α1)

s−1

1 f(α2) f(α2)
2 · · · f(α2)

s−1

...
...

...
. . .

...
1 f(αs) f(αs)

2 · · · f(αs)
s−1
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is invertible — being Vandermonde since f ∈ Q separates Z(J), — and a
submatrix of the one associated to the linear forms that define the linear
change of variables Yi.

Thus the Yis are linearly independent and (compare Theorem 13.5.2) the
rank of Qh is the number of roots of J which are not roots of h.

Corollary 42.9.13. The rank of

Q1(x1, . . . , xs) :=
∑

j,l

γ
(1)
j,l xjxl =

∑

j,l

Tr(Abjbl)xjxl

is s = #Z(J). �

Once a Kronecker parametrization (42.2) is obtained via Theorem 42.9.8,
the multiplicity of each root can be obtained in the following way: denoting,
for each f ∈ Q, Bf the matrix representing the endomorphism

Φ̄ : Q/
√
J → Q/

√
J, Φ̄([g]) 7→ [fg]

we have

Lemma 42.9.14 (Alonso–Becker–Roy–Wörmann). Let Y be a a sepa-
rating linear form of Z(J); then

(1) The matrix




Tr(B1) · · · Tr(BY s−1)
...

. . .
...

Tr(BY s−1) · · · Tr(BY 2s−2)


 , is invertible;

(2) let a0, . . . , as−1 ∈ K be the unique solution of the linear system



Tr(B1) · · · Tr(BY s−1)
...

. . .
...

Tr(BY s−1) · · · Tr(BY 2s−2)


 ·




a0
...

as−1


 =




Tr(A1)
...

Tr(AY s−1)




and let F (Y ) :=
∑s−1

l=0 alY
l; then

F (αi) = si = mult(αi, J), ∀αi ∈ Z(J).

Proof. (1) holds since the matrix is Hankel.
Ad(2): we have, for each i, 1 ≤ i ≤ s

s∑

i=1

siβ
j
i = Tr(AY j )

=

s−1∑

l=0

al Tr(BY j+l)

=

s−1∑

l=0

al

s∑

i=1

βj+l
i
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=

s∑

i=1

(
s−1∑

l=0

alβ
l
i

)
βl
i

=

s∑

i=1

F (αi)β
j
i ;

since the matrix
(
βj
i

)
is Vandermonde, we have F (αi) = si for each i. �

Up to now, in order to represent the roots of I we alternatively,

• assumed J to be radical in order to apply Corollary 34.3.4 or
• applied Proposition 42.9.3, using the minimal polynomial m(Y ) of Y ∈ A.

In both cases, we lose the multiplicity of each root, which we recover via
Lemma 42.9.14.

An improvement allows to remove the requirement that J be radical and
to directly use the characteristic polynomial χ(T ) =

∏s

i=1(T − βi)
si , thus

directly deducing multiplicities.

Proposition 42.9.15 (Rouiller). Let J ⊂ Q be a zero-dimensional ideal,
not necessarily radical and set

Z(J) := {α1, . . . , αs} ⊂ Kr, αi = (a
(i)
1 , . . . , a(i)r ), si := mult(αi, J).

Let f ∈ Q be a separating element of Z(J); denote χ := χf :=
∑s

i=0 ciT
s−i

the charactristic polynomial of Af and βi := f(αi).

For each h ∈ Q denote γh(T ) :=
∑s

i=1 sih(αi)
s∏

j=1
j 6=i

(T − βj).

Then:

(1) χ = χf =
∏s

i=1 (T − βi))
si .

(2) χ′(T )
χ(T ) =

∑
j≥0

Tr(A
fj )

T j+1 ;

(3) (s− i)ci =
∑i

j=0 ci−j Tr(Afj ) for i = 0, .., s;

(4) γh(βl) = slh(αl)
s∏

j=1
j 6=l

(βl − βj);

(5) h(αl) =
γh(βl)
γ1(βl)

for 1 ≤ l ≤ s;

(6) γh(T ) =
√
χ(T )

∑
j≥0

Tr(A
hfj )

T j+1 ;

(7) setting
√
χ :=

∑s

i=0 aiT
s−i, it holds

γh(T ) =

s−1∑

i=0

s−i−1∑

j=0

Tr(Ahfj )aiT
s−i−j−1;

(8) γ1(T ) =
χ′(T )

gcd(χ(T ),χ′(T )) ;

(9) gcd(γ1(T ), χ(T )) = 1;
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(10) for each i, si =
γ1(βi)

(
√
χ)′(βi)

;

(11) the squarefree decomposition (Definition 4.7.2) χ =
∏

l χ
l
l of χ is obtained

via χl := gcd(γ1(T )− l(
√
χ)′(T ),

√
χ).

Proof.

(1) See Corollary 40.5.2.
(2) We have

χ′(T )

χ(T )
=

s∑

i=1

si
T − βi

=

s∑

i=1

si
T

1

1− βi

T

=

s∑

i=1

si
T

∑

j≥0

(
βi
T

)j

=
∑

j≥0

∑s
i=1 siβ

j
i

T j+1

=
∑

j≥0

Tr(Afj )

T j+1

(3) We have

s∑

i=0

(s− i)ciT
s−i−1 = χ′(T )

= χ(T )
∑

j≥0

Tr(Afj )

T j+1

=

s−1∑

l=0

s−l−1∑

j=0

cl Tr(Afj )T s−l−j−1

=

s−1∑

i=0

i∑

j=0

ci−j Tr(Afj )T s−i−1.

(4) We have γh(βl) =
∑s

i=1 sih(αi)
s∏

j=1
j 6=i

(βl − βj) = slh(αl)
s∏

j=1
j 6=l

(βl − βj).

(5) Obvious.
(6) We have

γh(T )√
χ(T )

=

s∑

i=1

sih(αi)

T − βi
=
∑

j≥0

∑s
i=1 sih(αi)β

j
i

T j+1
=
∑

j≥0

Tr(Ahfj )

T j+1
.
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(7) A direct consequence of (6).
(8) Obvious.
(9) Obvious.

(10) γ1(T )
(
√
χ)′(T ) =

s∑
i=1

si

s∏
j=1
j 6=i

(T−βj)

s∑
i=1

s∏
j=1
j 6=i

(T−βj)

whence the claim.

(11) The claim follows easily from

γ1(T )− l(
√
χ)′(T ) =

s∑

i=1

(si − l)

s∏

j=1
j 6=i

(T − βj)

=

s∑

i=1
si 6=l

(si − l)

s∏

j=1
j 6=i

(T − βj)

=




s∏

i=1
si=l

(T − βi)







s∑

i=1
si 6=l

(si − l)
s∏

j=1
j 6=i,sj 6=l

(T − βj)




�

Definition 42.9.16 (Rouillier). Let J ⊂ Q be a zero-dimensional ideal.
A Univariate Representation (χ, Φ) of J is the assignement of polynomials
χ(T ), γ0(T ), γ1(T ), . . . , γr(T ) ∈ K[T ] which defines a K-isomorphism

Φ : {α ∈ K : χ(α) = 0} → Z(J) : α 7→
(
γ1(α)

γ0(α)
, . . . ,

γr(α)

γ0(α)

)

which satisfies mult(Φ(α), J) = mult(α, I(χ)).
If moreover f ∈ Q is a separating element of Z(J) and χ := χf is the

charactristic polynomial of Af , the univariate representation (χ, Φ) is called

the Rational Univariate Representation (RUR) of J associated to f . �

Corollary 42.9.17 (Rouillier). With the assumptions and notations of
Proposition 42.9.15 and setting

Φ : {f(α), α ∈ Z(J)} → Z(J) : β = f(α) 7→
(
γZr

(β)

γ1(β)
, . . . ,

γZ1(β)

γ1(β)

)
= α

(χf , Φ) is the Rational Univariate Representation of J associated to f . �

Remark 42.9.18 (Rouillier). For a Rational Univariate Representation

(χ, Φ), Φ : {α ∈ K : χ(α) = 0} → Z(J) : α 7→
(
γ1(α)

γ0(α)
, . . . ,

γr(α)

γ0(α)

)
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of J and a factorization χ(T ) =
∏

i χi(T ), gcd(χi, χj) = 1 setting

γji(T ) := Rem(γj(T ), χi) for each i, j

and

Φi : {α ∈ K : χi(α) = 0} →
{(

γ1i(α)

γ0i(α)
, . . . ,

γni(α)

γ0i(α)

)}

we have that (χi, Φi) is a Rational Univariate Representation, for each i, and

it holds Z(J) = ⊔i

{(
γ1i(α)
γ0i(α)

, . . . , γni(α)
γ0i(α)

)
: α ∈ K, χi(α) = 0

}
. �

Remark 42.9.19. If J is radical, the representation of Z(J) proposed in Propo-

sition 42.9.3 is a RUR of J associated to
∑

h chZh. �

Algorithm 42.9.20 (Rouillier). Given a zero-dimensional ideal J ⊂ Q via a
Gröbner representation

b = {[b1], . . . , [bs]} ⊂ A = Q/J, Ah :=
(
a
(h)
ij

)
=M([Zh],b), 1 ≤ h ≤ r

and assuming to have the matrices Abi representing the endomorphisms Φbi :
A → A, a RUR of J associated to a linear form can therefore be computed
by the following procedure:

(1) For each j, l, 1 ≤ i ≤ s compute Tr(Abjbl);
(2) Compute s := #Z(J) as rank of Q1(x1, . . . , xs) :=

∑
j,l Tr(Abjbl)xjxl

(Corollary 42.3.6);
(3) Repeatedly, choose (via Corollary 35.6.4) a linear form Y :=

∑
h chZh

and compute, via Proposition 42.9.15(3), the characterisitc polynomial
χY of AY until deg(

√
χY ) = #Z(J) thus granting that Y is a separating

element.
Alternatively deduce via Remark 42.9.10 a separating linear form Y :=∑

h chZh and compute the characteristic polynomial χY ofAY via Propo-
sition 42.9.15(3).

(4) Compute γ1(T ), γZ1(T ), . . . , γZr
(T ) via Proposition 42.9.15(6-7).

It can be proved that its complexity is in O(s3 + rs2) arithmetic opera-
tions in K and that, in the case K = Q, the cost is in O((s3 + rs2)M(ls2))
binary arithmetic operations, where l denotes the bit-size of the entries of the
matrices Ah and M(ℓ) denotes the cost of multiplying two integers of bit-size

ℓ. �

Remark 42.9.21 (Dahen). Clearly (Compare Proposition 42.9.3) the relation
between the elements of the Allegemiane basis (42.1) and the RUR (42.2) is
given by hi := Rem(g′0gi, g0).

The better behavieour of Kronecker’s parametrization w.r.t. Allegemiane
bases can be generalized to triangular sets.

In fact, given a triangularizable zero-dimensional ideal J ⊂ Q[Z1, . . . , Zr]
via a set G := (g1, . . . , gm) ⊂ Q[Z1, . . . , Zr], denoting
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T := (f1, . . . , fr) ⊂ Q[Z1, . . . , Zr]

its triangular set and, for each i, 1 ≤ i < r,

Ni+1 := NF


fi+1

i∏

j=1

∂fj
∂Zj

, I(f1, . . . , fi)




the normal form of fi+1

∏i
j=1

∂fj
∂Zj

w.r.t. the Gröbner basis (f1, . . . , fi), both

theoretical and pratical analysis suggest that the height57 of the triangular

set N := (f1, N2, . . . , Nr) of J is better than the one of T 58. �

57 for a set G := (g1, . . . , gm) ⊂ Q[Z1, . . . , Zr] its height is the value h(G) :=
max (log(c(gi, τ ) : 1 ≤ i ≤ r, τ ∈ W) .

58 We have h(T ) = O(rhd2r) and h(N) = O(rhdr) where d = max(deg(gi)) and
h = h(G).
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43. Lagrange II

Given a (squarefree) polynomial f ∈ k[T ], a natural question1 is to determine
its Galois group (Definition 14.1.3) over k. Based on classical techniques as the
representation of a group of finite order as a permutation group (Section 43.1)
and as a permutation group of the set of roots of a separable polynomial (Sec-
tion 43.2), Lagrange resolvents (Section 43.3 and 43.5) and Cachy modules
(Section 43.4) recently the problem has been completely solved (Section 43.6
and 43.7) by Annick Valibouze and Jean-Marie Arnaudies for polynomials f
of degree bounded by 11.

43.1 Representation of Groups as Permutation Groups

Let2 G be a finite group.

Example 43.1.1. Throughout this section, as an example we take as G the
alternative group A4 whose 12 elements we denote

g1 = Id, g2 = (1, 3, 2), g3 = (1, 2), (3, 4),
g4 = (1, 2, 3), g5 = (2, 4, 3), g6 = (2, 3, 4),
g7 = (1, 4, 3), g8 = (1, 4, 2), g9 = (1, 3, 4),
g10 = (1, 3), (2, 4), g11 = (1, 2, 4), g12 = (1, 4), (2, 3)

and whose corresponding multiplication table is

1 Other equally natural questions are

• to solve f by radicals, in case it is possible, and
• the Galois inverse problem of determining, given a finite group G, a polynomial

f ∈ k[T ] for which G is its Galois group.

Such questions are just mentioned here but not discussed in this book.
2 For this theory, compare Burnside W., Theory of groups of finite order, Cam-
bridge Universiy Press (1911) Ch. XII
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1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 7 1 3 8 5 10 12 6 9 11
3 3 6 1 9 8 2 11 5 4 12 7 10
4 4 1 5 2 7 10 3 6 11 8 12 9
5 5 10 4 11 6 1 12 7 2 9 3 8
6 6 9 11 3 1 5 8 12 10 2 4 7
7 7 8 2 12 10 4 9 3 1 11 5 6
8 8 12 9 7 2 3 10 11 6 4 1 5
9 9 3 8 6 11 12 1 2 7 5 10 4
10 10 11 12 5 4 7 6 9 8 1 2 3
11 11 5 6 10 12 9 4 1 3 7 8 2
12 12 7 10 8 9 11 2 4 5 3 6 1

�

Impose on the set of the subgroups H ⊂ G the relation

H1 ∼ H2 ⇐⇒ exists τ ∈ G : H1 = τ−1H2τ

and denotes E := {C1, . . . , Cs}, the set of all the conjugacy classes.
We associate to each such class its degree

deg(Ci) := [G : H ], H ∈ Ci,

and its weight
w(Ci) := #G/ deg(Ci) = #H,H ∈ Ci,

we enumerate E so that3

w(C1) ≤ w(C2) ≤ · · · ≤ w(Cs)

and we impose a partial ordering � on E setting Ci � Cj if the following
equivalent conditions

• there are H ∈ Ci and H ′ ∈ Cj such that H ⊂ H ′,
• for each H ∈ Ci there is H ′ ∈ Cj such that H ⊂ H ′,

hold.
Since in this setting we have [G : H ′] = [G : H ][H : H ′] we also have

Ci � Cj =⇒ i ≤ j.

Example 43.1.2. G = A4 has five conjugacy classes, each consisting of the
subgroups of order (respectively) 1, 2, 3, 4, 12:

C1 has deg(C1) = 12,w(C1) = 1 and consists of

H11 := H1 := {Id};
3 In particular: C1 = {{IdG}} and Cs = {G}.
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C2 has deg(C2) = 6,w(C2) = 2 and contains of

H21 := H2 := {Id, g3},
H22 := g4H2g

−1
4 = {Id, g10},

H23 : := g2H2g
−1
2 = {Id, g12};

C3 has deg(C3) = 4,w(C3) = 3 and contains of

H31 := H3 := {Id, g2, g4},
H32 := g7H3g

−1
7 = {Id, g5, g6},

H33 := g5H3g
−1
5 = {Id, g7, g9},

H34 := g6H3g
−1
6 = {Id, g8, g11};

C4 has deg(C4) = 3,w(C4) = 4 and contains of

H41 := H4 := {Id, g3, g10, g12};

C5 has deg(C5) = 1,w(C5) = 12 and consists of

H51 := H5 := G.

Naturally we have

C1 ≺ C2 ≺ C4 ≺ C5, C1 ≺ C3 ≺ C5.

�

Let now E be a finite set, n := #E, and denote SE the group of the
permutations of the set E.

Definition 43.1.3. Each group morphism Φ : G→ SE is called a represen-
tation of G as a permutation group of degree n.

It is said to be

• faithful if ker(Φ) = {IdG},
• transitive if for each x, x0 ∈ E there is g ∈ G : Φ(g)(x0) = x.

A representation Ψ : G → SF is called equivalent to Φ (denoted: ψ ∼ Φ)
if there is a bijection Θ : E → F satisfying Ψ(g) = Θ ◦ Φ(g) ◦ Θ−1 for each
g ∈ G :

F
Ψ(g)7−→ FxΘ

xΘ

E
Φ(g)7−→ E

�

Remark that

(1) ker(Φ) =
⋂

x∈E{g ∈ G : Φ(g)(x) = x};
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(2) if Ψ is equivalent to Φ we have
• ker(Φ) = ker(Ψ),
• {{g ∈ G : Φ(g)(x) = x} : x ∈ E} = {{g ∈ G : Ψ(g)(x) = x} : x ∈ F} ;

(3) if Φ is transitive, then the set

CΦ := {{g ∈ G : Φ(g)(x) = x} : x ∈ E} ∈ E

is a conjugacy class which is called the conjugacy class associated to Φ.

Assuming Φ to be transitive, fixing x0 ∈ E, and denoting

• H0 := {g ∈ G : Φ(g)(x0) = x0},
• (G/H0)l := {gH0 : g ∈ G} the set of the left classes of H0,
• Θ the bijection Θ : E → (G/H0)l defined Θ(x) = {g ∈ G : Φ(g)(x0) = x},
• ρ : G → S(G/H0)l the representation ρ(h)(H ′) = hH ′, for each h ∈ G and
each H ′ ∈ (G/H0)l

then

Lemma 43.1.4. ρ ∼ Φ. �

Corollary 43.1.5. For a finite group G, denote Ē the set of all transitive
representations of G as permutation group and E the set of the equivalency
classes of the transitive representations of G as permutation group: E :=
Ē/ ∼.

We obtain a bijection between E and E by associating to each Γ ∈ E the
conjugacy class CΦ associated to each Φ : G→ SE belonging to Γ .

In particular, there are transitive representations of G as permutation

group of degree n only if n = [G : H ] for some subgroup H ⊂ G. �

On the basis of this, we can associate to each Ci ∈ E a transitive repre-
sentation ρi : G 7→ Sdi

, di = #Ci over the set of left classes of some H ∈ Ci.

Example 43.1.6. With G := A4 and H2 = {Id, g3} we can consider the left
classes of H2 which are

L21 := {Id, g3}, L22 := {g2, g7}, L23 := {g4, g5},
L24 := {g6, g11}, L25 := {g8, g9}, L26 := {g10, g12}

thus obtaining a representation ρ2 : G→ S6 in which we have

ρ2(g1) = Id, ρ2(g2) = (1, 2, 3)(4, 5, 6),
ρ2(g3) = (2, 4)(3, 5) ρ2(g4) = (1, 3, 2)(4, 6, 5),
ρ2(g5) = (1, 3, 4)(2, 6, 5), ρ2(g6) = (1, 4, 3)(2, 5, 6),
ρ2(g7) = (1, 2, 5)(3, 6, 4), ρ2(g8) = (1, 5, 4)(2, 6, 3),
ρ2(g9) = (1, 5, 2)(3, 4, 6), ρ2(g10) = (1, 6)(2, 4),
ρ2(g11) = (1, 4, 5)(2, 3, 6), ρ2(g12) = (1, 6)(3, 5).

In the same way, with H3 = {Id, g2, g4}, the left classes of H3 are
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L31 := {Id, g2, g4}, L32 := {g3, g6, g9}
L33 := {g5, g10, g11}, L34 := {g7, g8, g12},

thus obtaining the representation ρ3 : G→ S4 in which

ρ3(g1) = Id, ρ3(g2) = (2, 4, 3),
ρ3(g3) = (1, 2)(3, 4), ρ3(g4) = (2, 3, 4),
ρ3(g5) = (1, 3, 2), ρ3(g6) = (1, 2, 3),
ρ3(g7) = (1, 4, 2), ρ3(g8) = (1, 4, 3),
ρ3(g9) = (1, 2, 4), ρ3(g10) = (1, 3)(2, 4),
ρ3(g11) = (1, 3, 4), ρ3(g12) = (1, 4)(2, 3).

Finally the left classes of H4 = {Id, g3, g10, g12} are

L41 := {Id, g3, g10, g12},
L42 := {g2, g6, g7, g11},
L43 := {g4, g5, g8, g9},

thus obtaining the representation ρ4 : G→ S3 in which

ρ4(g1) = ρ4(g3) = ρ4(g10) = ρ4(g12) = Id,
ρ4(g2) = ρ4(g6) = ρ4(g7) = ρ4(g11) = (1, 2, 3),
ρ4(g4) = ρ4(g5) = ρ4(g8) = ρ4(g9) = (1, 3, 2).

�

Let Φ : G → SE be a (not necessarily transitive) representation of G as
permutation group. Let C ∈ E be a conjugacy class and let H ⊂ G be any
member of C; the number

m := #{e ∈ E : Φ(h)(e) = e : h ∈ H}

is clearly independent on the choice of H ∈ C but depends on the represen-
tation Φ of G as permutation group and on the conjugacy class C.

Definition 43.1.7. Such number m is called the mark of C in the represen-
tation Φ.

More in general if we consider the H-orbits of E and we denote αi the
number of orbits consisting of i elements4 such numbers are independent on
the choise of H and depend only on Φ and C.

Remark that we have the relation #E = n =
∑

i iαi.

4 So that, in particular m = α1.
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Example 43.1.8. Let us choose the representation ρ4 : G → S3 of G as per-
mutation group and the group H := H2.

Then we have 3 orbits of cardinality 1, so that m = 3.
If we instead choose ρ5 : G→ S12 for H := H2 we obviously have 6 orbits

all of cardinality 2. �

Setting C := Ci � Cj =: C′, using freely the corrent notation5 and defining

• BC′ := {C ∈ (G/H)l : C ⊂ C′}, for each C′ ∈ (G/H ′)l,
• B := {BC′ : C′ ∈ (G/H ′)l}
we have the partition (G/H)l = ⊔B∈BB in terms of the left-action of G. Thus
we have a left-action of G on B which can be identified, via C′ 7→ BC′ , with
the one on (G/H ′)l.

Let us fix, for any conjugacy class Cj, an associated transitive represen-
tation ρj : G→ SCj

, ρj(g) : H
′ 7→ gH ′.

By the consideration above on the action of G on B , the mark of C in the
representation ρj

6 is independent not only on the choice ofH ∈ Ci but also on
the choice of the transitive representation ρj . Such number therefore depends
only on the couple (C, C′) = (Ci, Cj) and is called the incidence number or

mark of (Ci, Cj) and will be denoted J(Ci, Cj) = mj
i .

It satisfies mj
i =





0 i > j
#G i = j = 1
1 j = s
deg(Cj) i = 1.

Example 43.1.9. The matrix of incidence number for A4 are

1 2 3 4 5
1 12 6 4 3 1
2 0 2 0 3 1
3 0 0 1 0 1
4 0 0 0 3 1
5 0 0 0 0 1

�

Let Φ : G → SE be a representation of G as permutation group and
let us consider any orbit ω := {Φ(g)(x) : g ∈ G}; by restriction we thus
obtain a representation G → Sω which necessarily is equivalent to one of
the representations defined by a Ci, 1 ≤ i ≤ s. Denoting, for each i , ai the
number of orbits ω thus equivalent to Ci we can therefore associate to Φ the7

5 In particular H ∈ C, H ′ ∈ C′ and H ⊂ H ′.
6 Id est the number of elements H ′ ∈ Cj which satisfy ρj(h)(H

′) = H ′ for each h ∈
H .

7 Burnside W., op. cit., p. 238
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symbol [
∑s

i=1 aiCi] denoting that the representation [Φ] is made up
of a1 representations equivalent to [C1], a2 representations equivalent
to [C2], and so on.

With modern notation we associate to Φ an element
∑s

i=1 aiCi in the free
Z-module LG =

∑s
i=1 ZCi with basis E .

In conclusion:

Proposition 43.1.10. The application U : Φ 7→ ∑s
i=1 aiCi defines a bijec-

tion between the set of all equivalence classes of the representations of G as
permutation group of degree n and the set of elements

∑s
i=1 aiCi ∈ LG such

that ai ∈ N for each i and
∑s

i=1 ai deg(Ci) = n.
If we moreover denote, for each j µj the mark of Cj in the representation

Φ we have the relations

µj =
s∑

i=1

aim
j
i .

�

In the same way, if we consider the H-orbits of the elements in Cj and

we denote a(ν)ji the number of such orbits consisting of ν elements8 such
numbers are independent also on the choice of the transitive representation
ρj , thus depending only on the couple (Ci, Cj).

Remark that we have the relation
∑

ν

νa(ν)ji = deg(Cj).

Let us consider any such sequence Aj
i := (a(1)ji , a(2)

j
i , . . . , a(ν)

j
i , . . .) and

let us remark that a(ν)ji 6= 0 =⇒ ν ≤ deg(Cj) so that, in particular, there

are at most a finite number of values ν for which a(ν)ji ≥ 1.

The sequences Aj
i can be stored more compactly as

Bj
i := [(a1, ν1), . . . , (ar, νr)] : r ≥ 1, 1 ≤ ν1 < ν2 < · · · , ai ≥ 1 for each i,

where νl are the values for which al := a(νl)
j
i 6= 0.

Definition 43.1.11. The partition array defined by G is the array, whose
rows and columns are indexed by conjugacy classes of G and whose (i, j)th
entry is Bj

i

Example 43.1.12. The array (Aj
i ) for A4 is

1 2 3 4 5

1 (12, 0, . . .) (6, 0, . . .) (4, 0, . . .) (3, 0, . . .) (1, 0, . . .)
2 (0, 6, 0, . . .) (2, 2, 0, . . .) (0, 2, 0 . . .) (3, 0, . . .) (1, 0, . . .)
3 (0, 0, 4, 0, . . .) (0, 0, 2, 0, . . .) (1, 0, 1, 0, . . .) (0, 0, 1, 0, . . .) (1, 0, . . .)
4 (0, 0, 0, 3, 0, . . .) (0, 3, 0, . . .) (0, 0, 0, 1, 0, . . .) (3, 0, . . .) (1, 0, . . .)
5 (0, . . . , 0, 1, 0, . . .) (0, . . . , 0, 1, 0, . . .) (0, 0, 0, 1, 0, . . .) (0, 0, 1, 0, . . .) (1, 0, . . .)

8 So that, in particular mj
i = a(1)ji .
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and the corresponding partition array defined by A4 is

1 2 3 4 5
1 [(12, 1)] [(6, 1)] [(4, 1)] [(3, 1)] [(1, 1)]
2 [(6, 2)] [(2, 1), (2, 2)] [(2, 2)] [(3, 1)] [(1, 1)]
3 [(4, 3)] [(2, 3)] [(1, 1), (3, 1)] [(1, 3)] [(1, 1)]
4 [(3, 4)] [(3, 2)] [(1, 4)] [(3, 1)] [(1, 1)]
5 [(1, 12)] [(1, 6)] [(1, 4)] [(1, 3)] [(1, 1)]

Proposition 43.1.13. The rows of partition array defined by G are all dif-
ferent.

Proof. For any values i, j, 1 ≤ j < i ≤ s it is sufficient to show that Bj
j 6= Bj

i .

Let us fix elements Hi ∈ Ci and Hj ∈ Cj and denote Nj := {g ∈ G : gHjg
−1}

the normalizer of Hj in G. Thus the claim follows from

a(1)jj = [Nj : Hj ] 6= 0 = mj
i = a(1)ji .

�

43.2 Representation as Permutation Group of Roots

Let f(T ) := T n + a1T
n−1 + · · · + aiT

n−i + · · · + an−1T + an ∈ k[T ] be a
monic, separable polynomial of degree n over a field k; denote

k the algebraic closure of k,
Rf := {α1, . . . , αn} ⊂ k the set of the roots of f ,
Kf := k[α1, . . . , αn], k ⊂ Kf ⊂ k its splitting field,
G(Kf/k) its Galois group

so that, in particular

f(T ) = T n +

n∑

i=1

aiT
n−i =

n∏

j=1

(T − αj).

We have the natural representation of G(Kf/k) as a permutation group
of the roots of f

G(Kf/k) →֒ SRf
= Sn, σ 7→ sσ : σ(αi) = αsσ(i);

remark that

• the representation is independent on the enumeration of the roots9;

9 More precisely, let t ∈ Sn and defined βi := αt(i) for each i; then for each
σ ∈ G(Kf/k) we have

σ(βi) = σ(αt(i)) = αsσt(i) = βt−1sσt(i) for each i;

so a different enumeration of roots simply give an equivalent representation of
G(Kf/k).
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• G(Kf/k) is transitive.

Assume now that f has a factorization f =
∏r

j=1 pj into irreducible com-
ponents. G(Kf/k) then operates transitively over each Rpj

; denoting, for
each j, Cij the conjugacy class of the subgroup G(Kpj

/k) ⊂ G(Kf/k) we
have G(Kf/k) =

∑
j Cij ∈ LG(Kf/k).

Conversely, let us assume k to be infinite and let K, k ⊂ K ⊂ k

be a finite extension of k, [K : k] = n, and let us consider a faithful
representation G(K/k) → Sn of degree n and the corresponding orbits
ω1, . . . , ωr of {1, 2, . . . , n}; if we set ni := #ωi, we can reenumerate both
the orbits and the elements in {1, 2, . . . , n} so that ω1 = {1, . . . , n1}, ω2 =

{n1 + 1, . . . , n2}, . . . , ωr = {∑r−1
i=1 ni + 1, . . . , n}, n1 ≤ n2 · · · ≤ nr. We can

than fix any element ai ∈ ωi, ni−1 < ai ≤ ni and denote

Gi := {g ∈ G(K/k) : g(ai) = ai},
Ki := {α ∈ K : g(α) = α, g ∈ Gi},
ξi ∈ Ki a primitive element so that Ki = k[ξi],
Pi ∈ k[T ] its minimal polynomial,
Ri := {ξi1, . . . , ξini

} the conjugates of ξi.

Then, since k is assumed to be infinite, we can assume that the sets Ri are
disjoint; therefore f :=

∏
i Pi is separable. Clearly

{σ ∈ G(K/k) : σ(ξij) = ξij for each i, j} = {IdG(K/k)}

so that K = k (ξ11, . . . , ξij , . . . , ξrnr
) .

Corollary 43.2.1. If k is infinite, for each finite extension K, k ⊂ K ⊂ k the
Galois field G(K/k) can be faithfully represented as G(Kf/k) for a separable

polynomial f ∈ k[T ]. �

43.3 Universal Lagrange Resolvent

Let us fix an integer n and let us denote

A := k[X1, . . . , Xn],
F := k(X1, . . . , Xn),
σ1, · · · , σn the elementary symmetric functions of X1, . . . , Xn,
I ⊂ A the ideal generated by σ1, · · · , σn,
S := k[σ1, · · · , σn],
K := k(σ1, · · · , σn),
F (T ) ∈ S[T ] the polynomial

F (T ) = T n +
n∑

i=1

(−1)iσiT
n−i =

n∏

j=1

(T −Xj).
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We have

(1) F ⊃ K is an algebraic extension F = KF ;
(2) A is the integral closure of S in F ;
(3) the representation of G(F/K) →֒ S{X1,...,Xn} = Sn as a permutation

group of the roots of F is an isomorphism.

Under this isomorphism, we can therefore associate to each subgroupH ⊂ Sn
the corresponding invariant field

I(H) := {α ∈ F : h(α) = α, for each h ∈ H}
and we have

(4) F ⊃ I(H) is an algebraic extension;
(5) I(H) is a separable extension of K;
(6) H = G(F/I(H));
(7) the integral closure of S in I(H) is AH := A ∩ I(H);
(8) there are elements Ψ ∈ AH which are K-primitive for I(H), id est which

satisfy I(H) = K[Ψ ];
(9) AH , being integrally closed and noetherian, is a finite S-module;
(10) I(H) = {a

b : a ∈ AH , b ∈ S, b 6= 0} ⊂ k(σ1, · · · , σn)[X1, . . . , Xn] =
K[X1, . . . , Xn]

10;
(11) I(H) is the fraction field of AH ;
(12) the rank of AH as a S-module is dimK(I(H)) = [Sn : H ] := n!

#H ;

(13) the finite set B := {Xa1
1 Xa2

2 · · ·Xan
n , 0 ≤ ai < i}, #B = n! is both a

k-basis of A/I and a basis of A as an S-module;

On the basis of (8) we can introduce the following

Definition 43.3.1. Each K-primitive element Ψ ∈ AH for I(H) is called a
resolvent of H and is said to be homogeneous if it is a homogeneous polyno-
mial in A.

The minimal polynomial LΨ ∈ S[T ] of Ψ over K is called the Lagrange
resolvent of H associated to Ψ .

Example 43.3.2. The Vandermonde determinant

Ψ :=
∏

i>j

(Xj −Xi) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xn−1
1 Xn−1

2 · · · Xn−1
n

∣∣∣∣∣∣∣∣∣∣∣
10 In fact if x ∈ I(H), then there are α, β ∈ A, β 6= 0 such that x = α

β
.

It is sufficient to define

b :=
∏

σ∈Sn

σ(β) ∈ S \ {0}, a := α
∏

σ∈Sn\{Id}

σ(β) ∈ AH

in order to have x = a
b
.



43.3 Universal Lagrange Resolvent 203

is a K-primitive element for A4; its minimal polynomial is LΨ := T 2 −
Disc(F ) ∈ S[T ]. where Disc(F ) :=

∏
i>j(Xj − Xi)

2 is the discriminant of

the polynomial F (T ) ∈ S[T ]. �

Lemma 43.3.3. If Ψ ∈ A and H := {g ∈ Sn : g(Ψ) = Ψ} then Ψ is a

resolvent of H. �

Remark 43.3.4. Each group H possesses homogeneous resolvents provided k
is infinite. In fact, if Ψ ∈ AH is a K-primitive element of degree d, denote, Ψt

the homogeneization of Ψ by tσ1,

Ψt = (tσ1)
dΨ(

X1

tσ1
, · · · Xn

tσ1
.

Consider now a set of e := [Sn : H ] elements

{τ1, . . . , τe} ⊂ Sn

such that {τ1H, . . . , τeH} is the set of all the left classes and let us denote
Pt(T ) :=

∏e
i=1(T−τi(Ψt)) and D(t) := Disc(Pt) ∈ S[t] its discriminant. Since

P 1
σ1

(T ) = LΨ , D( 1
σ1
) 6= 0; thus D(t) 6= 0 and, k being infinite, there is λ ∈ k

such that D(λ) 6= 0 so that Ψλ , which is homogeneous of degree d, is K-
primitive, thus being the required homogeneous resolvent. Its corresponding

Lagrange resolvent is LΨλ
= Pλ(T ). �

Theorem 43.3.5 (Lagrange). Let H ⊂ Sn be a subgroup and Ψ ∈ AH a
resolvent of H. Denoting ∆Ψ := Disc(LΨ ) the discriminant of the Lagrange
resolvent of Ψ , we have

AH ⊂
{
f(Ψ)

∆Ψ
, f ∈ S[T ]

}
.

Proof. Let e = [Sn : H ] and {τ1, . . . , τe} ⊂ Sn be such that {τ1H, . . . , τeH}
is the set of all the left cosets of H , with τ1 = IdSn . Set Ψi := τi(Ψ) for each
i so that

LΨ =

e∏

i=1

(T − Ψi) = T e +

e∑

i=1

(−1)iCiT
e−i, Ci ∈ S.

If we denote S1, . . . , Se−1 the elementary symmetric functions on Ψ2, . . . , Ψe,
since

T e−1 +
e−1∑

j=1

(−1)jSjT
e−j−1

=
e∏

i=2

(T − Ψi)

=
LΨ

T − Ψ1

= T e−1 + (Ψ1 − C1)T
e−2 + (Ψ2

1 − C1Ψ1 − C2)T
n−i + · · ·
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is a polynomial in S[Ψ ][T ], we have Sj ∈ S[Ψ ] for each j.
Consider g ∈ AH , denote gi := τi(g) for each i and set, for each m, 0 ≤

m < e,

hm :=
e∑

j=1

gjΨ
m
j =

e∑

j=1

τj(gΨ
m) ∈ S.

The gis can be solved à la Cremer in terms of the hm: setting

D :=

∣∣∣∣∣∣∣∣

h0 1 · · · 1
h1 Ψ2 · · · Ψe
...

...
. . .

...
he−1 Ψe−1

2 · · · Ψe−1
e

∣∣∣∣∣∣∣∣
and δΨ :=

∣∣∣∣∣∣∣∣

1 1 · · · 1
Ψ1 Ψ2 · · · Ψe
...

...
. . .

...
Ψe−1
1 Ψe−1

2 · · · Ψe−1
e

∣∣∣∣∣∣∣∣

so that
δ2Ψ =

∏

1≤i<j≤e

(Ψj − Ψi)
2 = Disc(LΨ ) = ∆Ψ

we have g = δΨD
∆Ψ

.
We prove our claim if we show that E := δΨD ∈ S[Ψ ]: we know that E

can be expressed as E(Ψ2, . . . , Ψn) with E ∈ S[Ψ ][T2, . . . , Tn] symmetric in
T2, . . . , Te; thus the Fundamental Theorem on Symmetric Functions grants
the existence of a polynomial F ∈ S[Ψ ][Y1, . . . , Ye−1] for which

E(Ψ2, . . . , Ψn) = F (S1, . . . , Se−1) ∈ S[Ψ ]

as claimed. �

43.4 Cauchy modules

Let us use the same notation as in Sections 43.2 and 43.3 and let us consider
a monic, separable polynomial

f(T ) := T n + a1T
n−1 + · · ·+ aiT

n−i + · · ·+ an−1T + an ∈ k[T ]

Definition 43.4.1 (Ampère). The n interpolating functions

fi(T ) = fi(X1, . . . , Xi−1, T ) ∈ k[X1, . . . , Xi−1][T ], 1 ≤ i ≤ n

are recursively defined as

f1(T ) := f(T ) and fi(T ) :=
fi−1(T )− fi−1(Xi−1)

T −Xi−1
, 1 < i ≤ n.

�

Definition 43.4.2. The polynomials fi(Xi) = fi(X1, . . . , Xi), 1 ≤ i ≤ n are

called the Cauchy modules associated to f . �
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Example 43.4.3. For n = 5 we have

f1(X1) = X5
1 +X4

1a1 +X3
1a2 +X2

1a3 +X1a4 + a5,

f2(X2) = X4
2 +X3

2X1 +X2
2X

2
1 +X2X

3
1 +X4

1

+ a1(X
3
2 +X2

2X1 +X2X
2
1 +X3

1 )

+ a2(X
2
2 +X2X1 +X2

1 )

+ a3(X2 +X1) + a4,

f3(X3) = X3
3 +X2

3X2 +X3X
2
2 +X3

2 +X2
3X1

+ X3X2X1 +X2
2X1 +X3X

2
1 +X2X

2
1 +X3

1

+ a1(X
2
3 +X3X2 +X2

2 +X3X1 +X2X1 +X2
1 )

+ a2(X3 +X2 +X1) + a3,

f4(X4) = X2
4 +X4X3 +X2

3 +X4X2 +X3X2

+ X2
2 +X4X1 +X3X1 +X2X1 +X2

1

+ a1(X4 +X3 +X2 +X1) + a2,

f5(X5) = X5 +X4 +X3 +X2 +X1 + a1

�

Lemma 43.4.4 (Cauchy). The Cauchy modules satisfy degi(fi)+i = n+1
and lc(fi) = 1 for each i.

Moreover, under the further assumption that the roots are all distinct, for

each i, the roots of fi(α1, . . . , αi−1, Xi) are {αj , i ≤ j ≤ n}. �

Proof. The claims being true by definition for i = 1 we inductively have

fi(α1, . . . , αi−1, αj) =
fi−1(α1,...,αi−2,αj)−fi−1(α1,...,αi−2,αi−1)

αj−αi−1
= 0 for each

j, i ≤ j ≤ n. �

Lemma 43.4.5 (Cauchy). Assume g ∈ k[X ] is such that there is u ∈ k for
which g(α) = u for each root α ∈ Rf of f . Then Rem(g, f) = u.

Proof. The polynomial Rem(g, f)− u has degree less then deg(f) and van-

ishes in each root of f ; therefore is zero. �

Let gn(X1, . . . , Xn) ∈ A = k[X1, . . . , Xn−1][Xn] be symmetric in the
variables X1, . . . , Xn and recursively denote

gn−1 := Rem(gn, fn(Xn)) ∈ k[X1, . . . , Xn−1] the remainder of the division
of gn by fn in k[X1, . . . , Xn−1][Xn];

gn−2 := Rem(gn−1, fn−1(Xn−1)) ∈ k[X1, . . . , Xn−2] the remainder of the
division of gn−1 by fn−1 in k[X1, . . . , Xn−2][Xn−1];

. . .
gi := Rem(gi+1, fi+1(Xi+1)) ∈ k[X1, . . . , Xi] the remainder of the division

of gi+1 by fi+1 in k[X1, . . . , Xi][Xi+1];



206 43. Lagrange II

. . .
g1 := Rem(g2, f2(X2)) ∈ k[X1] the remainder of the division of g2 by f2 in
k[X1][X2];

g0 := Rem(g1, f1(X1)) ∈ k the remainder of the division of g1 by f1 in
k[X1],

remarking that we can assume gi ∈ k[X1, . . . , Xi] instead of the weeker gi ∈
k(X1, . . . , Xi) because lc(fi) = 1.

Remark 43.4.6 (Cauchy). Each gi is a symmetric polynomial in the variables
X1, . . . , Xi.

Moreover, repeatedly applying Lemma 43.4.5, if #Rf = n, id est all the
roots of f are distinct we have that, for each i, gi(α1, . . . , αi) ∈ k(α1, . . . , αi)
satisfies

gi(α1, . . . , αi) = gi+1(α1, . . . , αi, αj), i < j ≤ n

so that g0 = gn(α1, . . . , αn).

Donc alors la valeur [g0] de [gn(α1, . . . , αn)] , determinèe comme
nous l’avons dit ci-dessus, sera une fonction rationelle et même
entière, par conséquent une function continue des coefficients ren-
fermés dans f(x). D’ailleurs chacun de ces coefficients représentera,
au signe près, ou la somme des racines de l’èquation [f(x) = 0],
ou la somme formée avec les produits qu’on obtient en multipliant
ces racines deux à deux, trois à troix, etc. Donc la valeur trouvée de
[g0] pourra être encore considérée comme une fonction continue des
racines de l’èquation [f(x) = 0]; et dans la formule

[gn(α1, . . . , αn) = g0]

qui se vérifiera toutes les fois que les racines [(α1, . . . , αn] seront
inégales, les deux membres varieront par degrée insensible en même
temps que ces racines.
[· · ·]
Il est mainteneant facile de s’assurer que [the result] s’etende, avec la
formule [gn(α1, . . . , αn) = g0], au cas même oú l’èquation [f(x) = 0]
offre des racines égales. Car des racines égales de l’èquation [f(x) =
0] peuvent être considérées des valeures variables de racines sup-
posées d’abord inégales, mais trés peu différent les unes des autres;
et puisque la formule [gn(α1, . . . , αn) = g0] , dont les deux mem-
bres varient par dégres insensibles avec les racines, par conséquent
avec leurs différences, continuera de subsister pour des valeurs de
ces différences aussi rapprochées de zéro que l’on voudra, elle sub-
sisteracerainement das le cas même oú ces différences viendront à
s’évanouir. 11

11 A. Cauchy Usage des fonctions interpolaires dans ls determination des fonctions
symmetriques des racines d’une équation algébrique donnée C.R. Acad. Sci. Paris
11 (1840) p.933,

In: A. Cauchy Oeuvres t. V, Gauthier–Villars (1882) Paris , pp. 476–7.
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Thus we have:

Théorème II. Soient
f(x)

une function entière de x, du degré n, et

f(a, x) =
f(x)− f(a)

x− a
, f(a, b, x) =

f(a, x)− f(a, b)

x− b
, · · ·

les functions interpolaires de divers ordres qui renfermant avec la
variable x diverses valeurs particolières a, b, c, . . . de cette variable.
Concevons d’ailleurs que les letters

a, b, c, . . . , h, k

représentent les n racines de l’équarion

f(x) = 0

et désignon par
F (a, b, c, · · · , h, k)

une function entière mais symmétrique de ces racines. Pour éliminer
de cette même fonction les racines

k, h, . . . , c, b, a

il suffira de la diviser successivement par les divers terms de la suite

f(a, b, c, . . . , h, k), f(a, b, c, . . . , h, ), . . . , f(a, b, c), f(a, b), f(a),

considérés le premier comme fonction de k, le second comme fonc-
tion de h,. . . , l’avant-dernier comme fonction de b, le dernier comme
fonction de a. Le dernier des rests ainsi obtenus sera indépendent
de a, b, c, . . . , h, k, et représentera nécessariament la valeur U de la
fonction symmétrique

F (a, b, c, · · · , h, k)

exprimée à l’aide des coefficients que renferme le premier membre de
l’èquation [f(x) = 0].12

In conclusion the argument above gives:

Theorem 43.4.7 (Cauchy). Let gn(X1, . . . , Xn) ∈ A be a symmetric poly-
nomial in the variables X1, . . . , Xn and let gn−1, . . . , g0 be obtained as above
by successively dividing gn(X1, . . . , Xn) by fn(Xn), fn−1(Xn−1), . . . , f1(X1).

The last remainder g0 will be independent of X1, . . . , Xn and gives the

value gn(α1, . . . , αn) as a function of the coeffiecients a1, . . . , an of f . �

12 A. Cauchy, op. cit., pp. 474–5.
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Example 43.4.8. For n = 3 we have

f1(X1) = X3
1 +X2

1a1 +X1a2 + a3,

f2(X2) = X2
2 +X2X1 +X2

1 + a1(X2 +X1) + a2,

f3(X3) = X3 +X2 +X1 + a1

For the symmetric polynomial

g = X3
3X2 +X3X

3
2 +X3

3X1 +X3
2X1 +X3X

3
1 +X2X

3
1

we have

g2(X1, X2) = −2X4
2 − 4X3

2X1 − 6X2
2X

2
1 − 4X2X

3
1 − 2X4

1

+ a1(−4X3
2 − 9X2

2X1 − 9X2X
2
1 − 4X3

1 )

+ a21(−3X2
2 − 6X2X1 − 3X2

1 )− a31(X2 −X1)

g1(X1) = X3
1a1 +X2

1a
2
1 +X1a1a2 + a21a2 − 2a22,

g0 = a21a2 − 2a22 − a1a3.

�

Let us now extend the notations of Sections 43.2 and 43.3 by denoting

F the prime field of k,
J = I(σ1 + a1, σ2 − a2, . . . σn − (−1)nan) ⊂ A
A := k[X1, . . . , Xn],
Je := Jk[X1, . . . , Xn],
B := {Xa1

1 Xa2
2 · · ·Xan

n , 0 ≤ ai < i},
B′ := {Xa1

1 Xa2
2 · · ·Xan

n , 0 ≤ ai < n− i},
Γ := G(Kf/k) ⊂ Sn,
R : Γ →֒ SRf

= Sn the canonical representation of Γ as a permutation
group of the roots of f defined by

R(u) = su : u(αi) = αsu(i);

·̃ : A → Kf ⊂ k the k-algebra morphism defined by

g̃ = g(α1, . . . , αn), for each g ∈ A.

Remark 43.4.9. For each g ∈ A and each s ∈ Sn we have

s̃(g) = s(g)(α1, . . . , αn) = s (g(α1, . . . , αn)) = s(g̃)

where Sn is interepreted as

Sn = G(F/K) in the left hand side and
Sn = G(Kf/k) in the right hand side.

Remark 43.4.10. For each g(X1, . . . , Xn) ∈ A = k[X1, . . . , Xn] which is sym-
metric in the variables X1, . . . , Xn we have both
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• g̃ ∈ k and
• g − g̃ ∈ J.

Moreover, with the present notation Cauchy’s Theorem 43.4.7 can be read
as

Let g(X1, . . . , Xn) ∈ A be a symmetric polynomial in the variables
X1, . . . , Xn; set gn := g, and let gn−1, . . . , g0 be obtained by succes-
sively dividing gn(X1, . . . , Xn) by fn(Xn), fn−1(Xn−1), . . . , f1(X1).
The last remainder g0 satisfies

g0 = g̃ ∈ F(a1, . . . , an).
�

Proposition 43.4.11 (Machi–Valibouze). The reduced Gröbner basis of
J (and also of Je) w.r.t. any termordering < induced by X1 < X2 < . . . < Xn

is {f1, . . . , fn}. �

Proof. Remark that for each i we haveT(fi) = Xn−i+1
i for any term-ordering

< induced by X1 < X2 < . . . < Xn. Therefore Buchberger’s First Criterion
(Lemma 22.5.1) grants that {f1, . . . , fn} is the Gröbner basis of the ideal it
generates w.r.t. any such termordering.

We have therefore just to prove that

J = I(f1, . . . , fn).

Clearly, Cauchy’s Theorem grants J ⊆ I(f1, . . . , fn) and equality is a
direct consequence of the remark that N(I(f1, . . . , fn)) = B′ so that

dim(A/J) = #B = n! = #B′ = dim (A/I(f1, . . . , fn)) .

�

To complete our argument, we need to consider the ”generic” monic poly-
nomial

f(T ) = T n + a1T
n−1 + . . .+ an−1T + an ∈ F(a1, . . . , an)[T ]

and express the associated Cauchy modules fi, which are symmetric polyno-
mials in X1, . . . , Xi, as elements in

fi ∈ F(a1, . . . , an)(X1, . . . , Xi).

Lemma 43.4.12. With the present notation it holds:

(1) fn(T )− fn(Xn) = T −Xn;

(2) f(T ) = fν+1(T )
∏ν

j=1(T − Xj) +
∑ν

i=1 fi(Xi)
∏i−1

j=1(T − Xj) for each
ν, 1 ≤ ν < n;

(3) f(T ) = F (T ) +
∑n

i=1 fi(Xi)
∏i−1

j=1(T −Xj);
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(4) f(T )−F (T ) =∑n−1
i=1

(
ai − (−1)iσi

)
T n−i =

∑n
i=1 fi(Xi)

∏i−1
j=1(T −Xj).

Proof. (1) requires just a trivial verification;
(2) We have

fi(T )(T −Xi−1) = fi−1(T )− fi−1(Xi−1)

so that (i = 1) f(T ) = f1(T ) = f2(T )(T −X1) + f1(X1).
Thus, inductively,

f(T ) = fν(T )

ν−1∏

j=1

(T −Xj) +

ν−1∑

i=1

fi(Xi)

i−1∏

j=1

(T −Xj)

=
(
fν(Xν) + fν+1(T )(T −Xν)

) ν−1∏

j=1

(T −Xj)

+

ν−1∑

i=1

fi(Xi)

i−1∏

j=1

(T −Xj)

= fν+1(T )

ν∏

j=1

(T −Xj) +

ν∑

i=1

fi(Xi)

i−1∏

j=1

(T −Xj);

(3) (1) implies

fn(T )
n−1∏

j=1

(T −Xj) = fn(Xn)
n−1∏

j=1

(T −Xj) +
n∏

j=1

(T −Xj)

= fn(Xn)

n−1∏

j=1

(T −Xj) + F (T ).

The claim than follows by substituting this result in the formula of (2)
for ν := n− 1.

(4) Trivial. �

Denoting hd(X1, . . . , Xi) the dth complete sum in k[X1, . . . , Xi], id est
(Compare Definition 6.3.2) the sum of all terms of degree d in k[X1, . . . , Xi]
we have

Proposition 43.4.13. It holds, setting a0 = 1,

(1) hd(X1,...,Xi−2,Xi)−hd(X1,...,Xi−2,Xi−1)
Xi−Xi−1

= hd−1(X1, . . . , Xi) for each d and

each i ≤ n;
(2) fi(Xi) =

∑n−i+1
d=0 an−i+1−dhd(X1, . . . , Xi).

Proof. (1) Trivial
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(2) Thus

fi(Xi)

=
fi−1(Xi)− fi−1(Xi−1)

Xi −Xi−1

=

n−i+2∑

d=0

an−i+2−d
hd(X1, . . . , Xi−2, Xi)− hd(X1, . . . , Xi−2, Xi−1)

Xi −Xi−1

=

n−i+2∑

d=1

an−i+2−dhd−1(X1, . . . , Xi)

=

n−i+1∑

d=0

an−i+1−dhd(X1, . . . , Xi).

�

Corollary 43.4.14. (Compare Proposition 6.3.15 and Fact 6.3.14)
The Gröbner basis of I = I(σ1, . . . , σn) w.r.t. the lex termordering <

induced by X1 > X2 > . . . > Xn is

{hn−i+1(X1, . . . , Xi), 1 ≤ i ≤ n}.
Proof. We have just to apply Propositions 43.4.11 and 43.4.13 with a1 =

. . . = an = 0. �

Historical Remark 43.4.15. When stating Proposition 6.3.15 and Fact 6.3.14,
I was completely unaware of Propositions 43.4.13 and of Cauchy’s Theo-
rem 43.4.7 which imply Propositions 43.4.11.

Only later I realized that they were reported in Valibouze’s Habilitation
where the history is also told:

L’idéal [J] des relations symétriques est engendré par les n polynômes
[σ1 − a1, σ2 − a2, . . . , σn − an]. Augustin Cauchy utilise les fonc-
tions interpolaires introduites par Ampère pour calculer un système
de générateurs qui se révéle être une base standard réduite, pour
l’ordre lexicographique, de l’idéal [J]. Cette base standard sert à tester
l’appartenance à l’ideal [J] et a évaluer sur k un polynôme symétrique
en les racines de f . Comme elle est réduite, la base standard de [J]
permet de retrouver la base naturelle de [A/J]. Cauchy calcule cette
base standard pour n = 4 et en 1990 et avec Antonio Mach̀ı nout la
calculons pour tout n en utilizant des séries géneratrices tronquées
[· · ·]. Alain Lascoux suggère une démonstration plus courte qui fait
appel aux Λ-anneaux et aux différences divisées sur les S-fonctions.
13

�

13 Valibouze A., Théorie de Galois constructive, Mémoir d’Habilitation, Paris 6
(1998) p. 23.
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43.5 Resolvents and Polynomial Roots

Let us consider again the monic, separable polynomial

f(T ) := T n + a1T
n−1 + · · ·+ aiT

n−i + · · ·+ an−1T + an ∈ k[T ]

and use freely the same notation as in Sections 43.2 and 43.3.

Definition 43.5.1. Let Ψ ∈ AH be a resolvent of H ⊂ Sn and let

LΨ [σ1, · · · , σn, T ] ∈ k[σ1, · · · , σn][T ] = S[T ]

be the Lagrange resolvent of H associated to Ψ .
The (H,Ψ)-Lagrange resolvent of f is the polynomial

LΨ,f [T ] := LΨ [−a1, · · · , (−1)iai, · · · , (−1)nan, T ] ∈ k[T ].

If LΨ,f is separable, one sais that Ψ is f -separable.

Proposition 43.5.2. If k is an infinite field and A ⊂ k is a ring whose
fraction field is k, there is a resolvent Ψ ∈ A[X1, . . . , Xn] of H for which
LΨ,f is separable; moreover Ψ can be chosen homogeneous.

Proof. Since the roots αi of f are distinct, the n! polynomials
(

n∑

i=1

Uiαs(i)

)
− 1 ∈ k[U1, . . . , Un],

where s runs among the elements of Sn, are all different.
Thus denoting, for each H ′ ∈ (Sn/H)l,

φH′ :=
∏

s∈H′

((
n∑

i=1

Uiαs(i)

)
− 1

)
∈ k[U1, . . . , Un]

we have gcd(φH′ , φH′′ ) = 1 for each H ′, H ′′ ∈ (Sn/H)l, H
′ 6= H ′′.

Since A is infinite, we can choose u1, . . . , un ∈ A such that the elements
φH′ (u1, . . . , un), H

′ ∈ (Sn/H)l are all distinct.
For such values, we set

Ψ :=
∏

s∈H

((
n∑

i=1

uiXs(i)

)
− 1

)
∈ I(H) ∩ A[X1, . . . , Xn].

Its conjugates in K are the polynomials

ΨH′ :=
∏

s∈H′

((
n∑

i=1

uiXs(i)

)
− 1

)
, H ′ ∈ (Sn/H)l

which are all distinct so that Ψ ∈ A[X1, . . . , Xn] is the required resolvent of
H .



43.5 Resolvents and Polynomial Roots 213

We have LΨ,f =
∏

H′∈(Sn/H)l
(T − ΨH′(α1, . . . , αn)) which is therefore

separable.
The same argument as in Remark 43.3.4 proves that Ψ can be made

homogeneous: denote

(ΨH′)t = (tσ1)
deg(ΨH′)ΨH′(X1

tσ1
, · · · Xn

tσ1
,

Pt(T ) :=
∏

H′∈(Sn/H)l
(T − (ΨH′)t)

D(t) := Disc(Pt) ∈ S[t] = k[σ1, · · · , σn, t],
D(t) := D(a1, · · · , an, t) ∈ A[t].

We clearly have D(t) 6= 0 so that, A being infinite, there is λ ∈ A such that
D(λ) 6= 0; thus

Θ := Ψλ ∈ I(H) ∩ A[X1, . . . , Xn]

is homogeneous of degree deg(Ψ) = #(H), and its conjugates in F are

ΘH′ := (ΨH′)λ ∈ A[X1, . . . , Xn], H
′ ∈ (Sn/H)l.

Denoting, for eachH ′ ∈ (Sn/H)l, θH′ := ΘH′(α1, . . . , αn) we have LΘ,f =∏
H′∈(Sn/H)l

(T − θH′ ) whose discrimiant satisfies D(λ) 6= 0.
Therefore

• the ΘH′s are all distinct,
• Θ is a homogeneous resolvent of H ,

• LΘ,f is separable. �

Let us now denote

Z := Z(Je) = {(β1, . . . , βn) ∈ kn : p(β1, . . . , βn) = 0, for each p ∈ Je} ⊂ kn;
Γ := G(Kf/k) ⊂ Sn,
H := (Sn/Γ )r := {Γs : s ∈ Sn} the set of the right classes of Γ :=
G(Kf/k) ⊂ Sn,

N := #Γ .

Lemma 43.5.3. It holds

(1) Z = {(αs(1), . . . , αs(n)) : s ∈ Sn};
(2) A/J ∼= Spank(B′), A/Je ∼= Spank(B′);
(3) both J and Je are radical.

Proof. (1) is obvious; (2) is a trivial consequence of Proposition 43.4.11; (3)
follows from

dimk(A/
√
J) = #Z = n! = dimk(A/J).

�

For each Γ ′ ∈ H let us denote

WΓ ′ := {(αs(1), . . . , αs(n)) : s ∈ Γ ′},
PΓ ′ :=

∏
s∈Γ ′

(
T −∑n

i=1 Uiαs(i)

)
;
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mΓ ′ := I(WΓ ′ ) = {g ∈ A : g(β1, . . . , βn) = 0 for each (β1, . . . , βn) ∈ WΓ ′}.
We also denote W := WΓ , Ψ := PΓ , m := mΓ .

Lemma 43.5.4. With the present notation, it holds

(1) the u-resultant of Z

ΨZ :=
∏

s∈Sn

(
T −

n∑

i=1

Uiαs(i)

)
∈ k[U1, . . . , Un][T ]

factorizes into irreducible complonents as ΨZ =
∏

Γ ′∈H PΓ ′ ;
(2) the irreducible components of Z are the WΓ ′s : Z =

⋃
Γ ′∈H WΓ ′ ;

(3) each mΓ ′ is maximal in A;
(4) J =

⋂
Γ ′∈H mΓ ′ ;

(5) mΓ ′ = Z(WΓ ′) for each Γ ′ ∈ H;

(6) Kf
∼= A/mΓ ′ for each Γ ′ ∈ H. �

Lemma 43.5.5 (Arnaudiès–Valibouze). Let g ∈ m, g /∈ ⋂
Γ ′∈H

Γ ′ 6=Γ

mΓ ′ .

Then m is generated by

{σ1 + a1, σ2 − a2, . . . , σn − (−1)nan, g}.

Proof. Denoting a := J + (g), by assumption we have Z(a) = W = Z(m),
whence

(1) there is ρ ∈ N for which14 mρ ⊂ a,
(2) J ⊂ a ⊂ √

a = m.

Since


 ⋂

Γ ′∈H

Γ ′ 6=Γ

mΓ ′


 + mρ = A there are u ∈


 ⋂

Γ ′∈H

Γ ′ 6=Γ

mΓ ′


 and v ∈ mρ for

which 1 = u+ v. Therefore for each x ∈ m, we have x = xu + xv with

xu ∈ mρ ⊂ a, xv ∈ m



⋂

Γ ′∈H

Γ ′ 6=Γ

mΓ ′


 =

⋂

Γ ′∈H

mΓ ′ = J ⊂ a

so that x ∈ a. �

Let Θ be a resolvent of a subgroup H of Sn and denote

• θ := Θ̃ = Θ(α1, . . . , αn);
• Θ1 = Θ,Θ2, . . . , Θν the distinct conjugates s(Θ), s ∈ Sn, of Θ in F ⊃ K;
• Hi := {s ∈ Sn : s(Θ) = Θi}, 1 ≤ i ≤ ν.

14 A is noetherian.



43.5 Resolvents and Polynomial Roots 215

Remarking that θ is a root of the (H,Θ)-Lagrange resolvent LΘ,f [T ], let us
assume that

(1) θ is a simple root of LΘ,f [T ], and wlog

(2) its conjugates in Kf are θ, Θ̃2, . . . , Θ̃r, 1 ≤ r ≤ ν,

and denote

• h :=
∏r

i=1(T − Θ̃i) the monic irreducible factor of LΘ,f [T ] in k[T ];
• O := {Θ1, . . . , Θr};
• S := {s ∈ Sn : s(Θi) ∈ O, for each i, 1 ≤ i ≤ r};
• g := h(Θ) ∈∈ A = k[X1, . . . , Xn] for each i, 1 ≤ i ≤ r.

Theorem 43.5.6 (Arnaudiès–Valibouze). With the present notation we
have

(1) The Γ -orbit of Θ in F is O,
(2) Γ ⊂ S ⊂ ⋃r

i=1Hi and [S : Γ ] = [S ∩H : Γ ∩H ],
(3) Γ = S =

⋃r
i=1Hi ⇐⇒ m = I (σ1 + a1, σ2 − a2, . . . σn − (−1)nan, g) .

Proof.

(1) For s ∈ Γ , since h ∈ k[T ], we have

h(s̃(Θ)) = h(s(Θ̃)) = s(h(Θ̃)) = s(0) = 0

therefore s(Θ) ∈ O.
For each i, 1 ≤ i ≤ r, since h is irreducible, there is s ∈ Γ for which

s̃(Θ) = s(Θ̃) = Θ̃i; since, with the same argument above, we have

h(s̃(Θ)) = 0 then necessarily s(Θ) = Θi.
(2) The inclusion S ⊂ ⋃r

i=1Hi being trivial, let us prove Γ ⊂ S: for s ∈ Γ
we have

s
({
Θ̃1, . . . , Θ̃r

})
=
{
Θ̃1, . . . , Θ̃r

}
;

therefore the same argument as above allows to deduce

s ∈ Γ =⇒ s(Θ̃i) = s̃(Θi) for each i, 1 ≤ i ≤ r,

=⇒ s(Θ̃i) ∈
{
Θ̃1, . . . , Θ̃r

}
for each i, 1 ≤ i ≤ r,

=⇒ s(Θi) ∈ {Θ1, . . . , Θr} for each i, 1 ≤ i ≤ r,

=⇒ s ∈ S.

Moreover
• O is the S-orbit of Θ,
• {s ∈ S : s(Θ) = Θ} = S ∩H ,
• {s ∈ Γ : s(Θ) = Θ} = Γ ∩H ,
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whence r = [S : S ∩H ] = [Γ : Γ ∩H ] so that

[S : S ∩H ][S ∩H : Γ ∩H ] = [S : Γ ][Γ : Γ ∩H ]

gives the required [S : Γ ] = [S ∩H : Γ ∩H ].
(3) Clearly g(β1, . . . , βn) = 0 for each (β1, . . . , βn) ∈ WΓ .

Therefore, Lemma 43.5.5 reduces the statement to Γ = S =
⋃r

i=1Hi iff

g(β1, . . . , βn) 6= 0 for each (β1, . . . , βn) ∈
⋃

Γ ′∈H

Γ ′ 6=Γ

WΓ ′ .

We have

g(β1, . . . , βn) 6= 0 for each (β1, . . . , βn) ∈
⋃

Γ ′∈H

Γ ′ 6=Γ

WΓ ′

⇐⇒ h(Θ(αs(1), . . . , αs(n))) 6= 0 for each s ∈ Sn \ Γ
⇐⇒ h(s̃(Θ)) 6= 0 for each s ∈ Sn \ Γ.

Since h is a simple factor of LΘ,f [T ] the only s ∈ Sn for which h(s̃(Θ)) = 0
are those satisfying s(Θ) ∈ O id est the elements in

⋃r
i=1Hi.

Thus

m = I (σ1 + a1, σ2 − a2, . . . σn − (−1)nan, g)

⇐⇒ g(β1, . . . , βn) 6= 0 for each (β1, . . . , βn) ∈
⋃

Γ ′∈H

Γ ′ 6=Γ

WΓ ′

⇐⇒ h(s̃(Θ)) 6= 0 for each s ∈ Sn \ Γ

⇐⇒ s /∈
r⋃

i=1

Hi implies s ∈ Sn \ Γ

⇐⇒
r⋃

i=1

Hi ⊂ Γ

which, by (2) is equivalent to Γ = S =
⋃r

i=1Hi.

43.6 Lagrange resolvent and Galois group

Let

• H be a subgroup of Sn,
• e := [Sn : H ],
• Θ a resolvent of H ,
• Θ = Θ1, . . . , Θe its distinct conjugates in F over K,
• Hi := {s ∈ Sn : s(Θ1) = Θi}, 1 ≤ i ≤ e,
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• θ := Θ̃,
• ν the multiplicity of θ in LΘ,f [T ],

so that

(A) LΘ[T ] =
∏e

i=1 (T −Θi) ,

(B) LΘ,f [T ] =
∏e

i=1

(
T − Θ̃i

)
,

(C) (Sn/H)l = {Hi, 1 ≤ i ≤ e}, H1 = H ;

we wlog assume that

(D) Θ̃i = θ ⇐⇒ i ≤ ν,

and denote

• O := {Θ1, . . . , Θν};
• S := {s ∈ Sn : s(Θi) ∈ O, 1 ≤ i ≤ ν}.
Proposition 43.6.1. With the present notation

(1) if θ is a simple root of LΘ,f [T ] then

G(Kf/k(θ)) = {s ∈ G(Kf/k) : s(θ) = θ} = G(Kf/k) ∩H ;

(2) if ν > 1, then

G(Kf/k(θ) = {s ∈ G(Kf/k) : s(θ) = θ} = G(Kf/k) ∩ S;

moreover
(a) [k(θ) : k] = [G(Kf/k) : G(Kf/k) ∩ S],
(b) G(Kf/k) ∩ S ⊃ G(Kf/k) ∩H and
(c) [G(Kf/k) : G(Kf/k) ∩H ] ≤ ν[k(θ) : k].

Proof.

(1) For each s ∈ G(Kf/k) and each p ∈ A we have (Remark 43.4.9) s̃(p) =
s(p̃); so for each s ∈ G(Kf/k) ∩H we have

θ = Θ̃ = s̃(Θ) = s(Θ̃) = s(θ)

so that G(Kf/k) ∩H ⊂ G(Kf/k(θ)).
If, instead s ∈ G(Kf/k) \H , Θ′ := s(Θ) is a conjugate of Θ in F over K
distinct from θ; since Sn = G(F/K) and LΘ,f [T ] =

∏
s∈Sn

(
T − s̃(Θ)

)

necessarily

s(θ) = s(Θ̃) = s̃(Θ) = Θ̃′ 6= Θ̃ = θ

and s /∈ G(Kf/k(θ)).
(2) For each s ∈ G(Kf/k) we have s ∈ {s ∈ G(Kf/k) : s(θ) = θ} iff, for each

i, 1 ≤ i ≤ ν, s̃(Θi) = θ which is equivalent to s̃(Θi) ∈ O; thus s ∈ S and
the claim.
Moreover:
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(a) since [Kf : k(θ)] = #G(Kf/k(θ)) = #(G(Kf/k) ∩ S) we have

[k(θ) : k] =
[Kf : k]

[Kf : k(θ)]
=

#G(Kf/k)

#(G(Kf/k) ∩ S)
= [G(Kf/k) : G(Kf/k) ∩ S];

(b) s ∈ H =⇒ s(Θ1) = Θ1 =⇒ s ∈ S so that

G(Kf/k) ∩H ⊂ G(Kf/k) ∩ S;

(c) also we have

G(Kf/k) ∩ S = {s ∈ G(Kf/k) : s(Θi) ∈ O, 1 ≤ i}

and G(Kf/k) ∩H = {s ∈ S : s(Θ) = Θ}; thus

[G(Kf/k) ∩ S : G(Kf/k) ∩H ] = #{s(Θ) : s ∈ G(Kf/k) ∩ S}
≤ #{s(Θ) : s ∈ G(Kf/k) ∩H}
= ν

and

[G(Kf/k) : G(Kf/k) ∩H ]

= [G(Kf/k) : G(Kf/k) ∩ S][G(Kf/k) ∩ S : G(Kf/k) ∩H ]

≤ [k(θ) : k]ν.

�

Corollary 43.6.2. With the present notation

(1) if ν = 1 then the degree of θ over k is [G(Kf/k) : G(Kf/k) ∩H ];
(2) θ ∈ k ⇐⇒ G(Kf/k) ⊆ S;
(3) Hi ∩G(Kf/k) ⊂ S for each i ≤ ν;
(4) Hi ∩G(Kf/k) = ∅ for each i > ν;

(5) G(Kf/k) ∩ S =
⋃ν

i=1Hi ∩G(Kf/k). �

Let us denote

• h(T ) ∈ k[T ] the monic irreducible component of LΘ,f for which h(θ) = 0,
• θ1 = θ, θ2, . . . , θd the G(Kf/k)-conugates of θ;
• R := {Θ1, . . . , Θe},
• S(Φ) := {s ∈ Sn : s(Φ) = Φ} for each Φ ∈ R,

• Ri := {Φ ∈ R : Φ̃ = θi}, 1 ≤ i ≤ d,
• Si := {s ∈ Sn : s(Φ) ∈ Ri, for each Φ ∈ Ri},
• O the set of the G(Kf/k)-orbits of R =

⋃d
i=1 Ri;

so that

(E) hν | LΘ,f , h
ν+1 ∤ LΘ,f ,

(F) h(T ) =
∏d

i=1 (T − θi),
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(G) S1 = S, R1 = O,
(H) #Ri = ν, and (Proposition 43.6.1) d = [G(Kf/k) : G(Kf/k) ∩ Si] for

each i,

For each Ω ∈ O, {Ω ∩ Ri, 1 ≤ i ≤ d} is the set, for each j, of the
G(Kf/k)∩Sj orbits of Ω; thus such set is independent on the choice of j but
depends only on Ω. Thus we have, for each i, 1 ≤ i ≤ d, each j, 1 ≤ j ≤ d,
and each Φ ∈ Ω ∩Rj

mΩ := #(Ω ∩Ri) = [G(Kf/k) ∩ Sj : G(Kf/k) ∩ S(Φ)];

as a consequence

(I) #Ω = dmΩ for each Ω ∈ O,
(J)

∑
Ω∈OmΩ = #R1 = ν,

(K) hν(T ) =
∏

Ω∈O
∏

Φ∈Ω

(
T − Φ̃

)
.

Let us now introduce a second resolvent Ψ of the same subgroup H and
set Ψi := s(Ψ), s ∈ Hi.

Definition 43.6.3. Two monic (not necessarily irreducible nor squarefree)
factors F and G of, respectively, LΘ,f and LΨ,f are said parallel iff there is
J ⊂ {1, . . . , e} for which

F (T ) =
∑

j∈J

(
T − Θ̃j

)
and G(T ) =

∑

j∈J

(
T − Ψ̃j

)
.

�

If F and G are parallel and either LΘ,f or LΨ,f is f -separable then J is
unique.

Denoting, for each Ω ∈ O
• JΩ := {j : 1 ≤ j ≤ e,Θj ∈ Ω, },
• PΩ(T ) :=

∏
j∈JΩ

(
T − Ψ̃j

)
,

by definition, the factor in LΨ,f parallel to hν(T ) is

∏

Ω∈O

∏

Ψ∈Ω

(
T − Ψ̃

)
=
∏

Ω∈O

∏

j∈JΩ

(
T − Ψ̃j

)
=
∏

Ω∈O
PΩ(T ).

Moreover for each Ω ∈ O, {Ψj : j ∈ JO} is a G(Kf/k)-orbit, so that

(L) PΩ(T ) ∈ k[T ] for each Ω ∈ O,
(M) deg(PΩ) = #Ω = dmΩ .

In conclusion of this tour de force, we have
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Theorem 43.6.4 (Arnaudiès–Valibouze). Under the present notation,
the factor of LΨ,f which is parallel to hν is

∏
Ω∈O PΩ ; moreover for each

Ω ∈ O the polynomial PΩ(T ) is an irreducible factor in k[T ] of LΨ,f ; more-

over deg(h) | deg(PΩ). �

Let us impose on each Ne, e ∈ N \ {0}, the ordering � defined by

(b1, . . . , be) � (a1, . . . , ae) ⇐⇒ bi ≤ ai for each i.

Let us fix a subgroup H of Sn and let us denote (using the same notation
as Section 43.1)

• E the set of all conjugacy classes of the subgroups of Sn,
• Ci ∈ E the conjugacy class to which G(Kf/k) belongs,
• Cj ∈ E the conjugacy class to which H belongs,
• e := [Sn : H ],
• (a1, . . . , ae) the sequence such that Aj

i := (a1, . . . , ae, 0, . . . , 0, . . .).

Theorem 43.6.5. With such notation, let Θ be a resolvent of a subgroup H
of Sn; let us assume that each irreducible factor of LΘ,f is separable and let
us denote, for each j, 1 ≤ j ≤ e, bj the number of irreducible factors of LΘ,f .
Then

(1) (b1, . . . , be) � (a1, . . . , ae),
(2) if LΘ,f is separable, id est Θ is f -separable, then

(b1, . . . , be) = (a1, . . . , ae).

Proof. Let {τ1, . . . , τe} ⊂ Sn be such that {τ1H, . . . , τeH} is the set of all
the left cosets of H , with τ1 = IdSn . Denote, for each i, Hi := τiHτ

−1
i ,

Θi := τi(Θ) and θi := Θ̃i so that H1 = H and Θ1 = Θ. We have

LΘ =

e∏

i=1

(T −Θi) ,

LΘ,f =

e∏

i=1

(T − θi) ,

Hi = {τ ∈ Sn : τ(Θi) = Θi}.

Let us fix a value j, 1 ≤ j ≤ e, and a k-irreducible simple factor p of LΘ,f ,
deg(p) = j; then p =

∏
i∈J (T − θi) for some J ⊂ {1, . . . , e}, #J = j.

If i ∈ J , by Corollary 43.6.2.(1), j = deg(p) = [G(Kf/k) : G(Kf/k)∩Hi];
let us therefore denote, for each j,

nj := #{i : 1 ≤ i ≤ e, j = [G(Kf/k) : G(Kf/k) ∩Hi]}.

Clearly we have both jbj ≤ nj and Aj
i := (n1,

n2

2 , . . . ,
ne

e , 0, . . . , 0, . . .)
which proves (1).



43.7 Computing Galois groups of a polynomial 221

If, moreover LΘ,f is separable, we have

e∑

j=1

jbj = deg(LΘ,f ) = e =
e∑

j=1

j
nj

j

and, since jbj ≤ nj = j
nj

j for each j, we obtain (2). �

43.7 Computing Galois groups of a polynomial

Given a value n let us denote

• E := {C1, . . . , Cs}, the set of all the conjugacy classes of Sn,
• for each j, 1 ≤ j ≤ s,
– Hj a subgroup Hj ∈ Cj ,
– ej := [Sn : Hj ]
– τj1 = IdSn , . . . , τjej ∈ Sn elements such that {τj1Hj , . . . , τjejHj} is the
set of all the left cosets of Hj ,

– Θj a resolvent of Hj ,
– Θjm := τjm(Θj), 1 ≤ m ≤ ej ,
– LΘj

:=
∏ej

m=1 (T −Θjm) .

If LΘj ,f is f -separable, we denote, for each j ≤ s

• ajm the number of irreducible factors of LΘj ,f whose degree is m, for each
m, 1 ≤ m ≤ ej ;

• π(Θj , f) = (aj1, . . . , ajej ).

Then combining Proposition 43.1.13 and Theorem 43.6.4 we obtain

Theorem 43.7.1. With the present notation and under the assumption that
all resolvents Θj , 1 ≤ j ≤ s are f -separable, then the conjugacy class of

G(Kf/k) is Cr where r denotes the index of the row of the partition array Bj
i

coinciding with the array

(π(Θ1, f), π(Θ2, f), . . . , π(Θs, f)) .

�

This gives an effective method for computing the conjugacy class of
G(Kf/k); it requires to

(1) determine the partition array Bj
i ,

(2) choose suitable f -separable resultants Θi,
(3) compute LΘj ,f ,
(4) factorize them deducing the values π(Θj , f), and
(5) deduce the conjugacy class of G(Kf/k) by comparing the values of the

partition array Bj
i .
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Let us remark that

• steps (4) and (5) don’t require any special comment;
• we briefly discuss step (3) in Algorithm 43.7.2;
• the hard task is steps (1) and (2) which have been systematically solved
by Arnaudiès and Valibouze for n ≤ 1115.

Algorithm 43.7.2. The computation of LΘj ,f is a direct application of the
results of Proposition 43.4.11; it is sufficient to compute the Gröbner basis
G of the ideal generated by

{f1, · · · , fn, T −Θj} ⊂ k[T,X1, . . . , Xn]

w.r.t. the lex ordering induced by T < X1 < X2 . . . < Xn; then we have

{LΘj ,f} = G ∩ k[T ].

�

We report here the results by Arnaudiès—Valibouze for n = 5; the follow-
ing table lists the 11 conjugacy classes of S4, reporting for a chosen element
Hj ∈ Cj , their structure, their generators and their order:

H1 I4 [] 1
H2 S2 [(3, 4)] 2
H3 S2 [(1, 2)(3, 4)] 2
H4 A3 [(1, 2, 3)] 3
H5 S2 × S2 [(1, 2), (3, 4)] 4
H6 V4 [(1, 2)(3, 4), (1, 3)(2, 4)] 4
H7 Z4 [(1, 2)(3, 4), (1, 3, 2, 4)] 4
H8 S3 [(2, 3, 4), (3, 4)] 6
H9 D4 [(3, 4), (1, 2)(3, 4), (1, 3)(2, 4)] 8
H10 A4 [(1, 2)(3, 4), (1, 3)(2, 4), (2, 3, 4)] 12
H11 S4 [(1, 4), (2, 4), (3, 4)] 24

where An denotes the alternative group, Dn the dihedral group, V4 the Vier-
gruppe, In := {IdSn}. The corresponding resultants are16

Θ1 = u1X1 + u2X2 + u3X3,

Θ2 = X1 +X3X4,

Θ3 = X1X2 +X1X3 +X2X4,

Θ4 = (X2 −X3)(X3 −X4)(X4 −X2),

15 Here I report their result for n = 4; for 5 ≤ n ≤ 11 I refer to the survey Valibouze
A., Computation of the Galois Groups of the Resolvent Factors for the Deirect
and Inverse Galois problems L. N. Comp. Sci. 948 (1995), 456–468, Springer,
and to the LITP reports quoted there.

16 where u1, u2, u3 are distinct and non zero values.
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Θ5 = X1X2,

Θ6 = X1X3 +X2X4 −X1X2 −X3X4,

Θ7 = X1X
2
2 +X2X

2
3 +X3X

2
4 +X4X

2
1 ,

Θ8 = X1,

Θ9 = X1X2 +X3X4,

Θ10 =
∏

1≤i<j≤4

(Xj −Xi),

Θ11 = 1.

Finally the partition array is report in Figure 43.1.

Fig. 43.1. Partition Array for S4
1 2 3 4 5 6

1 [(24, 1)] [(12, 1)] [(12, 1)] [(8, 1)] [(6, 1)] [(6, 1)]
2 [(12, 2)] [(2, 1), (5, 2)] [(6, 2)] [(4, 2)] [(2, 1), (2, 2)] [(3, 2)]
3 [(12, 2)] [(6, 2)] [(4, 1), (4, 2)] [(4, 2)] [(2, 1), (2, 2)] [(6, 1)]
4 [(8, 3)] [(4, 3)] [(4, 3)] [(2, 1), (2, 3)] [(2, 3)] [(2, 3)]
5 [(6, 4)] [(2, 2), (2, 4)] [(2, 2), (2, 4)] [(2, 4)] [(2, 1), (1, 4)] [(3, 2)]
6 [(6, 4)] [(3, 4)] [(6, 2)] [(2, 4)] [(3, 2)] [(6, 1)]
7 [(6, 4)] [(3, 4)] [(2, 2), (2, 4)] [(2, 4)] [(1, 2), (1, 4)] [(3, 2)]
8 [(4, 6)] [(2, 3), (1, 6)] [(2, 6)] [(1, 2), (1, 6)] [(2, 3)] [(1, 6)]
9 [(3, 8)] [(1, 4), (1, 8)] [(3, 4)] [(8, 1)] [(1, 2), (1, 4)] [(3, 2)]
10 [(2, 12)] [(1, 12)] [(2, 6)] [(2, 4)] [(1, 6)] [(2, 3)]
11 [(1, 24)] [(1, 12)] [(1, 12)] [(1, 8)] [(1, 6)] [(1, 6)]

7 8 9 10 11
1 [(6, 1)] [(4, 1)] [(3, 1)] [(2, 1)] [(1, 1)]
2 [(3, 2)] [(2, 1), (1, 2)] [(1, 1), (1, 2)] [(1, 2)] [(1, 1)]
3 [(2, 1), (2, 2)] [(2, 2)] [(3, 1)] [(2, 1)] [(1, 1)]
4 [(2, 3)] [(1, 1), (1, 3)] [(1, 3)] [[(2, 1)] [(1, 1)]
5 [(1, 2), (1, 4)] [(2, 2)] [(1, 1), (1, 2)] [(1, 2)] [(1, 1)]
6 [(3, 2)] [(1, 4)] [(3, 1)] [(2, 1)] [(1, 1)]
7 [(2, 1), (1, 4)] [(1, 4)] [(1, 1), (1, 2)] [(1, 2)] [(1, 1)]
8 [(1, 6)] [(1, 1), (1, 3)] [(1, 3)] [(1, 2)] [(1, 1)]
9 [(1, 2), (1, 4)] [(1, 4)] [(1, 1), (1, 2)] [(1, 2)] [(1, 1)]
10 [(1, 6)] [(1, 4)] [(1, 3)] [(2, 1)] [(1, 1)]
11 [(1, 6)] [(1, 4)] [(1, 3)] [(1, 2)] [(1, 1)]

This table is applied as follows: one

• computes the discriminant LΘ10,f of f and checks whether LΘ10,f is a
square in which case

G(Kf/k) = Hj , j ∈ {1, 3, 4, 6, 10};
• computes a factorization of LΘ8,f ; if π(Θ8, f) is
– [(4, 1)] =⇒ G(Kf/k) = H1,
– [(2, 1), (1, 2)] =⇒ G(Kf/k) = H2,
– [(2, 2)] and LΘ10,f is a square =⇒ G(Kf/k) = H3,
– [(2, 2)] and LΘ10,f is not a square =⇒ G(Kf/k) = H5,
– [(1, 1), (1, 3)] and LΘ10,f is a square =⇒ G(Kf/k) = H4,
– [(1, 1), (1, 3)] and LΘ10,f is not a square =⇒ G(Kf/k) = H8,
– [(1, 4)], then computes a factorization of LΘ9,f ; if π(Θ9, f) is
◦ [(1, 3)] and LΘ10,f is a square =⇒ G(Kf/k) = H10,
◦ [(1, 3)] and LΘ10,f is not a square =⇒ G(Kf/k) = H11,
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◦ [(3, 1)] =⇒ G(Kf/k) = H6,
◦ [(1, 1), (1, 2)] then computes a factorization of LΘ4,f

17; if π(Θ4, f) is
⋄ [(1, 8)] =⇒ H9,
⋄ [(2, 4)] =⇒ H7.

17 one could similarly use LΘi,f , i ∈ {1, 2, 3, 7}.
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The main effort in the research toward solving technques has always been de-
voted to ’practical’ complexity, namely smooth and fast software tools1 while
’theoretical’ complexity has never been deeply considered. The noteworthing
exception is the TERA group based in École Polytechnique, Buenos Aires
and Santander around Marc Giusti, Joos Heintz and Luis M.Pardo which
in a series of papers produced in the Nineties2 devised a solver with good
complexity. The input is assumed to be a finite set of polynomials generating
a zero-dimensional ideal J ⊂ Q and given by a straight-line program, the
output being

• a system of coordinates in Noetherian position for the ideal,
• a primitive element of Q/J,
• its minimal polynomial q(T ) = g0(T ) ∈ K[T ] and
• either
– an Allgemaine Basis (g0(T ), Z1 − g1(T ), . . . , Zr − gr(T )) or
– a Kronecker/RUR presentation

q(T ),
∂q

∂T
(T )Z1 − w1(Y1, . . . , Yd, T ), · · · ,

∂q

∂T
(T )Zr − wr(T ).

1 The most effort within thePoSSo group was devoted toward an efficient memory
management!

2 Of which here and in the Bibliography I quoted only the most relevant ones:

• Giusti M., Heintz J., Morais J.E., Pardo L.M., When Polynomial Equation Sys-
tems can be “Solved” Fast?, L. N. Comp. Sci. 948 (1995), 205–231, Springer

• Giusti M., Heintz J., Morais J.E., Morgensten J., Pardo L.M., Straight-line pro-
grams in geometric elimination theory, J. Pure Appl. Algebra 124 (1998), 101–
146

• Giusti M., Heintz J., Hägele K., Morais J.E., Pardo L.M., Montaña Lower bounds
for diophantine approximation, J. Pure Appl. Algebra 117–118 (1997), 277–311

• Giusti M., Heintz J., Morais J.E., Pardo L.M., Le rôle des structures de données
dans les problèmes d’élimination, C.R. Acad. Sci. Paris 325 (1997), 1223–1228

• Morais J.E., Resolución eficaz de systemas de ecuaciones polinomiales, Ph. D.
Thesis, Univ. Cantabria, Santander (1997)

• Giusti M., Lecerf G., Salvy B., A Gröbner Free Alternative for Polynomial System
Solving, J. of Complexity 17 (2001), 154–211

• Lecerf G., Une alternative aux méthodes de réécriture pour résolution des
systémes algébriques Ph.D. Thesis, École Polytechnique (2001)
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The relevant result is that such algorithm has (low) polynomial complexity
wrt the natural misure of the data (number of variables, degree of imput
polynomials, number of roots, size of the straight-line program).

What is amazing is that this good-complexity theoretical result has pro-
duced a software solver whose practical performances compare with the best
available Gröbner-based solvers.

After posing the problem approached by the TERA group (Section 44.1),
discussing the technical tools, mainly an appropriate Newton-Hensel lifting
(Section 44.2 and 44.3), and presenting the general structure of the Kro-
necker package (Section 44.4) I deeply discuss its three steps (Sections 44.5,
44.6 and 44.7), its genericity conditions showing that the ’good’ choices live
in an open Zariski set (Section 44.8) and sketch its complexity analysis (Sec-
tions 44.9).

44.1 Kronecker parametrization

Let

I ⊂ k[X1, . . . , Xn] be an unmixed radical ideal,
d := dim(I), r := n− d = r(I) the dimension and the rank of I;
M := (cij) ∈ GL(n, k) be an invertible n×n square matrices with entries in
k such that, denoting Yi :=

∑
j cijXj for each i,

{Y1, . . . , Yn} = {V1, . . . , Vd, Z1, . . . , Zr}

is a Noether position (Definition 27.9.4) for I;
K := k(V1, . . . , Vd), and K ⊂ Ω(k) its algebraic closure;
J := IK[Z1, . . . , Zr], the 0-dimesional extension of I;
s := deg(J) the multiplicity (Definition 27.12.9 and 27.13.7) of I.

Recall (Section 34.2) that a K-linear form

U := λ1Z1 + · · ·+ λrZr, λi ∈ K,λ1 6= 0,

is a primitive element of K[Z1, . . . , Zr]/J iff

SpanK{1, U, U2, . . . , U s−1} ∼= K[Z1, . . . , Zr]/J.

Definition 44.1.1 (Giusti–Heintz–Morales–Pardo). With the notation
above, the assignment of

a matrix M := (cij) ∈ GL(n, k) such that, setting Yi :=
∑

j cijXj,

{Y1, . . . , Yn} = {V1, . . . , Vd, Z1, . . . , Zr}

is a Noether position for I;
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a primitive element

U := λ1Z1 + · · ·+ λrZr, λi ∈ K,λ1 6= 0,

of K[Z1, . . . , Zr]/J;
the minimal polynomial q(T ) := g0(T ) ∈ k[V1, . . . , Vd][T ] of U ;
the parametrization (g1(T ), . . . , gr(T )), gi ∈ k(V1, . . . , Vd)[T ] of the variety

Z(I) such that Zi − gi(U) ∈ J for each i,

is called a geometric resolution of the variety Z(I).

Remark 44.1.2 (Giusti–Lecerf–Salvy).
Recalling Kronecker’s result (41.3) and Proposition 42.9.3, one can remark

that for each polynomial p(T ) ∈ K[T ] which is relatively prime with q(T ),
and thus invertible in K[T ]/q(T ), one obtains, setting

wi(T ) := Rem(p(T )gi(T ), g0(T )) ∈ k(V1, . . . , Vd)[T ], 1 ≤ i ≤ r,

another parametrization (w1(T )
p(T ) , . . . ,

wr(T )
p(T ) ) of the variety Z(I), with

p(U)Zi − wi(U) ∈ J for each i.

In particular the results (41.3) by Kronecker (where g0 is assumed ir-
reducible) and of Proposition 42.9.3 (where g0 is assumed squarefree) are

obtained setting p := ∂q
∂T . �

Definition 44.1.3 (Giusti–Lecerf–Salvy). A parametrization





q(V1, . . . , Vd, T ) = 0,
∂q
∂T (V1, . . . , Vd, T )Z1 = w1(V1, . . . , Vd, T )

...
∂q
∂T (V1, . . . , Vd, T )Zr = wr(V1, . . . , Vd, T )

of a radical and equidimensional ideal I ⊂ P , dim(I) = d, in ’generic’ position

is called a Kronecker parametrization of I. �

The discussion above allows to state

Proposition 44.1.4 (Giusti–Lecerf–Salvy). With the notation above one
can wlog assume

(1) q(T ) := g0(T ) ∈ k[V1, . . . , Vd][T ];
(2) for each i ≤ r, wi ∈ k[V1, . . . , Vd][T ];
(3) for each i ≤ r, ∂q

∂T gi(T ) ≡ wi(T ) mod q(T ),
(4) q(U) ∈ I,
(5) for each i ≤ r, ∂q

∂T (U)Zi − wi(U) ∈ I;
(6) deg(q) = degT (q) = deg(J),
(7) deg(wi) < degT (q) = deg(J) for each i ≤ r.
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Moreover, for any radical ideal I, given any system of coordinate

{Y1, . . . , Yn} = {V1, . . . , Vd, Z1, . . . , Zr}

which is in Noether position for I and any primitive element, there is a unique
geometric resolution of the variety Z(I).

Proof. To prove that, we consider (compare Sections 41.8 and 41.9) new
varables Λd+1, . . . , Λn, the field KΛ := K(Λd+1, . . . , Λn), the extension IΛ :=
IKΛ[Z1, . . . , Zr] of I in KΛ[Z1, . . . , Zr], the K(Λd+1, . . . , Λn)-linear form

UΛ := Λd+1Z1 + · · ·+ ΛnZr

which is a primitive element of IΛ, and its characteristic polynomial qΛ(T ) ∈
(KΛ[Z1, . . . , Zr]/IΛ) [T ], which is squarefree, monic and of degree deg(Ie).

Differentiating qΛ(T ) with respect to each Λd+i we deduce the geometric
resulution





qΛ(V1, . . . , Vd, T ) = 0,
∂qΛ
∂T (V1, . . . , Vd, T )Z1 = − ∂qΛ

∂Λd+1
(V1, . . . , Vd, T )

...
∂qΛ
∂T (V1, . . . , Vd, T )Zr = − ∂qΛ

∂Λn
(V1, . . . , Vd, T )

�

On the basis of these considerations, the TERA group aimed to solve the
following

Problem 44.1.5 (Giusti–Heintz–Morales–Pardo). Let

f1, . . . , fr, g ∈ K[Z1, . . . , Zr]

and denote, for each ρ,

Zρ := {α ∈ Kr : f1(α) = · · · = fρ(α) = 0 6= g(α)}
Jρ := I(f1, . . . , fρ) : g∞,
Lρ :=

√
Jρ,

Vρ := Z(Jρ)

so that
I(Zρ) = I(Vρ) = Lρ, Vρ = Z(Lρ) = ZI(Zρ).

Assuming that

(1) Zr is finite;
(2) for each ρ, dim(Lρ) = r − ρ;

(3) the Jacobian matrix
(

∂fi
∂Zj

)
of f1, . . . , fρ w.r.t. Z1, . . . , Zr has rank ρ at

each point of Vρ,
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compute a parametrization




q(U) = 0,
Z1 = w1(U)

...
Zr = wr(U)

of Zr, where q(U) ∈ K[U ] and wi(U) ∈ K(U) for each i. �

Remark 44.1.6. This problem can be easily justified via the considerations
of Remark 35.3.9, Theorem 35.6.8 and Remark 35.6.9 on the ARGH-scheme;
at each step of computation one obtains an ideal f ⊂ Q[X1, . . . , Xn] and a
polynomial g ∈ Q[X1, . . . , Xn] and one needs to compute the roots of the
ideal (√

f : g∞
)e

=
√
fe : g∞ ⊂ Q(V1, . . . , Vd)[Z1, . . . , Zr]

where we wlog assume that {V1, . . . , Vd, Z1, . . . , Zr} is in Noether position for
f and d = dim(f).

Denoting (g1, . . . , gs) any basis of fe it is sufficient (cf. Corollary 36.1.6)
to perform a generic linear combination fi :=

∑s
j=1 λijgj to obtain a regular

sequence f1, . . . , fr.
Thus the setting related to the ARGH-scheme coincides with the one of

Problem 44.1.5; such problem thus can be interpreted as solving an ARGH-
component of a given ideal by producing its Kronecker parametrization.

Moreover, in this setting

(1) fe is zero-dimensional;
(2) each Lρ has rank ρ since f1, . . . , fr is a regular sequence;
(3) it has been proved3 that the Jacobian condition is satisfied by any generic

combination of the basis elements.
�

44.2 Lifting Points

The variety Z(f1, . . . , fr) is a subvariety of the δ-dimensional variety, Vρ,

Vρ ⊃ Z(f1, . . . , fr), δ = r − ρ,

defined by the polynomials f1, . . . , fρ which satisfy conditions (2-3) of Prob-
lem 44.1.5. We call this sequence of polynomials a lifting system of Vρ.
Let us now consider a new system of coordinates {Y1, . . . , Yr} which is
a Noether position for Lρ and the projection φ : Kr 7→ Kδ defined by
φ(a1, . . . , ar) = (a1, . . . , aδ).

3 Krick T., Pardo L.M., Une approache informatique pour l’approximation dio-
phantienne, C.R. Acad. Sci. Paris 318 (1994), 407–412.
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Definition 44.2.1. A point p := (p1, . . . , pδ) ∈ Kδ is a called a lifting point
of Vρ w.r.t. the lifting system f1, . . . , fρ (and the frame {Y1, . . . , Yr}) if the
Jacobian matrix of f1, . . . , fρ w.r.t. Yδ+1, . . . , Yr is invertible at each point of
the variety Vp := Vρ ∩ φ−1(p1, . . . , pδ) whose 0-dimensional ideal I(Vp) we
denote Lp.

Definition 44.2.2. With the notation above, the assignment of

a lifting system f1, . . . , fρ of Vρ

a matrix M := (cij) ∈ GL(r,K) such that {Y1, . . . , Yr}, Yi :=
∑

j cijZj, is
a Noether position for Vρ;

a lifting point p := (p1, . . . , pδ) of Vρ w.r.t. the lifting system f1, . . . , fρ and
the frame {Y1, . . . , Yr};

a primitive element U := λδ+1Yδ+1 + · · · + λrYr, λi ∈ K,λδ+1 6= 0, of
K[Yδ+1, . . . , Yr]/Lp;

the minimal polynomial q(T ) of U ;
the parametrization (gδ+1(T ), . . . , gr(T )) of Vp

so that

• Yj − gj(U) ∈ Lp for each j, δ < j ≤ r,
• Vp = {(p1, . . . , pδ, gδ+1(α), . . . , gr(α)) : α ∈ R},R := {α ∈ K : q(α) = 0}
is called a lifting fiber of Vρ.

Remark 44.2.3. Denoting

M−1 := (dij) ∈ GL(r,K) the inverse of M,
hi(Y1, . . . , Yr) := fi(

∑
j d1jYj , . . . ,

∑
j drjYj),

the following relations are satisfied by the data above:

(1) U(gδ+1(T ), . . . , gr(T )) = λδ+1gδ+1(T ) + · · ·+ λrgr(T ) = T,
(2) hi((p1, . . . , pδ, gδ+1(T ), . . . , gr(T )) ∈ I(q(U)),
(3) s := deg(Lp) = deg(Lr).

Moreover, by Proposition 44.1.4, for any lifting fiber of Vρ, there exists a
unique geometric resolution of Vρ for the same Noether position and primitive

element. �

Proposition 44.2.4. The specialization of the minimal polynomial and the
parametrization of this geometric resolution on the lifting point p gives exactly
the minimal polynomial and the parametrization of the lifting fiber.

Proof. Assume that U is not a primitive element of Vρ; we can then choose a
primitive element U ′ of Vρ which is also a primitive element for Vp too. The
specialization of the corresponding Kronecker parametrization of Vρ gives a
parametrization of Vp. By linear algebra on

SpanK{1, U ′, U ′2, . . . , U ′s−1} ≡ K[Yδ+1, . . . , Yr]/Lp
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one can compute the minimal polynomial of U whose degree is necessarily

less than s giving the required contradiction. �

Lemma 44.2.5. With the notation and assumptions above, the set of points
(p1, . . . , pδ, λδ+1, . . . , λr) ∈ Kr such that either

p := (p1, . . . , pδ) is not a lifting point or
U := λδ+1Yδ+1 + · · ·+ λrYr is not a primitive element for Vp

are contained into an algebraic proper subset of Kr.

Proof. Let J the Jacobian matrix of f1, . . . , fρ w.r.t. Yδ+1, . . . , Yr.
The integral dependency relation of det(J) modulo Lρ is given by a monic

polynomial F (U) ∈ K[Y1, . . . , Yδ][U ].
By assumption, det(J) is not a zero-divisor of K[Y1, . . . , Yr]/Lρ, so that

A(Y1, . . . , Yδ) := F (0) 6= 0 satisfies A ∈ Lρ + (det(J)) .
Each point p := (p1, . . . , pδ) such that A(p1, . . . , pδ) 6= 0 is a lifting point.

Let now fix a lifting point p := (p1, . . . , pδ) and consider (Compare Proposi-
tion 44.1.4)

• the ideal LΛ := LpK(Λδ+1, . . . , Λr)[Yδ+1, . . . , Yr],
• YΛ := Λδ+1Yδ+1 + · · ·+ ΛrYr ∈ K(Λδ+1, . . . , Λn)[Yδ+1, . . . , Yn]/L
• qΛ(T ) ∈ (K(Λδ+1, . . . , Λr)[Yδ+1, . . . , Yr]/LΛ) [T ] its minimal polynomial,
• Disc(q) ∈ K(Λδ+1, . . . , Λr) its discriminant (cf. Theorem 10.6.5).

Then any point (λδ+1, . . . , λr) such that Disc(q)(λδ+1, . . . , λr) 6= 0 gives a

primitive element Y := λδ+1Yδ+1 + · · ·+ λrYr for Vp. �

44.3 Newton–Hensel Lifting

Proposition 44.3.1. Let

R be an integral domain,
I an ideal of R,
I⋆ ⊂ R[T ] its extension,
f := (f1, . . . , fr), fi ∈ R[Z1, . . . , Zr],
U := λ1Z1 + . . . λrZr, λi ∈ R a linear form,
q(T ) ∈ R[T ] a monic polynomial, s := deg(q) > 1,
v := (v1(T ), . . . , vr(T )), vi(T ) ∈ R[T ], deg(vi) < s,

J =
(

∂fi
∂Zj

)
the Jacobian matrix of f1, . . . , fr w.r.t. Z1, . . . , Zr

and assume that the following relations

(A) fj(v1(T ), . . . , vr(T )) ≡ 0 mod I⋆ + (q), for each j,
(B) T ≡ λ1v1(T ) + . . . λrvr(T ) mod I⋆ + (q),
(C) J(v1(T ), . . . , vr(T )) is invertible modulo I⋆ + (q),

hold in R[T ]; then the following objects exist and can be computed:
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• a monic polynomial Q(T ) ∈ R[T ],
• V := (V1(T ), . . . , Vr(T )), Vi(T ) ∈ R[T ],

such that in R[T ] hold

(1) deg(Q) = s,
(2) Q(T ) ≡ q(T ) mod I⋆,
(3) deg(Vi) < s, for each i,
(4) Vi(T ) ≡ vi(T ) mod I⋆, for each i,
(5) fj(V1(T ), . . . , Vr(T )) ≡ 0 mod (I⋆)2 + (Q), for each j,
(6) T ≡ λ1V1(T ) + . . . λrVr(T ) mod (I⋆)2 + (Q).

Proof. Consider a generic vector

w := (w1(T ), . . . , wr(T )), wi(T ) ∈ R[T ], deg(wi) < s

and write the Taylor expansion of f between w and v:

f(w) = f(v) + J(v) · (w − v) + · · ·

Since the aim is to find a such vector w which moreover satisfies

w ≡ v mod I⋆ and f(w) ≡ 0 mod (I⋆)2 + (q),

we use such conditions on the expension above obtaining

0 ≡ f(w) ≡ f(v) + J(v) · (w − v) mod (I⋆)2 + (q)

thus deducing, thanks of assumption (C), the existence and the uniqueness
of the solution

w := v − J−1(v) · f(v) mod (I⋆)2 + (q).

The polynomial

∆(T ) := U(w)− T = λ1w1(T ) + . . . λrwr(T )− T ∈ R[T ],

is such that deg(∆) < s and assumptions (B-C) allow to deduce that all his
coefficients are member of I.

Setting Y := T +∆(T ) we have

∆(Y ) = ∆(T ) +∆′(T )(Y − T ) + · · · = ∆(T ) +∆′(T )∆(T ) + · · ·

hence ∆(Y ) ≡ ∆(T ) = Y − T mod I2.
Therefore defining p(T ), ui(T ) as the unique polynomials such that

p− q′∆,ui − w′
i∆ ∈ (q), deg(p) < s, deg(ui) < s,

we have, mod(I⋆)2 + (q),

Q(Y ) := q(Y )− p(Y ) ≡ q(Y )−∆(Y )q′(Y ) ≡ q(T )− (Y − T )q′(T ) ≡ q(T )
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and

Vi(Y ) := wi(Y )− ui(Y ) ≡ wi(Y )−∆(Y )w′(Y ) ≡ wi(T )− (Y − T )w′(T ) ≡ wi(T )

We have therefore the ideal equality

H := (q(T ), Y − T −∆(T ), Z1 − w1(T ), . . . , Zr − wr(T ))

= (Q(Y ), T − Y −∆(Y ), Z1 − V1(Y ), . . . , Zr − Vr(Y ))

in the ring
(
R/I2

)
[U, Y, Z1, . . . , Zr].

Therefore Q and V satisfy the required conditions:

(1) deg(p) < s = deg(q) =⇒ deg(Q) = s;
(2) it is sufficient to remark that p ∈ I;
(3) deg(ui) < s, deg(wi) < s =⇒ deg(Vi) < s, for each i;
(4) it is sufficient to remark that ui ∈ I.
(5) We have

fj(V1(Y ), . . . , Vr(Y )) ≡ fj(Z1, . . . , Zr) ≡ fj(w1(T ), . . . , wr(T )) mod H

and fj(w1(T ), . . . , wr(T )) ∈ (I⋆)2 + (q) hence

fj(V1(Y ), . . . , Vr(Y )) ∈
(
(I⋆)2 + L

)
∩R[Y ] = (I⋆)2 + (Q(Y )).

(6) Since, mod(I⋆)2 + H,

Y − U(V1(Y ), . . . , Vr(Y )) ≡ Y − U(Z1, . . . , Zr)

≡ Y − U(w1(T ), . . . , wr(T ))

= Y − T −∆(T )

= 0

we have Y −U(V1(Y ), . . . , Vr(Y )) ∈
(
(I⋆)2 + L

)
∩R[Y ] = (I⋆)2+(Q(Y )).

�

Corollary 44.3.2. With the same notation and assumptions as in Proposi-
tion 44.3.1 for any ǫ ∈ N the following objects exist and can be computed

• a monic polynomial Q(T ) ∈ R[T ],
• V := (V1(T ), . . . , Vr(T )), Vi(T ) ∈ R[T ],

such that

(1) deg(Q) = s,
(2) Q(T ) ≡ q(T ) mod I⋆

(3) deg(Vi) < s, for each i,
(4) Vi(T ) ≡ vi(T ) mod I⋆, for each i,
(5) fj(V1(T ), . . . , Vr(T )) ≡ 0 mod (I⋆)ǫ+1 + (Q), for each j,
(6) T ≡ λ1V1(T ) + . . . λrVr(T ) mod (I⋆)ǫ+1 + (Q)

hold in R[T ]. �
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44.4 Kronecker Package: Description

The solution of Problem 44.1.5 is incremental on the number of equations
to be solved, thus iteratively solving each system Vρ, each resolution being
encoded by means of a lifting fiber.

Thus, at each step the algorithm depends on the choice of a Noether
position for Vρ, a lifting point and a primitive element, Zariski-openness
granting that such choices can be done randomly.

Let us therefore assume we have

the δ = r − ρ-dimensional variety Vρ ⊂ Z(f1, . . . , fr),
the projection φ : Kr 7→ Kδ defined by φ(a1, . . . , ar) = (a1, . . . , aδ),
the lifting system f1, . . . , fρ of Vρ,
a frame of coordinates which is in Noether position for Vρ and which, by

simplicity, we assume to be {Z1, . . . , Zr},
a lifting point p := (p1, . . . , pδ) of Vρ w.r.t. the lifting system f1, . . . , fρ and

the frame {Z1, . . . , Zr},
the primitive element U := λδ+1Zδ+1 + · · · + λrZr, λi ∈ k, λδ+1 6= 0, of
K[Zδ+1, . . . , Zr]/Lp,

the minimal polynomial q(T ) of U ,
the parametrization (vδ+1(T ), vδ+2(T ), . . . , vr(T )) of both Vp and Vρ.

Up to now we simply assume that

• the Noether position {Z1, . . . , Zr},
• the lifting point p := (p1, . . . , pδ), and
• the primitive element λδ+1Zδ+1 + · · ·+ λrZr

are sufficiently generic in order to satisfy all the conditions of genericity
required by the algorithm; we will discuss deepler such conditions in Sec-
tion 44.8.

Lifting Step Thus we are assuming to have a geometric resolution





q(T ) = 0,
Zδ+1 = vδ+1(T )

...
Zr = vr(T )

for the primitive element

U := λδ+1Zδ+1 + · · ·+ λrZr ∈ K[Zδ+1, . . . , Zr]/Lp

of the variety Vp defined by

a := (p1, . . . , pδ, αδ+1, . . . , αr) ∈ Vp ⇐⇒ f1(a) = . . . = fρ(a) = 0 6= g(a)

and the 0-dimensional radical ideal
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Lp := I(Vp) = Lρ + (Z1 − p1, . . . , Zδ − pδ)

and we compute a geometric resolution




Q(Zδ, T ) = 0,
Zδ+1 = Vδ+1(Zδ, T )

...
Zr = Vr(Zδ, T )

for the primitive element

U :=

ρ∑

i=1

λδ+iZδ+i ∈ k(Zδ)[Zδ+1, . . . , Zr]/L
e
D

of the variety VD defined by

a = (p1, . . . , pδ−1, αδ, . . . , αr) ∈ VD ⇐⇒ f1(a) = · · · = fρ(a) = 0 6= g(a)

and the 1-dimensional radical ideal

LD := I(VD) = Lρ + (Z1 − p1, . . . , Zδ−1 − pδ−1).

Intersection Step From this date we compute a geometric resolution





q(Z) = 0,
Zδ = vδ(Z)

...
Zr = vr(Z)

for the primitive element

U :=

ρ∑

j=0

λδ+jZδ+j ∈ K[Zδ, . . . , Zr]/L
′

of the 0-dimensional radical ideal

L′ :=
√
Lr + (Z1 − p1, . . . , Zδ−1 − pδ−1, fρ+1).

Cleaning Step We now remove the points a ∈ Z(L′) such that g(a) = 0 thus
getting the required geometric resolution





q′(T ) = 0,
Zδ = v′δ(T )

...
Zr = v′r(T )

for the primitive element
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U := λδZδ + · · ·+ λrZr ∈ K[Zδ, . . . , Zr]/Lp′

and the lifting point p′ := (p1, . . . , pδ−1) of the variety Vp′ defined by

a := (p1, . . . , pδ−1, αδ, . . . , αr) ∈ Vp′ ⇐⇒ f1(a) = . . . = fρ+1(a) = 0 6= g(a)

and the 0-dimensional radical ideal

Lp′ := I(Vp) = Lρ+1 + (Z1 − p1, . . . , Zδ−1 − pδ−1).

44.5 Kronecker Package: Lifting Step

Defining

ǫ := deg(Lp) + 1 = deg(Lρ) + 1
hi(Zδ, Zδ+1, . . . , Zr) := fi(p1, . . . , pδ−1, Zδ, Zδ+1, . . . , Zr)

we can apply Corollary 44.3.2 to the data

R := K[Zδ],
I := I(Zδ) ⊂ R,
I⋆ := I(Zδ) ⊂ K[Zδ, T ],
f := (h1, . . . , hr), hi ∈ R[Zδ+1, . . . , Zr],
U := λδ+1Zδ+1 + · · ·+ λrZr,
q(T ) ∈ R[T ] the minimal polynomial of U ,
v := (vδ+1(T ), vδ+2(t), . . . , vr(T )),

thus obtaing

a monic polynomial Q(T ) ∈ K[Zδ][T ],
V := (Vδ+1(T ), . . . , Vr(T )), Vi(T ) ∈ K[Zδ][T ],

such that

(1) hj(Vδ+1(T ), . . . , Vr(T )) ≡ 0 mod Iǫ+1 + (Q), for each j,
(2) T ≡ λδ+1V1(T ) + . . . λrVr(T ) mod Iǫ+1 + (Q)

id est

a polynomial Q(Zδ, T ) ∈ K[Zδ, T ],
V := (Vδ+1(Zδ, T ), . . . , Vr(Zδ, T )), Vi(Zδ, T ) ∈ K[Zδ, T ],

such that

(1) fj(p1, . . . , pδ−1, Zδ, Vδ+1(Zδ, T ), . . . , Vr(Zδ, T )) ≡ 0 mod Q, for each j,
(2) T ≡ λδ+1Vδ+1(Zδ, T ) + . . . λrVr(Zδ, T ) mod Q.
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We therefore have the parametrization




Q(Zδ, T ) = 0,
Zδ+1 = Vδ+1(Zδ, T )

...
Zr = Vr(Zδ, T )

of

VD := {a = (p1, . . . , pδ−1, αδ, . . . , αr) ∈ Kr : f1(a) = · · · = fρ(a) = 0 6= g(a)}

and the 1-dimensional radical ideal

LD := I(VD) = Lρ + (Z1 − p1, . . . , Zδ−1 − pδ−1).

44.6 Kronecker Package: Intersection Step

Let us therefore assume to have a 1-dimensional ideal

I ⊂ K[Zδ, Zδ+1, . . . , Zr]

and its radical L :=
√
I given by means of a geometric resolution




Q(Zδ, T ) = 0,
Zδ+1 = Vδ+1(Zδ, T )

...
Zr = Vr(Zδ, T )

for

• the Noether position{Zδ, Zδ+1, . . . , Zr} for L and
• the primitive element U := λδ+1Zδ+1 + · · ·+ λrZr, λi ∈ K ⊂ K(Zδ),

and a polynomial f ∈ K[Zδ, Zδ+1, . . . , Zr] such that L+(f) is 0-dimensional4.
Let us consider Q(Zδ, T ) and f(Zδ, Vδ+1(Zδ, T ), . . . , Vr(Zδ, T )) as poly-

nomials in K[Zδ][T ] and their resultant:

Lemma 44.6.1. Denoting

• A(Zδ) := Res(Q, f(Zδ, Vδ+1, . . . , Vr) ∈ K[Zδ],
• B := K[Zδ, Zδ+1, . . . , Zr]/L,
• B′ := K(Zδ)[Zδ+1, . . . , Zr]/L

e,
• F (T ) ∈ K[Zδ][T ] the integral dependency relation of f modulo L,

4 We apply the results of this section to the case L := LD and

f(Zδ , Zδ+1, . . . , Zr) := fρ+1(p1, . . . , pδ−1, Zδ, Zδ+1, . . . , Zr).
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• Φf the endomorphism of multiplication by f in B′,
• χf (T ) ∈ K(Zδ)[T ] the characteristic polynomial of Φf ,
• mf (T ) ∈ K(Zδ)[T ] the monic polynomial of Φf ,
• W := Z(Le) = {b1, . . . bt}, σi := mult(bi, L

e),
• φ : Kρ+1 7→ K the projection φ(α, β1, . . . , βρ) = α,
• for each α ∈ K, Wα := {a1, . . . as} = π−1(α) ∩Z(L), each ai being counted
with the proper multiplication si := mult(ai, L),

∑
i si = deg(Le),

we have

(1) mf (T ), χf(T ) ∈ K[Zδ][T ];
(2) setting χf :=

∑
i Ci(Zδ)T

i and s := deg(Le) we have Ci(Zδ) ∈ K[Zδ]
and deg(Ci) ≤ (s− i) deg(f);

(3) C0(Zδ) ∈ L+ (f);
(4) C0(α) =

∏
ai∈Wα

f(ai)
si .

(5) C0(Zδ) and A(Zδ) concide up to the sign;
(6) deg(A) ≤ s deg(f);
(7) {α ∈ K : A(α) = 0} = {φ(b) : b ∈ W, f(b) = 0};

Proof. Since F (Φf ) = 0 we deduce that mf | F and, since both are monic,
Gauss Lemma (Corollary 6.1.5) implies (1). We moreover know (Corol-
lary 40.5.2) that χ(Zδ, T ) =

∏t

i=1 (T − f(Zδ, bi))
σi so that we deduce (2).

Remark that B is a finite K[Zδ]-module of rank s := deg(Le).
Since any K[Zδ]-basis of B induces a K(Zδ)-basis of B

′ (cf. Section 36.3),
the characteristic polynomial of Φf in B and B′ coincide, so that Cayley-
Hamilton theorem in B implies χ(Zδ, f) ∈ L and hence (3).

Moreover, for each α ∈ K, denoting B0 := K[Zδ, Zδ+1, . . . , Zr]/L+(Zδ−α)
and remarking that the specalization at α of the K[Zδ]-basis of B gives
a K-basis of B0, we deduce that C0(α) is the constant coefficient of the
characteristic polynomial

χ(T ) =

s∏

i=1

(T − f(ai))
si

of the multiplication by f in B0 whence (4).
Since

• a ∈ Z(L + (f)) =⇒ C0(π(a)) = 0 for each a ∈ Kρ+1 as a consequence of
(3) and,

• for each α ∈ K which annihilates C0, (4) implies the existence of a ∈
π−1(α) ∩ Z(L) which annihilates f(a),

we obtain (5) of which (6-7) are direct consequences. �

Since probably Zδ is not a primitive element for

K[Zδ, Zδ+1, . . . , Zr]/
√
L+ (f),
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while this is true for a generic element λδZδ + U , let us therefore introduce
a new variable Z, denote

·̂ : K[Zδ, Zδ+1, . . . , Zr][T ] 7→ K[Z,Zδ+1, . . . , Zr][T ]

the substitution

ĝ := g(λ−1
δ (Z − T ), T, Zδ+1, . . . , Zr) for each g(Zδ, T, Zδ+1, . . . , Zr),

and assume that Z = (λδZδ +T )̂ has the required properties, as it is true for
almost choices of λδ.

Definition 44.6.2. A point λδ ∈ k is called a Liouville point w.r.t. the above
geoemetric resolution of L if

(1) λδ 6= 0
(2) Q̂ is monic in T and degT (Q̂) = degT (Q) = s = deg(L),
(3) Q̂ is squarefree and relatively prime with P̂ , P := ∂Q

∂T .

Lemma 44.6.3. With the above notation, if λδ is a Liouville point then the
variables {Z,Zδ+1, . . . , Zr} are in Noether position w.r.t. L̂ := {f̂ : f ∈ L}
and 




Q̂(Z, T ) = 0,

Zδ+1 = V̂δ+1(Z, T )
...

Zr = V̂r(Z, T )

is a geometric resolution of L̂ for the primitive element U .

Proof. First of all, L̂∩K[Z] = {0}, since for each h(Z) ∈ L̂∩K[Z], Q(Zδ, T ) |
h(λδZδ + T ) and Q̂(Z, T ) | h(Z); since Q̂(Z, T ) is monic in T this implies
h(Z) = 0 as required.

Thus, in order to prove that {Z,Zδ+1, . . . , Zr} is in Noether position it is

sufficient to prove that each Zi is dependent over Z: denote L1 := L̂+ (T −
U) ⊂ K[Z,Zδ+1, . . . , Zr, T ] and consider a bivariate polynomial h(Zδ, Zi) ∈
L, monic and whose total degree is bounded by degZi

(h), whose existence
is implied by the assumption that {Zδ, Zδ+1, . . . , Zr} is in Noether position
w.r.t. I; then h(λ−1

δ (Z−T ), Zi) ∈ L and (since Q̂(Z, T ) ∈ L and its total degree
is bounded by s) we can deduce the existence of a polynomial H(Z,Zi) ∈ L,
monic and whose total degree is bounded by degZi

(h), i.e. the dependency
of Zi over Z.

Since Q̂ remains squarefree, U remains primitive. �

Lemma 44.6.4. Almost each λδ ∈ K is a Liouville point.

Proof. Setting W := λ−1
δ Z we have

Q̂(Z, T ) = Q(λ−1
δ (Z − T ), T ) = Q(W − λ−1

δ T, T ).

Both
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the discriminant of Q(W − ΛT, T ) and
the resultant, in K[W,Λ][T ] of Q(W − ΛT, T ) with ∂Q

∂T (W − ΛT, T )

are polynomials in K[W,Λ] and do not vanish for Λ = 0; hence almost
all choice for λδ 6= 0 grants (3). Also denoting h(Z, T ) := H(Q) (Defini-
tion 23.2.1) the homogeneous part of maximal degree s of Q so that the
coefficient of T s in Q̂(Z, T ) is h(−λ−1

δ , 1); since again h(0, 1) 6= 0, almost all

choice for λδ 6= 0 grants (2). �

Remark 44.6.5. If λδ ∈ K is a Liouville point w.r.t. the above geoemetric res-
olution of L, and f̂ denotes the polynomial f̂ := f(λ−1

δ (Z−T ), Zδ+1, . . . , Zr),

the resultant A(Z) ∈ K[Z] of the polynomials (in K[Z][T ]) Q̂(Z, T ) and
f(λ−1

δ (Z−T ), V̂δ+1(Z, T ), . . . , V̂r(Z, T )) satisfies A(λδZδ+U) ∈ L: in fact we

already proved (Lemma 44.6.1) that A(Z) ∈ L̂ + (f̂); thus replacing Z with
λδZδ + U we obtain A(λδZδ + U) ∈ L.

Moreover each root (α, βδ+1, . . . , βr) ∈ π−1(α) of L̂, where A(α) = 0,
corresponds to the root (βδ, βδ+1, . . . , βr) of L+ (f) where

βδ = λ−1
δ


α−

n∑

j=1

λδ+jβδ+j


 ,

or equivalently, α =
∑ρ

j=0 λδ+jβδ+j .
This is not yet sufficient to describe Z(L+ (f)) because we still miss the

parametrization of the coordinates. Denoting

Tδ, Tδ+1, . . . , Tr new variables,
Kt := K(Tδ, Tδ+1, . . . , Tr),
Lt := LKt[Zδ, Zδ+1, . . . , Zr],
Ut := U + Tδ+1Zδ+1 + · · ·+ TrZr =

∑ρ
j=1(λδ+j + Tδ+j)Zδ+j ,

let us assume to have the geometric resolution




qt(Zδ, T ) = 0,
Zδ+1 = Vt,δ+1(Zδ, T )

...
Zr = Vt,r(Zδ, T )

of Lt for the primitive element Ut. Since, for a Liouville point λδ for L, λδ+Tδ
is a a Liouville point for Lt, in this setting the resultant computation returns
a polynomial At(Z) ⊂ Kt[Z] such that At((λδ + Tδ)Zδ + T ) ∈ Lt; more
precisely, if we express At(Z) as

At(Z) = A(Z) + TδAδ(Z) + Tδ+1Aδ+1(Z) + · · ·+ TrAr(Z) +B

where Ai(Z) ∈ K[Z] and B(Tδ, Tδ+1, . . . , Tr, Z) ∈ (Tδ, Tδ+1, . . . , Tr)
2 and we

evaluate it in
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(λδ + Tδ)Zδ + Ut = (λδZδ + U) + ZδTδ + Tδ+1Zδ+1 + · · ·+ TrZr,

Taylor expansion allows to deduce that both A(λδZδ + U) and

A′(λδZδ + U) + Zδ+jAδ+j(λδZδ + U), 0 ≤ j ≤ ρ

are members of L.
The roots of the polynomial At(Z) are the values of the linear form

Ut :=

ρ∑

j=0

λδ+j(Zδ+j + Tδ+j)

at the roots of L + (f). Thus denoting Z(L+ (f)) =: {a1, . . . as}, and U the
linear form U :=

∑ρ
j=0 λδ+jZδ+j we have At(Z) =

∏s
j=1 (Z − Ut(aj))

sj ∈ Lt
and

s∏

j=1

(Z − Ut(aj))
sj ≡ A(Z) +

r∑

i=0

Aδ+i(Z)Tδ+i mod Lt + (Tδ, Tδ+1, . . . , Tr)
2.

Thus, by expansion, we obtain

A(Z) :=

s∏

j=1

(Z − U(aj))
sj

Aδ+i(Z) := −
s∑

h=1

Zδ+i(ah)sh(Z − U(ah))
sh−1

s∏

j=1,j 6=h

(Z − U(aj))
sj .

Thus D(Z) := gcd(A,A′) =
∏s

j=1,(Z − U(aj))
sj−1 divides each Aδ+i so

that 



A(Z)/D(Z) = 0,
A′(Z)/D(Z)Zδ = Aδ(Z)/D(Z)

A′(Z)/D(Z)Zδ+1 = Aδ+1(Z)/D(Z)
...

A′(Z)/D(Z)Zr = Ar(Z)/D(Z)

is the required geometric resolution of L+(f) for the primitive element U :=∑ρ
j=0 λδ+jZδ+j.
Finally, euclidean arithmetic allows to compute the inverse of A′/D mod-

ulo A/D and gives a representation




q(Z) = 0,
Zδ = vδ(Z)

...
Zr = vr(Z)

�
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In order to successfully apply Remark 44.6.5, we need to compute the
geometric resolution





qt(Zδ, T ) = 0,
Zδ+1 = Vt,δ+1(Zδ, T )

...
Zr = Vt,r(Zδ, T )

of Lt for the primitive element Ut starting with our data:

• the parametrization




Q(Zδ, T ) = 0,
Zδ+1 = Vδ+1(Zδ, T )

...
Zr = Vr(Zδ, T )

of L := LD and
• the primitive element U := λδ+1Zδ+1 + · · ·+ λrZr.

Since in Kt[Zδ, Zδ+1, . . . , Zr]/Lt we have Zi ≡ Vi(Zδ, U) mod Lt, we ob-
tain

Ut ≡ U + Tδ+1Vδ+1(Zδ, U) + · · ·+ TrVr(Zδ, U)

≡ U + Tδ+1Vδ+1(Zδ, Ut) + · · ·+ TrVr(Zδ, Ut)

modulo Lt + (Tδ, Tδ+1, . . . , Tr)
2, whence

U ≡ Ut − Tδ+1Vδ+1(Zδ, Ut)− · · · − TrVr(Zδ, Ut).

Therefore replacing U in the parametrization and applying Taylor expan-
sion we obtain

qt(Zδ, T ) := Q(Zδ, T )−
∂Q

∂T

ρ∑

i=1

Tδ+iVδ+i(Zδ, T )

≡ Q(Zδ, T )− Tδ+1Wδ+1(Zδ, T )− · · · − TrWr(Zδ, T )

modLt + (Tδ, Tδ+1, . . . , Tr)
2 and

Vt,δ+i(Zδ, T ) := Vδ+i(Zδ, T )−
∂Q

∂T

ρ∑

i=1

Tδ+iVδ+i(Zδ, T )

modLt + (qt) + (Tδ, Tδ+1, . . . , Tr)
2.

Algorithm 44.6.6. In conclusion we have to compute

• the data qt and Vt,δ+i with the formulae above;
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• the resultant At(Z) of the polynomials qt(λ
−1
δ (Z − T ), T ) and

fρ+1(p1, . . . , pδ−1, λ
−1
δ (Z − T ), V̂t,δ+1(Zδ, T ), . . . , V̂t,r(Zδ(Zδ, T ))

• and, by expansion, the data A,D,Aδ, . . . , Ar.

This computation, mainly the one of At(Z), for complexity reason (see the
discussion in page 246) is not performed in K(Zδ)[T ] but in

R[T ], R := K[Tδ, . . . , Tr][Zδ]/(Zδ − p)ds+1

where p ∈ k is a ‘generic’ value, d := deg(f), s := deg(Q) so that ds counts
the roots, with multiplicity, of L+ (f).

44.7 Kronecker Package:Cleaning Step

So now we have the geometric resolution




q(Z) = 0,
Zδ = vδ(Z)

...
Zr = vr(Z)

of L + (f) and we need to remove from W := Z(L + (f)) =: {a1, . . . as} the
roots such that g(ai) = 0.

This is easily performed by computing

G(Z) := g(p1, . . . , pδ−1, vδ(Z), . . . , vr(Z)),
e(Z) := gcd(q,G),
q′ := q/e,
w′

i := vi mod q.

We need however to be sure that the lifting point p := (p1, . . . , pδ−1) is
not bad: it is sufficient to be sure that

p /∈ π(W′′ ∩ Z(g))

where we are denoting

W′ := {a ∈ W : g(a) 6= 0},
W′′ := ZI(W′),
π : Kr 7→ Kδ−1 the projection π(α1, . . . , αr) = (α1, . . . , αδ−1).

A such point is called a cleaning point. Clearly almost all lifting points
are cleaning points: the bad points are the projections of the intersection of
a variety with dimension δ − 1 and the hypersuface g; such projection over
Kδ−1 has dimension δ − 2.
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44.8 Genericity conditions

With the same notation and assumption as in Section 44.4 we are now dis-
cussing the genericity conditions; we therefore begin with

• a Noether position {Z1, . . . , Zr},
• a lifting point p := (p1, . . . , pδ),
• a primitive element U := λδ+1Zδ+1 + · · ·+ λrZr of K[Zδ+1, . . . , Zr]/Lp.

for Vρ.
The computation we sketched in Section 44.4 and discussed in the next

Sections returns a lifting fiber of Vρ+1 for the lifting point (p1, . . . , pδ−1) and
the primitive element λδZδ + λδ+1Zδ+1 + · · ·+ λrZr provided the following
conditions hold:

• {Z1, . . . , Zr} is in Noether position for Vρ+1;
• p := (p1, . . . , pδ−1) is a lifting point for Vρ+1;
• λδ is a Liouville point for LD;
• λδZδ + λδ+1Zδ+1 + · · ·+ λrZr is a primitive element for Vρ+1;
• p := (p1, . . . , pδ−1) is a cleaning point for W′′.

We need moreover three further assumptions:

(1) {Z0, . . . , Zr} is in Noether position for each homogeneous ideal hLρ ⊂
K[Z0, . . . , Zr];

(2) pδ is lucky for the truncated computation;
(3) U and λδ are lucky for the resultant computation of Remark 44.6.5.

In fact

(1) consider, as an example, the 1-dimensional prime ideal p generated by
f(Z1, Z2) := Z2

1 − Z2 ∈ K[Z1, Z2]. While the variables are in Noether
position, any specialization of Z1 returns a single point, notwithstanding
deg(f) = 2.
On the otherside, this does not happen for a really generic frame of
coordinates: if we perform a generic change of coordinates obtaining

f(Y1, Y2) := d211Y
2
1 + d11d12Y1Y2 + d212Y

2
2 − d21Y1 + d22Y2

each evaluation of Y1 returns two points.
More in general we need to avoid a degeneration in which

deg(f(p1, . . . , pδ, Zδ+1, . . . , Zr) < deg(f);

this cannot occur if {Z0, Z1, . . . , Zr} is in Noether position for the homo-
geneous ideal hLr;
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(2) gcd and resultant computation of polynomials have good complexity if
performed over L[T ] where L is a field, but this implies the ability of
performing zero-testing and inverting, which is out of the present model.
The computation, e.g., of the resultant

A(Zδ) := Res(Q, f(Zδ, Vδ+1, . . . , Vr)

which satisfies deg(A) ≤ η := deg(Le)) deg(f) costs

M(η) := O(η log2(η) log log(η))

arithmetical operations in K(Zδ) if it is performed in this field where we
don’t have a good complexity model for zero-testing and inverting; the
result of this computation gives a polynomial A(Zδ) ∈ K[Zδ] of degree
η.
Let us now fix a value p ∈ K and, remarking that K(Zδ) ⊂ K[[Zδ]],
consider the ring

R := K[[Zδ]]/(Zδ − p)η+1 ∼= SpanK{1, . . . , Zη
δ }

where we can perform both
• zero-testing: an element g =

∑η
i=0 ciZ

t
δ ∈ R is zero iff ci = 0 for each

i iff g(p) = 0,
• inverting : the inverse in R of the invertible polynomial g, g(p) 6= 0, is
the polynomial s(Zδ), deg(s) ≤ η which satisfies

s(Zδ)g(Zδ) + t(Zδ)(Zδ − p)η+1 = gcd(g(Zδ), (Zδ − p)η+1 = 1

for a suitable t(Zδ), deg(t) < deg(g).
Thus any element

g(Zδ) := d(Zδ)/r(Zδ) ∈ K(Zδ), d(Zδ), r(Zδ) ∈ K[Zδ]

can be canonically represented by an element ġ ∈ SpanK{1, . . . , Zη
δ } such

that ġ(Zδ)r(Zδ) ≡ d(Zδ) mod (Zδ − p)η+1.
Thus the same algorithm which, if performed on K(Zδ), resturns A(Zδ)
with complexity M(η) can be performed also on R with the same com-
plexity M(η) returning some polynomial B(Zδ) :=

∑η
i=0 ciZ

t
δ ∈ K[Zδ] of

degree bounded by η.
Can we assume that such polynomial B(Zδ) is the true resultant A(Zδ),
i.e. that B(Zδ) = Ȧ(Zδ) = A(Zδ)? The answer is obvious: the solution is
correct iff in each step of the computation, the algorithm in R gives the
same answer as the algorithm in K(Zδ), id est
• when zero-testing g(Zδ) ∈ K(Zδ), g = 0 ⇐⇒ ġ(p) = 0,
• when computing the inverse h(Zδ) := g−1(Zδ) of g(Zδ) ∈ K(Zδ), the
polynomial s(Zδ) such that s(Zδ)ġ(Zδ) ≡ 1 mod (Zδ − p)η+1 satisfies
s = ḣ.
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This behavieur depends on the choice of p ∈ K; there are some values
p in which some wrong answer is returned failing this approach; but
almost all choices are ”lucky” thus allowing to produce the correct answer
B(Zδ) = Ȧ(Zδ) = A(Zδ) with the goodM(η) complexity while computing
in the ring R instead than in the field K(Zδ).

(3) In a similar way a better complexity is obtained if the computation (see
Remark 44.6.5) of the resultant A(Z) ∈ K[Z] of the polynomials q̂t(Z, T )
and f(λ−1

δ (Z−T ), V̂δ+1(Z, T ), . . . , V̂r(Z, T )) inK[Z][T ] can be performed
with the ring arithmetics ofK[Z] instead of the field arithmetics ofK(Z).
Such ability depends on a lucky choice of the Liouville point λδ and of
the primitive U .

44.9 Complexity consideration

We record here the following5

Fact 44.9.1. Let R be an integral domain and K be a field. Denoting

M(n) := O(n log2(n) log log(n)),

the following holds

(1) The bit-complexity of the arithmetic operations (addition, multiplicata-
tion, quotient, remainder and gcd) of integers of bit-size6 n cost M(n).

(2) Multiplication and division of polynomials in R[T ] whose degree is bounded
by n cost O(n log(n) log log(n)) arithmetical operations in R.

(3) gcd and resultant computation of polynomials in K[T ] whose degree is
bounded by n cost M(n) arithmetical operations in K.

(4) Multiplication of two n-square matrices in R costs O(nω) arithmetical
operations in R, with ω < 2.39.

(5) Inversion of an n-square matrix in K costs O(nω) arithmetical operations
in K.

(6) If D = k[T ]/q(T ) where k is a field and q a squarefree monic polynomial,
inversion of an n-square matrix in D costs O(nΩ) arithmetical operations
(addition, multiplication, determinant, adjoint matrix) in D where Ω <
4;

5 Cf.

• Aho A.V., Hopcroft J.E., Ullman J.D., The design and analysis of computer
algorithms, Addison–Wesley (1974)

• Bini D., Pan V, Polynomial and matrix computations Birkhäuser (1994)
• Bürgisser P., Clausen M., Shorolahi M.A., Algebraic Complexity Theory, Springer

(1997)

6 i.e. integers m such that log(m) ≤ n.
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(7) performing a linear substitution into a polynomial p ∈ K[X ] of degree d

costs M(d) arithmetical operations in K. �

Definition 44.9.2. A polynomial f ∈ k[X1, . . . , Xn] is said to be given by
a straight-line program of size L if there is a sequence {Q1, . . . , QL} ⊂
k[X1, . . . , Xn] where f ∈ {Q1, . . . , QL} and, for each i, 1 ≤ i ≤ L either

• Qi ∈ {X1, . . . , Xn},
• Qi ∈ k, or
• there are j1, j2 < i such that, either
– Qi = Qj1 +Qj2 ,
– Qi = Qj1 −Qj2 ,

– Qi = Qj1 ·Qj2 , �

Theorem 44.9.3. Let

f1, . . . , fr, g ∈ K[Z1, . . . , Zr]

be polynomials of degree bounded by D and given by a straight-line program of
size at most L; with the same notation and assumptions as in Problem 44.1.5,
a geometric resolution of Zr can be computed with

O(r(rL + rΩ)M2(DS))

arithmetic operations in K where

S := max(deg(Zρ), 1 ≤ ρ < r) ≤ Dr−1

by means of a probabilistic algorithm.
Its probability of returning correct results relies on choices of elements of

K; choices which give a non correct result are contained into a closed Zariski
set.

Proof (sketch). Let us remark that

• The computation of Proposition 44.3.1 costs O((rL+ rΩ)M(S)a(2)) where
a(j) is the cost of arithmetical operations in R/Ij :
– the evaluation of f and J has complexity O(rL),
– the inversion of J costs O(rΩ),
– the updating of Q and V costs O(r2),
all these costs being evaluated in terms of arithmetical operations in
R/I2[T ] each such operation costing M(S)a(2)).

• The computation of Corollary 44.3.2 costsO((rL+rΩ)M(S)
∑log2(ǫ)

j=0 a(2j)).

• The Lifting Step costs O((rL + rΩ)M2(S)) since a(j) = M(j) so that

log2(S+1)∑

j=0

M(2j) ≤ M(S)

log2(S+1)∑

j=0

1/2j ∈ O(M(S)
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• The Intersection Step costs O(r(L + r2)M(S)M(dS)) :

– if p ∈ K[Zδ, U ] is stored in a two dimensional array of size O(S2), S :=
deg(p), the computation of p̂ costs O(SM(S)) arithmetical operations in
K: it is sufficient to compute p̂i for each homogeneos component pi of p
of degree i; in this setting, since also p̂i is homogeneous of degree i, it
is sufficient to compute p̂i(Zδ, 1) = pi(λ

−1
δ (Zδ − 1), 1) i.e. to perform a

linear tranformation over each univariate polynomial pi(Zδ, 1) ∈ K[Zδ];

thus the cost is in O
(∑S

i=0 M(i)
)
⊂ O(SM(S))

– the computation of Res(Q, f(Zδ, Vδ+1, . . . , Vr) costs

O((L + r2)M(s)M(ds)) ≤ O((L + r2)M(S)M(DS))

arithmetical operations in K, where L is the size of the f , d :=
deg(f) ≤ D, s := deg(Q) ≤ S : the computation is in fact performed in
k[[Zδ]]/((Zδ − p)ds+1);

– the computation of At(Z) costs O((r − D)(L + r2)M(S)M(DS)) arith-
metical operations in K: apply the result above to

K[Tδ, Tδ+1, . . . , Tr]/(Tδ, Tδ+1, . . . , Tr)
2;

– the computation of the geometric resolution of Lt costsO(r2M(S)M(DS))
arithmetical operations in K:
◦ the arithmetics in L :=

(
K[Zδ]/(Zδ − p)ds+1

)
costs

O(M(ds)) ≤ O(M(DS)),

◦ the computation of the polynomials Wδ+i requires O(rM(S)) arith-
metical operations in L

◦ the computation of the polynomials Vt,d+i requires O(r) arithmeti-
cal operations in K[Tδ, Tδ+1, . . . , Tr]/(qt) + (Tδ, Tδ+1, . . . , Tn)

2 which
means O(r2M(S)) arithmetical operations in L and O(r2M(S)M(DS))
in K;

◦ removing multiplicity costs O(rM(s)), s := deg(At) ≤ S.

• The Cleaning Step costs O((L + r2)M(S)). �

Remark 44.9.4. Therefore ’generic’ choices give the complete answer.
Moreover the result can be checked by evaluating the input polynomial;

if they satisfy the required equations, at most the algorithm failed to recover
all roots.

In the special case in which g = 1, i.e. the case in which we want to
compute the roots Z(f1, . . . , fr), since Bezout’s theorem informs that the
number of solutions is

∏r
i=1 deg(fi), it is therefore possible to check whether

the algorithm recovered all solutions. �

It is worthwhile to compare the complexity of this algorithm, with a
Gröbner basis approach; let us therefore assume that each polynomial is
given by a dense representation:
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Corollary 44.9.5. Let

f1, . . . , fr,∈ K[Z1, . . . , Zr]

be polynomials of degree bounded by D ≥ n and let g := 1; with the same
notation and assumptions as in Problem 44.1.5, a geometric resolution of Zr

can be computed with O(D3(r+O(1))) arithmetic operations in K by means of
the probabilistic algorithm of Theorem 44.9.3.

Proof. By Bezout’s theorem DS ≤ Dr so that M(DS)) is in Dr+O(1) and

L ≤ r
(
D+r
r

)
which is in Dr+O(1) too. �

Remark 44.9.6. We recall that the degree bound of a 0-dimensional Gröbner
basis is, with the present notation, O(Dr) (cf. Sections 38.3 and 38.4) so that

the dense representation of each polynomial costs γ := O(Dr2) and a rougth

evaluation of the cost of Gröbner basis computation returns O(D4r2) (cf. the

final comments of Chapter 22). �
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45. Duval II

This conclusive chapter of the Part on ‘algebraic solving’ can be devoted to
nothing but the application to multivariate systems of the Kronecker’s Phi-
losophy expounded in the first volume that ’solving’ does not mean producing
programs which compute the roots of polynomial equation systems; it means
producing programs which compute with their roots.

In the multivariate case, given a finitely generated (zero-dimensional)
ideal J ⊂ K[Z1, . . . , Zr], such philosophy will be put in effect if we were
able to consider each its root (a1, . . . , ar) ∈ Z(J) given by means of a proper
suitable representation of the ideal itself.

The considerations performed on the univariate case in the first Part
(Chapters 8 and 11; in particular Sections 8.2, 8.3 and 11.4) and Gröbner’s
reinterpretation of both Kronecker’s Theory and of the Primitive Element
Theorem (Section 8.4) in terms of Allgemeine Basissätze (Section 34.2), which
explicitly link root representation with lex Gröbner bases and triangular sets,
give the leitmotif of this chapter (see also Section 34.5): I will consider the
roots (a1, . . . , ar) ∈ Z(J) given if

• the ideal J ⊂ K[Z1, . . . , Zr] is represented by means of one of the Gröbner-
related technques discussed in the Second Volume, so that

K[Z1, . . . , Zr]/J →
⊕

(a1,...,ar)∈Z(J)

K[a1, . . . , ar],

• and procedures on K[Z1, . . . , Zr]/J are given which allow to perform (via
Duval splitting) the four operations and zero-testing on each K[a1, . . . , ar].

This approach will be illustrated by the following instances:

(1) the Kronecker–Duval Model, where I have just to quote the approach
endorsed by the Project PoSSo1;

(2) the representation of
√
J by means of an Allgemeine Basis (Defini-

tion 34.2.2, Equation (42.1));
(3) the representation of J by means of Kronecker’s parametrizations (Sec-

tion 41.9, Chapter 44) and Rational Universal Representations (Propo-
sition 42.9.3, Definition 42.9.16;

1 Polynomial System Solving, ESPRIT-BRA 6846
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(4) the respresentation of J by means of a Gröbner representation (Defini-
tion 29.3.3);

(5) the respresentation of J by means of the linear representation w.r.t. the
term ordering ≺. (Definition 29.3.3);

45.1 Kronecker–Duval Model

In relation with Kronecker–Duval Model, I have just to suggest to reread
Chaptres 5, 6, 12, Section 34.5 and Chapter 42 under the light put by the
following quotation2:

The standard method for computing with algebraic numbers consists
in working in a tower of fields, each field being defined by the minimal
polynomial of an algebraic number, defined over the preceding field.
The computation in such a field needs addition, multiplication and
extended gcd of univariate polynomials, as well as Euclidean division,
and, recursively, similar operations in the smaller fields.
[...]
[Duval’s] dynamic evaluation may be viewed as a lazy factorization: in
representation of algebraic numbers, the reducibility of a polynomial
may only posing a problem when testing equalities or when inverting
elements.
When such an operation is needed, a gcd computation (already
needed for inverting) allows to detect if there is a reducibility prob-
lem and, in this case, to get a partial factorization of the reducible
polynomial.
It follows that, for dynamic evaluation, an algebraic number is rep-
resented as a root of a (possibly reducible) square free polynomial.
When a factorization occurs from a non trivial gcd, the computation
splits in two cases, depending on which factor has the algebraic num-
ber as a root. Sometimes, one of the cases is irrelevant, but frequently
both cases are of interest, and one needs to carry on two independent
computations.
Thus the domain of computation is a reduced artinian ring which is
implemented as a family of towers. The evaluation is dynamic in the
sense that the towers change during the computation.
[...]
Towers are equivalent with special algebraic systems, the triangular
systems where each polynomial introduces a new variable. More gen-
erally, any finite set of algebraic numbers may be represented as a
solution of a zero dimensional algebraic system.
POSSO Report R2

2 Whose author is Daniel Lazard
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45.2 Allgemeine Representation

Let us consider

• K an infinite, perfect field, where, if p := char(K) 6= 0, it is possible to
extact pth roots;

• K its algebraic closure;
• Q = K[Z1, . . . , Zr],
• W := {Za1

1 · · ·Zar
r : (a1, . . . , ar) ∈ Nr};

• J ⊂ Q a zero-dimensional ideal;
• J =

⋂r

i=1 qi its irredundant primary representation in Q;
• for each i, 1 ≤ i ≤ r

– mi =
√
qi, the associated maximal prime,

– Ki := Q/mi, K ⊂ Ki ⊂ K,
– Qi := Ki[Z1, . . . , Zr],
– the irredundant primary representations qi = ∩ri

j=1qij and mi = ∩ri
j=1mij

in Qi,

– the roots bij := (b
(ij)
1 , . . . , b

(ij)
r ) ∈ Kr

i ⊂ Kr, 1 ≤ j ≤ ri,
– dij := mult(bij , J) = deg(qij) for each j, 1 ≤ j ≤ ri,
which satisfy:

(1) mij = (Z1 − b
(ij)
1 , . . . , Zr − b

(ij)
r ),

(2) the bijs, 1 ≤ j ≤ ri, are K-conjugate for each i,
(3) up to a renumeration,

√
qij = mij ,

(4) mi = mij ∩ Q,
(5) qi = qij ∩ Q,
(6) for each j, l, 1 ≤ j, l ≤ ri, dij = dil =: di,
(7) ri = deg(mi) = [Ki : K],
(8) deg(qi) = diri,
(9) J = ∩r

i=1 ∩ri
j=1 qij ,

√
J = ∩r

i=1 ∩ri
j=1 mij are the irredundant primary

representations in K[Z1, . . . , Zr],
(10) Z(J) = {bij : 1 ≤ i ≤ r, 1 ≤ j ≤ rj};
• Y := Z1 +

∑r
i=2 ciZi an allgemeine coordinate (Definition 34.4.7) for J;

• J+ = J+ (Y − Z1 −
∑r

l=2 clZl) ⊂ K[Y, Z1, . . . , Zr],
• g0 the monic primitive generator of J+ ∩K[Y ],
• for each i
– m+

i = mi + (Y − Z1 −
∑r

l=2 clZl),
– q+i = qi + (Y − Z1 −

∑r
l=2 clZl),

– hi ∈ K[Z1] the monic polynomial such that (hi) = m+
i ∩K[Z1],

– for each j, 1 ≤ j ≤ ri
◦ m+

ij = mij + (Y − Z1 −
∑r

l=2 clZl),

◦ q+ij = qij + (Y − Z1 −
∑r

li=2 clZl),

◦ βij = b
(ij)
1 +

∑r
l=2 clb

(ij)
l ,

which satisfy:
(11) hi =

∏rj
j=1 (Y − βij) for each i,
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(12) g0(Y ) =
∏r

i=1 h
di

i =
∏r

i=1

∏ri
j=1 (Y − βij)

di ,

(13) R := deg(g0) =
∑r

i=1 ridi = deg(J),
(14) f0 := SQFR(g0) =

∏r

i=1 hi =
∏r

i=1

∏ri
j=1 (Y − βij).

As a consequence we have the isomorphisms (defined by canonical pro-
jection and chinese remaindering):

Q/J ∼= Q[Y ]/J+ ∼= K[Y ]/(g0)xy
xy

xy⊕r

i=1
Q/qi ∼=

⊕r

i=1
Q[Y ]/q+

i
∼=

⊕r

i=1
K[Y ]/(h

di
i

)xy
xy

xy
⊕r

i=1

⊕rj
j=1

Qi/qij ∼=
⊕r

i=1

⊕rj
j=1

Qi[Y ]/q+
ij

∼=
⊕r

i=1
Ki[Y ]/

(
Y − βij

)di

and

Q/
√
J ∼= Q[Y ]/

√
J+ ∼= K[Y ]/(f0)xy

xy
xy⊕r

i=1
Q/mi

∼=
⊕r

i=1
Q[Y ]/m+

i
∼=

⊕r

i=1
K[Y ]/(hi)xy

xy
xy⊕r

i=1

⊕rj
j=1

Qi/mij
∼=

⊕r

i=1

⊕rj
j=1

Qi[Y ]/m+
ij

∼=
⊕r

i=1
Ki[Y ]/

(
Y − βij

)

Let us now assume that J is radical, so that g0 = f0 and the reduced
Gröbner basis w.r.t. the lex ordering induced by Y < Z1 < . . . < Zr is the
allgemaine basis (see Theorem 34.2.1)

(g0(Y ), Z1 − g1(Y ), . . . , Zr − gr(Y ))

of J+ and let us show how to apply it in order to perform arithmetical ma-
nipulation over each root bij :

canonical representation: all arithmetical expressions

p(bij) = p(b
(ij)
1 , . . . , b(ij)r ), p ∈ Q

of each root bij ∈ Z(J) have a canonical representation

p(bij) = p̂(βij)

where p̂(Y ) := Rem (p(g1(Y ), . . . , gr(Y )), g0(Y )) ∈ K[Y ].

Remark 45.2.1. For each q(Y ) ∈ K[Y ], deg(q) < deg(g0), the polynomial
p = q̌ ∈ Q defined by

q̌(Z1, . . . , Zr) := q(Z1 +

r∑

i=1

ciZi)

satisfies the relations

̂̌q = p̂ = q and q̌(bij) = q(βij).

�
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vector space arithmetics: given two arithmetical expressions p1, p2 ∈ Q of
the roots bij ∈ Z(J) and values c1, c2 ∈ K, the arithmetitical expression
p(bij) := c1p1(bij) + c2p2(bij) has the canonical representation p(bij) =
p̂(βij) where

p̂(Y ) := c1p̂1(Y ) + c2p̂2(Y )

= c1Rem (p1(g1(Y ), . . . , gr(Y )), g0(Y ))

+ c2Rem (p2(g1(Y ), . . . , gr(Y )), g0(Y )) ;

multiplication: with the same notation the arithmetitical expression

p(bij) := p1(bij)p2(bij)

has the canonical representation p(bij) = p̂(βij) where

p̂(Y ) := Rem ((p̂1(Y )p̂2(Y ), g0(Y )) ;

zero testing: given an arithmetical expression p ∈ Q we have

p(bij) = 0 ⇐⇒ p̂(Y ) := Rem (p(g1(Y ), . . . , gr(Y )), g0(Y )) = 0;

inverse and division: given an arithmetical expression p ∈ Q, our aim is to
produce

• a factorization g0 = g
(0)
0 g

(1)
0 ,

• a polynomial q(Y ) ∈ K[Y ], deg(q) < deg(g
(1)
0 )

such that
◦ if g

(0)
0 = g0, 1 = g

(1)
0 then, for each bij ∈ Z(J), p(bij) = p̂(βij) = 0;

◦ if g
(1)
0 = g0, 1 = g

(0)
0 then, for each bij ∈ Z(J),

p(bij) = p̂(βij) 6= 0 and p−1(bij) = q̌(bij) = q(βij);

◦ otherwise, for each bij ∈ Z(J), we have

– p(bij) = p̂(βij) = 0 ⇐⇒ g
(0)
0 (βij) = 0,

– p(bij) = p̂(βij) 6= 0 ⇐⇒ g
(1)
0 (βij) = 0, in which case

p−1(bij) = q̌(bij) = q(βij),

so that, denoting

• I0 := {i : 1 ≤ i ≤ r, hi | g(0)0 } = {i : hi | p̂} ⊂ {1, · · · , r},
• I1 := {i : 1 ≤ i ≤ r, i /∈ I0} = {i : hi | g(1)0 } = {i : hi ∤ p̂} ⊂ {1, · · · , r},
• Jι := ∩i∈Iιqi, ι ∈ {0, 1},
• Zι := {bij : i ∈ Iι}, ι ∈ {0, 1},
• g

(ι)
j := Rem(gj , g

(ι)
0 ) ∈ K[Y ], ι ∈ {0, 1}, 1 ≤ j ≤ r,

one has
(a) g

(ι)
0 =

∏
i∈Iι

hi =
∏

i∈Iι

∏ri
j=1 (Y − βij), ι ∈ {0, 1};
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(b) for ι ∈ {0, 1},
(
g
(ι)
0 (Y ), Z1 − g

(ι)
1 (Y ), . . . , Zr − g

(ι)
r (Y )

)
is the All-

gemaine basis of J+ι id est its reduced Gröbner basis w.r.t. the lex
ordering induced by Y < Z1 < . . . < Zr;

(c) Zι = Z(Jι), ι ∈ {0, 1};
(d) Z0 = {bij ∈ Z(I) : p(bij) = 0};
(e) Z1 = {bij ∈ Z(J) : p(bij) 6= 0};
(f) J = J0 ∩ J1,
(g) the following isomorphisms hold

Q/J ∼= Q[Y ]/J+ ∼= K[Y ]/(g0)xy
xy

xy
Q/J0 ⊕ Q/J1 ∼= Q[Y ]/J+

0
⊕ Q[Y ]/J+

1
∼= K[Y ]/(g

(0)
0

) ⊕ K[Y ]/(g
(1)
0

).

(h) g
(ι)
0 is squarefree, ι ∈ {0, 1};

(i) Jι =
√
Jι, ι ∈ {0, 1}.

In order to produce both the required factorization g0 := g
(0)
0 g

(1)
0 and

polynomial q(Y ) ∈ K[Y ], deg(q) < deg(g
(1)
0 ), having the properties listed

above, we simply apply Lazard’s Theorem 11.3.2 and compute:

• g
(0)
0 := gcd(g0, p̂) ∈ K[Y ];

• s, t ∈ K[Y ] such that sp̂+ tg0 = g
(0)
0 ;

• g
(1)
0 := g0

g
(0)
0

;

• u, v ∈ K[Y ] such that ug
(0)
0 + vg

(1)
0 = 1;

• q := Rem(su, g
(1)
0 ).

In fact this computation is simply a reformulation of Lazard’s Theo-

rem 11.3.2: denoting p1(Y ) := p̂(Y )

g
(0)
0 (Y )

we have:

• if g
(0)
0 (βij) = 0 then p̂(βij) = g

(0)
0 (βij)p1(βij) = 0;

• if g
(1)
0 (βij) = 0 then

q(βij)p̂(βij) = s(βij)u(βij)p̂(βij)

= u(βij)s(βij)p̂(βij) + u(βij)t(βij)g0(βij)

= u(βij)g
(0)
0 (βij)

= u(βij)g
(0)
0 (βij) + v(βij)g

(1)
0 (βij)

= 1.

Remark that g
(0)
0 = 1 implies g

(1)
0 = g0, v = 0, u = 1 and

Rem(su, g
(1)
0 ) = Rem(s, g

(1)
0 ).
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45.3 Kronecker Parametrization and Rational Universal
Representation

While using the same notation as in the previous section, let us now assume
to have a Rational Universal Representation

(χ(Y ), γ0(Y ), γ1(Y ), . . . , γr(Y ))

of J, so that

Z(J) = {bij : 1 ≤ i ≤ r, 1 ≤ j ≤ rj}

=

{(
γ1(α)

γ0(α)
, . . . ,

γr(α)

γ0(α)

)
: α ∈ K, χ(α) = 0

}

and we denote for each i, j, αij the root of χ(T ) for which

bij =

(
γ1(αij)

γ0(αij)
, . . . ,

γr(αij)

γ0(αij)

)

and ψi :=
∏

j(T − αij) for each i observing that we have

χ(T ) =
∏

ij

(T − αij)
di =

∏

i

ψdi

i .

We also denote γ−1(Y ) ∈ K[Y ], the unique polynomial which satisfyies

γ0(Y )γ−1(Y ) ≡ 1 mod χ, deg(γ−1) < deg(χ).

If J is radical, then χ is squarefree, γ0 = χ′, di = 1 and the representation
is a Kronecker parametrization.

With the present notation, if the given RUR is associated to the allge-
meine coordinate Z1 +

∑r
i=2 ciZi, then we have χ = g0, αij = βij for each

i, j and ψi = hi for each i.
Let us now show how to adapt the considerations of the previous section

in this setting:

canonical representation: all arithmetical expressions

p(bij) = p(b
(ij)
1 , . . . , b(ij)r ), p ∈ Q

of each root bij ∈ Z(J) have a canonical representation

p(bij) =
p̂(αij)

γ0(αij)

where
p̂(Y ) = Rem (p(γ1(Y ), . . . , γr(Y )), χ(Y )) ∈ K[Y ].
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vector space arithmetics: given two arithmetical expressions p1, p2 ∈ Q of
the roots bij ∈ Z(J) and values c1, c2 ∈ K, the arithmetitical expression
p(bij) := c1p1(bij) + c2p2(bij) has the canonical representation p(bij) :=
p̂(αij)
γ0(αij)

where

p̂(Y ) := c1p̂1(Y ) + c2p̂2(Y )

= c1Rem (p1(γ1(Y ), . . . , γr(Y )), χ(Y ))

+ c2Rem (p2(γ1(Y ), . . . , γr(Y )), χ(Y )) ;

multiplication: the arithmetitical expression p1(bij)p2(bij) has the canonical

representation
q(αij)
γ0(αij)

where

q(Y ) := Rem (p̂1(Y )p̂2(Y )γ−1(Y ), χ(Y )) ,

so that

q(αij)

γ0(αij)
=

p̂1(αij)p̂2(αij)γ−1(αij)

γ0(αij)

=
(p1(bij)γ0(αij)) · (p2(bij)γ0(αij)) · γ−1(αij)

γ0(αij)

= p1(bij)p2(bij);

zero testing: given an arithmetical expression p ∈ Q we have

p(bij) = 0 ⇐⇒ p̂(Y ) = Rem (p(γ1(Y ), . . . , γr(Y ), χ(Y )) = 0;

inverse and division: Even while χ is not necessarily squarefree, Lazard’s
Theorem 11.3.2 can be applied essentially in the same way in order to
compute the required factorization χ := χ(0)χ(1) and the polynomial
q(Y ) ∈ K[Y ], deg(q) < deg(χ(1)), having the required properties.
We begin by remarking that of all the data related to the multiplicity of
the primary components of J — namely r, ri, di — the only available to
us is3

R = deg(χ) =

r∑

i=1

ridi

but that is all we need, since

Lemma 45.3.1. With the present notation, it holds

gcd(χ, p̂R) =
∏

i∈I0

ψdi

i

where I0 = {i : 1 ≤ i ≤ r, ψi | p̂}.

3 cf. (13) of the properties listed in page 254.
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Proof. In fact, for each i, ψi | p ⇐⇒ ψdi

i | pR ⇐⇒ ψdi

i | gcd(χ, pR).
�

Corollary 45.3.2. Denoting
• χ(0) := gcd(χ, γ2−1p̂

R) ∈ K[Y ];

• s, t ∈ K[Y ] such that sγ2−1p̂
R + tχ = χ(0);

• χ(1) := χ
χ(0) ;

• u, v ∈ K[Y ] such that uχ(0) + vχ(1) = 1;
• q := Rem(usp̂R−1, χ(1))
then
◦ if χ(0) = χ, 1 = χ(1) then, for each bij ∈ Z(J), p(bij) = 0;
◦ if χ(1) = χ, 1 = χ(0) then, for each bij ∈ Z(J),

p(bij) =
p̂(αij)

γ0(αij)
6= 0 and p−1(bij) =

q(αij)

γ0(αij)
;

◦ otherwise, for each bij ∈ Z(J), we have
– p(bij) = 0 ⇐⇒ χ(0)(αij) = 0,

– p(bij) =
p̂(βij)
γ0(αij)

6= 0 ⇐⇒ χ(1)(αij) = 0, in which case

p−1(bij) =
q(αij)

γ0(αij)
.

Proof. Since for each bij ∈ Z(J), γ0(αij) 6= 0 and γ−1(αij) 6= 0, Lazard’s
Theorem 11.3.2 grants that:

• denoting p1 :=
γ2
−1p̂

R

χ
(0)
0

we have

χ
(0)
0 (αij) = 0 =⇒ p̂R(αij) = χ

(0)
0 (αij)p1(αij)γ0(αij) = 0.

• χ(1)(αij) = 0 implies p̂R(αij) 6= 0 and

p̂(αij)

γ0(αij)
· q(αij)

γ0(αij)

= p̂(αij)q(αij)γ
2
−1(αij)

= p̂(αij)
(
u(αij)s(αij)p̂

R−1(αij)
)
γ2−1(αij)

= u(αij)s(αij)γ
2
−1(αij)p̂

R(αij) + u(αij)t(αij)χ(αij)

= u(αij)χ
(0)(αij)

= u(αij)χ
(0)(αij) + v(αij)χ

(1)(αij)

= 1.
�

Therefore denoting
• I0 := {i : 1 ≤ i ≤ r, ψi | χ(0)} = {i : ψi | p̂} ⊂ {1, · · · , r},
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• I1 := {i : 1 ≤ i ≤ r, i /∈ I0} = {i : ψi | χ(1)} = {i : ψi ∤ p̂} ⊂ {1, · · · , r},
• Jι := ∩i∈Iιqi, ι ∈ {0, 1},
• Zι := {bij : i ∈ Iι}, ι ∈ {0, 1},
• γ

(ι)
j := Rem(γj , χ

(ι)) ∈ K[Y ], ι ∈ {0, 1}, 0 ≤ j ≤ r,
one has

Corollary 45.3.3. With the present notation, the following holds:
(a) χ(ι) =

∏
i∈Iι

ψdi

i =
∏

i∈Iι

∏ri
j=1 (Y − αij)

di , ι ∈ {0, 1};
(b) for ι ∈ {0, 1},

(
χ(ι)(Y ), γ

(ι)
0 (Y ), γ

(ι)
1 (Y ), . . . , γ

(ι)
r (Y )

)
is the Rational

Universal Representation of Jι;

(c) Zι =

{(
γ
(ι)
1 (α)

γ
(ι)
0 (α)

, . . . ,
γ(ι)
r (α)

γ
(ι)
0 (α)

)
: α ∈ K, χ(ι)(α) = 0

}
, ι ∈ {0, 1};

(d) Zι = Z(Jι), ι ∈ {0, 1};
(e) Z0 = {bij ∈ Z(I) : p(bij) = 0};
(f) Z1 = {bij ∈ Z(J) : p(bij) 6= 0};
(g) J = J0 ∩ J1,
If moreover J is radical and the given Rational Universal Representation
is a Kronecker Parametrization, setting

ξ
(ι)
j := Rem(γj

∂χ(ι)

∂Y
γ−1, χ

(ι)) ∈ K[Y ], ι ∈ {0, 1}, 1 ≤ j ≤ n,

it holds
(h) χ(ι) is squarefree, ι ∈ {0, 1};
(i) Jι =

√
Jι, ι ∈ {0, 1}.

(j) χ(ι) =
∏

i∈Iι
ψi =

∏
i∈Iι

∏ri
j=1 (Y − βij), ι ∈ {0, 1};

(k) for ι ∈ {0, 1},
(
χ(ι)(Y ),

∂χ(ι)

∂Y
Z1 − ξ

(ι)
1 (Y ), . . . ,

∂χ(ι)

∂Y
Zr − ξ(ι)r (Y )

)

is the Kronecker Parametrization of Jι.

�

Proof. The only non-trivial statements are (b) which is Remark 42.9.18
and (k) for which it is sufficient to remark that, by construction, for each
bij ∈ Zι, and each l, 1 ≤ l ≤ n, one has

b
(ij)
l =

γl(αij)

γ0(αij)

= γl(αij)γ−1(αij)

=
γ
(ι)
j (αij)

∂χ(ι)

∂Y (αij)γ−1(αij)

∂χ(ι)

∂Y (αij)

=
ξ
(ι)
l (αij)

∂χ(ι)

∂Y (αij)
.
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�

45.4 Gröbner representation

Using the same notation as in Section 45.2, let us begin by assuming that
the zero-dimensional ideal J, deg(J) = R, is given by means of a Gröbner
representation (Definition 29.3.3)

q = {q1, . . . , qR}, q1 = 1, M = M(q) :=
{(
a
(h)
lj

)
∈ KR2

, 1 ≤ h ≤ r
}

so that

(1) Q/J ∼= SpanK(q),

(2) Zhql =
∑

j a
(h)
lj qj for each l, j, h, 1 ≤ l, j ≤ R, 1 ≤ h ≤ n, in Q/J,

and by recalling that4 for each f ∈ Q its Gröbner description (Defini-
tion 29.3.3)

Rep(f,q) := (γ(f, q1,q), . . . , γ(f, qR,q)) ∈ KR

in terms of this Gröbner representation which satisfies

f −
∑

j

γ(f, qj,q)qj ∈ J

can be efficiently computed both when f is represented as a linear combina-
tion of terms in W or via a recursive Horner representation.

In other terms as we already observed in Historical Remark 29.3.4, we
can efficiently compute the structure constants

γ
(l)
ij := γ(qiqj , ql,q)

which satisfy

(3) qiqj =
∑

l γ
(l)
ij ql for each l, j, h, 1 ≤ i, j, l ≤ R.

As a consequence we can adapt Definition 29.3.3 saying that

Definition 45.4.1. A Gröbner representation of J is the assignement of

(a) a K-linearly independent set q = {q1, . . . , qR},
(b) the set M = M(q) :=

{(
a
(h)
lj

)
∈ KR2

, 1 ≤ h ≤ n
}

of n square matrices

(c) R3 values γ
(l)
ij ∈ K

which satisfy

(1) Q/J ∼= SpanK(q),

4 Compare the discussion in Section 29.3 and in particular Algorithm 29.3.8.
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(2) Zhql ≡
∑

j a
(h)
lj qj , (mod J), for each l, j, h, 1 ≤ l, j ≤ R, 1 ≤ h ≤ n,

(3) qiqj ≡
∑

l γ
(l)
ij ql, (mod J) for each l, j, h, 1 ≤ i, j, l ≤ R.

The values γ
(l)
ij := γ(qiqj , ql,q) are called the structural constants of the

K-algebra Q/J = SpanK(q)
The linear representation of J w.r.t. the term ordering ≺ is the Gröbner

representation (N≺(J),M, γ
(l)
ij ) where q = (N≺(J)). �

The application of Gröbner representations as a tool for effectively per-
form Kronecker’s Philosophy requires the solution of the following

Problem 45.4.2. Given

• a zero-dimensional ideal J′ ⊃ J and
• a K-basis q′ = {q′1, . . . , q′S} ⊂ SpanK(q)

such thay Q/J′ = SpanK(q′), compute a Gröbner representation of J′. �

We postpone discussing the solution of this problem to the end of the
section, after we will have expound our application.

Since a Gröbner representation of J gives the natural arithmetics of a K-
algebra, in order to apply it for carrying into effect Kronecker’s Philosophy,
we just need to focus on inversion and division.

On the basis of the discussion in Section 29.3 and in particular Algo-
rithm 29.3.8 we can wlog assume that each arithmetical expression given via
a polynomial p is represented either via a recursive Horner representation or
as a linear combination of terms in W ; thus it can be easily expressed as
p =

∑
ι γ(p, qι,q)qι.

canonical representation: all arithmetical expressions

p(bij) = p(b
(ij)
1 , . . . , b(ij)r ), p ∈ Q

of each root bij ∈ Z(J) have the canonical representation

p(bij) =
∑

ι

γ(p, qι,q)qι(bij);

vector space arithmetics: given two such arithmetical expressions p1, p2 ∈
Q of the roots bij ∈ Z(J) and values c1, c2 ∈ K, the arithmetitical
expression p(bij) := c1p1(bij)+c2p2(bij) has the canonical representation

∑

j

(
c1γ(p1, qι,q) + c2γ(p2, qι,q)

)
qι(bij);
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multiplication: with the same notation the arithmetitical expression

p(bij) := p1(bij)p2(bij)

has the canonical representation

∑

λ

(
∑

ι

∑

κ

γ(p1, qι,q)γ
(λ)
ικ γ(p2, qκ,q)

)
qλ(bij);

since

∑

λ

(
∑

ι

∑

κ

γ(p1, qι,q)γ
(λ)
ικ γ(p2, qκ,q)

)
qλ(bij)

=
∑

ι

∑

κ

γ(p1, qι,q)γ(p2, qκ,q)

(
∑

λ

γ(λ)ικ qλ(bij)

)

=
∑

ι

∑

κ

γ(p1, qι,q)γ(p2, qκ,q)qι(bij)qκ(bij)

=

(
∑

ι

γ(p1, qι,q)qι(bij)

)
·
(
∑

κ

γ(p2, qκ,q)qκ(bij)

)

= p1(bij)p2(bij).

zero testing: given an arithmetical expression p ∈ Q we have

p(bij) = 0 ⇐⇒ γ(p, qi,q) = 0 for each i.

inverse and division: Linear algebra, namely Gaussian algorithm, is all we
need to deal with division.
Let us consider any p ∈ Q given by the canonical representation

p ≡
R∑

ι=1

γ(p, qι,q)qι mod J

and let us remark that, for each i ≤ r, setting

δ :=

{
1 J =

√
J

R = deg(J) J 6=
√
J

we have
p(bij) = 0 ⇐⇒ p ∈ mi ⇐⇒ pδ ∈ qi ⇐⇒ qi : p

δ = 1;
p(bij) 6= 0 ⇐⇒ p /∈ mi ⇐⇒ pδ /∈ qi ⇐⇒ qi : p

δ = qi;
p(bij) = 0 ⇐⇒ qi + (pδ) = qi ⇐⇒ mi + (p) = mi;
p(bij) 6= 0 ⇐⇒ qi + (pδ) = (1) ⇐⇒ mi + (p) = (1);
therefore, denoting
• A the matrix A :=

(
γ(pδ−1qκ, qλ,q)

)
λκ
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• I0 := {i : 1 ≤ i ≤ r, pδ ∈ qi} = {i : p ∈ mi} = {i : p(bij) = 0} ⊂
{1, · · · , r},

• I1 := {i : 1 ≤ i ≤ r, i /∈ I0} = {i : pδ /∈ qi} = {i : p /∈ mi} = {i :
p(bij) 6= 0} ⊂ {1, · · · , r},

• Jι := ∩i∈Iιqi, ι ∈ {0, 1},
• Zι := {bij : i ∈ Iι}, ι ∈ {0, 1};
• b = {b1, . . . , bR} another K-basis of Q/J = SpanK(b),
• φ : Q/J ∼= SpanK(q) → Q/J ∼= SpanK(b) the morphism defined by
φ(g) = pδg for each g ∈ SpanK(q),

• C := (cικ) the matrix representing the morphism φ,
• π : Q → Q/J ∼= SpanK(q) the canonical projection,
• S := deg(J0),
we have
(1) J = J0 ∩ J1;
(2) J0 + J1 = (1);
(3) J0 = J+ (pδ), J1 = J : pδ;
(4) Zι = Z(Jι), ι ∈ {0, 1};
(5) Z0 = {bij ∈ Z(I) : p(bij) = 0};
(6) Z1 = {bij ∈ Z(J) : p(bij) 6= 0};
(7) φ(qκ) = pδqκ =

∑R
ι=1 bιcικ, 1 ≤ κ ≤ R;

(8) Im(φ) ⊂ Q/J is the principal ideal generated by π(pδ);
(9) π−1(Im(φ)) = J0 = J+ (pδ);

(10) ker(φ) = {π(g) : g ∈ Q, π(gpδ) = 0} ⊂ Q/J
(11) ker(φπ) = {g ∈ Q : gpδ ∈ J} = J : pδ = J1;
(12) S is the rank of C.

Remark 45.4.3. If J is radical, id est δ = 1, then both J0 and J1 are
radical.
In this case, the procedure outlined here, which requires the evaluation of
pδ−1 and pδ−1q′ι in order to compute both pδ and p·(pδ−1q′ι), is simplyfied

since we need just to evaluate pq′ι. �

If we now perform Gaussian column reduction on C := (cικ) performing
the same transformation on the identity we obtain two matrices

D := (dιℓ) and E := (eκℓ)

which satisfy
(13) D = CE;
(14) E is invertible;
(15) D is lower triangular, so that ℓ > ι =⇒ dιℓ = 0;
(16) ℓ > S = deg(J0) =⇒ dιℓ = 0 for each ι;

(17) q′ := {q′1, . . . , q′S}, q′ℓ :=
∑R

ι=1 bιdιℓ, 1 ≤ ℓ ≤ S, is a linear basis both
of Im(φ) and π(J0) ⊂ Q/J;
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(18) for each ℓ, 1 ≤ ℓ ≤ S, χℓ :=
∑R

κ=1 qκeκℓ ∈ SpanK(q) satisfies

pδχℓ = φ(χℓ) = q′ℓ;

(19) for each ℓ, 1 ≤ ℓ ≤ S, pδ−1χℓ has the representation5

pδ−1χℓ =

R∑

λ=1

qλ

(
R∑

κ=1

γ(pδ−1qκ, qλ,q)eκℓ

)
;

(20) q′′ := {χS+1, . . . , χR}, χℓ :=
∑R

κ=1 qκeκℓ, S + 1 ≤ ℓ ≤ R, is a linear
basis of both ker(φ) and π(J1) ⊂ Q/J;

(21) {q′1, . . . , q′S} ∪ {χS+1, . . . , χR} is a K-basis of Q/J,
(22) there is a linear relation (mod J)

1 =
S∑

ℓ=1

cℓq
′
ℓ +

R∑

ℓ=S+1

cℓχℓ

=
S∑

ℓ=1

cℓp
δχℓ +

R∑

ℓ=S+1

cℓχℓ

= p

S∑

ℓ=1

cℓ

(
R∑

λ=1

qλ

(
R∑

κ=1

γ(pδ−1qκ, qλ,q)eκℓ

))
+

R∑

ℓ=S+1

cℓχℓ

= p

(
R∑

λ=1

qλ

(
S∑

ℓ=1

R∑

κ=1

γ(pδ−1qκ, qλ,q)eκℓcℓ

))
+

R∑

ℓ=S+1

cℓχℓ;

(23) denoting

ηλ :=

S∑

ℓ=1

R∑

κ=1

γ(pδ−1qκ, qλ,q)eκℓcκ, 1 ≤ λ ≤ R,

and setting

5 We have

pδ−1χℓ =

R∑

κ=1

pδ−1qκeκℓ

=

R∑

κ=1

R∑

λ=1

qλγ(p
δ−1qκ, qλ,q)eκℓ

=

R∑

λ=1

qλ

(
R∑

κ=1

γ(pδ−1qκ, qλ,q)eκℓ

)
.
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q :=

R∑

λ=1

qληλ

we have 1 ≡ qp mod J1;
(24) for each κ, S < κ ≤ R, there is a value6 ρ(κ) for which eρ(κ)κ = 1

and eρ(κ)ℓ = 0 for each ℓ 6= κ.
As a consequence

Corollary 45.4.4. With the present notation it holds
◦ if S = 0 then C is the null-matrix, J1 = (1), J0 = J and p(bij) = 0;
◦ if S = R then C is invertible, J0 = (1), J1 = J,

p(bij) 6= 0 and p−1(bij) = q(bij);

◦ otherwise, for each bij ∈ Z(J), we have
– p(bij) = 0 ⇐⇒ bij ∈ Z(J0),
– p(bij) 6= 0 ⇐⇒ bij ∈ Z(J1), in which case

p−1(bij) = q(bij).

�

In conclusion Gaussian reduction is all we need in order to obtain the
Duval splitting J = J0 ∩ J1; what we have to do is:
• compute the canonical representation of pδ−1;
• compute the matrix A representing the canonical representation of
pδ−1qκ, 1 ≤ κ ≤ R;

• compute the canonical representation of

pδ = p · pδ−1 and p · (pδ−1qκ), 1 ≤ κ ≤ R;

thus obtaining the matrix C;
• perform Gaussian column-reduction on C deducing D and E;
• extract the K-linearly independent bases q′ and q” of, respectively,
π(J0) and π(J1);

• apply the solution discussed below of Problem 45.4.2 in order to obtain
a Gröbner representation of both J0 and J1;

• compute, for each κ, λ, 1 ≤ κ ≤ S, 1 ≤ λ ≤ R, the values

ǫκ,λ :=

R∑

ι=1

eικγ(p
δ−1qι, qλ,q);

6 Remark that the κth column of D, which is null, corresponds to a repeated
transformation of the ρ(κ)th column of C which is never chosen as a pivot element.
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• compute the unique solution (c1, . . . , cR) of the linear equations




1 =
∑S

ℓ=1 cℓ

(∑R
κ=1 γ(p

δ−1qκ, q1,q)eκℓ

)
+
∑R

ℓ=S+1 cℓe1ℓ

0 =
∑S

ℓ=1 cℓ

(∑R
κ=1 γ(p

δ−1qκ, q2,q)eκℓ

)
+
∑R

ℓ=S+1 cℓe2ℓ

· · ·
0 =

∑S
ℓ=1 cℓ

(∑R
κ=1 γ(p

δ−1qκ, qR,q)eκℓ

)
+
∑R

ℓ=S+1 cℓeRℓ

• compute ηλ :=
∑S

ℓ=1

∑R
κ=1 γ(p

δ−1qκ, qλ,q)eκℓcκ, 1 ≤ λ ≤ R,

• return q :=
∑R

λ=1 qληλ.

Remark 45.4.5. It is clear that this algorithm is essentially a refinement of
Traverso’s Algorithm 29.3.8 for computing J0 extended and adapted in order

to obtain also J1 := π−1(ker(ψ) and q. �

Example 45.4.6. Let us consider the ideal

J := I(Z3
1 − Z2

1 , Z1Z2, Z
2
2 − Z2) ⊂ K[Z1, Z2] = Q

whose roots are {(0, 0), (1, 0), (0, 1)}, (0, 0) having multiplicity 2 and the pri-
mary component (X2

1 , X2), the Lagrange basis

q1 := 1− Z2
1 − Z2, q2 := Z1 − Z2

1 , q3 := Z2
1 , q4 := Z2,

and the polynomial p := 1− Z1 + Z2 = q1 − q2 + 2q4.
We thus have

A :=




q1 q2 q3 q4
q1 1 0 0 0
q2 −3 1 0 0
q3 0 0 0 0
q4 0 0 0 8




and C :=




q1 q2 q3 q4
Z2
1 3 −1 0 0
Z2 −1 0 0 16
Z1 −4 1 0 0
1 1 0 0 0




and we deduce

D :=




Z2
1 1 0 0 0
Z2 0 1 0 0
Z1 0 0 1 0
1 −1 0 −1 0


E :=




q1 −1 0 −1 0
q2 −4 0 −3 0
q3 0 0 0 1
q4 − 1

16
1
16 − 1

16 0




Thus we have

• J0 = J+ I(p3) = J+ {q′1, q′2, q′3} = J+ {Z2
1 − 1, Z2, Z1 − 1} = I(Z2, Z1 − 1),

• Z(J0) = {(1, 0)} = Z0

• φ(χ1) = φ(−q1 − 4q2 − 1
16q4) = φ(5Z2

1 + 15
16Z2 − 4Z1 − 1) = q′1,

• φ(χ2) = φ( 1
16q4) = φ( 1

16Z2) = q′2,
• φ(χ3) = φ(−q1 − 3q2 − 1

16q4) = φ(4Z2
1 + 15

16Z2 − 3Z1 − 1) = q′3,
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• AE =




q1 −1 0 −1 0
q2 −1 0 0 0
q3 0 0 0 0
q4 − 1

2
1
2 − 1

2 0


 and

p3χ1 = −q1 − q2 −
1

2
q4, p3χ2 =

1

2
q4, p3χ3 = −q1 −

1

2
q4;

• J1 = J : p3 = J+ {χ4} = J+ {q3} = J+ {Z2
1} = I(Z2

1 , Z1Z2, Z
2
2 − Z2),

• Z(J1) = {(0, 0), (0, 1)} = Z1,
• {q′1, q′2, q′3, χ4} = {Z2

1 − 1, Z2, Z1 − 1, Z2
1} is a K-basis of Q/J;

• 1 = −q′1 + χ4;
• (η1, . . . , ηR) = AE(−1, 0, 0, 1)T = (1, 1, 0, 12 )
• q := q1 + q2 +

1
2q4 = −2Z2

2 − 1
2Z2 + Z1 + 1 satisfies

1 ≡ qp mod J1.

• ρ4 = 3, e3ℓ = 0, ℓ 6= 4.

Example 45.4.7. Let us consider the radical ideal J ⊂ K[Z1, Z2, Z3] discussed
in Example 39.2.3, 40.3.2 and 42.8.8 for which we choose

q := N(J) := {1, Z1, Z2, Z3, Z
2
1 , Z1Z2, Z

2
2 , Z1Z3, Z

2
3}

and the algebraic expression p = Z1Z3 so that we have

Z0 = Z(J0) = {bi : i ∈ {1, 2, 4, 9}},Z1 = Z(J1) = {bi : i ∈ {3, 5, 6, 7, 8}}.

We thus have

C :=




1 Z1 Z2 Z3 Z2
1 Z1Z2 Z2

2 Z1Z3 Z2
3

Z2
3 0 0 0 2 0 0 0 4 6

Z1Z3 1 3 −1 4 7 −1 −1 12 7
Z2
2 0 3 −3 15 9 −3 −3 42 36

Z1Z2 0 6 −3 30 18 −3 −3 84 72
Z2
1 0 1 2 0 3 2 2 1 0
Z3 0 −2 2 −8 −6 2 2 −24 −18
Z2 0 −9 9 −45 −27 9 9 −126 −108
Z1 0 −3 −3 −3 −9 −3 −3 −12 −6
1 0 2 −2 6 6 −2 −2 20 12




,
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whence we compute D :=




Z2
3 1 0 0 0 0 0 0 0 0

Z1Z3 0 1 0 0 0 0 0 0 0
Z2
2 0 0 1 0 0 0 0 0 0

Z1Z2 0 0 0 1 0 0 0 0 0
Z2
1 0 0 0 0 1 0 0 0 0
Z3 1 0 −2

3 0 0 0 0 0 0
Z2 0 0 −3 0 0 0 0 0 0
Z1 1 0 −1

3 0 −2 0 0 0 0
1 −2 0 2

3 0 0 0 0 0 0




and E :=




1 −7
6 1 −37

9 2 −8
3 2 0 0 4

Z1
5
6 0 17

9 −1 4
3 −3 0 0 −1

Z2 0 0 −2
3

1
3 0 0 −1 −1 0

Z3
13
6 0 10

9
−2
3

2
3 0 0 0 −5

Z2
1 0 0 0 0 0 1 0 0 0

Z1Z2 0 0 0 0 0 0 1 0 0
Z2
2 0 0 0 0 0 0 0 1 0

Z1Z3
−5
6 0 −5

9
1
3

−1
3 0 0 0 1

Z2
3 0 0 0 0 0 0 0 0 1




.

Moreover

1 = −1

2
(Z2

3 + Z3 + Z1 − 2)− 1

2
Z1Z3 −

3

2
(3Z2

2 − 2Z3 − 9Z2 − Z1 + 2)

−9Z1Z2 −
1

2
(Z2

1 − 2Z1)

+
1

2
(Z2

1 − 3Z1 + 2) + 9(Z1Z2 − Z2)

+
9

2
(Z2

2 − Z2) +
1

2
(Z2

3 + Z1Z3 − 5Z3 − Z1 + 4)

so that

J0 = I(Z2
3 + Z3 + Z1 − 2, Z1Z3, 3Z

2
2 − 2Z3 − 9Z2 − Z1 + 2, Z1Z2, Z

2
1 − 2Z1)

J1 = I(Z
2
1 − 3Z1 + 2, Z1Z2 − Z2, Z

2
2 − Z2, Z

2
3 + Z1Z3 − 5Z3 − Z1 + 4)

q = 24−1
(
2Z2

3 + 4Z1Z3 + 33Z2
2 + 66Z1Z2 − 18Z2

1 − 20Z3 − 99Z2 + 38Z1 + 18
)

�

Let us now finally discuss a solution of Problem 45.4.2:

• for each l, λ, h compute the values

b
(h)
lλ :=

R∑

i=1

γ(q′l, qi,q)a
(h)
iλ

which satisfy, for each l, h, (mod J′)

R∑

λ=1

b
(h)
lλ qλ =

R∑

λ=1

(
R∑

i=1

γ(q′l, qi,q)a
(h)
iλ

)
qλ ≡

R∑

i=1

γ(q′l, qi,q)Zhqi ≡ Zhq
′
l ∈ J′;
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• by linear algebra, for each l, h compute the unique values a′(h)lj , 1 ≤ j ≤ S
satisfying

S∑

j=1

a′
(h)
lj q

′
j =

R∑

λ=1

b
(h)
lλ qλ ≡ Zhq

′
l (mod J′);

• for each i, j, λ compute the values

δ
(λ)
ij :=

(
∑

ι

∑

κ

γ(q′i, qι,q)γ
(λ)
ικ γ(q′j , qκ,q)

)

which satisfy, for each i, j, (mod J′)

R∑

λ=1

δ
(λ)
ij qλ =

R∑

λ=1

(
R∑

ι=1

R∑

κ=1

γ(q′i, qι,q)γ
(λ)
ικ γ(q′j , qκ,q)

)
qλ

≡
R∑

ι=1

R∑

κ=1

γ(q′i, qι,q)γ(q
′
j , qκ,q)

(
R∑

λ=1

γ(λ)ικ qλ

)

≡
R∑

ι=1

R∑

κ=1

γ(q′i, qι,q)γ(q
′
j , qκ,q)qιqκ

= q′iq
′
j ∈ J′;

• by linear algebra, for each i, j compute the unique values γ′(l)ij , 1 ≤ l ≤ S
satisfying

S∑

l=1

γ′
(l)
ij q

′
l =

R∑

λ=1

δ
(λ)
ij qλ ≡ q′iq

′
j mod J′;

thus the data

(a) q′ = {q′1, . . . , q′S},
(b) M(q′) :=

{(
a′(h)lj

)

(c) the structure constants γ′(l)ij

are the required Gröbner representation of J′.

45.5 Linear representation

Let us now specialize the results of the previous section to the case in which

(A) q = N≺(J) ordered so that 1 = q1 ≺ q2 ≺ · · · ≺ qR;
(B) at each step of the Gaussian algorithm, as pivot element among all pos-

sible choices we systematycally choose the mostleft available column;
(C) b = N≺(J) ordered so that b1 ≻ · · · ≻ bR−1 ≻ bR = 1, so that qi =

bR−i+1 for each i.
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Remark 45.5.1. Given any Gröbner representation of J and a term order-
ing ≺, a direct application of Möller’s Algorithm 28.2.7 to the functionals

γ(·, qı,q) returns N≺(J). �

Example 45.5.2. Conditions (A-B) are satisfied by both Example 45.4.6
and 45.4.6 which further satisfies also condition (C).

Therfore the reader can easily veryfy our claims on thise examples. �

As a consequence of (B) in the transformation of C into D each column,
which is not a pivot element, is modified only by means of columns to its
left. Therefore, since in (24) the set J := {ρ(κ) : S < κ ≤ R} denotes the
indices corresponding to the columns of C which have not being used as pivot
element, the assumption (B) allows to reformulate (24) as:

(24)’ denoting ρ(κ) := max{ℓ : eℓκ 6= 0} for each κ, S < κ ≤ R, and J :=
{ρ(κ) : S < κ ≤ R} we have eℓκ = 0 for each ℓ 6= κ).

Thus we trivially have

Corollary 45.5.3. If assumptions (A-B) are satisfied, then

N(J1) = {bi, 1 ≤ i ≤ R, i /∈ J}.

�

In the same mood, as a direct consequence of the ordered imposed on b by
condition (C) we also get

Corollary 45.5.4. If assumptions (A-C) are satisfied, then

N(J0) = {bS+1, . . . , bR}.

�
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Non-derogatory
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– matrix, 35
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Quasi-prime ideal, 161
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Rational Univariate Representation
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Regular set, 161
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Separating element, 36, 181
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Symb. Comp. 29 (2000), 601–624

91. Göbel M., Computing Bases for Rings of Permutation-invariant Polynomials,
J. Symb. Comp. 19 (1995), 258–291
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93. Göbel M., A Constructive Description of SAGBI Bases for Polynomial Invari-
ants of Permutation Groups, J. Symb. Comp. 26 (1998), 261–275
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entieres (in russian) [Journal de l’Institut des Ponts et Chaussées de Russie]
Izdanie Inst. Inz̆. Putej Soobs̆c̆enija Imp. Al. I. 84 (1913) .

107. Gunther, N. Sur la forme canonique des systèmes déquations homogènes (in
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198. Norton G.H., Sălăgean A., Strong Gröbner bases for polynomials over a prin-

cipal ideal ring, Bull. Austral. Math. Soc. 64 (2001), 505–528
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201. Ore O., Linear equations in non-commutative fields , Ann. Math. 32 (1931),
463–477

202. Ore O., Theory of non-commutative polynomials , Ann. Math. 34 (1933), 480–
508

203. Pan L., On the D-bases of polynomial ideals over principal ideal domains, J.
Symb. Comp. 7 (1988), 55–69

204. Pardo L.M., How Lower and Upper Complexity Bounds Meet in Elimination,
L. N. Comp. Sci. 948 (1995), 33–69, Springer

205. Pesch M., Gröbner Bases in Skew Polynomial Rings Dissertation,Passau
(1997)



283
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(2001), 292–296 ACM

238. Schaller S.C., Algorithmic Aspects of Polynomial Residue Class Rings, Thesis,
Univ. of Wisconsin at Madison (1975)

239. Schwartz F., The Riquier–Janet Theory and its Applications to Nonlinear Evo-
lution Equations, Physica 11D (1984), 243–251

240. Scwartz F., Reductio and Completion Algorithm for Partial Differential Equa-
tions, Proc. ISSA’92 (1992), 49–56 ACM

241. Sims, C. Computation with finitely presented groups Cambridge Univ. Press
(1994)

242. Sit, W.Y. A theory for parametric linear systems Proc. ISSAC’91 (1991), 112–
121, A.C.M.
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