
A Rule-Based Language for the Specification of Message
Routing Policies in a Universal Communication System

Elisa Bertino
Dip. di Scienze dell'Informazione
Università degli Studi di Milano

V.Comelico, 39/41 20135 Milano, Italy
bertino@dsi.unimi.it

Munir Cochinwala
Telcordia Technologies

(formerly Bellcore)
445, South St., Morristown, NJ.USA
munir@research.telcordia.com

Marco Mesiti
Dip. di Info. e Scienze dell'Informazione

Università degli Studi di Genova
V.Dodecaneso, 35 16146 Genova, Italy

mesiti@disi.unige.it

Abstract
In this paper we propose a declarative rule
language, based on the ECA paradigm [7], for
specifying message filtering and routing policies in
a Universal Communication Identifier (UCI)
system. A user subscribing to a UCI system has a
unique identifier, independent from the actual
communication devices the user owns. It is a task
of the UCI system to properly route messages or
phone calls to the proper user devices, according to
the type of message, the type of device, and to the
user preferences. The rule language presented in
this paper allows users to state their personal
policies for message/phone call routing and
filtering. Those policies, expressed through the rule
language, are incorporated into the user profile and
used by the UCI system in order to perform
message/phone call dispatching. In the paper, we
first present the rule language, and discuss the rule
evaluation and execution process. We then present
an overview of an UCI system implementing the
proposed language.

1 Introduction
Recent advances in technologies for communication

devices, especially portable ones, and in networks have
made available a large variety of means by which users can
easily communicate among each others anywhere and at
any time. Users have now several options among which to
choose whenever they need to communicate and/or to
exchange data, including multimedia ones, with other users
or applications. Devices, such as new generation cellular
phones, palm PC, PDA, laptops, have enormously
improved the communication process, by increasing both
the quantity and quality of data that are exchanged and by
providing easy-to-use interfaces.

Such a wealth of communication devices has, however,
the problem that now users end up having several phone
numbers and other electronic addresses at which they can
be reached. A user has then to let others know all the
various numbers and addresses where he/she can be
reached. Things become more complicated when a user can
be reached at a certain number, or address, depending on
some conditions, such as the time of day, or when a user
needs to be selective when letting others know his numbers

or addresses. Things are also complicated from the side of
the caller. A user wishing to get in touch with another user
has to know which number or address to use, possibly
depending on some conditions, such as the time of day or
the type and contents of communication to be made.

Approaches, which have been recently proposed to
address such a problem, are based on the concept of
Universal Communication Identifier (UCI) [2]. The UCI is
a unique identifier associated with a person independently
from the devices he/she has. A user wishing to send a
message to a given user, or to call such a user, uses such
identifier. The message or call is then automatically routed
by the UCI system to the appropriate device number or
electronic address. In this way the message sender/caller is
free from keeping track of the devices currently belonging
to the message/call receiver. Such an approach lets users
free to concentrate on the communication contents rather
than on details concerning the communication devices.

In order to be effective, such an approach must provide
a mechanism by which UCI owners can specify policies for
routing messages and calls arriving at their UCI. Such
policies can depend on a variety of conditions, such as the
sensitivity of the message contents, the sender/caller
characteristics, the time at which the message/call arrives,
the availability/capability of the devices. Moreover, the
UCI owners must also be able to specify policies
concerning messages/call arriving at a particular device, in
order to define a particular behavior for such device. An
example of such a policy is “reject messages containing
huge images arriving at my laptop”. Finally, the UCI owner
should be able to require notification messages whenever a
message/call arrives to his/her UCI, or a particular device
handles a message/call, or a message/call is rejected.

In this paper we address such a requirement by
introducing a declarative Policy Language that supports the
specification of message/call routing policies for the UCI
owner. The language is based on the active rule paradigm,
typical of Active Databases [7], and makes it possible for a
user to specify his/her own routing policies through a set of
policy rules. A policy rule specifies the routing action to be
taken whenever a message/call, arriving at the UCI or at
one the devices associated with it, verifies a given
condition. Possible actions that can be taken include
rejecting the message/call, routing the message/call to a
device or a set of devices, sending notification messages.
Conditions specify filters on the applicability of the rule

and can be expressed against the sender properties, the
device capabilities and states, the message itself. Because
the language is declarative, specifying new routing policies
it is very easy. To further enhance extensibility, the
language supports the notions of device type, message type,
and user credential type, representing respectively the
properties associated with device, messages, and users.
Such properties are important since they are the basis on
which filtering and routing conditions can be specified in
our rule language. All those types are organized according
to an inheritance hierarchy that can be refined by the
introduction of new types, following an object-oriented
approach.

The Policy Language has been implemented into a
Policy Engine able to enforce the policies specified by the
users subscribing to the UCI services. We refer to such
users as Policy Engine Users. Moreover, by means of
translation services that external providers can integrate
into the Policy Engine, it is possible to translate a message
format whenever a device is not able to handle the message
directly. For example, an email can be translated into a
speech if the device that should handle it is a phone. Other
services can be coupled with the Policy Engine, such as
services for checking the current state of a device (e.g. a
mobile phone can be available, busy or unreachable), or for
establishing the connection with the receiver’s device. The
Policy Engine is also equipped with a “parking queue”
where messages that cannot be delivered because the
receiver’s devices are not available, can be temporarily
stored. Finally to improve usability, two different end-user
environments complement the Policy Engine, supporting
respectively the system administrator and the policy engine
users. The latter environment enables Policy Engine users
to enter their preferences concerning message/call routing
and filtering by using a form-based interface.

As far as we know, the policy language we propose is
the first declarative language for expressing rules for
routing and re-routing multimedia messages from a device
to others and for specifying notification messages.
However, various issues concerning message routing,
filtering and notification have already been partially

addressed by other systems, such as Local Number
Portability [3], translation of 800 numbers [4], and Unified
Message System [5]. The declarative language we propose
smoothly combines the relevant features of all such systems
and can be used directly by end-users for specifying the
policy rules. By contrast in most of such systems, only
administrators can specify such policies. A language based
on a Prolog notation for routing email messages arriving at
an email address to folders has been proposed in [6]. In
such an approach a message arriving at an email address is
stored in a particular folder based on filters defined by the
message recipient. However, this approach only considers
textual messages and does not support message re-routing
from a folder to another. By contrast, our approach covers
both multimedia messages and phone calls, by providing a
language with a large variety of specialized conditions, and
supports facilities for message/call re-routing and
notification.

The paper is organized as follows. Next section
introduces the relevant requirements for a language able to
express policy rules. Section 3 introduces the object-
oriented representation of the components of the
communication process - we call them actors-, that is,
devices, messages and users. Section 4 presents the policy
rule language, whereas Section 5 briefly discusses the more
relevant features of the Policy Engine architecture. Finally,
Section 6 concludes the paper and outlines future research
directions. Appendix A presents the grammar of the policy
rule language, whereas some examples of message delivery
are shown in Appendix B. For sake of simplicity, in the
remainder, we will use the term 'message' to denote an
actual message or a phone call, whenever no distinction is
necessary.

2 Requirements for a Policy Rule Language
In this section we briefly discuss the relevant

requirements for a language able to express policy rules. An
important aspect of our approach is that it is based on
filtering conditions establishing which rules apply to which
messages. Therefore, the condition component of the
language should be expressive and able to cover a variety

Figure 1: Two users, subscribing to the UCI service, and their devices

UCI 100UCI 100

973-888-222

207.3.21.1

207.3.21.3 212-333-222

973-777-333

212-222-333 203.1.2.1

203.1.2.3

203.1.3.3 212-555-111

973-321-123

UCI 200UCI 200 203.2.1.2

1

of situations. Moreover, the language should allow one to
identify the devices that will handle a given message or
receive notifications. Such devices should be identified
based on their capabilities and states, and on the
preferences specified by the owner. Moreover, the language
should give the possibility of requiring a message re-
routing action whenever a device is not available.

In the remainder of the section we first outline the main
requirements concerning the filtering conditions, we then
describe how the devices where a message should be routed
or to be notified can be specified.

In the discussion we refer to the running example
illustrated in Figure 1. Bob, in the left hand side of the
figure, has the UCI 100 and Alice, in the right hand side of
the figure, has the UCI 200. Bob has a phone at home, a
phone at the office, a mobile phone, a PC, a DVD reader,
and a fax machine; whereas Alice has a phone, a laptop, a
fax machine, a printer, a data storage device, and a palm
top. Each such device has an identification number, also
shown in Figure 1.

2.1 Conditions for message filtering and routing
In order to devise possible requirements against a

language for expressing filtering and routing conditions, we
have identified the main “actors” of the message routing
process. These are: the message itself, the sender of the
message, the device on which the message is to be routed.
In addition to the explicit actors of the communication
process, some important conditions may concern
environmental and contextual information. In this respect,
we have identified as a relevant category, conditions
concerning temporal information. We have thus classified
possible conditions into four different categories, namely
conditions on the message itself, on the sender
characteristics, on the device, and temporal conditions, that
we briefly discuss in what follows.
• Conditions on the message. These include conditions on

the message type (e.g. audio, stream, email, voice), on
the level of sensitivity of the information contained in
the message (e.g. private vs. public information), on the
encryption and compression status, and on the kind of
device required for handling the message. In the running
example, Bob can specify conditions such as: “if the
message contains a video”, “if the message arrives from
a mobile phone”, “if the message is encrypted”, “if the
message is compressed”.

• Conditions on sender characteristics. These include
conditions on sender name, age, nationality, company
for which he/she works, and so on. In the running
example, Bob can specify conditions such as: “if the
sender is Alice”, “if the sender age is less than 18”, “if
the sender is anonymous”. Moreover, Bob can create
groups of users and define filters such as “if sender
belongs to group FRIENDS” or “if sender does not
belong to group FRIENDS”.

• Conditions on device capabilities, state, security levels
and ownership. These include conditions on: the device

status (e.g. available, busy, unreachable); the device
capabilities, such as “if the device supports video
stream”, “if the device has a display”; the security levels
of the device, such as “the device can be reached only
by the owner or it is in a common room accessible to
everyone”; the device ownership, such as “the device
has been borrowed by another user”.

• Temporal conditions. These include conditions on the
time interval during which the message is delivered (e.g.
between 5 p.m. and 7 p.m., or between 9/10/2000 and
9/15/2000), on the day of the week (or on the month of
the year) of the message arrival (e.g. on Sunday, or, on
August), on aggregations of days (e.g. on weekend, or
on working week), for example, “if the message arrives
on a weekday”, or “if the message arrives during the
month of May”.
A suitable language should thus cover all above

conditions. Moreover, it should support the specification of
composite conditions, consisting of boolean combinations
of simple conditions, so that users can specify complex
filtering conditions.

2.2 Routing and Notification Services
The language should give the possibility of specifying

the devices that have to handle a message by listing their
device identifiers or expressing a condition on their
capabilities, states or security levels. This specification
should be possible either at UCI level or at single device
level. The specification at the UCI level is required when a
message arrives at a UCI and the system needs to select the
devices for handling it. By contrast, the specification at
single device level is required when a message, already
routed to a device, cannot be handled by this device and,
thus, other devices must be identified for such purpose. In
both cases, the language should give the possibility of
requiring translation of the message contents into another
format and/or the generation of notification messages.
Translating a message content into another format (for
example translating a voice message into an email) is a
crucial option in order to deal with the lack of specific
devices. The UCI owner should specify the translation
option required by using some special-purpose clauses of
the rule language. Alternatively, the translation is
performed automatically whenever the selected device is
not able to handle the message and a translation service is
available for translating the message from its format to one
of those supported by the device.

Another important requirement is to provide some form
of notification services. A notification message is a
message containing the information about the delivery
status of the message. Thus, a notification message can be
issued for informing the UCI owner that a message arrived
at the UCI, or that a device handled it, or that the message
has been re-routed to another device, or rejected. For
example, Bob may wish to receive a notification on the
mobile phone whenever the fax machine is printing a
message. By contrast, Alice may wish to reject all messages

2

from Bob but be notified when he sends her a message.
Finally, Alice may wish to be notified when a message
cannot be delivered because she does not have a device able
to handle the message.

3 Object-Oriented Representation of main
Actors of the Communication Process

In this section we outline the most relevant
characteristics of the main actors of the UCI system,
namely the devices, the users and the messages that are
described respectively in Subsections 3.1, 3.2 and 3.3.

3.1 Representation of Devices
Each device is characterized by a set of properties

representing its capabilities, the states in which it can be
found (e.g., available, busy, unreachable), the supported
message formats (image, audio, SMS, fax and so on), and
the security level. To provide an accurate representation of
device capabilities at different levels of details, we have
used in our model the concepts of device type, device model
and single device. Our representation for devices can be
mapped into the CC/PP (composite capabilities/ preference
profiles) profile proposed by W3C [9]. We do not support
such feature yet, because the CC/PP is still a working draft.
Device Type. A device type represents a group of devices
with common capabilities independently from the company
producing the specific devices. Examples of device types
are: phone, mobile phone, PC, palm top. Each device type
has a set of capabilities. Examples of capabilities are
displaySize, representing the size of the display,
speaker, representing the type of speaker and the watt
power supported, webCam, representing the number of
colors supported, the number and type of lens, the focus
range and so on.

The various device types are organized according to an
inheritance hierarchy. The root of such hierarchy is a device
type representing the capabilities common to all device
types. The hierarchy is extensible so that new device types
can be introduced. The top part of Figure 2 shows some of
the device types currently included in our system. Note
from the figure that PC, Phone and PDA are defined

directly from the root, whereas Mobile Phone is defined
as a subtype of Phone, because a mobile phone is a
specialized type of phone.
Device Model. Device models represent groups of devices
of the same type, but produced by different companies. For
example, Panasonic GD90 is a model of Mobile
Phone. Thus, a device model assumes the same
capabilities of the device type with additional capabilities
typical of such model. In the bottom side of Figure 2 we
report some examples of device models associated with the
corresponding device type.

An important aspect in modeling devices is represented
by the device states. Indeed, several meaningful conditions
for message filtering and routing are based on device states.
An example is the state 'busy' for a phone. For each device
model we thus maintain the possible states in which devices
of this model can be. The states we consider are those that
can be detected through services and functions provided by
the network management system.

IBM SirioHP PsionPanasonic

DEVICE MODELS

Device
DEVICE TYPES

PC
Phone PDA

Mobile
Phone

Figure 2: Device type hierarchy and device models

Device. A device is an instance of a specific device model
associated with a user. Each device registered with the UCI
system is characterized by a set of properties that we report
in Figure 3. Users and system administrators can query
those properties and conditions can be posed against them
as part of the routing rules. Note, among other things, that
each device has a unique number identifying it. For
example, given the device model Panasonic GD90, Bob
has a device of such model identified by number 212-
333-222, the corresponding phone number. To simplify
device identification, however, a nickname can be
associated with a device. The user can use it whenever the
device identifier is expected.

A novel feature of our model is that each device has a
security level. The security level is a value in the set
{HIGH, NORMAL, LOW} specifying if the device is very
secure (security level equal to HIGH) because the owner
has it always with him/her (e.g. a mobile phone the owner
always carries with him/her), not secure at all (security
level equal to LOW) because the device can be accessed by
everyone (e.g. a FAX machine of a department), or
normally secure (security level equal to NORMAL), because
normally accessed by the owner and trusted people.

A device can be in one of the states specified for the
model of the device. Information about the device state is
reported by the Status property. When the device is ready to
be used, it is available and the device status is READY.

3

Di Unique identifier of the device
OwnerUCI Device owner's UCI
Dmi The device model
SecLevel Security level of the device
Nickname Nickname assigned by the owner
Status Current status of the device

Figure 3: Device properties

A further innovative aspect of our model is that it
supports the notion of temporary device in order to model
cases in which a user borrows devices from other users. A
temporary device is a device belonging to a user, referred to
as device owner, temporary associated with another user,
referred to as device user. Beyond the properties specified
for a device, additional properties, shown in Figure 4, are
associated with a temporary device. For a temporary device
we store information about the temporal interval in which
the user borrowing the device is authorized to use it.
Moreover, the device owner can limit the use of certain
device capabilities (e.g. the disk space of a laptop), by
setting a usable quantity by the device borrower. For
example, Alice can lend the data storage device to Bob for
a month, for at most 10 megabytes. A temporary device can
also be a device supplied by the Policy Engine in order to
store messages not accepted by other devices. For example,
Bob may wish not be disturbed, and so rejects all the
messages arriving at his phone, but he wants to store a
notification of the received messages in a temporary device.
The device borrower may wish to use another nickname or
may wish to assign a different security level instead of the
ones defined by the owner. These new information are
associated with the temporary device and are visible only
from the borrower.

3.2 Representation of Users
Information about user characteristics is supported by

means of subject credentials. Subject credentials assert
properties about a user, either personal characteristics, or
characteristics and properties deriving from relationships
the user has with other users (e.g., qualification within an
organization) [8]. A user can define policies for routing
messages received at his/her UCI number based on the
values of the credential properties associated with the
message sender. Credentials are released by organizations

authorized for such purpose (e.g., the UCI Service Bureau,
governmental authorities, the company for which a user
works, the public library). Any organization defines
templates of credentials (called credential types) and uses
them to generate credentials for its users. For example, the
government authority specifies a template for the driver
license. Figure 5 shows an example of credential type
describing the personal record through an XML DTD.

A user can receive different credentials from different
credential authorities. Moreover, he/she may wish to attach
to a message some selected credentials, among the ones
he/she holds, or to leave the message anonymous. In order
to address such requirements the concept of user card has
been introduced. A user card is a set of credentials
associated with a message by the sender. The message
receiver can verify such credentials in order to accept the
message. Figure 6 shows the XML representation of Alice's
user card. The user card contains two credentials: the first
one contains her personal record, whereas the second one is
released by a public library.

To facilitate the specification of rules, the definition of
user groups is supported. A group is a set of users specified
by means of a set of UCIs. By specifying a group name and
associating with it a list of UCIs it is possible to define a
new group. For example, Bob can specify the FRIENDS
group defining the label FRIENDS and listing the UCI of
his friends. The specification of groups allows a user to
define a common behavior for the messages arriving from a
set of users, instead of define the same policy for different
users.

3.3 Representation of Messages
With the term “message” we mean any kind of

information that can be sent from a user to others by the
Internet and telecommunication networks. Therefore, a
message can be a phone call, a video, an email, and a voice
message. Some additional information are attached to
message contents, such as: the content data format, the
message size, the sensitivity level, the compression status
(if applicable), the encryption status (if applicable), the
signature (if applicable) and the time in which it was sent.
Moreover, the sender’s UCI and user card can be attached
to the message. The table in Figure 7 reports all properties
representing such additional information.

UserUCI Device user's UCI
SecLevel Security level of the device
Nickname Nickname assigned by the user
ValidityInterval Period of time in which the user

can use the device
Device capability Device resource type
Usable quantity Maximal quantity of the device

capability user can use
Figure 4:Additional properties for temporary devices

<userCard user=”Alice”>
 <personalRecord id=”123”>
 <name>Alice Brown</name>
 <birthday dd=”18” mm=”11” yy=”1977”/>
 <address>…</address>
 </personalRecord>
 <publicLibrary id=”789”>
 <name>Morris Township</name>
 <publicLibrary>
</userCard>

Figure 6: A user card of a user Alice

<!DOCTYPE personalRecord[
<!ELEMENT personalRecord(name,birthday,address)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT dateOfBirth EMPTY>
<!ELEMENT address (#PCDATA)>
<!ATTLIST personalRecord id ID (#REQUIRED)>
<!ATTLIST birthday dd CDATA #REQUIRED
 mm CDATA #REQUIRED
 yy CDATA #REQUIRED>]>

Figure 5: A credential type

4

As it can be seen, a rule consists of several components.
The RuleName component represents the rule identifier.
UCI users can retrieve rules by means of such identifier for
visualizing, dropping or modifying them. The Event
component represents the event upon which the rule is
triggered. Condition is an optional conditional expression,
defined by means of the condition language we have
developed, specifying a filter on the applicability of the
rule. Action is an expression specifying the devices where
the message should be routed or a notification message
should be sent. ValidityInterval is a temporal condition,
also expressed by means of the condition language we

M
esta
acce

S
UCI
form
the
Tha
of a
fax
han
con
mes
amo
the
valu

N
mes
mes
leav
wish

E
mes
to i
mes
defi
from

4 T
T

ECA
data
Sec
stati
noti
state
Eng
user
In t
brac

U

SUCI Message sender’s UCI
RUCI Message receiver’s UCI
Sdate Date when the message has been sent
Size Size of message content
MsgType Content type
CredType Credential type of the sender
SecLevel Sensitivity level of the msg content
Encrypted Encryption status of the msg content
Compressed Compression status of the msg content
Sign Signature of the sender

Figure 7: Message properties

developed, representing the time period during which the
rule is enabled. For example, the interval [DATE
BETWEEN NOW TO FOREVER] specifies that a rule is
enabled forever since it is entered into the Engine database.
By contrast, [DATE BETWEEN 01:20:2002 TO
07:31:2002] specifies that a rule is enabled from
January the 20

essage receivers can use all those information for
blishing, by means of proper rule conditions, whether to
pt or reject a message.
ome of the above information is also relevant for the

 system itself. In particular, by means of the content
at property, the Policy Engine can determine which of
receiver’s devices are compatible with the message.
t is, the device that can directly or indirectly (by means
 translation service) handle the message. For example, a
machine can directly handle a fax, whereas a PC can
dle it indirectly, through a translation of the message
tents into a gif image. Moreover, by means of the
sage sensitivity level, the Policy Engine can determine,
ng the compatible devices, the ones “secure”, that is,
ones having a security level greater (or equal) to the
e of the message sensitivity level.
ote that message sender may not specify some of the

sage properties. For example, the sender can leave the
sage anonymous without specifying his/her UCI or can
e the message without credentials when he/she does not
 to release his/her personal information to the receiver.
ven though our current system only supports for

sages the properties reported in Figure 7, it is possible
ntroduce additional properties by properly refining the
sage type hierarchy. New message subtypes can be
ned containing all required additional properties starting
 the message type currently provided by our system.

he Policy Rule Language
he Policy Rule Language we propose is based on the
 (Event, Condition, Action) paradigm, typical of active

bases [7], and addresses all requirements outlined in
tion 2. The language allows users to specify rules
ng policies for message routing, re-routing, and
fication based on the user preferences. The preferences
d by a user as a set of rules are associated by the Policy
ine with the UCI of the user and are stored into the UCI
 profile. The general format of a UCI rule is as follows.
he notation used here and in what follows, square
kets denote optional components.
CI Rule Format RuleName:

ON Event
[WHENEVER Condition]
Action
[ValidityInterval]

th, 2002 until July the 31st, 2002. If
ValidityInterval is not specified we assume the rule is
always enabled. By means of the ValidityInterval it is
possible to state that certain rules are not always enabled;
rather, they are enabled only during specific temporal
intervals. Such a feature, which is not provided by
conventional database triggers, is quite useful whenever
users need to plan or modify in advance their routing rules.

The semantics of a UCI rule is based on semantics of
the ECA paradigm. Such semantics states that the routing
Action specified in the rule named RuleName is executed
upon the occurrence of event Event whenever the condition
Condition is verified and the rule is enabled. A rule is
enabled if the time, in which the rule condition is checked,
is contained in the validity interval ValidityInterval
specified for the rule.

In the remainder of the section we discuss in more
details the policy rule language, whose grammar is shown
in Figure 14 in Appendix A. In particular, in Subsection 4.1
we discuss rule events, whereas in Subsection 4.2 we
discuss the condition language. Finally, in Subsection 4.3,
we discuss the action specification language.

4.1 Events
Our rule language is essentially based on events of two

types: a message arrival at UCI number; a message arrival
at device di. By means of these kinds of event it is possible
to specify policies both for messages arriving at a UCI and
for messages routed to a device that should be re-routed to
another device.

Rules specified at UCI level allow the UCI user to
specify “general preferences” on messages arriving at
his/her UCI, or for which a notification message should be
generated. For example, he/she can specify conditions on
the user characteristics, on the arrival time, on the group the
sender belongs to. These conditions are independent from
the specific devices that will handle the message. By
contrast, rules specified at device level allow the UCI user
to state “specific preferences” on messages arriving at a

5

particular device. For example, the user can specify that an
email containing huge image arriving at the laptop should
be re-routed to the PC and a notification message sent to the
mobile phone, or a message arriving at the laptop
containing a video should be re-routed to the PC, whenever
the disk space is not enough to contain it.

4.2 Conditions
The condition language we have developed is quite rich.

It allows one to specify basic conditions on all properties
characterizing devices, messages, and users. The language
also supports the specification of a large variety of temporal
conditions. Those basic conditions can be combined
together by boolean operators in order to specify complex
conditions.

An important aspect of our approach is that the
condition language can be uniformly used for various
purposes. In particular, it can be used for filtering messages
arriving at an UCI or at a device, and for selecting devices.
In the next section, we discuss how the language can be
used for device selection. Moreover, the language provides
a large variety of special-purpose predicates. In particular,
the language provides several predicates for testing the
device status, such as the NOTAVAILABLE and BUSY
predicates, as well as the predicates for testing sender
information, such as whether the message is anonymous.
Several predicates are also provided concerning the
message itself, such as predicates to test the sensitivity of
the message.

Example 1 The following expressions are examples of
conditions on devices:
• STATUS IS BUSY. The condition is verified if the

device (against which the condition is checked) is busy.

• DEVICE PROPERTY type = PHONE. The condition is
verified if the device is of type phone.

• DEVICE PROPERTY displaySize > 3. The
condition is verified if the device has a display with
more than 3 lines.

• BORROWEDDEVICE. The condition is verified if the
device is borrowed by another user.
By contrast, the following expressions are examples of

conditions on users, temporal information, and message
contents, respectively:
• SENDER HAS UCI(100). The condition is verified if

the message sender has UCI 100.

• ON SUNDAY. The condition is verified if the day of the
week in which the message arrives is Sunday.

• TIME BETWEEN 5pm AND 7pm. The condition is
verified if the message arrival time is between 5pm and
7pm.

• MSG IS NOT ENCRYPTED. The condition is verified if
the message content is not encrypted. □

4.3 Actions
By means of the routing action component of a rule it is

possible to specify the actions to be performed upon a
message arrival at UCI or a specific device. Our language
supports three action types, namely message rejection,
routing, and notification.

Some key aspects of our action language have to be
noted. The first is that message re-routing, that is, routing a
message to a device, and from this to another one and so
on, can be simply achieved in our language by specifying
several rules, containing one or more of the three action
types provided by our action language. Thus, message re-
routing does not require the introduction of additional
action types. A first rule will be typically associated with
the UCI and will have the effect of specifying an initial
device to which the message has to be routed. A second
rule associated with that device will specify a routing action
having the effect of re-routing this message to another
device. Such device in turn may have specific rules
associated with it to perform further routing actions. Our
approach is thus orthogonal and very simple to use. It has
the drawbacks that rule executions may result in non-
terminating routing loops. The approach we take to handle
such a problem is briefly discussed in Section 5.

The second key aspect is that the action component of a
rule may contain both routing actions and notification
actions. Therefore, a user can require that a message be
handled by a given device and, at the same time, that a
notification be sent to another device. The notification is a
new message to be routed to devices belonging to the UCI
owner. The notification may contain different kinds of
information, such as the sender credential, the message
type, the arrival time. The notification format is
independent from the device that will handle it. The Policy
Engine, through specific translation and adaptation
services, adapts the message to the device will handle it.
For example, if the notification has to be sent to a mailbox,
the Policy Engine will generate an email message. By
contrast, if the notification has to be sent to a mobile phone,
the Policy Engine will generate a notification in form of a
speech or an SMS.

A third key aspect of our action language is that we
support message routing to a single device or to multiple
devices. We refer to the former as “unicast routing”,
whereas to the latter as “multicast routing”. Under unicast
routing the message is actually routed to a single device,
which in turn may re-route it to other devices. Under
multicast routing, the message is directly sent by a single
rule action to multiple devices. Multicast routing actions in
our language have two different forms, corresponding to
two different formats in the specification of the devices to
which the message has to be routed. Such devices can be
specified as:

6

• A sequence. The rule specifies a sequence of device
identifiers, where the message must be sent (the order in
which he/she specifies the devices determine the
relevance of the device). In this case, we assume two
possible interpretations of the rule. The first
interpretation is “the message has to be sent to all the
specified devices”. This interpretation is specified by
the keyword ALL. “The message has to be sent to at
least one of the specified devices” is the second
interpretation. Thus, in this interpretation, when a
device handles the message we do not have to consider
the remainder of the devices. This interpretation is
specified by the keyword ANY, and ANY is the default.

• A set defined by a condition. The rule specifies a
condition on device capabilities or states. All devices
verifying the condition are included in the set of
message recipients. The possibility of specifying
devices based on their capabilities or states increases the
portability of a rule. Because the rule selects devices
based on their capabilities instead of identifiers, the rule
is still applicable even if some devices are dropped.
Also, in this case, the two different interpretations
previously introduced can be applied.
By combing all the above options, the resulting action

language is quite expressive, even though it is based on a
few simple concepts. By an orthogonal combination of
several rules, one may express complex and articulated
routing policies.

4.4 Illustrative Examples
In the following we introduce some examples of policy

rules, based on the scenario presented in Figure 1. For sake
of simplicity, in the examples, we consider the rules always
enabled.

Example 2 Suppose Bob wishes to route all phone calls
to his work phone during working time, and to his home
phone at any other time, and if his home phone does not
answer, calls have to be re-routed to his mobile phone.
Rules in Figure 8 specify those routing policies.
phoneAtHome, phoneAtOffice, mobilePhone are
the nicknames Bob uses for the corresponding devices. □

In the example, Rule WORKINGTIMECALLS specifies
that a message, whose arriving time is between 9 a.m. to 5
p.m., has to be routed to the office phone, whereas, Rule
FREETIMECALLS specifies that a message, whose
arriving time is between 5 p.m. to 9 a.m., has to be routed
to the residential phone. Rule NOTATHOME specifies that if
the residential phone does not answer, the message has to
be re-routed to the mobile phone. Next example shows
some more articulated policies, including rules requiring
notification messages and the translation of message
contents.

Example 3 Suppose Alice wishes to route a fax to the
fax machine or, if the fax machine is not available, to the
printer translating the fax into a postscript file. Moreover,
she wishes to be notified on the laptop whenever the fax
machine has printed out the fax. If the laptop is not
available a message routed to it must be rejected and a
notification message sent to her home phone. Finally, she
wishes to receive all the phone calls from the VIPS group
at her home phone. The rules in Figure 9 specify those
routing policies. myPhone, printer, laptop, fax are
the nicknames Alice uses for the corresponding devices. □

In the example, Rule RELEVANTFAX specifies that a
message, whose content is of type FAX, arriving at Alice’s
UCI should be routed to device identified by 212-555-111.
If such device is not able to handle such message, the
message should be translated into a postscript file (using a
fax to postscript translation service) and sent to device
identified by 203.1.3.3. The routing action component of
the rule is based on the ANY interpretation presented above.
Rule PRINTINGFAX specifies that whenever a message
arrives at device identified by 212-555-111, the device
should handle it and a notification message should be sent
to device identified by 203.2.1.2. Rule LAPTOPNOT-
AVAILABLE specifies that whenever device identified by
203.2.1.2 is not available messages routed to it should be
rejected and a notification message sent to her phone.

RELEVANTFAX:
ON ARRIVAL AT UCI(200)
WHENEVER MSG CONTENT TYPE IS FAX
ROUTE TO fax; printer USING FAX2PS;

PRINTINGFAX:
ON ARRIVAL AT DEVICE(fax)
NOTIFY laptop;

LAPTOPNOTAVAILABLE:
ON ARRIVAL AT DEVICE(laptop)
WHENEVER STATUS IS NOTAVAILABLE
REJECT; NOTIFY myPhone;

VIPSCALLS:
ON ARRIVAL AT UCI(200)
WHENEVER SENDER IS IN GROUP VIPS
AND MSG CONTENT TYPE IS PHONECALL
ROUTE TO myPhone;

Figure 9: Rules of Example 3

WORKINGTIMECALLS:
ON ARRIVAL AT UCI(100)
WHENEVER TIME BETWEEN 9HH TO 17HH
ROUTE TO phoneAtOffice;

FREETIMECALLS:
ON ARRIVAL AT UCI(100)
WHENEVER TIME BETWEEN 17HH TO 9HH
ROUTE TO phoneAtHome;

NOTATHOME:
ON ARRIVAL AT DEVICE(phoneAtHome)
WHENEVER STATUS IS NOTANSWERING
ROUTE TO mobilePhone;

Figure 8: Rules of Example 2

7

Finally, Rule VIPSCALLS specifies that messages arriving
at Alice’s UCI should be routed to her phone (identified by
973-321-123) whenever they are phone calls and the caller
belongs to group VIPS.

5 The Policy Engine Architecture
The Policy Engine System has been developed to

implement the policy rule language and to provide
environments for users that have to configure, use and
monitor the rules. The overall system architecture,
graphically illustrated in Figure 10, consists of a number of
components. Among those components, the Policy Engine
Core represents the kernel of the system since it is in charge
of message dispatching. Message dispatching is executed
according to the policy rules stored in the Policy Rule Base,
a large database, implemented on top of a commercial
DBMS, storing all UCI rules and information about users
and devices. The Policy Engine Core thus implements the
algorithms for the evaluation and execution of such rules.
The Policy Engine is also equipped with a set of facilities
for the interaction with UCI users, UCI administrators, and
service providers. Tailored end-user environments have
thus been developed for helping the UCI administrators and
UCI users to interact with the system. Moreover, facilities
for receiving message delivery requests and for
adding/removing services supplied by external providers
have been integrated in the Policy Engine.

In the remainder of the section we first describe in
Subsection 5.1 the steps according to which the rule
evaluation process is organized. We then present in
Subsection 5.2 facilities supporting the user interaction with
the Policy Engine. Some details of the implementation and
of the message delivery time are reported in Section 5.3.

5.1 Rule Evaluation Process
The rule evaluation process is organized according to three
main steps. Let U be a user receiving at his UCI UCI a

message m. The following steps are performed in order to
deliver the message m:

Devices
policy rules

users

end-user
environments

Message Handler

MSG TO UCI(X)
IDENTIFIED DEVICES

or
MSG DELIVERY

S
E
R
V
I
C
E
S

UsersAdmin

Policy
Engine Core

Providers

Policy Rule
Base

Format translation

Check device status

Message delivery

Figure 10: Policy Engine Architecture

(1) selection of the devices of U compatible with m;
(2) selection of the applicable rules, among those

associated with UCI;
(3) evaluation of the routing actions specified by the rules

selected at step (2).
In the remainder of the section we describe these steps. The
rule evaluation process has several “critical issues”, such as
for example rule execution termination. At the end of the
section we briefly discuss such issues and how the Policy
Engine addresses them.
Selection of compatible devices. A user can have, as
owner or borrower, several devices with similar capabilities
that can handle different kinds of messages. Therefore, the
Policy Engine selects among the devices, belonging to U,
those compatible with the message m. A device d is
compatible with a message m if the following two
conditions are verified:
• d can handle directly or indirectly m. A device can

handle directly a message when it supports the message
content type. When the device cannot directly handle
the message m and more than one translation service
can be used for m, then the Policy Engine chooses “the
best one”, that is, the translation service with the lower
cost or the one having higher priority based on the order
established by the Policy Engine Administrator.

• The sensitivity level of the content of message m is at
least equal to the security level of the device.
The set of compatible devices can result in an empty set

when no device can handle the message or none of them is
secure enough for the message. In this case a notification
message is generated containing this error description and
sent to the user. Moreover, the original message is rejected
or temporally stored in the Policy Engine devices.

8

Selection of applicable rules. After the selection of the
compatible devices, the Policy Engine selects the rules to
be executed by applying the following filters according to
the order specified below:
(1) Select only the enabled rules, that is, those rules for

which the message sending time falls within the
validity interval of the rule.

(2) Among the rules selected at step (1) determine those
for which the corresponding event has occurred.

(3) Among the rules selected at step (2) determine those
for which the condition is true.

If the above selection process returns more than one rule,
the Policy Engine first orders the rules according the rule
priorities. The priority adopted by the Policy Engine is
determined by the order according to which the rules have
been listed in the user profiles stored in the Engine
Database. Then, the Policy Engine evaluates, rule by rule,
their actions until one of them returns at least a device that
can handle the message. If at least one rule has an action
able to deliver the message to at least a device the message
is considered delivered with no errors. Otherwise, a
notification error is returned to the user.

If no rule is selected after applying the above filters, it
means that no rule has been specified for such message, and
then the “default behavior” is applied. The “default
behavior” represents the behavior followed by the Policy
Engine whenever no rule has been specified by the user or
no rule specified by the user can be applied on such
message. In these situations, the Policy Engine tries to
deliver the message on each of the compatible devices until
one of them handles the message. When the first device
handles the message the process terminates. In other words,
the Policy Engine applies the ANY policy as default
behavior. If no device is able to handle the message, an
error notification message is sent to the user.
Evaluation of routing actions. Whenever the condition of
a rule is verified, the Policy Engine evaluates and possibly
executes the action expression specified in the rule. If the

routing specification requires a message rejection, the
Policy Engine simply rejects it and the process terminates.
Otherwise, if the routing specification requires a message
routing, the Policy Engine evaluates the routing
specification against the compatible devices in order to find
the devices that can handle the message. If the routing
specification requires the translation of the message into
another format such translation is performed. Then, the
message is routed to such devices according to the ANY or
ALL policy. Under the ANY policy, the delivery process
terminates when the first device specified in the routing
specification handles the message. By contrast, under the
ALL policy, the process terminates when all the specified
devices handle the message. If the notification specification
is present, a notification message is generated and the
notification specification evaluated in order to determine
the devices where the notification message should be
routed.

TOOFFICEPHONE:
ON ARRIVAL AT DEVICE(phoneAtHome)
ROUTE TO phoneAtOffice;

TORESIDENTIALPHONE:
ON ARRIVAL AT DEVICE(phoneAtOffice)
ROUTE TO phoneAtHome;

(a)
OUTOFOFFICECALLS:

ON ARRIVAL AT UCI(phoneAtHome)
WHENEVER TIME IN WEEKEND
ROUTE TO phoneAtOffice;

LUNCHTIMECALLS:
ON ARRIVAL AT DEVICE(phoneAtOffice)
WHENEVER TIME BETWEEN 12HH TO 14HH
ROUTE TO phoneAtHome;

(b)

Figure 11: Examples of rules generating loops

Critical issues. The richness of our language and the
presence of possibly large sets of rules introduce several
critical issues concerning the rule execution system. Here
we discuss some of those issues and outline the solutions
we have adopted.

A first issue is related to the presence of loops in rule
execution as stated from the following example.
Example 4 Suppose Bob defines the rules in Figure 11(a).
Then, whenever a message is routed to the phone at home
or to the phone at office it cannot be delivered because the
evaluation of the rules never terminates. By contrast,
suppose Bob defines the rules in Figure 11(b). During the
weekend, between noon and 2pm, the behavior of these
rules is the same of the previous one. However, at any other
time the message is delivered to one of the two devices □

From the previous examples we can point out two kinds
of loops that can arise: permanent and conditional.
Permanent loops arise when the evaluation of a set of rules
causes a loop independently from the time in which the
Policy Engine evaluates the rules in the set. By contrast,
conditional loops arise when the evaluation of a set of rules
causes a loop only when a particular combination of
conditions is verified.

The current solution we have implemented in the Policy
Engine to address such problem is based on counting the
number of times a message m is re-routed to the same
device. Whenever this number overcomes a given threshold
(called maximum number of loops) the Policy Engine stores
the message into the “parking queue” for a period of time
(called pickup delay time). After the pickup delay time, the
Policy Engine tries to re-evaluate the rules in order to verify
whether the situation is changed (i.e. the evaluation of the
rules that caused the loop is changed) and the message can
thus be delivered. If the situation has changed, the Policy
Engine delivers the message, otherwise it stores again the
message into the queue. A message can be stored in the
queue for at most TTL (time to live) times. After TTL times
the message is rejected and a notification message sent to

9

the UCI user. The maximal number of loops, the pickup
delay time, and the TTL are parameters that the Policy
Engine Administrator can set by means of the facilities the
Policy Engine offers. Other issues concerning rule
evaluation are related to:
• Complex conditions intrinsically inconsistent. For

example, the condition “MSG ARRIVAL TIME
BETWEEN 12pm AND 2pm AND MSG ARRIVAL TIME
NOT BETWEEN 12pm AND 2pm”, or the condition
“MSG CONTENT TYPE = image AND MSG CONTENT
TYPE ≠ image”.

• Rule validity periods that do not match with the
temporal conditions expressed in the rules. For example,
a rule such as “messages arriving during working week
should be routed to my phones at office” that is valid
during the weekend.
Such kind of rules can never be triggered. The Policy

Engine addresses these situations by monitoring the
application of rules defined by the user for a period of time.
If the Policy Engine has never executed a rule during such
period of time (for example a week), the Policy Engine
creates a notification message containing such rule and
sends it to the UCI of such user. In this way the UCI owner
can check his/her rules and verify the presence of mistakes.

5.2 Policy Engine Facilities
Several facilities have been developed for allowing the
users, administrator, and external providers to communicate
with the Policy Engine. In the remainder of the section we
briefly outline such facilities.
Facilities for the Policy Engine Administrator. By means
of a Web interface the Policy Engine Administrator can
access the Policy Engine through a browser. A graphical
interface allows the Administrator to add, remove, and
update user profiles. Each profile contains the user UCI,
credentials, routing rules, and devices belonging to a user.
Whenever the Administrator creates a new user, a user
profile, containing the new UCI and the password, is
generated. After that, the Administrator, as a credential
authority does, assigns credentials to the user and certifies
their truth. In this way message receivers are guaranteed of
the truth of the information contained in the sender’s user
card.

Other facilities have been developed in order to display
and set a number of parameters of the Policy Engine (e.g.,
the maximum number of loops, the pickup delay time, the
TTL parameters etc.). Moreover, facilities have been
developed for the management of the Policy Engine
devices. These facilities allows the Administrator to handle
(add, remove, show) its devices and to rent/lend them to its
users. Finally, facilities have been developed to
add/remove/update device type, model, credential types,
services for translating the message formats, checking the
device states, and delivering messages to receivers.
Facilities for the Policy Engine User. By means of a
graphical interface the Policy Engine User can perform

different actions on his/her profile. New devices can be
added, removed and/or updated establishing nicknames and
security levels. Moreover, the user can lend his/her devices
to other users for a period of time. The most relevant
feature of the user environment is, however, the rule
definition tool. By means of this tool the user is driven by
the system through the formulation of a rule and does not
need to have any knowledge concerning the policy
language. The tool takes care of generating the proper rules
based on the preferences graphically selected by the user.
Figure 13 in Appendix shows a snapshot of the routing rule
definition interface allowing a user to define a condition of
a rule.

Facilities have also been developed allowing the user to
define/update/show groups of users. Moreover, he/she can
define user cards to be attached to a message. The user card
contains credentials received by the Policy Engine
Administrator. A “default user card” can be specified, that
is, a user card always attached to a message, if no other user
card is specified. Finally, facilities have been developed for
defining/updating and changing rule priorities.
Message handling facilities. Given a request of sending a
message m to a given UCI, the Policy Engine can perform
different actions depending the services it has available. We
recall here that the Policy Engine can be coupled with
external services provided by the telecommunication
network software or by other providers. If the Policy
Engine is equipped with services for checking the device
states and for delivering message to devices, the Policy
Engine works as a switcher. That is, given a request the
Policy Engine evaluates the receiver’s rules, checks the
device states and delivers the message to the selected
devices. If those services cannot be integrated in the Policy
Engine, the Policy Engine can be used as a “selector” of
devices to which a message could be routed. Thus, the
provider requesting to send m to UCI, receives back from
the Policy Engine a list of devices to which it can try to
send the message and the list of devices that should be
notified. If the provider is not able to deliver the message to
the devices selected, then it asks again the Policy Engine
for new devices. This process is performed until a device is
found that handles the message or no device is found and
the message is rejected.

5.3 Implementation and Device Identification Time
A prototype of the Policy Engine has been implemented

in Java on top of the Oracle 8i object-relational DBMS
(version 8.1.7). The DBMS in particular is used for storing
all information about users, devices, and policy rules.

In evaluating the performance of the system, we focused
on the operation of device identification, since this is the
most critical operation. Such operation consists in accessing
the user profile stored in the Engine Database, evaluating
the policy rules and returning the device(s) where the
message should be routed. Therefore, we ran a number of
experiments measuring the time it takes to determine the
device(s) to which a message has to be delivered upon the

10

message arrival at the UCI engine (such time is called
device identification time). The experiments have been
carried out for varying values of the number of rules
associated with a UCI. The machine we used in the
experiments is a Pentium III, 1 GHz, 256 Mbytes RAM. In
the experiments we made the assumptions that no
translation is performed on the message, and that the
message is never stored in the parking queue. Figure 12
shows the performance results. The device identification
time linearly increases with the increase in the number of
rules. If no rule applies to the message, the device
identification time is around 30 ms. In such time interval,
the Policy Engine has to load the user profile and to check
that no rule applies to the message. By contrast, if 20 rules
are evaluated for determining the devices that will handle,
the message the device identification time increases to 43
ms. The application of 20 rules, however, is really an
extreme case. In real scenarios the number of rules that can
apply to a message is around 5-7. Note, also, that the
performance results of our system falls within the expected
times for such kind of operations for commercial systems
[1]. Such results are really encouraging if we also take into
account the machine used for the experiments and the
language used for the implementation. However, issues
related to scalability and performance in real systems,
mentioned in [1], should be addressed in order to make our
approach viable for real systems. Therefore, we plan to
investigate in the near future issues related to data
replication and partitioning, common in current voice
telecommunication architectures.

6 Conclusions and Future Work
In this paper we have presented a declarative rule

language for expressing routing policies for a Unified
Communication Identifier system. The language is
characterized by a number of features. It supports both
unicast message routing, according to which a given
message is routed to a single device, and multicast message
routing, allowing one to route a message to several devices.
The language also provides a large variety of predicates,
forming the basis for a rich condition language, by using
which articulated routing policies can be specified. A
Policy Engine System implementing the language and
providing a number of end-user facilities has been
developed.

The Policy Engine has been integrated in a Telcordia
research project for services over a converged voice and
data network. A key feature of the services is user control
of routing rules and user data. In such project, our Policy
Engine allows the identification of a phone or other device
where a user can be reached based on preferences he/she
states and/or the capability of the device and network.

device identification time

25

30

35

40

45

0 1 3 5 7 10 15 20

Number of routing rules applied

tim
e

(m
s)

We are now working on several research issues related
to the rule language and to the system. A first research
direction concerns the development of static rule analysis
techniques to perform termination analysis and to check
rule consistency. A second research direction concerns an
extensive investigation of rule storage strategies. In the
current prototype, all rules associated with the same UCI
are simply stored according to a streamed representation
into the database. Therefore, fetching all rules associated
with a UCI requires accessing a single, even though very
large, tuple. In the current version all rules associated with
a UCI are fetched, even those that are not enabled. We thus
plan to evaluate alternative strategies to improve the
performance of the rule selection process. A third direction
research deals with developing an XML-based model of our
rule language to enhance interoperability. A fourth research
direction concerns with the development of a
comprehensive authorization model for the Policy Engine
System and to investigate security and dependability of the
proposed system. Finally, as already mentioned in the
previous section, we will investigate scalability and
performance of our approach.

Figure 12: Performance results

Acknowledgements
We wish to thank the master students Giuseppe Garau,

Valeria Galli, and Stefano Franzoni that helped us in the
development and implementation of the system and in
gathering experimental results.

References
[1] M. Cochinwala. Database Performance for Next Generation

Telecommunications. In Proc. of ICDE, Germany, 2001.
[2] M.Cochinwala, H.Hauser, and N.Suri. Network Convergence

using Universal Numbers: The UPT Project. In Proc. of
VLDB workshop on database on telecommunications. Rome,
September , 2001.

[3] M. Foster, T. McGarry, and J. Yu. Number Portability in the
GSTN: An Overview. Internet Draft, Feb. 2001.

[4] G.C. Kessler, and P.V. Southwick. ISDN: Concepts,
Facilities, and Services. McGraw-Hill. 1998.

[5] International Engineering Consortium. Unified Messaging.
Tutorial. http://www.iec.org/.

[6] S. Pollock. A Rule-Based Message Filtering System.
Transaction on Office Information System, 6(3) July 1988.

[7] J. Widom and S. Ceri. Active Database Systems. Morgan
Kaufmann Publisher, 1996.

[8] M. Winslett, N. Ching, V. Jones, and I. Slepchin. Using
Digital Credentials on the World Wide Web. Journal of
Computer Security, 7, 1997.

[9] W3C. CC/PP profile. Working draft. http://www.w3.org/

11

http://www.iec.org/

Appendix A: Grammar of the policy rule
language

Figure 14 presents the grammar of the policy rule
language. PropertyName is the name of a property specified
for an actor of the system, whereas Value is a valid value
for such property. Moreover, GroupName is the name of a
group, whereas UCI is a UCI associated with a Policy
Engine User. Finally, Time and Date are temporal
expressions, respectively, on time and date.

Appendix B: Traces of rule executions
The Policy Engine prototype is equipped with a tool to

trace the behaviour of the Policy Engine upon receiving a
message. Figure 15(a) shows the behaviour of the system
when a fax is sent to Alice from Bob and all the devices are
available (we refer to the rules of Figure 9). As the reader
can see, the system evaluates the compatible devices,
executes the rule RELEVANTFAX, establishes that the
message should be sent to the fax or the printer with the
ANY interpretation and, in the second case, the message Figure 13: Snapshot of the rule definition interface

PolicyRule ::= RuleName: ON Event [WHENEVER Condition] Action [ValidityInterval]
Event ::= MESSAGE ARRIVAL AT UCI(UCI) | MESSAGE ARRIVAL AT DEVICE(di)
Action ::= [PolicyExpr] [NotificationExpr]
PolicyExpr ::= REJECT; | ROUTE TO [ALL | ANY] DeviceExpr;
NotificationExpr ::= NOTIFY [ALL | ANY] [DeviceExpr;]
DeviceExpr ::= di [USING MediaSpec] | CondOnDevice | DeviceExpr;DeviceExpr
MediaSpec ::= FAX2IMG | FAX2PS | VOICE2MAIL | MAIL2SMS
ValidityInterval ::= [CondOnTime]
Condition :: = CondOnDevice | CondOnMsg | CondOnUser | CondOnTime |

(Condition) | NOT(Condition) | Condition AND Condition | Condition OR Condition
CondOnDevice :: = STATUS IS DeviceStatus | DEVICE SECURITY LEVEL IS SecLevel | DEVICE

PROPERTY PropertyName Op Value | OWNEDDEVICE | BORROWEDDEVICE
DeviceStatus :: = NOTAVAILABLE | BUSY | LOWBATTERY |
 LOWMEMORY | LOWDISKSPACE | NOTANSWERING
CondOnUser :: = SENDER HAS [NOT] UCI(UCI) | SENDER IS [NOT] ANONYMOUS
 SENDER PROPERTY PropertyName Op Value |
 SENDER IS [NOT] IN GROUP(GroupName)
CondOnTime :: = TIME BETWEEN TimeExpr TO TimeExpr | DATE BETWEEN DateExpr TO DateExpr |
 TIME IN WEEKEND | TIME IN WORKINGWEEK | ON [Day | Month | Year]
Day :: = MONDAY | …| SUNDAY
Month :: = JANUARY | …| DECEMBER
Year :: = Integer
TimeExpr :: = NOW | FOREVER | Time
DateExpr :: = NOW | FOREVER | Date
CondOnMsg :: = MSG IS [NOT] ENCRYPTED | MSG IS [NOT] COMPRESSED |

 MSG IS [NOT] SIGNED | MSG CONTENT TYPE IS [NOT] (TypeName) |
MSG SENSITIVITY LEVEL IS SecLevel

TypeName :: = TXT | IMAGE | HTML | SOUND | PHONECALL
SecLevel :: = HIGH | NORMAL | LOW
Op :: = = | ≠| < | ≤ | > | ≥

Figure 14: Grammar of the policy rule language

12

should be translated into a postscript file. The rule
PRINTINGFAX is evaluated. Since the rule execution
terminates without errors, the system does not deliver the
message to the printer. A notification message is sent to the
laptop.

By contrast, Figure 15(b) shows the behaviour of the
system when the fax machine is not available. Till the
evaluation of the PRINTINGFAX rule, the behaviour of the
system is the same. When the system evaluates such rule,
since the fax is not available, the message cannot be
delivery to it. Therefore, the system tries to deliver the
message to the printer after translating it into a postscript
file. The operation succeeds, thus the process terminates.
Note that, in such situation no notification message has
been sent to the laptop.

Consider now the situation in which Alice adds the rule:
PRINTERNOTAVAILABLE:
ON ARRIVAL AT DEVICE(printer)
WHENEVER STATUS IS NOTAVAILABLE
ROUTE TO fax;

Suppose also that the fax machine and printer are not
available and the Policy Engine Administrator sets the TTL
parameter to 2 and the maximum number of loops to 2. The
Policy Engine tries to send the fax to the two devices. Since
they are not available, the system starts an error handling
section in which it establishes that the message should be
re-routed. The process starts again but, also in this case, the
message is not delivered to one of the devices. Therefore,
the system stores the message in a temporary storage
device. After the pickup delay time, the system tries to
deliver again the message. If one of the devices becomes
available the message is delivered. Otherwise, if the
message is still undelivered (following a process similar to
the one described), the message is rejected and a
notification sent to Alice.

START of message handling
 Message ID = 1013798205146.0.bob.4
 From user 'Bob' to user 'Alice'
 List of compatible devices with the message
 Device 212-555-111; translation NONE
 Device 203.2.1.2; translation FAX2PS
 Device 203.1.3.3; translation FAX2PS
 Device 203.1.2.3; translation FAX2PS
 Evaluating and executing rule 'RELEVANTFAX'
 The message will be sent to ANY of the devices
 Device 212-555-111; translation NONE
 Device 203.1.3.3; translation FAX2PS
 Found routing rule on device 212-555-111
 Evaluating and executing rule ‘PRINTINGFAX'
 Message will be sent to device 212-555-111
 Message has been sent to device 212-555-111
 Notification will be sent to ANY OF the devices
 Device 203.2.1.2; translation NONE
 Sending message to the device 203.2.1.2
 Message has been sent to device 203.2.1.2
 End of rule 'PRINTINGFAX '
 End of rule ' RELEVANTFAX '
END of message handling

(a)
START of message handling
 Message ID = 1013798692667.0.bob.4
 From user 'Bob' to user 'Alice'
 List of compatible devices with the message
 … as above
 Evaluating and executing rule 'RELEVANTFAX'
 The message will be sent to ANY of the devices
 Device 212-555-111; translation NONE
 Device 203.1.3.3; translation FAX2PS
 Sending message to the device 212-555-111
 Message NOT delivered to device 212-555-111
 Sending message to the device 203.1.3.3
 Message has been delivered to
 device 203.1.3.3: translation FAX2PS
 End of rule 'RELEVANTFAX'
END of message handling

(b)

Figure 15: Trace # 1

START of message handling
 Message ID = 1013799307191.0.bob.4
 From user 'Bob' to user 'Alice'
 List of compatible devices with the message
 Device 212-555-111; translation NONE
 Device 203.2.1.2; translation FAX2PS
 Device 203.1.3.3; translation FAX2PS
 Device 203.1.2.1; translation FAX2PS
 Device 203.1.2.3; translation FAX2PS
 Evaluating and executing rule 'RELEVANTFAX'
 Message will be sent to ANY of the devices
 Device 212-555-111; translation NONE
 Device 203.1.3.3; translation FAX2PS
 Sending the message to the device 212-555-111
 Message NOT delivered to device 212-555-111
 Sending the message to the device 203.1.3.3
 Evaluating and executing rule 'PRINTERNOTAVAILABLE'
 Message will be sent to ANY of the devices
 Device 212-555-111; translation NONE
 Sending the message to the device 212-555-111
 Message NOT delivered to device 212-555-111
 Notification skipped for rule 'PRINTERNOTAVAILABLE'
 End of rule 'PRINTERNOTAVAILABLE'
 Notification skipped for rule 'RELEVANTFAX'
 End of rule 'RELEVANTFAX'
 START of error handling
 Message will be rerouted
 END of error handling
END of message handling
START of message handling
 Message ID = 1013799307191.0.bob.4
 As above (a)
 START of error handling
 Message has been stored into the database
 A notification will be sent to the user
 END of error handling
END of message handling

(a)

Figure 16: Trace # 2

13

	A Rule-Based Language for the Specification of Message Routing Policies in a Universal Communication System
	
	Elisa Bertino �Dip. di Scienze dell'Informazione
	Università degli Studi di Milano
	V.Comelico, 39/41 20135 Milano, Italy �bertino@dsi.unimi.it
	Munir Cochinwala
	Telcordia Technologies
	(formerly Bellcore)
	445, South St., Morristown, NJ.USA�munir@research.telcordia.com
	Marco Mesiti�Dip. di Info. e Scienze dell'Inform�
	V.Dodecaneso, 35 16146 Genova, Italy�mesiti@disi.unige.it

	Abstract
	Introduction
	Requirements for a Policy Rule Language
	Conditions for message filtering and routing
	Routing and Notification Services

	Object-Oriented Representation of main Actors of the Communication Process
	Representation of Devices
	Representation of Users
	Representation of Messages

	The Policy Rule Language
	4.1 Events
	4.2 Conditions
	4.3 Actions
	4.4 Illustrative Examples

	The Policy Engine Architecture
	5.1 Rule Evaluation Process
	5.2 Policy Engine Facilities
	5.3 Implementation and Device Identification Time

	Conclusions and Future Work
	
	Acknowledgements

	References
	Appendix A: Grammar of the policy rule language
	Appendix B: Traces of rule executions

