
 NAME
 gluBeginCurve, gluEndCurve - delimit a NURBS curve
 definition

 C SPECIFICATION
 void gluBeginCurve(GLUnurbs* nurb)

 void gluEndCurve(GLUnurbs* nurb)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 DESCRIPTION
 Use gluBeginCurve to mark the beginning of a NURBS curve
 definition. After calling gluBeginCurve, make one or more
 calls to gluNurbsCurve to define the attributes of the
 curve. Exactly one of the calls to gluNurbsCurve must have
 a curve type of GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4. To
 mark the end of the NURBS curve definition, call
 gluEndCurve.

 GL evaluators are used to render the NURBS curve as a series
 of line segments. Evaluator state is preserved during
 rendering with glPushAttrib(GL_EVAL_BIT) and glPopAttrib().
 See the glPushAttrib reference page for details on exactly
 what state these calls preserve.

 EXAMPLE
 The following commands render a textured NURBS curve with
 normals; texture coordinates and normals are also specified
 as NURBS curves:

 gluBeginCurve(nobj);
 gluNurbsCurve(nobj, ..., GL_MAP1_TEXTURE_COORD_2);
 gluNurbsCurve(nobj, ..., GL_MAP1_NORMAL);
 gluNurbsCurve(nobj, ..., GL_MAP1_VERTEX_4);
 gluEndCurve(nobj);

 SEE ALSO
 gluBeginSurface, gluBeginTrim, gluNewNurbsRenderer,
 gluNurbsCurve, glPopAttrib, glPushAttrib

 NAME
 gluBeginPolygon, gluEndPolygon - delimit a polygon
 description

 C SPECIFICATION
 void gluBeginPolygon(GLUtesselator* tess)

 void gluEndPolygon(GLUtesselator* tess)

 PARAMETERS

 tess Specifies the tessellation object (created with
 gluNewTess).

 DESCRIPTION
 gluBeginPolygon and gluEndPolygon delimit the definition of
 a nonconvex polygon. To define such a polygon, first call
 gluBeginPolygon. Then define the contours of the polygon by
 calling gluTessVertex for each vertex and gluNextContour to
 start each new contour. Finally, call gluEndPolygon to
 signal the end of the definition. See the gluTessVertex and
 gluNextContour reference pages for more details.

 Once gluEndPolygon is called, the polygon is tessellated,
 and the resulting triangles are described through callbacks.
 See gluTessCallback for descriptions of the callback
 functions.

 NOTES
 This command is obsolete and is provided for backward
 compatibility only. Calls to gluBeginPolygon are mapped to
 gluTessBeginPolygon followed by gluTessBeginContour. Calls
 to gluEndPolygon are mapped to gluTessEndContour followed by
 gluTessEndPolygon.

 EXAMPLE
 A quadrilateral with a triangular hole in it can be
 described like this:

 gluBeginPolygon(tobj);
 gluTessVertex(tobj, v1, v1);
 gluTessVertex(tobj, v2, v2);
 gluTessVertex(tobj, v3, v3);
 gluTessVertex(tobj, v4, v4); gluNextContour(tobj,
 GLU_INTERIOR);
 gluTessVertex(tobj, v5, v5);
 gluTessVertex(tobj, v6, v6);
 gluTessVertex(tobj, v7, v7); gluEndPolygon(tobj);

 SEE ALSO
 gluNewTess, gluNextContour, gluTessCallback, gluTessVertex,
 gluTessBeginPolygon, gluTessBeginContour

 NAME
 gluBeginSurface, gluEndSurface - delimit a NURBS surface
 definition

 C SPECIFICATION
 void gluBeginSurface(GLUnurbs* nurb)

 void gluEndSurface(GLUnurbs* nurb)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 DESCRIPTION
 Use gluBeginSurface to mark the beginning of a NURBS surface
 definition. After calling gluBeginSurface, make one or more
 calls to gluNurbsSurface to define the attributes of the
 surface. Exactly one of these calls to gluNurbsSurface must
 have a surface type of GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4.
 To mark the end of the NURBS surface definition, call
 gluEndSurface.

 Trimming of NURBS surfaces is supported with gluBeginTrim,
 gluPwlCurve, gluNurbsCurve, and gluEndTrim. See the
 gluBeginTrim reference page for details.

 GL evaluators are used to render the NURBS surface as a set
 of polygons. Evaluator state is preserved during rendering
 with glPushAttrib(GL_EVAL_BIT) and glPopAttrib(). See the
 glPushAttrib reference page for details on exactly what
 state these calls preserve.

 EXAMPLE
 The following commands render a textured NURBS surface with
 normals; the texture coordinates and normals are also
 described as NURBS surfaces:

 gluBeginSurface(nobj);
 gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);
 gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);
 gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_4);
 gluEndSurface(nobj);

 SEE ALSO
 gluBeginCurve, gluBeginTrim, gluNewNurbsRenderer,
 gluNurbsCurve, gluNurbsSurface, gluPwlCurve

 NAME
 gluBeginTrim, gluEndTrim - delimit a NURBS trimming loop
 definition

 C SPECIFICATION
 void gluBeginTrim(GLUnurbs* nurb)

 void gluEndTrim(GLUnurbs* nurb)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 DESCRIPTION
 Use gluBeginTrim to mark the beginning of a trimming loop,
 and gluEndTrim to mark the end of a trimming loop. A
 trimming loop is a set of oriented curve segments (forming a
 closed curve) that define boundaries of a NURBS surface. You
 include these trimming loops in the definition of a NURBS
 surface, between calls to gluBeginSurface and gluEndSurface.

 The definition for a NURBS surface can contain many trimming
 loops. For example, if you wrote a definition for a NURBS
 surface that resembled a rectangle with a hole punched out,
 the definition would contain two trimming loops. One loop
 would define the outer edge of the rectangle; the other
 would define the hole punched out of the rectangle. The
 definitions of each of these trimming loops would be
 bracketed by a gluBeginTrim/gluEndTrim pair.

 The definition of a single closed trimming loop can consist
 of multiple curve segments, each described as a piecewise
 linear curve (see gluPwlCurve) or as a single NURBS curve
 (see gluNurbsCurve), or as a combination of both in any
 order. The only library calls that can appear in a trimming
 loop definition (between the calls to gluBeginTrim and
 gluEndTrim) are gluPwlCurve and gluNurbsCurve.

 The area of the NURBS surface that is displayed is the
 region in the domain to the left of the trimming curve as
 the curve parameter increases. Thus, the retained region of
 the NURBS surface is inside a counterclockwise trimming loop
 and outside a clockwise trimming loop. For the rectangle
 mentioned earlier, the trimming loop for the outer edge of
 the rectangle runs counterclockwise, while the trimming loop
 for the punched-out hole runs clockwise.

 If you use more than one curve to define a single trimming
 loop, the curve segments must form a closed loop (that is,
 the endpoint of each curve must be the starting point of the
 next curve, and the endpoint of the final curve must be the
 starting point of the first curve). If the endpoints of the
 curve are sufficiently close together but not exactly
 coincident, they will be coerced to match. If the endpoints
 are not sufficiently close, an error results (see
 gluNurbsCallback).

 If a trimming loop definition contains multiple curves, the
 direction of the curves must be consistent (that is, the
 inside must be to the left of all of the curves). Nested
 trimming loops are legal as long as the curve orientations
 alternate correctly. If trimming curves are self-

 intersecting, or intersect one another, an error results.

 If no trimming information is given for a NURBS surface, the
 entire surface is drawn.

 EXAMPLE
 This code fragment defines a trimming loop that consists of
 one piecewise linear curve, and two NURBS curves:

 gluBeginTrim(nobj);
 gluPwlCurve(..., GLU_MAP1_TRIM_2);
 gluNurbsCurve(..., GLU_MAP1_TRIM_2);
 gluNurbsCurve(..., GLU_MAP1_TRIM_3); gluEndTrim(nobj);

 SEE ALSO
 gluBeginSurface, gluNewNurbsRenderer, gluNurbsCallback,
 gluNurbsCurve, gluPwlCurve

 NAME
 gluBuild1DMipmaps - builds a 1-D mipmap

 C SPECIFICATION
 GLint gluBuild1DMipmaps(GLenum target,
 GLint internalFormat,
 GLsizei width,
 GLenum format,
 GLenum type,
 const void *data)

 PARAMETERS
 target Specifies the target texture. Must be
 GL_TEXTURE_1D.

 internalFormat Requests the internal storage format of the
 texture image. Must be 1, 2, 3, or 4 or one
 of the following symbolic constants:
 GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,
 GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,
 GL_LUMINANCE8, GL_LUMINANCE12,
 GL_LUMINANCE16, GL_LUMINANCE_ALPHA,

 GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
 GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
 GL_LUMINANCE12_ALPHA12,
 GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
 GL_INTENSITY4, GL_INTENSITY8,
 GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
 GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8,
 GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA,
 GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
 GL_RGB10_A2, GL_RGBA12 or GL_RGBA16.

 width Specifies the width, in pixels, of the
 texture image.

 format Specifies the format of the pixel data.
 Must be one of GL_COLOR_INDEX, GL_RED,
 GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
 GL_RGBA, GL_LUMINANCE, and
 GL_LUMINANCE_ALPHA.

 type Specifies the data type for data. Must be
 one of GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
 GL_UNSIGNED_SHORT, GL_SHORT,
 GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.

 data Specifies a pointer to the image data in
 memory.

 DESCRIPTION
 gluBuild1DMipmaps builds a series of prefiltered 1-D texture
 maps of decreasing resolutions called a mipmap. This is used
 for the antialiasing of texture mapped primitives.

 A return value of 0 indicates success, otherwise a GLU error
 code is returned (see gluErrorString).

 Initially, the width of data is checked to see if it is a
 power of two. If not, a copy of data (not data) is scaled up
 or down to the nearest power of two. This copy will be used
 for subsequent mipmapping operations described below. (If
 width is exactly between powers of 2, then the copy of data
 will scale upwards.) For example, if width is 57 then a
 copy of data will scale up to 64 before mipmapping takes
 place.

 Then, proxy textures (see glTexImage1D) are used to
 determine if the implementation can fit the requested
 texture. If not, width is continually halved until it fits.

 Next, a series of mipmap levels is built by decimating a
 copy of data in half until size 1 is reached. At each level,
 each texel in the halved mipmap level is an average of the
 corresponding two texels in the larger mipmap level.

 glTexImage1D is called to load each of these mipmap levels.
 Level 0 is a copy of data. The highest level is log2(width).
 For example, if width is 64 and the implementation can store
 a texture of this size, the following mipmap levels are
 built: 64x1, 32x1, 16x1, 8x1, 4x1, 2x1 and 1x1. These
 correspond to levels 0 through 6, respectively.

 See the glTexImage1D reference page for a description of the
 acceptable values for type. See the glDrawPixels reference
 page for a description of the acceptable values for data.

 NOTES
 Note that there is no direct way of querying the maximum
 level. This can be derived indirectly via
 glGetTexLevelParameter. First, query for the width actually
 used at level 0. (The width may not be equal to width since
 proxy textures might have scaled it to fit the
 implementation.) Then the maximum level can be derived from
 the formula log2(width).

 ERRORS
 GLU_INVALID_VALUE is returned if width is < 1.

 GLU_INVALID_ENUM is returned if internalFormat, format or
 type are not legal.

 SEE ALSO
 glDrawPixels, glTexImage1D, glTexImage2D, gluBuild2DMipmaps,
 gluErrorString, gluScaleImage

 NAME
 gluBuild2DMipmaps - builds a 2-D mipmap

 C SPECIFICATION
 GLint gluBuild2DMipmaps(GLenum target,
 GLint internalFormat,
 GLsizei width,
 GLsizei height,
 GLenum format,
 GLenum type,
 const void *data)

 PARAMETERS
 target Specifies the target texture. Must be
 GL_TEXTURE_2D.

 internalFormat Requests the internal storage format of the
 texture image. Must be 1, 2, 3, or 4 or one
 of the following symbolic constants:
 GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12,
 GL_ALPHA16, GL_LUMINANCE, GL_LUMINANCE4,
 GL_LUMINANCE8, GL_LUMINANCE12,
 GL_LUMINANCE16, GL_LUMINANCE_ALPHA,
 GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
 GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,
 GL_LUMINANCE12_ALPHA12,
 GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
 GL_INTENSITY4, GL_INTENSITY8,
 GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
 GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8,
 GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA,
 GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
 GL_RGB10_A2, GL_RGBA12 or GL_RGBA16.

 width, height Specifies the width and height,
 respectively, in pixels of the texture
 image.

 format Specifies the format of the pixel data.
 Must be one of: GL_COLOR_INDEX, GL_RED,
 GL_GREEN, GL_BLUE, GL_ALPHA, GL_RGB,
 GL_RGBA, GL_LUMINANCE, and
 GL_LUMINANCE_ALPHA.

 type Specifies the data type for data. Must be
 one of: GL_UNSIGNED_BYTE, GL_BYTE,
 GL_BITMAP, GL_UNSIGNED_SHORT, GL_SHORT,
 GL_UNSIGNED_INT, GL_INT, or GL_FLOAT.

 data Specifies a pointer to the image data in
 memory.

 DESCRIPTION
 gluBuild2DMipmaps builds a series of prefiltered 2-D texture
 maps of decreasing resolutions called a mipmap. This is used
 for the antialiasing of texture mapped primitives.

 A return value of 0 indicates success, otherwise a GLU error
 code is returned (see gluErrorString).

 Initially, the width and height of data are checked to see

 if they are a power of two. If not, a copy of data (not
 data), is scaled up or down to the nearest power of two.
 This copy will be used for subsequent mipmapping operations
 described below. (If width or height is exactly between
 powers of 2, then the copy of data will scale upwards.) For
 example, if width is 57 and height is 23 then a copy of data
 will scale up to 64 and down to 16, respectively, before
 mipmapping takes place.

 Then, proxy textures (see glTexImage2D) are used to
 determine if the implementation can fit the requested
 texture. If not, both dimensions are continually halved
 until it fits. (If the OpenGL version is <= 1.0, both
 maximum texture dimensions are clamped to the value returned
 by glGetIntegerv with the argument GL_MAX_TEXTURE_SIZE.)

 Next, a series of mipmap levels is built by decimating a
 copy of data in half along both dimensions until size 1x1 is
 reached. At each level, each texel in the halved mipmap
 level is an average of the corresponding four texels in the
 larger mipmap level. (In the case of rectangular images, the
 decimation will ultimately reach an N x 1 or 1 x N
 configuration. Here, two texels are averaged instead.)

 glTexImage2D is called to load each of these mipmap levels.
 Level 0 is a copy of data. The highest level is
 log2(max(width,height)). For example, if width is 64 and
 height is 16 and the implementation can store a texture of
 this size, the following mipmap levels are built: 64x16,
 32x8, 16x4, 8x2, 4x1, 2x1 and 1x1. These correspond to
 levels 0 through 6, respectively.

 See the glTexImage1D reference page for a description of the
 acceptable values for format. See the glDrawPixels reference
 page for a description of the acceptable values for type.

 NOTES
 Note that there is no direct way of querying the maximum
 level. This can be derived indirectly via
 glGetTexLevelParameter. First, query for the width & height
 actually used at level 0. (The width & height may not be
 equal to width & height respectively since proxy textures
 might have scaled them to fit the implementation.) Then the
 maximum level can be derived from the formula
 log2(max(width,height)).

 ERRORS
 GLU_INVALID_VALUE is returned if width or height are < 1.

 GLU_INVALID_ENUM is returned if internalFormat, format or
 type are not legal.

 SEE ALSO
 glDrawPixels, glTexImage1D, glTexImage2D, gluBuild1DMipmaps,
 gluErrorString, gluScaleImage

 NAME
 gluCylinder - draw a cylinder

 C SPECIFICATION
 void gluCylinder(GLUquadric* quad,
 GLdouble base,
 GLdouble top,
 GLdouble height,
 GLint slices,
 GLint stacks)

 PARAMETERS
 quad Specifies the quadrics object (created with
 gluNewQuadric).

 base Specifies the radius of the cylinder at z = 0.

 top Specifies the radius of the cylinder at z = height.

 height Specifies the height of the cylinder.

 slices Specifies the number of subdivisions around the z
 axis.

 stacks Specifies the number of subdivisions along the z
 axis.

 DESCRIPTION
 gluCylinder draws a cylinder oriented along the z axis. The
 base of the cylinder is placed at z = 0, and the top at
 z=height. Like a sphere, a cylinder is subdivided around the
 z axis into slices, and along the z axis into stacks.

 Note that if top is set to 0.0, this routine generates a
 cone.

 If the orientation is set to GLU_OUTSIDE (with
 gluQuadricOrientation), then any generated normals point
 away from the z axis. Otherwise, they point toward the z
 axis.

 If texturing is turned on (with gluQuadricTexture), then
 texture coordinates are generated so that t ranges linearly
 from 0.0 at z = 0 to 1.0 at z = height, and s ranges from
 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y
 axis, to 0.75 at the -x axis, and back to 1.0 at the +y
 axis.

 SEE ALSO
 gluDisk, gluNewQuadric, gluPartialDisk, gluQuadricTexture,
 gluSphere

 NAME
 gluDeleteNurbsRenderer - destroy a NURBS object

 C SPECIFICATION
 void gluDeleteNurbsRenderer(GLUnurbs* nurb)

 PARAMETERS
 nurb Specifies the NURBS object to be destroyed.

 DESCRIPTION
 gluDeleteNurbsRenderer destroys the NURBS object (which was
 created with gluNewNurbsRenderer) and frees any memory it
 uses. Once gluDeleteNurbsRenderer has been called, nurb
 cannot be used again.

 SEE ALSO
 gluNewNurbsRenderer

 NAME
 gluDeleteQuadric - destroy a quadrics object

 C SPECIFICATION
 void gluDeleteQuadric(GLUquadric* quad)

 PARAMETERS
 quad Specifies the quadrics object to be destroyed.

 DESCRIPTION
 gluDeleteQuadric destroys the quadrics object (created with
 gluNewQuadric) and frees any memory it uses. Once
 gluDeleteQuadric has been called, quad cannot be used again.

 SEE ALSO
 gluNewQuadric

 NAME
 gluDeleteTess - destroy a tessellation object

 C SPECIFICATION
 void gluDeleteTess(GLUtesselator* tess)

 PARAMETERS
 tess Specifies the tessellation object to destroy.

 DESCRIPTION
 gluDeleteTess destroys the indicated tessellation object
 (which was created with gluNewTess) and frees any memory
 that it used.

 SEE ALSO
 gluBeginPolygon, gluNewTess, gluTessCallback

 NAME
 gluDisk - draw a disk

 C SPECIFICATION
 void gluDisk(GLUquadric* quad,
 GLdouble inner,
 GLdouble outer,
 GLint slices,
 GLint loops)

 PARAMETERS
 quad Specifies the quadrics object (created with
 gluNewQuadric).

 inner Specifies the inner radius of the disk (may be 0).

 outer Specifies the outer radius of the disk.

 slices Specifies the number of subdivisions around the z
 axis.

 loops Specifies the number of concentric rings about the
 origin into which the disk is subdivided.

 DESCRIPTION
 gluDisk renders a disk on the z = 0 plane. The disk has a
 radius of outer, and contains a concentric circular hole
 with a radius of inner. If inner is 0, then no hole is
 generated. The disk is subdivided around the z axis into
 slices (like pizza slices), and also about the z axis into
 rings (as specified by slices and loops, respectively).

 With respect to orientation, the +z side of the disk is

 considered to be "outside" (see gluQuadricOrientation).
 This means that if the orientation is set to GLU_OUTSIDE,
 then any normals generated point along the +z axis.
 Otherwise, they point along the -z axis.

 If texturing has been turned on (with gluQuadricTexture),
 texture coordinates are generated linearly such that where
 r=outer, the value at (r, 0, 0) is (1, 0.5), at (0, r, 0) it
 is (0.5, 1), at (-r, 0, 0) it is (0, 0.5), and at (0, -r, 0)
 it is (0.5, 0).

 SEE ALSO
 gluCylinder, gluNewQuadric, gluPartialDisk,
 gluQuadricOrientation, gluQuadricTexture, gluSphere

 NAME
 gluErrorString - produce an error string from a GL or GLU
 error code

 C SPECIFICATION
 const GLubyte * gluErrorString(GLenum error)

 PARAMETERS
 error Specifies a GL or GLU error code.

 DESCRIPTION
 gluErrorString produces an error string from a GL or GLU
 error code. The string is in ISO Latin 1 format. For
 example, gluErrorString(GL_OUT_OF_MEMORY) returns the string
 out of memory.

 The standard GLU error codes are GLU_INVALID_ENUM,
 GLU_INVALID_VALUE, and GLU_OUT_OF_MEMORY. Certain other GLU
 functions can return specialized error codes through
 callbacks. See the glGetError reference page for the list
 of GL error codes.

 SEE ALSO
 glGetError, gluNurbsCallback, gluQuadricCallback,
 gluTessCallback

 NAME
 gluGetNurbsProperty - get a NURBS property

 C SPECIFICATION
 void gluGetNurbsProperty(GLUnurbs* nurb,
 GLenum property,
 GLfloat* data)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 property Specifies the property whose value is to be
 fetched. Valid values are GLU_CULLING,
 GLU_SAMPLING_TOLERANCE, GLU_DISPLAY_MODE,
 GLU_AUTO_LOAD_MATRIX, GLU_PARAMETRIC_TOLERANCE,
 GLU_SAMPLING_METHOD, GLU_U_STEP, and GLU_V_STEP.

 data Specifies a pointer to the location into which the
 value of the named property is written.

 DESCRIPTION
 gluGetNurbsProperty retrieves properties stored in a NURBS
 object. These properties affect the way that NURBS curves
 and surfaces are rendered. See the gluNurbsProperty
 reference page for information about what the properties are
 and what they do.

 SEE ALSO
 gluNewNurbsRenderer, gluNurbsProperty

 NAME
 gluGetString - return a string describing the GLU version or
 GLU extensions

 C SPECIFICATION
 const GLubyte * gluGetString(GLenum name)

 PARAMETERS
 name Specifies a symbolic constant, one of GLU_VERSION, or
 GLU_EXTENSIONS.

 DESCRIPTION
 gluGetString returns a pointer to a static string describing
 the GLU version or the GLU extensions that are supported.

 The version number is one of the following forms:

 major_number.minor_number
 major_number.minor_number.release_number.

 The version string is of the following form:

 version number<space>vendor-specific information

 Vendor-specific information is optional. Its format and
 contents depend on the implementation.

 The standard GLU contains a basic set of features and
 capabilities. If a company or group of companies wish to
 support other features, these may be included as extensions
 to the GLU. If name is GLU_EXTENSIONS, then gluGetString
 returns a space-separated list of names of supported GLU
 extensions. (Extension names never contain spaces.)

 All strings are null-terminated.

 NOTES
 gluGetString only returns information about GLU extensions.
 Call glGetString to get a list of GL extensions.

 gluGetString is an initialization routine. Calling it after
 a glNewList results in undefined behavior.

 ERRORS
 NULL is returned if name is not GLU_VERSION or
 GLU_EXTENSIONS.

 SEE ALSO
 glGetString

 NAME
 gluGetTessProperty - get a tessellation object property

 C SPECIFICATION
 void gluGetTessProperty(GLUtesselator* tess,
 GLenum which,
 GLdouble* data)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 which Specifies the property whose value is to be fetched.
 Valid values are GLU_TESS_WINDING_RULE,
 GLU_TESS_BOUNDARY_ONLY, and GLU_TESS_TOLERANCE.

 data Specifies a pointer to the location into which the
 value of the named property is written.

 DESCRIPTION
 gluGetTessProperty retrieves properties stored in a
 tessellation object. These properties affect the way that
 tessellation objects are interpreted and rendered. See the
 gluTessProperty reference page for information about the
 properties and what they do.

 SEE ALSO
 gluNewTess, gluTessProperty

 NAME
 gluLoadSamplingMatrices - load NURBS sampling and culling
 matrices

 C SPECIFICATION
 void gluLoadSamplingMatrices(GLUnurbs* nurb,
 const GLfloat *model,
 const GLfloat *perspective,
 const GLint *view)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 model Specifies a modelview matrix (as from a
 glGetFloatv call).

 perspective Specifies a projection matrix (as from a
 glGetFloatv call).

 view Specifies a viewport (as from a glGetIntegerv
 call).

 DESCRIPTION
 gluLoadSamplingMatrices uses model, perspective, and view to
 recompute the sampling and culling matrices stored in nurb.
 The sampling matrix determines how finely a NURBS curve or
 surface must be tessellated to satisfy the sampling
 tolerance (as determined by the GLU_SAMPLING_TOLERANCE
 property). The culling matrix is used in deciding if a
 NURBS curve or surface should be culled before rendering
 (when the GLU_CULLING property is turned on).

 gluLoadSamplingMatrices is necessary only if the
 GLU_AUTO_LOAD_MATRIX property is turned off (see
 gluNurbsProperty). Although it can be convenient to leave
 the GLU_AUTO_LOAD_MATRIX property turned on, there can be a
 performance penalty for doing so. (A round trip to the GL
 server is needed to fetch the current values of the
 modelview matrix, projection matrix, and viewport.)

 SEE ALSO
 gluGetNurbsProperty, gluNewNurbsRenderer, gluNurbsProperty

 NAME
 gluLookAt - define a viewing transformation

 C SPECIFICATION
 void gluLookAt(GLdouble eyeX,
 GLdouble eyeY,
 GLdouble eyeZ,
 GLdouble centerX,
 GLdouble centerY,
 GLdouble centerZ,
 GLdouble upX,
 GLdouble upY,
 GLdouble upZ)

 PARAMETERS
 eyeX, eyeY, eyeZ
 Specifies the position of the eye point.

 centerX, centerY, centerZ
 Specifies the position of the reference
 point.

 upX, upY, upZ Specifies the direction of the up vector.

 DESCRIPTION
 gluLookAt creates a viewing matrix derived from an eye
 point, a reference point indicating the center of the scene,
 and an UP vector.

 The matrix maps the reference point to the negative z axis
 and the eye point to the origin. When a typical projection
 matrix is used, the center of the scene therefore maps to
 the center of the viewport. Similarly, the direction
 described by the UP vector projected onto the viewing plane
 is mapped to the positive y axis so that it points upward in
 the viewport. The UP vector must not be parallel to the
 line of sight from the eye point to the reference point.

 Let

 (centerX - eyeX)
 F = | |
 | centerY - eyeY |
 (centerZ - eyeZ)

 Let UP be the vector (upX,upY,upZ).

 Then normalize as follows: f = _____
 ||F||

 UP’ = ______
 ||UP||

 Finally, let s = f x UP’, and u = s x f.

 M is then constructed as follows:

 (s[0] s[1] s[2] 0)
 | u[0] u[1] u[2] 0 |
 M = | |
 |-f[0] -f[1] -f[2] 0 |
 | 0 0 0 1 |
 ()
 and gluLookAt is equivalent to glMultMatrixf(M);
 glTranslated (-eyex, -eyey, -eyez);

 SEE ALSO
 glFrustum, gluPerspective

 NAME
 gluNewNurbsRenderer - create a NURBS object

 C SPECIFICATION
 GLUnurbs* gluNewNurbsRenderer(void)

 DESCRIPTION
 gluNewNurbsRenderer creates and returns a pointer to a new
 NURBS object. This object must be referred to when calling
 NURBS rendering and control functions. A return value of 0
 means that there is not enough memory to allocate the
 object.

 SEE ALSO
 gluBeginCurve, gluBeginSurface, gluBeginTrim,
 gluDeleteNurbsRenderer, gluNurbsCallback, gluNurbsProperty

 NAME
 gluNewQuadric - create a quadrics object

 C SPECIFICATION
 GLUquadric* gluNewQuadric(void)

 DESCRIPTION
 gluNewQuadric creates and returns a pointer to a new
 quadrics object. This object must be referred to when
 calling quadrics rendering and control functions. A return
 value of 0 means that there is not enough memory to allocate
 the object.

 SEE ALSO
 gluCylinder, gluDeleteQuadric, gluDisk, gluPartialDisk,
 gluQuadricCallback, gluQuadricDrawStyle, gluQuadricNormals,
 gluQuadricOrientation, gluQuadricTexture, gluSphere

 NAME
 gluNewTess - create a tessellation object

 C SPECIFICATION
 GLUtesselator* gluNewTess(void)

 DESCRIPTION
 gluNewTess creates and returns a pointer to a new
 tessellation object. This object must be referred to when
 calling tessellation functions. A return value of 0 means
 that there is not enough memory to allocate the object.

 SEE ALSO
 gluTessBeginPolygon, gluDeleteTess, gluTessCallback

 NAME
 gluNextContour - mark the beginning of another contour

 C SPECIFICATION
 void gluNextContour(GLUtesselator* tess,
 GLenum type)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 type Specifies the type of the contour being defined. Valid
 values are GLU_EXTERIOR, GLU_INTERIOR, GLU_UNKNOWN,
 GLU_CCW, and GLU_CW.

 DESCRIPTION
 gluNextContour is used in describing polygons with multiple
 contours. After the first contour has been described through
 a series of gluTessVertex calls, a gluNextContour call
 indicates that the previous contour is complete and that the
 next contour is about to begin. Another series of
 gluTessVertex calls is then used to describe the new
 contour. This process can be repeated until all contours
 have been described.

 type defines what type of contour follows. The legal
 contour types are as follows:

 GLU_EXTERIOR An exterior contour defines an exterior
 boundary of the polygon.

 GLU_INTERIOR An interior contour defines an interior
 boundary of the polygon (such as a hole).

 GLU_UNKNOWN An unknown contour is analyzed by the
 library to determine if it is interior or
 exterior.

 GLU_CCW,

 GLU_CW The first GLU_CCW or GLU_CW contour
 defined is considered to be exterior. All
 other contours are considered to be
 exterior if they are oriented in the same
 direction (clockwise or counterclockwise)
 as the first contour, and interior if they
 are not.

 If one contour is of type GLU_CCW or GLU_CW, then all
 contours must be of the same type (if they are not, then all
 GLU_CCW and GLU_CW contours will be changed to GLU_UNKNOWN).

 Note that there is no real difference between the GLU_CCW
 and GLU_CW contour types.

 Before the first contour is described, gluNextContour can be
 called to define the type of the first contour. If
 gluNextContour is not called before the first contour, then
 the first contour is marked GLU_EXTERIOR.

 This command is obsolete and is provided for backward
 compatibility only. Calls to gluNextContour are mapped to
 gluTessEndContour followed by gluTessBeginContour.

 EXAMPLE
 A quadrilateral with a triangular hole in it can be
 described as follows:

 gluBeginPolygon(tobj);
 gluTessVertex(tobj, v1, v1);
 gluTessVertex(tobj, v2, v2);
 gluTessVertex(tobj, v3, v3);
 gluTessVertex(tobj, v4, v4); gluNextContour(tobj,
 GLU_INTERIOR);
 gluTessVertex(tobj, v5, v5);
 gluTessVertex(tobj, v6, v6);
 gluTessVertex(tobj, v7, v7); gluEndPolygon(tobj);

 SEE ALSO
 gluBeginPolygon, gluNewTess, gluTessCallback, gluTessVertex,
 gluTessBeginContour

 NAME
 gluNurbsCallback - define a callback for a NURBS object

 C SPECIFICATION
 void gluNurbsCallback(GLUnurbs* nurb,
 GLenum which,
 GLvoid (*CallBackFunc)()

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 which Specifies the callback being defined. Valid
 values are GLU_NURBS_BEGIN_EXT,
 GLU_NURBS_VERTEX_EXT, GLU_NORMAL_EXT,

 GLU_NURBS_COLOR_EXT,
 GLU_NURBS_TEXTURE_COORD_EXT, GLU_END_EXT,
 GLU_NURBS_BEGIN_DATA_EXT,
 GLU_NURBS_VERTEX_DATA_EXT,
 GLU_NORMAL_DATA_EXT, GLU_NURBS_COLOR_DATA_EXT,
 GLU_NURBS_TEXTURE_COORD_DATA_EXT,
 GLU_END_DATA_EXT, and GLU_ERROR.

 CallBackFunc Specifies the function that the callback
 calls.

 DESCRIPTION
 gluNurbsCallback is used to define a callback to be used by
 a NURBS object. If the specified callback is already
 defined, then it is replaced. If CallBackFunc is NULL, then
 this callback will not get invoked and the related data, if
 any, will be lost.

 Except the error callback, these callbacks are used by NURBS
 tessellator (when GLU_NURBS_MODE_EXT is set to be
 GLU_NURBS_TESSELLATOR_EXT) to return back the openGL polygon
 primitives resulted from the tessellation. Note that there
 are two versions of each callback: one with a user data
 pointer and one without. If both versions for a particular
 callback are specified then the callback with the user data
 pointer will be used. Note that "userData" is a copy of the
 pointer that was specified at the last call to
 gluNurbsCallbackDataEXT.

 The error callback function is effective no matter which
 value that GLU_NURBS_MODE_EXT is set to. All other callback
 functions are effective only when GLU_NURBS_MODE_EXT is set
 to GLU_NURBS_TESSELLATOR_EXT.

 The legal callbacks are as follows:
 GLU_NURBS_BEGIN_EXT
 The begin callback indicates the start of a
 primitive. The function takes a single argument of
 type GLenum which can be one of GL_LINES,
 GL_LINE_STRIPS, GL_TRIANGLE_FAN,
 GL_TRIANGLE_STRIP, GL_TRIANGLES, or GL_QUAD_STRIP.
 The default begin callback function is NULL. The
 function prototype for this callback looks like:
 void begin (GLenum type);

 GLU_NURBS_BEGIN_DATA_EXT
 The same as the GLU_NURBS_BEGIN_EXT callback
 except that it takes an additional pointer
 argument. This pointer is a copy of the pointer
 that was specified at the last call to
 gluNurbsCallbackDataEXT. The default callback
 function is NULL. The function prototype for this
 callback function looks like:
 void beginData (GLenum type, void *userData);

 GLU_NURBS_VERTEX_EXT
 The vertex callback indicates a vertex of the
 primitive. The coordinates of the vertex are
 stored in the parameter "vertex". All the
 generated vertices have dimension 3, that is,
 homogeneous coordinates have been transformed into
 affine coordinates. The default vertex callback
 function is NULL. The function prototype for this
 callback function looks like:
 void vertex (GLfloat *vertex);

 GLU_NURBS_VERTEX_DATA_EXT
 The same as the GLU_NURBS_VERTEX_EXT callback
 except that it takes an additional pointer
 argument. This pointer is a copy of the pointer
 that was specified at the last call to
 gluNurbsCallbackDataEXT. The default callback
 function is NULL. The function prototype for this
 callback function looks like:
 void vertexData (GLfloat *vertex, void *userData
);

 GLU_NORMAL_EXT
 The normal callback is invoked as the vertex
 normal is generated. The components of the normal
 are stored in the parameter "normal". In the case
 of a NURBS curve, the callback function is
 effective only when the user provides a normal map
 (GL_MAP1_NORMAL). In the case of a NURBS surface,
 if a normal map (GL_MAP2_NORMAL) is provided, then
 the generated normal is computed from the normal
 map. If a normal map is not provided then a
 surface normal is computed in a manner similar to
 that described for evaluators when GL_AUTO_NORMAL
 is enabled. The default normal callback function
 is NULL. The function prototype for this callback
 function looks like:
 void normal (GLfloat *normal);

 GLU_NORMAL_DATA_EXT
 The same as the GLU_NURBS_NORMAL_EXT callback
 except that it takes an additional pointer
 argument. This pointer is a copy of the pointer
 that was specified at the last call to
 gluNurbsCallbackDataEXT. The default callback
 function is NULL. The function prototype for this
 callback function looks like:
 void normalData (GLfloat *normal, void *userData
);

 GLU_NURBS_COLOR_EXT
 The color callback is invoked as the color of a
 vertex is generated. The components of the color
 are stored in the parameter "color". This
 callback is effective only when the user provides
 a color map (GL_MAP1_COLOR_4 or GL_MAP2_COLOR_4).
 "color" contains four components: R,G,B,A. The
 default color callback function is NULL. The
 prototype for this callback function looks like:
 void color (GLfloat *color);

 GLU_NURBS_COLOR_DATA_EXT
 The same as the GLU_NURBS_COLOR_EXT callback
 except that it takes an additional pointer
 argument. This pointer is a copy of the pointer
 that was specified at the last call to
 gluNurbsCallbackDataEXT. The default callback
 function is NULL. The function prototype for this
 callback function looks like:
 void colorData (GLfloat *color, void *userData);

 GLU_NURBS_TEXTURE_COORD_EXT
 The texture callback is invoked as the texture
 coordinates of a vertex are generated. These
 coordinates are stored in the parameter
 "texCoord". The number of texture coordinates can

 be 1, 2, 3, or 4 depending on which type of
 texture map is specified (GL_MAP*_TEXTURE_COORD_1,
 GL_MAP*_TEXTURE_COORD_2, GL_MAP*_TEXTURE_COORD_3,
 GL_MAP*_TEXTURE_COORD_4 where * can be either 1 or
 2). If no texture map is specified, this callback
 function will not be called. The default texture
 callback function is NULL. The function prototype
 for this callback function looks like:
 void texCoord (GLfloat *texCoord);

 GLU_NURBS_TEXTURE_COORD_DATA_EXT
 The same as the GLU_NURBS_TEXTURE_COORD_EXT
 callback except that it takes an additional
 pointer argument. This pointer is a copy of the
 pointer that was specified at the last call to
 gluNurbsCallbackDataEXT. The default callback
 function is NULL. The function prototype for this
 callback function looks like:
 void texCoordData (GLfloat *texCoord, void
 *userData);

 GLU_END_EXT
 The end callback is invoked at the end of a
 primitive. The default end callback function is
 NULL. The function prototype for this callback
 function looks like:
 void end (void);

 GLU_END_DATA_EXT
 The same as the GLU_NURBS_TEXTURE_COORD_EXT
 callback except that it takes an additional
 pointer argument. This pointer is a copy of the
 pointer that was specified at the last call to
 gluNurbsCallbackDataEXT. The default callback
 function is NULL. The function prototype for this
 callback function looks like:
 void endData (void *userData);

 GLU_ERROR The error function is called when an error is
 encountered. Its single argument is of type
 GLenum, and it indicates the specific error that
 occurred. There are 37 errors unique to NURBS
 named GLU_NURBS_ERROR1 through GLU_NURBS_ERROR37.
 Character strings describing these errors can be
 retrieved with gluErrorString.

 SEE ALSO
 gluErrorString, gluNewNurbsRenderer

 NAME
 gluNurbsCallbackDataEXT - set a user data pointer

 C SPECIFICATION
 void gluNurbsCallbackDataEXT(GLUnurbs* nurb,
 GLvoid* userData)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 userData Specifies a pointer to the user’s data.

 DESCRIPTION
 gluNurbsCallbackDataEXT is used to pass a pointer to the
 application’s data to NURBS tessellator. A copy of this
 pointer will be passed by the tessellator in the NURBS
 callback functions (set by gluNurbsCallback).

 SEE ALSO
 gluNurbsCallback

 NAME
 gluNurbsCurve - define the shape of a NURBS curve

 C SPECIFICATION
 void gluNurbsCurve(GLUnurbs* nurb,
 GLint knotCount,
 GLfloat *knots,
 GLint stride,
 GLfloat *control,
 GLint order,
 GLenum type)

 PARAMETERS
 nurb Specifies the NURBS object (created with

 gluNewNurbsRenderer).

 knotCount Specifies the number of knots in knots.
 knotCount equals the number of control points
 plus the order.

 knots Specifies an array of knotCount nondecreasing
 knot values.

 stride Specifies the offset (as a number of single-
 precision floating-point values) between
 successive curve control points.

 control Specifies a pointer to an array of control
 points. The coordinates must agree with type,
 specified below.

 order Specifies the order of the NURBS curve. order
 equals degree + 1, hence a cubic curve has an
 order of 4.

 type Specifies the type of the curve. If this curve is
 defined within a gluBeginCurve/gluEndCurve pair,
 then the type can be any of the valid one-
 dimensional evaluator types (such as
 GL_MAP1_VERTEX_3 or GL_MAP1_COLOR_4). Between a
 gluBeginTrim/gluEndTrim pair, the only valid
 types are GLU_MAP1_TRIM_2 and GLU_MAP1_TRIM_3.

 DESCRIPTION
 Use gluNurbsCurve to describe a NURBS curve.

 When gluNurbsCurve appears between a
 gluBeginCurve/gluEndCurve pair, it is used to describe a
 curve to be rendered. Positional, texture, and color
 coordinates are associated by presenting each as a separate
 gluNurbsCurve between a gluBeginCurve/gluEndCurve pair. No
 more than one call to gluNurbsCurve for each of color,
 position, and texture data can be made within a single
 gluBeginCurve/gluEndCurve pair. Exactly one call must be
 made to describe the position of the curve (a type of
 GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4).

 When gluNurbsCurve appears between a gluBeginTrim/gluEndTrim
 pair, it is used to describe a trimming curve on a NURBS
 surface. If type is GLU_MAP1_TRIM_2, then it describes a
 curve in two-dimensional (u and v) parameter space. If it is
 GLU_MAP1_TRIM_3, then it describes a curve in two-
 dimensional homogeneous (u, v, and w) parameter space. See
 the gluBeginTrim reference page for more discussion about
 trimming curves.

 EXAMPLE
 The following commands render a textured NURBS curve with
 normals:

 gluBeginCurve(nobj);
 gluNurbsCurve(nobj, ..., GL_MAP1_TEXTURE_COORD_2);
 gluNurbsCurve(nobj, ..., GL_MAP1_NORMAL);
 gluNurbsCurve(nobj, ..., GL_MAP1_VERTEX_4);
 gluEndCurve(nobj);

 NOTES
 To define trim curves which stitch well, use gluPwlCurve.

 SEE ALSO
 gluBeginCurve, gluBeginTrim, gluNewNurbsRenderer,
 gluPwlCurve

 NAME
 gluNurbsProperty - set a NURBS property

 C SPECIFICATION
 void gluNurbsProperty(GLUnurbs* nurb,
 GLenum property,
 GLfloat value)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 property Specifies the property to be set. Valid values are
 GLU_SAMPLING_TOLERANCE, GLU_DISPLAY_MODE,
 GLU_CULLING, GLU_AUTO_LOAD_MATRIX,
 GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD,
 GLU_U_STEP, GLU_V_STEP, or GLU_NURBS_MODE_EXT.

 value Specifies the value of the indicated property. It
 may be a numeric value, or one of
 GLU_OUTLINE_POLYGON, GLU_FILL, GLU_OUTLINE_PATCH,
 GL_TRUE, GL_FALSE, GLU_PATH_LENGTH,
 GLU_PARAMETRIC_ERROR, GLU_DOMAIN_DISTANCE,
 GLU_NURBS_RENDERER_EXT, or
 GLU_NURBS_TESSELLATOR_EXT.

 DESCRIPTION
 gluNurbsProperty is used to control properties stored in a
 NURBS object. These properties affect the way that a NURBS
 curve is rendered. The accepted values for property are as
 follows:

 GLU_NURBS_MODE_EXT
 value should be set to be either
 GLU_NURBS_RENDERER_EXT or
 GLU_NURBS_TESSELLATOR_EXT. When set to
 GLU_NURBS_RENDERER_EXT, NURBS objects are
 tessellated into openGL primitives and sent
 to the pipeline for rendering. When set to
 GLU_NURBS_TESSELLATOR_EXT, NURBS objects are

 tessellated into openGL primitives but the
 vertices, normals, colors, and/or textures
 are retrieved back through a callback
 interface (see gluNurbsCallback). This allows
 the user to cache the tessellated results for
 further processing.

 GLU_SAMPLING_METHOD
 Specifies how a NURBS surface should be
 tessellated. value may be one of
 GLU_PATH_LENGTH, GLU_PARAMETRIC_ERROR,
 GLU_DOMAIN_DISTANCE,
 GLU_OBJECT_PATH_LENGTH_EXT, or
 GLU_OBJECT_PARAMETRIC_ERROR_EXT. When set to
 GLU_PATH_LENGTH, the surface is rendered so
 that the maximum length, in pixels, of the
 edges of the tessellation polygons is no
 greater than what is specified by
 GLU_SAMPLING_TOLERANCE.

 GLU_PARAMETRIC_ERROR specifies that the
 surface is rendered in such a way that the
 value specified by GLU_PARAMETRIC_TOLERANCE
 describes the maximum distance, in pixels,
 between the tessellation polygons and the
 surfaces they approximate.

 GLU_DOMAIN_DISTANCE allows users to specify,
 in parametric coordinates, how many sample
 points per unit length are taken in u, v
 direction.

 GLU_OBJECT_PATH_LENGTH_EXT is similar to
 GLU_PATH_LENGTH except that it is view
 independent, that is, the surface is rendered
 so that the maximum length, in object space,
 of edges of the tessellation polygons is no
 greater than what is specified by
 GLU_SAMPLING_TOLERANCE.

 GLU_OBJECT_PARAMETRIC_ERROR_EXT is similar to
 GLU_PARAMETRIC_ERROR except that it is view
 independent, that is, the surface is rendered
 in such a way that the value specified by
 GLU_PARAMETRIC_TOLERANCE describes the
 maximum distance, in object space, between
 the tessellation polygons and the surfaces
 they approximate.

 The initial value of GLU_SAMPLING_METHOD is
 GLU_PATH_LENGTH.

 GLU_SAMPLING_TOLERANCE
 Specifies the maximum length, in pixels or in
 object space length unit, to use when the
 sampling method is set to GLU_PATH_LENGTH or
 GLU_OBJECT_PATH_LENGTH_EXT. The NURBS code
 is conservative when rendering a curve or
 surface, so the actual length can be somewhat
 shorter. The initial value is 50.0 pixels.

 GLU_PARAMETRIC_TOLERANCE
 Specifies the maximum distance, in pixels or
 in object space length unit, to use when the
 sampling method is GLU_PARAMETRIC_ERROR or

 GLU_OBJECT_PARAMETRIC_ERROR_EXT. The initial
 value is 0.5.

 GLU_U_STEP Specifies the number of sample points per
 unit length taken along the u axis in
 parametric coordinates. It is needed when
 GLU_SAMPLING_METHOD is set to
 GLU_DOMAIN_DISTANCE. The initial value is
 100.

 GLU_V_STEP Specifies the number of sample points per
 unit length taken along the v axis in
 parametric coordinate. It is needed when
 GLU_SAMPLING_METHOD is set to
 GLU_DOMAIN_DISTANCE. The initial value is
 100.

 GLU_DISPLAY_MODE
 value can be set to GLU_OUTLINE_POLYGON,
 GLU_FILL, or GLU_OUTLINE_PATCH. When
 GLU_NURBS_MODE_EXT is set to be
 GLU_NURBS_RENDERER_EXT, value defines how a
 NURBS surface should be rendered. When value
 is set to GLU_FILL, the surface is rendered
 as a set of polygons. When value is set to
 GLU_OUTLINE_POLYGON, the NURBS library draws
 only the outlines of the polygons created by
 tessellation. When value is set to
 GLU_OUTLINE_PATCH just the outlines of
 patches and trim curves defined by the user
 are drawn.

 When GLU_NURBS_MODE_EXT is set to be
 GLU_NURBS_TESSELLATOR_EXT, value defines how
 a NURBS surface should be tessellated. When
 GLU_DISPLAY_MODE is set to GLU_FILL or
 GLU_OUTLINE_POLY, the NURBS surface is
 tessellated into openGL triangle primitives
 which can be retrieved back through callback
 functions. If GLU_DISPLAY_MODE is set to
 GLU_OUTLINE_PATCH, only the outlines of the
 patches and trim curves are generated as a
 sequence of line strips which can be
 retrieved back through callback functions.

 The initial value is GLU_FILL.

 GLU_CULLING value is a boolean value that, when set to
 GL_TRUE, indicates that a NURBS curve should
 be discarded prior to tessellation if its
 control points lie outside the current
 viewport. The initial value is GL_FALSE.

 GLU_AUTO_LOAD_MATRIX
 value is a boolean value. When set to
 GL_TRUE, the NURBS code downloads the
 projection matrix, the modelview matrix, and
 the viewport from the GL server to compute
 sampling and culling matrices for each NURBS
 curve that is rendered. Sampling and culling
 matrices are required to determine the
 tessellation of a NURBS surface into line
 segments or polygons and to cull a NURBS
 surface if it lies outside the viewport.

 If this mode is set to GL_FALSE, then the
 program needs to provide a projection matrix,
 a modelview matrix, and a viewport for the
 NURBS renderer to use to construct sampling
 and culling matrices. This can be done with
 the gluLoadSamplingMatrices function. This
 mode is initially set to GL_TRUE. Changing
 it from GL_TRUE to GL_FALSE does not affect
 the sampling and culling matrices until
 gluLoadSamplingMatrices is called.

 NOTES
 If GLU_AUTO_LOAD_MATRIX is true, sampling and culling may be
 executed incorrectly if NURBS routines are compiled into a
 display list.

 A property of GLU_PARAMETRIC_TOLERANCE, GLU_SAMPLING_METHOD,
 GLU_U_STEP, or GLU_V_STEP, or a value of GLU_PATH_LENGTH,
 GLU_PARAMETRIC_ERROR, GLU_DOMAIN_DISTANCE are only available
 if the GLU version is 1.1 or greater. They are not valid
 parameters in GLU 1.0.

 gluGetString can be used to determine the GLU version.

 SEE ALSO
 gluGetNurbsProperty, gluLoadSamplingMatrices,
 gluNewNurbsRenderer, gluGetString, gluNurbsCallback

 NAME
 gluNurbsSurface - define the shape of a NURBS surface

 C SPECIFICATION
 void gluNurbsSurface(GLUnurbs* nurb,
 GLint sKnotCount,
 GLfloat* sKnots,
 GLint tKnotCount,
 GLfloat* tKnots,
 GLint sStride,
 GLint tStride,
 GLfloat* control,
 GLint sOrder,
 GLint tOrder,
 GLenum type)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 sKnotCount Specifies the number of knots in the parametric
 u direction.

 sKnots Specifies an array of sKnotCount nondecreasing
 knot values in the parametric u direction.

 tKnotCount Specifies the number of knots in the parametric
 v direction.

 tKnots Specifies an array of tKnotCount nondecreasing
 knot values in the parametric v direction.

 sStride Specifies the offset (as a number of single-
 precision floating point values) between
 successive control points in the parametric u
 direction in control.

 tStride Specifies the offset (in single-precision
 floating-point values) between successive
 control points in the parametric v direction in
 control.

 control Specifies an array containing control points for
 the NURBS surface. The offsets between
 successive control points in the parametric u
 and v directions are given by sStride and
 tStride.

 sOrder Specifies the order of the NURBS surface in the
 parametric u direction. The order is one more
 than the degree, hence a surface that is cubic
 in u has a u order of 4.

 tOrder Specifies the order of the NURBS surface in the
 parametric v direction. The order is one more
 than the degree, hence a surface that is cubic
 in v has a v order of 4.

 type Specifies type of the surface. type can be any
 of the valid two-dimensional evaluator types
 (such as GL_MAP2_VERTEX_3 or GL_MAP2_COLOR_4).

 DESCRIPTION
 Use gluNurbsSurface within a NURBS (Non-Uniform Rational B-
 Spline) surface definition to describe the shape of a NURBS
 surface (before any trimming). To mark the beginning of a
 NURBS surface definition, use the gluBeginSurface command.
 To mark the end of a NURBS surface definition, use the
 gluEndSurface command. Call gluNurbsSurface within a NURBS
 surface definition only.

 Positional, texture, and color coordinates are associated
 with a surface by presenting each as a separate
 gluNurbsSurface between a gluBeginSurface/gluEndSurface
 pair. No more than one call to gluNurbsSurface for each of
 color, position, and texture data can be made within a
 single gluBeginSurface/gluEndSurface pair. Exactly one call
 must be made to describe the position of the surface (a type
 of GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4).

 A NURBS surface can be trimmed by using the commands
 gluNurbsCurve and gluPwlCurve between calls to gluBeginTrim
 and gluEndTrim.

 Note that a gluNurbsSurface with sKnotCount knots in the u
 direction and tKnotCount knots in the v direction with
 orders sOrder and tOrder must have (sKnotCount - sOrder) x
 (tKnotCount - tOrder) control points.

 EXAMPLE
 The following commands render a textured NURBS surface with

 normals; the texture coordinates and normals are also NURBS
 surfaces:

 gluBeginSurface(nobj);
 gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);
 gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);
 gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_4);
 gluEndSurface(nobj);

 SEE ALSO

 gluBeginSurface, gluBeginTrim, gluNewNurbsRenderer,
 gluNurbsCurve, gluPwlCurve

 NAME
 gluOrtho2D - define a 2D orthographic projection matrix

 C SPECIFICATION
 void gluOrtho2D(GLdouble left,
 GLdouble right,
 GLdouble bottom,
 GLdouble top)

 PARAMETERS
 left, right Specify the coordinates for the left and right
 vertical clipping planes.

 bottom, top Specify the coordinates for the bottom and top
 horizontal clipping planes.

 DESCRIPTION
 gluOrtho2D sets up a two-dimensional orthographic viewing
 region. This is equivalent to calling glOrtho with near=-1
 and far=1.

 SEE ALSO
 glOrtho, gluPerspective

 NAME
 gluPartialDisk - draw an arc of a disk

 C SPECIFICATION
 void gluPartialDisk(GLUquadric* quad,
 GLdouble inner,
 GLdouble outer,
 GLint slices,
 GLint loops,
 GLdouble start,
 GLdouble sweep)

 PARAMETERS
 quad Specifies a quadrics object (created with
 gluNewQuadric).

 inner Specifies the inner radius of the partial disk (can
 be 0).

 outer Specifies the outer radius of the partial disk.

 slices Specifies the number of subdivisions around the z
 axis.

 loops Specifies the number of concentric rings about the
 origin into which the partial disk is subdivided.

 start Specifies the starting angle, in degrees, of the
 disk portion.

 sweep Specifies the sweep angle, in degrees, of the disk
 portion.

 DESCRIPTION
 gluPartialDisk renders a partial disk on the z=0 plane. A
 partial disk is similar to a full disk, except that only the
 subset of the disk from start through start + sweep is
 included (where 0 degrees is along the +y axis, 90 degrees
 along the +x axis, 180 along the -y axis, and 270 along the
 -x axis).

 The partial disk has a radius of outer, and contains a
 concentric circular hole with a radius of inner. If inner is
 0, then no hole is generated. The partial disk is subdivided
 around the z axis into slices (like pizza slices), and also
 about the z axis into rings (as specified by slices and
 loops, respectively).

 With respect to orientation, the +z side of the partial disk
 is considered to be outside (see gluQuadricOrientation).
 This means that if the orientation is set to GLU_OUTSIDE,
 then any normals generated point along the +z axis.
 Otherwise, they point along the -z axis.

 If texturing is turned on (with gluQuadricTexture), texture
 coordinates are generated linearly such that where r=outer,
 the value at (r, 0, 0) is (1.0, 0.5), at (0, r, 0) it is
 (0.5, 1.0), at (-r, 0, 0) it is (0.0, 0.5), and at (0, -r,
 0) it is (0.5, 0.0).

 SEE ALSO
 gluCylinder, gluDisk, gluNewQuadric, gluQuadricOrientation,
 gluQuadricTexture, gluSphere

 NAME
 gluPerspective - set up a perspective projection matrix

 C SPECIFICATION
 void gluPerspective(GLdouble fovy,
 GLdouble aspect,
 GLdouble zNear,
 GLdouble zFar)

 PARAMETERS
 fovy Specifies the field of view angle, in degrees, in
 the y direction.

 aspect Specifies the aspect ratio that determines the field
 of view in the x direction. The aspect ratio is the
 ratio of x (width) to y (height).

 zNear Specifies the distance from the viewer to the near
 clipping plane (always positive).

 zFar Specifies the distance from the viewer to the far
 clipping plane (always positive).

 DESCRIPTION
 gluPerspective specifies a viewing frustum into the world
 coordinate system. In general, the aspect ratio in
 gluPerspective should match the aspect ratio of the
 associated viewport. For example, aspect=2.0 means the
 viewer’s angle of view is twice as wide in x as it is in y.
 If the viewport is twice as wide as it is tall, it displays
 the image without distortion.

 The matrix generated by gluPerspective is multipled by the
 current matrix, just as if glMultMatrix were called with the
 generated matrix. To load the perspective matrix onto the
 current matrix stack instead, precede the call to

 gluPerspective with a call to glLoadIdentity.

 Given f defined as follows:

 f = cotangent(____)
 2
 The generated matrix is

 ()
 | ______ |
 | aspect 0 0 0 |
 | |
 | 0 f 0 0 |
 | __________ ____________ |
 | 0 0 zNear-zFar zNear-zFar |
 ()
 0 0 -1 0
 NOTES
 Depth buffer precision is affected by the values specified
 for zNear and zFar. The greater the ratio of zFar to zNear
 is, the less effective the depth buffer will be at
 distinguishing between surfaces that are near each other.
 If

 r = _____
 zNear

 roughly log r bits of depth buffer precision are lost.
 Because r approaches infinity as zNear approaches 0, zNear
 must never be set to 0.

 SEE ALSO
 glFrustum, glLoadIdentity, glMultMatrix, gluOrtho2D

 NAME
 gluPickMatrix - define a picking region

 C SPECIFICATION
 void gluPickMatrix(GLdouble x,
 GLdouble y,
 GLdouble delX,
 GLdouble delY,
 GLint *viewport)

 PARAMETERS
 x, y Specify the center of a picking region in window
 coordinates.

 delX, delY
 Specify the width and height, respectively, of the
 picking region in window coordinates.

 viewport
 Specifies the current viewport (as from a glGetIntegerv
 call).

 DESCRIPTION
 gluPickMatrix creates a projection matrix that can be used
 to restrict drawing to a small region of the viewport. This
 is typically useful to determine what objects are being
 drawn near the cursor. Use gluPickMatrix to restrict
 drawing to a small region around the cursor. Then, enter
 selection mode (with glRenderMode) and rerender the scene.
 All primitives that would have been drawn near the cursor
 are identified and stored in the selection buffer.

 The matrix created by gluPickMatrix is multiplied by the
 current matrix just as if glMultMatrix is called with the
 generated matrix. To effectively use the generated pick
 matrix for picking, first call glLoadIdentity to load an
 identity matrix onto the perspective matrix stack. Then
 call gluPickMatrix, and finally, call a command (such as
 gluPerspective) to multiply the perspective matrix by the
 pick matrix.

 When using gluPickMatrix to pick NURBS, be careful to turn
 off the NURBS property GLU_AUTO_LOAD_MATRIX. If
 GLU_AUTO_LOAD_MATRIX is not turned off, then any NURBS
 surface rendered is subdivided differently with the pick
 matrix than the way it was subdivided without the pick
 matrix.

 EXAMPLE
 When rendering a scene as follows:
 glMatrixMode(GL_PROJECTION); glLoadIdentity();
 gluPerspective(...); glMatrixMode(GL_MODELVIEW); /* Draw the
 scene */

 a portion of the viewport can be selected as a pick region
 like this:

 glMatrixMode(GL_PROJECTION); glLoadIdentity();
 gluPickMatrix(x, y, width, height, viewport);
 gluPerspective(...); glMatrixMode(GL_MODELVIEW); /* Draw the
 scene */

 SEE ALSO
 glGet, glLoadIndentity, glMultMatrix, glRenderMode,
 gluPerspective

 NAME
 gluProject - map object coordinates to window coordinates

 C SPECIFICATION
 GLint gluProject(GLdouble objX,
 GLdouble objY,
 GLdouble objZ,
 const GLdouble *model,
 const GLdouble *proj,
 const GLint *view,
 GLdouble* winX,
 GLdouble* winY,
 GLdouble* winZ)

 PARAMETERS
 objX, objY, objZ
 Specify the object coordinates.

 model Specifies the current modelview matrix (as
 from a glGetDoublev call).

 proj Specifies the current projection matrix (as

 from a glGetDoublev call).

 view Specifies the current viewport (as from a
 glGetIntegerv call).

 winX, winY, winZ
 Return the computed window coordinates.

 DESCRIPTION
 gluProject transforms the specified object coordinates into
 window coordinates using model, proj, and view. The result
 is stored in winX, winY, and winZ. A return value of GL_TRUE
 indicates success, a return value of GL_FALSE indicates
 failure.

 To compute the coordinates, let v=(objX,objY,objZ,1.0)
 represented as a matrix with 4 rows and 1 column. Then
 gluProject computes v’ as follows:

 v’ = P x M x v

 where P is the current projection matrix proj, M is the
 current modelview matrix model (both represented as 4x4
 matrices in column-major order) and ’x’ represents matrix
 multiplication.

 The window coordinates are then computed as follows:

 winX = view(0) + view(2) * (v’(0) + 1) / 2

 winY = view(1) + view(3) * (v’(1) + 1) / 2

 winZ = (v’(2) + 1) / 2

 SEE ALSO
 glGet, gluUnProject

 NAME
 gluPwlCurve - describe a piecewise linear NURBS trimming
 curve

 C SPECIFICATION
 void gluPwlCurve(GLUnurbs* nurb,
 GLint count,
 GLfloat* data,
 GLint stride,
 GLenum type)

 PARAMETERS
 nurb Specifies the NURBS object (created with
 gluNewNurbsRenderer).

 count Specifies the number of points on the curve.

 data Specifies an array containing the curve points.

 stride Specifies the offset (a number of single-precision
 floating-point values) between points on the curve.

 type Specifies the type of curve. Must be either
 GLU_MAP1_TRIM_2 or GLU_MAP1_TRIM_3.

 DESCRIPTION
 gluPwlCurve describes a piecewise linear trimming curve for
 a NURBS surface. A piecewise linear curve consists of a
 list of coordinates of points in the parameter space for the
 NURBS surface to be trimmed. These points are connected with
 line segments to form a curve. If the curve is an
 approximation to a curve that is not piecewise linear, the
 points should be close enough in parameter space that the
 resulting path appears curved at the resolution used in the
 application.

 If type is GLU_MAP1_TRIM_2, then it describes a curve in
 two-dimensional (u and v) parameter space. If it is
 GLU_MAP1_TRIM_3, then it describes a curve in two-
 dimensional homogeneous (u, v, and w) parameter space. See
 the gluBeginTrim reference page for more information about
 trimming curves.

 NOTES
 To describe a trim curve that closely follows the contours
 of a NURBS surface, call gluNurbsCurve.

 SEE ALSO

 gluBeginCurve, gluBeginTrim, gluNewNurbsRenderer,
 gluNurbsCurve

 NAME
 gluQuadricCallback - define a callback for a quadrics object

 C SPECIFICATION
 void gluQuadricCallback(GLUquadric* quad,
 GLenum which,
 GLvoid (*CallBackFunc)()

 PARAMETERS
 quad Specifies the quadrics object (created with
 gluNewQuadric).

 which Specifies the callback being defined. The
 only valid value is GLU_ERROR.

 CallBackFunc Specifies the function to be called.

 DESCRIPTION
 gluQuadricCallback is used to define a new callback to be
 used by a quadrics object. If the specified callback is
 already defined, then it is replaced. If CallBackFunc is
 NULL, then any existing callback is erased.

 The one legal callback is GLU_ERROR:

 GLU_ERROR The function is called when an error is
 encountered. Its single argument is of type
 GLenum, and it indicates the specific error
 that occurred. Character strings describing
 these errors can be retrieved with the
 gluErrorString call.

 SEE ALSO
 gluErrorString, gluNewQuadric

 NAME
 gluQuadricDrawStyle - specify the draw style desired for
 quadrics

 C SPECIFICATION
 void gluQuadricDrawStyle(GLUquadric* quad,
 GLenum draw)

 PARAMETERS
 quad Specifies the quadrics object (created with
 gluNewQuadric).

 draw Specifies the desired draw style. Valid values are
 GLU_FILL, GLU_LINE, GLU_SILHOUETTE, and GLU_POINT.

 DESCRIPTION
 gluQuadricDrawStyle specifies the draw style for quadrics
 rendered with quad. The legal values are as follows:

 GLU_FILL Quadrics are rendered with polygon

 primitives. The polygons are drawn in a
 counterclockwise fashion with respect to
 their normals (as defined with
 gluQuadricOrientation).

 GLU_LINE Quadrics are rendered as a set of lines.

 GLU_SILHOUETTE Quadrics are rendered as a set of lines,
 except that edges separating coplanar faces
 will not be drawn.

 GLU_POINT Quadrics are rendered as a set of points.

 SEE ALSO
 gluNewQuadric, gluQuadricNormals, gluQuadricOrientation,
 gluQuadricTexture

 NAME
 gluQuadricNormals - specify what kind of normals are desired
 for quadrics

 C SPECIFICATION
 void gluQuadricNormals(GLUquadric* quad,
 GLenum normal)

 PARAMETERS
 quad Specifes the quadrics object (created with
 gluNewQuadric).

 normal Specifies the desired type of normals. Valid values
 are GLU_NONE, GLU_FLAT, and GLU_SMOOTH.

 DESCRIPTION
 gluQuadricNormals specifies what kind of normals are desired
 for quadrics rendered with quad. The legal values are as
 follows:

 GLU_NONE No normals are generated.

 GLU_FLAT One normal is generated for every facet of a
 quadric.

 GLU_SMOOTH One normal is generated for every vertex of a
 quadric. This is the initial value.

 SEE ALSO
 gluNewQuadric, gluQuadricDrawStyle, gluQuadricOrientation,
 gluQuadricTexture

 NAME
 gluQuadricOrientation - specify inside/outside orientation
 for quadrics

 C SPECIFICATION
 void gluQuadricOrientation(GLUquadric* quad,
 GLenum orientation)

 PARAMETERS
 quad Specifies the quadrics object (created with
 gluNewQuadric).

 orientation Specifies the desired orientation. Valid values
 are GLU_OUTSIDE and GLU_INSIDE.

 DESCRIPTION
 gluQuadricOrientation specifies what kind of orientation is
 desired for quadrics rendered with quad. The orientation
 values are as follows:

 GLU_OUTSIDE Quadrics are drawn with normals pointing
 outward (the initial value).

 GLU_INSIDE Quadrics are drawn with normals pointing
 inward.

 Note that the interpretation of outward and inward depends
 on the quadric being drawn.

 SEE ALSO
 gluNewQuadric, gluQuadricDrawStyle, gluQuadricNormals,
 gluQuadricTexture

 NAME
 gluQuadricTexture - specify if texturing is desired for
 quadrics

 C SPECIFICATION
 void gluQuadricTexture(GLUquadric* quad,
 GLboolean texture)

 PARAMETERS
 quad Specifies the quadrics object (created with
 gluNewQuadric).

 texture Specifies a flag indicating if texture coordinates
 should be generated.

 DESCRIPTION
 gluQuadricTexture specifies if texture coordinates should be
 generated for quadrics rendered with quad. If the value of
 texture is GL_TRUE, then texture coordinates are generated,
 and if texture is GL_FALSE, they are not. The initial value
 is GL_FALSE.

 The manner in which texture coordinates are generated
 depends upon the specific quadric rendered.

 SEE ALSO
 gluNewQuadric, gluQuadricDrawStyle, gluQuadricNormals,
 gluQuadricOrientation

 NAME
 gluScaleImage - scale an image to an arbitrary size

 C SPECIFICATION
 GLint gluScaleImage(GLenum format,

 GLsizei wIn,
 GLsizei hIn,
 GLenum typeIn,
 const void *dataIn,
 GLsizei wOut,
 GLsizei hOut,
 GLenum typeOut,
 GLvoid* dataOut)

 PARAMETERS
 format Specifies the format of the pixel data. The
 following symbolic values are valid:
 GL_COLOR_INDEX, GL_STENCIL_INDEX,
 GL_DEPTH_COMPONENT, GL_RED, GL_GREEN, GL_BLUE,
 GL_ALPHA, GL_RGB, GL_RGBA, GL_LUMINANCE, and
 GL_LUMINANCE_ALPHA.

 wIn, hIn Specify the width and height, respectively, of the
 source image that is scaled.

 typeIn Specifies the data type for dataIn. Must be one of
 GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
 GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
 GL_INT, or GL_FLOAT.

 dataIn Specifies a pointer to the source image.

 wOut, hOut
 Specify the width and height, respectively, of the
 destination image.

 typeOut Specifies the data type for dataOut. Must be one of
 GL_UNSIGNED_BYTE, GL_BYTE, GL_BITMAP,
 GL_UNSIGNED_SHORT, GL_SHORT, GL_UNSIGNED_INT,
 GL_INT, or GL_FLOAT.

 dataOut Specifies a pointer to the destination image.

 DESCRIPTION
 gluScaleImage scales a pixel image using the appropriate
 pixel store modes to unpack data from the source image and
 pack data into the destination image.

 When shrinking an image, gluScaleImage uses a box filter to
 sample the source image and create pixels for the
 destination image. When magnifying an image, the pixels from
 the source image are linearly interpolated to create the
 destination image.

 A return value of 0 indicates success, otherwise a GLU error
 code is returned (see gluErrorString).

 See the glReadPixels reference page for a description of the
 acceptable values for format, typeIn, and typeOut.

 ERRORS
 GLU_INVALID_VALUE is returned if wIn, hIn, wOut, or hOut are
 < 0.

 GLU_INVALID_ENUM is returned if format, typeIn, or typeOut
 are not legal.

 SEE ALSO
 glDrawPixels, glReadPixels, gluBuild1DMipmaps,

 gluBuild2DMipmaps, gluErrorString

 NAME
 gluSphere - draw a sphere

 C SPECIFICATION
 void gluSphere(GLUquadric* quad,
 GLdouble radius,
 GLint slices,
 GLint stacks)

 PARAMETERS
 quad Specifies the quadrics object (created with
 gluNewQuadric).

 radius Specifies the radius of the sphere.

 slices Specifies the number of subdivisions around the z
 axis (similar to lines of longitude).

 stacks Specifies the number of subdivisions along the z
 axis (similar to lines of latitude).

 DESCRIPTION
 gluSphere draws a sphere of the given radius centered around
 the origin. The sphere is subdivided around the z axis into
 slices and along the z axis into stacks (similar to lines of
 longitude and latitude).

 If the orientation is set to GLU_OUTSIDE (with
 gluQuadricOrientation), then any normals generated point

 away from the center of the sphere. Otherwise, they point
 toward the center of the sphere.

 If texturing is turned on (with gluQuadricTexture), then
 texture coordinates are generated so that t ranges from 0.0
 at z=-radius to 1.0 at z=radius (t increases linearly along
 longitudinal lines), and s ranges from 0.0 at the +y axis,
 to 0.25 at the +x axis, to 0.5 at the -y axis, to 0.75 at
 the -x axis, and back to 1.0 at the +y axis.

 SEE ALSO
 gluCylinder, gluDisk, gluNewQuadric, gluPartialDisk,
 gluQuadricOrientation, gluQuadricTexture

 NAME
 gluTessBeginContour, gluTessEndContour - delimit a contour
 description

 C SPECIFICATION
 void gluTessBeginContour(GLUtesselator* tess)

 void gluTessEndContour(GLUtesselator* tess)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 DESCRIPTION
 gluTessBeginContour and gluTessEndContour delimit the
 definition of a polygon contour. Within each
 gluTessBeginContour/gluTessEndContour pair, there can be
 zero or more calls to gluTessVertex. The vertices specify a
 closed contour (the last vertex of each contour is
 automatically linked to the first). See the gluTessVertex
 reference page for more details. gluTessBeginContour can
 only be called between gluTessBeginPolygon and
 gluTessEndPolygon.

 SEE ALSO
 gluNewTess, gluTessBeginPolygon, gluTessVertex,
 gluTessCallback, gluTessProperty, gluTessNormal,
 gluTessEndPolygon

 NAME
 gluTessBeginPolygon - delimit a polygon description

 C SPECIFICATION
 void gluTessBeginPolygon(GLUtesselator* tess,
 GLvoid* data)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 data Specifies a pointer to user polygon data.

 DESCRIPTION
 gluTessBeginPolygon and gluTessEndPolygon delimit the
 definition of a convex, concave or self-intersecting
 polygon. Within each gluTessBeginPolygon/gluTessEndPolygon
 pair, there must be one or more calls to
 gluTessBeginContour/gluTessEndContour. Within each contour,
 there are zero or more calls to gluTessVertex. The vertices
 specify a closed contour (the last vertex of each contour is
 automatically linked to the first). See the gluTessVertex,
 gluTessBeginContour, and gluTessEndContour reference pages
 for more details.

 data is a pointer to a user-defined data structure. If the
 appropriate callback(s) are specified (see gluTessCallback),
 then this pointer is returned to the callback function(s).
 Thus, it is a convenient way to store per-polygon
 information.

 Once gluTessEndPolygon is called, the polygon is
 tessellated, and the resulting triangles are described
 through callbacks. See gluTessCallback for descriptions of
 the callback functions.

 EXAMPLE
 A quadrilateral with a triangular hole in it can be
 described as follows:

 gluTessBeginPolygon(tobj, NULL);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, v1, v1);
 gluTessVertex(tobj, v2, v2);
 gluTessVertex(tobj, v3, v3);
 gluTessVertex(tobj, v4, v4);
 gluTessEndContour(tobj);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, v5, v5);
 gluTessVertex(tobj, v6, v6);
 gluTessVertex(tobj, v7, v7);
 gluTessEndContour(tobj); gluTessEndPolygon(tobj);

 SEE ALSO
 gluNewTess, gluTessBeginContour, gluTessVertex,
 gluTessCallback, gluTessProperty, gluTessNormal,
 gluTessEndPolygon

 NAME
 gluTessCallback - define a callback for a tessellation
 object

 C SPECIFICATION
 void gluTessCallback(GLUtesselator* tess,
 GLenum which,
 GLvoid (*CallBackFunc)()

 PARAMETERS
 tess Specifies the tessellation object (created
 with gluNewTess).

 which Specifies the callback being defined. The

 following values are valid: GLU_TESS_BEGIN,
 GLU_TESS_BEGIN_DATA, GLU_TESS_EDGE_FLAG,
 GLU_TESS_EDGE_FLAG_DATA, GLU_TESS_VERTEX,
 GLU_TESS_VERTEX_DATA, GLU_TESS_END,
 GLU_TESS_END_DATA, GLU_TESS_COMBINE,
 GLU_TESS_COMBINE_DATA, GLU_TESS_ERROR, and
 GLU_TESS_ERROR_DATA.

 CallBackFunc Specifies the function to be called.

 DESCRIPTION
 gluTessCallback is used to indicate a callback to be used by
 a tessellation object. If the specified callback is already
 defined, then it is replaced. If CallBackFunc is NULL, then
 the existing callback becomes undefined.

 These callbacks are used by the tessellation object to
 describe how a polygon specified by the user is broken into
 triangles. Note that there are two versions of each
 callback: one with user-specified polygon data and one
 without. If both versions of a particular callback are
 specified, then the callback with user-specified polygon
 data will be used. Note that the polygon_data parameter used
 by some of the functions is a copy of the pointer that was
 specified when gluTessBeginPolygon was called. The legal
 callbacks are as follows:

 GLU_TESS_BEGIN
 The begin callback is invoked like glBegin to
 indicate the start of a (triangle) primitive. The
 function takes a single argument of type GLenum.
 If the GLU_TESS_BOUNDARY_ONLY property is set to
 GL_FALSE, then the argument is set to either
 GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, or
 GL_TRIANGLES. If the GLU_TESS_BOUNDARY_ONLY
 property is set to GL_TRUE, then the argument will
 be set to GL_LINE_LOOP. The function prototype for
 this callback is:
 void begin (GLenum type);

 GLU_TESS_BEGIN_DATA
 The same as the GLU_TESS_BEGIN callback except
 that it takes an additional pointer argument. This
 pointer is identical to the opaque pointer
 provided when gluTessBeginPolygon was called. The
 function prototype for this callback is:
 void beginData (GLenum type, void *polygon_data
);

 GLU_TESS_EDGE_FLAG
 The edge flag callback is similar to glEdgeFlag.
 The function takes a single boolean flag that
 indicates which edges lie on the polygon boundary.
 If the flag is GL_TRUE, then each vertex that
 follows begins an edge that lies on the polygon
 boundary, that is, an edge that separates an
 interior region from an exterior one. If the flag
 is GL_FALSE, then each vertex that follows begins
 an edge that lies in the polygon interior. The
 edge flag callback (if defined) is invoked before
 the first vertex callback.

 Since triangle fans and triangle strips do not
 support edge flags, the begin callback is not
 called with GL_TRIANGLE_FAN or GL_TRIANGLE_STRIP

 if a non-NULL edge flag callback is provided. (If
 the callback is initialized to NULL, there is no
 impact on performance). Instead, the fans and
 strips are converted to independent triangles. The
 function prototype for this callback is:
 void edgeFlag (GLboolean flag);

 GLU_TESS_EDGE_FLAG_DATA
 The same as the GLU_TESS_EDGE_FLAG callback except
 that it takes an additional pointer argument. This
 pointer is identical to the opaque pointer
 provided when gluTessBeginPolygon was called. The
 function prototype for this callback is:
 void edgeFlagData (GLboolean flag, void
 *polygon_data);

 GLU_TESS_VERTEX
 The vertex callback is invoked between the begin
 and end callbacks. It is similar to glVertex, and
 it defines the vertices of the triangles created
 by the tessellation process. The function takes a
 pointer as its only argument. This pointer is
 identical to the opaque pointer provided by the
 user when the vertex was described (see
 gluTessVertex). The function prototype for this
 callback is:
 void vertex (void *vertex_data);

 GLU_TESS_VERTEX_DATA
 The same as the GLU_TESS_VERTEX callback except
 that it takes an additional pointer argument. This
 pointer is identical to the opaque pointer
 provided when gluTessBeginPolygon was called. The
 function prototype for this callback is:
 void vertexData (void *vertex_data, void
 *polygon_data);

 GLU_TESS_END
 The end callback serves the same purpose as glEnd.
 It indicates the end of a primitive and it takes
 no arguments. The function prototype for this
 callback is:
 void end (void);

 GLU_TESS_END_DATA
 The same as the GLU_TESS_END callback except that
 it takes an additional pointer argument. This
 pointer is identical to the opaque pointer
 provided when gluTessBeginPolygon was called. The
 function prototype for this callback is:
 void endData (void *polygon_data);

 GLU_TESS_COMBINE
 The combine callback is called to create a new
 vertex when the tessellation detects an
 intersection, or wishes to merge features. The
 function takes four arguments: an array of three
 elements each of type GLdouble, an array of four
 pointers, an array of four elements each of type
 GLfloat, and a pointer to a pointer. The prototype
 is:
 void combine(GLdouble coords[3], void
 *vertex_data[4],
 GLfloat weight[4], void **outData);

 The vertex is defined as a linear combination of
 up to four existing vertices, stored in
 vertex_data. The coefficients of the linear
 combination are given by weight; these weights
 always add up to 1. All vertex pointers are valid
 even when some of the weights are 0. coords gives
 the location of the new vertex.

 The user must allocate another vertex, interpolate
 parameters using vertex_data and weight, and
 return the new vertex pointer in outData. This
 handle is supplied during rendering callbacks.
 The user is responsible for freeing the memory
 some time after gluTessEndPolygon is called.

 For example, if the polygon lies in an arbitrary
 plane in 3-space, and a color is associated with
 each vertex, the GLU_TESS_COMBINE callback might
 look like this:
 void myCombine(GLdouble coords[3], VERTEX *d[4],
 GLfloat w[4], VERTEX **dataOut) {
 VERTEX *new = new_vertex();

 new->x = coords[0];
 new->y = coords[1];
 new->z = coords[2];
 new->r = w[0]*d[0]->r + w[1]*d[1]->r +
 w[2]*d[2]->r + w[3]*d[3]->r;
 new->g = w[0]*d[0]->g + w[1]*d[1]->g +
 w[2]*d[2]->g + w[3]*d[3]->g;
 new->b = w[0]*d[0]->b + w[1]*d[1]->b +
 w[2]*d[2]->b + w[3]*d[3]->b;
 new->a = w[0]*d[0]->a + w[1]*d[1]->a +
 w[2]*d[2]->a + w[3]*d[3]->a;
 *dataOut = new; }

 If the tessellation detects an intersection, then
 the GLU_TESS_COMBINE or GLU_TESS_COMBINE_DATA
 callback (see below) must be defined, and it must
 write a non-NULL pointer into dataOut. Otherwise
 the GLU_TESS_NEED_COMBINE_CALLBACK error occurs,
 and no output is generated.

 GLU_TESS_COMBINE_DATA
 The same as the GLU_TESS_COMBINE callback except
 that it takes an additional pointer argument. This
 pointer is identical to the opaque pointer
 provided when gluTessBeginPolygon was called. The
 function prototype for this callback is:
 void combineData (GLdouble coords[3], void
 *vertex_data[4],
 GLfloat weight[4], void
 **outData,
 void *polygon_data);

 GLU_TESS_ERROR
 The error callback is called when an error is
 encountered. The one argument is of type GLenum;
 it indicates the specific error that occurred and
 will be set to one of
 GLU_TESS_MISSING_BEGIN_POLYGON,
 GLU_TESS_MISSING_END_POLYGON,
 GLU_TESS_MISSING_BEGIN_CONTOUR,
 GLU_TESS_MISSING_END_CONTOUR,
 GLU_TESS_COORD_TOO_LARGE,

 GLU_TESS_NEED_COMBINE_CALLBACK or
 GLU_OUT_OF_MEMORY. Character strings describing
 these errors can be retrieved with the
 gluErrorString call. The function prototype for
 this callback is:
 void error (GLenum errno);

 The GLU library will recover from the first four
 errors by inserting the missing call(s).
 GLU_TESS_COORD_TOO_LARGE indicates that some
 vertex coordinate exceeded the predefined constant
 GLU_TESS_MAX_COORD in absolute value, and that the
 value has been clamped. (Coordinate values must be
 small enough so that two can be multiplied
 together without overflow.)
 GLU_TESS_NEED_COMBINE_CALLBACK indicates that the
 tessellation detected an intersection between two
 edges in the input data, and the GLU_TESS_COMBINE
 or GLU_TESS_COMBINE_DATA callback was not
 provided. No output is generated.
 GLU_OUT_OF_MEMORY indicates that there is not
 enough memory so no output is generated.

 GLU_TESS_ERROR_DATA
 The same as the GLU_TESS_ERROR callback except
 that it takes an additional pointer argument. This
 pointer is identical to the opaque pointer
 provided when gluTessBeginPolygon was called. The
 function prototype for this callback is:
 void errorData (GLenum errno, void *polygon_data
);

 EXAMPLE
 Polygons tessellated can be rendered directly like this:

 gluTessCallback(tobj, GLU_TESS_BEGIN, glBegin);
 gluTessCallback(tobj, GLU_TESS_VERTEX, glVertex3dv);
 gluTessCallback(tobj, GLU_TESS_END, glEnd);
 gluTessCallback(tobj, GLU_TESS_COMBINE, myCombine);
 gluTessBeginPolygon(tobj, NULL);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, v, v);
 ...
 gluTessEndContour(tobj); gluTessEndPolygon(tobj);

 Typically, the tessellated polygon should be stored in a
 display list so that it does not need to be retessellated
 every time it is rendered.

 SEE ALSO
 glBegin, glEdgeFlag, glVertex, gluNewTess, gluErrorString,
 gluTessVertex, gluTessBeginPolygon, gluTessBeginContour,
 gluTessProperty, gluTessNormal

 NAME
 gluTessEndPolygon - delimit a polygon description

 C SPECIFICATION
 void gluTessEndPolygon(GLUtesselator* tess)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 DESCRIPTION
 gluTessBeginPolygon and gluTessEndPolygon delimit the
 definition of a convex, concave or self-intersecting
 polygon. Within each gluTessBeginPolygon/gluTessEndPolygon
 pair, there must be one or more calls to
 gluTessBeginContour/gluTessEndContour. Within each contour,
 there are zero or more calls to gluTessVertex. The vertices
 specify a closed contour (the last vertex of each contour is
 automatically linked to the first). See the gluTessVertex,
 gluTessBeginContour and gluTessEndContour reference pages
 for more details.

 Once gluTessEndPolygon is called, the polygon is
 tessellated, and the resulting triangles are described
 through callbacks. See gluTessCallback for descriptions of
 the callback functions.

 EXAMPLE
 A quadrilateral with a triangular hole in it can be
 described like this:

 gluTessBeginPolygon(tobj, NULL);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, v1, v1);
 gluTessVertex(tobj, v2, v2);
 gluTessVertex(tobj, v3, v3);
 gluTessVertex(tobj, v4, v4);
 gluTessEndContour(tobj);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, v5, v5);
 gluTessVertex(tobj, v6, v6);
 gluTessVertex(tobj, v7, v7);
 gluTessEndContour(tobj); gluTessEndPolygon(tobj);

 In the above example the pointers, v1 through v7, should
 point to different addresses, since the values stored at
 these addresses will not be read by the tesselator until
 gluTessEndPolygon is called.

 SEE ALSO

 gluNewTess, gluTessBeginContour, gluTessVertex,
 gluTessCallback, gluTessProperty, gluTessNormal,
 gluTessBeginPolygon

 NAME
 gluTessNormal - specify a normal for a polygon

 C SPECIFICATION
 void gluTessNormal(GLUtesselator* tess,
 GLdouble valueX,
 GLdouble valueY,
 GLdouble valueZ)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 valueX Specifies the first component of the normal.

 valueY Specifies the second component of the normal.

 valueZ Specifies the third component of the normal.

 DESCRIPTION
 gluTessNormal describes a normal for a polygon that the
 program is defining. All input data will be projected onto
 a plane perpendicular to one of the three coordinate axes
 before tessellation and all output triangles will be
 oriented CCW with respect to the normal (CW orientation can
 be obtained by reversing the sign of the supplied normal).
 For example, if you know that all polygons lie in the x-y
 plane, call gluTessNormal(tess, 0.0, 0.0, 1.0) before
 rendering any polygons.

 If the supplied normal is (0.0, 0.0, 0.0) (the initial
 value), the normal is determined as follows. The direction
 of the normal, up to its sign, is found by fitting a plane
 to the vertices, without regard to how the vertices are
 connected. It is expected that the input data lies
 approximately in the plane; otherwise, projection
 perpendicular to one of the three coordinate axes may
 substantially change the geometry. The sign of the normal is
 chosen so that the sum of the signed areas of all input
 contours is nonnegative (where a CCW contour has positive
 area).

 The supplied normal persists until it is changed by another
 call to gluTessNormal.

 SEE ALSO
 gluTessBeginPolygon, gluTessEndPolygon

 NAME
 gluTessProperty - set a tessellation object property

 C SPECIFICATION
 void gluTessProperty(GLUtesselator* tess,
 GLenum which,
 GLdouble data)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 which Specifies the property to be set. Valid values are
 GLU_TESS_WINDING_RULE, GLU_TESS_BOUNDARY_ONLY,
 GLU_TESS_TOLERANCE.

 data Specifies the value of the indicated property.

 DESCRIPTION
 gluTessProperty is used to control properties stored in a
 tessellation object. These properties affect the way that
 the polygons are interpreted and rendered. The legal values
 for which are as follows:

 GLU_TESS_WINDING_RULE
 Determines which parts of the polygon are on
 the "interior". data may be set to one of
 GLU_TESS_WINDING_ODD,
 GLU_TESS_WINDING_NONZERO,
 GLU_TESS_WINDING_POSITIVE, or
 GLU_TESS_WINDING_NEGATIVE, or
 GLU_TESS_WINDING_ABS_GEQ_TWO.

 To understand how the winding rule works,
 consider that the input contours partition
 the plane into regions. The winding rule
 determines which of these regions are inside
 the polygon.

 For a single contour C, the winding number of
 a point x is simply the signed number of
 revolutions we make around x as we travel
 once around C (where CCW is positive). When
 there are several contours, the individual
 winding numbers are summed. This procedure
 associates a signed integer value with each
 point x in the plane. Note that the winding
 number is the same for all points in a single
 region.

 The winding rule classifies a region as
 "inside" if its winding number belongs to the
 chosen category (odd, nonzero, positive,
 negative, or absolute value of at least two).
 The previous GLU tessellator (prior to GLU
 1.2) used the "odd" rule. The "nonzero" rule
 is another common way to define the interior.
 The other three rules are useful for polygon
 CSG operations.

 GLU_TESS_BOUNDARY_ONLY
 Is a boolean value ("value" should be set to
 GL_TRUE or GL_FALSE). When set to GL_TRUE, a
 set of closed contours separating the polygon
 interior and exterior are returned instead of
 a tessellation. Exterior contours are
 oriented CCW with respect to the normal;
 interior contours are oriented CW. The
 GLU_TESS_BEGIN and GLU_TESS_BEGIN_DATA
 callbacks use the type GL_LINE_LOOP for each
 contour.

 GLU_TESS_TOLERANCE
 Specifies a tolerance for merging features to
 reduce the size of the output. For example,
 two vertices that are very close to each
 other might be replaced by a single vertex.

 The tolerance is multiplied by the largest
 coordinate magnitude of any input vertex;
 this specifies the maximum distance that any
 feature can move as the result of a single
 merge operation. If a single feature takes
 part in several merge operations, the total
 distance moved could be larger.

 Feature merging is completely optional; the
 tolerance is only a hint. The implementation
 is free to merge in some cases and not in
 others, or to never merge features at all.
 The initial tolerance is 0.

 The current implementation merges vertices
 only if they are exactly coincident,
 regardless of the current tolerance. A vertex
 is spliced into an edge only if the
 implementation is unable to distinguish which
 side of the edge the vertex lies on. Two
 edges are merged only when both endpoints are
 identical.

 SEE ALSO
 gluGetTessProperty

 NAME
 gluTessVertex - specify a vertex on a polygon

 C SPECIFICATION
 void gluTessVertex(GLUtesselator* tess,
 GLdouble *location,
 GLvoid* data)

 PARAMETERS
 tess Specifies the tessellation object (created with
 gluNewTess).

 location Specifies the location of the vertex.

 data Specifies an opaque pointer passed back to the
 program with the vertex callback (as specified by
 gluTessCallback).

 DESCRIPTION
 gluTessVertex describes a vertex on a polygon that the
 program defines. Successive gluTessVertex calls describe a
 closed contour. For example, to describe a quadrilateral
 gluTessVertex should be called four times. gluTessVertex
 can only be called between gluTessBeginContour and
 gluTessEndContour.

 data normally points to a structure containing the vertex
 location, as well as other per-vertex attributes such as
 color and normal. This pointer is passed back to the user
 through the GLU_TESS_VERTEX or GLU_TESS_VERTEX_DATA callback
 after tessellation (see the gluTessCallback reference page).

 EXAMPLE
 A quadrilateral with a triangular hole in it can be
 described as follows:

 gluTessBeginPolygon(tobj, NULL);

 gluTessBeginContour(tobj);
 gluTessVertex(tobj, v1, v1);
 gluTessVertex(tobj, v2, v2);
 gluTessVertex(tobj, v3, v3);
 gluTessVertex(tobj, v4, v4);
 gluTessEndContour(tobj);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, v5, v5);
 gluTessVertex(tobj, v6, v6);
 gluTessVertex(tobj, v7, v7);
 gluTessEndContour(tobj); gluTessEndPolygon(tobj);

 NOTES
 It is a common error to use a local variable for location or
 data and store values into it as part of a loop. For
 example: for (i = 0; i < NVERTICES; ++i) {
 GLdouble data[3];
 data[0] = vertex[i][0];
 data[1] = vertex[i][1];
 data[2] = vertex[i][2];
 gluTessVertex(tobj, data, data);
 }

 This doesn’t work. Because the pointers specified by
 location and data might not be dereferenced until
 gluTessEndPolygon is executed, all the vertex coordinates
 but the very last set could be overwritten before
 tessellation begins.

 Two common symptoms of this problem are consists of a single
 point (when a local variable is used for data) and a
 GLU_TESS_NEED_COMBINE_CALLBACK error (when a local variable
 is used for location).

 SEE ALSO
 gluTessBeginPolygon, gluNewTess, gluTessBeginContour,
 gluTessCallback, gluTessProperty, gluTessNormal,
 gluTessEndPolygon

 NAME
 gluUnProject - map window coordinates to object coordinates

 C SPECIFICATION
 GLint gluUnProject(GLdouble winX,
 GLdouble winY,
 GLdouble winZ,
 const GLdouble *model,
 const GLdouble *proj,
 const GLint *view,
 GLdouble* objX,
 GLdouble* objY,
 GLdouble* objZ)

 PARAMETERS
 winX, winY, winZ
 Specify the window coordinates to be mapped.

 model Specifies the modelview matrix (as from a
 glGetDoublev call).

 proj Specifies the projection matrix (as from a
 glGetDoublev call).

 view Specifies the viewport (as from a
 glGetIntegerv call).

 objX, objY, objZ
 Returns the computed object coordinates.

 DESCRIPTION
 gluUnProject maps the specified window coordinates into
 object coordinates using model, proj, and view. The result
 is stored in objX, objY, and objZ. A return value of GL_TRUE
 indicates success; a return value of GL_FALSE indicates
 failure.

 To compute the coordinates (objX, objY, and objZ),
 gluUnProject multiplies the normalized device coordinates by
 the inverse of model*proj as follows:

 | |
 |_________________ |
 () | view[2] - 1 |
 | objX | | |
 | objY | = INV(PM)|_________________ - 1 |
 | | | view[3] |
 | objZ | | 2(winZ) - 1 |
 (W) | |
 (1)

 INV() denotes matrix inversion. W is an unused variable,
 included for consistent matrix notation.

 SEE ALSO
 glGet, gluProject

