NANMVE
gl uBegi nCurve, gluEndCurve - delint a NURBS curve
definition

C SPECI FI CATI ON
voi d gl uBegi nCurve( GLUnurbs* nurb )

voi d gl uEndCurve( G.Unurbs* nurb )

PARAMETERS
nurb Specifies the NURBS object (created with
gl uNewNur bsRenderer) .

DESCRI PTI ON
Use gl uBegi nCurve to mark the begi nning of a NURBS curve
definition. After calling gluBeginCurve, nake one or nore
calls to gl uNurbsCurve to define the attributes of the
curve. Exactly one of the calls to gl uNurbsCurve nust have
a curve type of GL_MAP1_VERTEX 3 or G._MAP1_VERTEX 4. To
mark the end of the NURBS curve definition, cal
gl uEndCur ve

GL evaluators are used to render the NURBS curve as a series
of line segments. Evaluator state is preserved during
rendering with gl PushAttri b(GL_EVAL_BIT) and gl PopAttrib().
See the gl PushAttrib reference page for details on exactly
what state these calls preserve

EXAMPLE
The foll owi ng conmands render a textured NURBS curve with
normal s; texture coordi nates and nornmals are al so specified
as NURBS curves:

gl uBegi nCur ve(nobj);

gl uNur bsCurve(nobj, ..., G._MAP1_TEXTURE_COORD 2);
gl uNur bsCurve(nobj, ..., G._MAP1 NORMNAL);
gl uNur bsCurve(nobj, ..., G._MAP1_VERTEX 4);

gl uUEndCur ve(nobj);
SEE ALSO

gl uBegi nSur f ace, gl uBegi nTri m gl uNewNur bsRender er
gl uNur bsCurve, gl PopAttrib, gl PushAttrib

NANMVE
gl uBegi nPol ygon, gl uEndPol ygon - delimt a pol ygon
description

C SPECI FI CATI ON
voi d gl uBegi nPol ygon( GLUt essel ator* tess )

voi d gl uEndPol ygon( GLUt essel ator* tess )

PARAMETERS



tess Specifies the tessellation object (created with
gl uNewTess) .

DESCRI PTI ON
gl uBegi nPol ygon and gl uEndPol ygon delimt the definition of
a nonconvex polygon. To define such a polygon, first cal
gl uBegi nPol ygon. Then define the contours of the polygon by
calling gluTessVertex for each vertex and gl uNext Contour to
start each new contour. Finally, call gl uEndPolygon to
signal the end of the definition. See the gluTessVertex and
gl uNext Cont our reference pages for nore details.

Once gl uEndPol ygon is called, the polygon is tessell ated,
and the resulting triangles are described through call backs.
See gl uTessCal | back for descriptions of the callback
functions.

NOTES
This command is obsolete and is provided for backward
conpatibility only. Calls to gl uBegi nPol ygon are napped to
gl uTessBegi nPol ygon fol |l owed by gl uTessBegi nContour. Calls
to gl uEndPol ygon are mapped to gl uTessEndCont our foll owed by
gl uTessEndPol ygon.

EXAMPLE
A quadrilateral with a triangular hole in it can be
described like this:

gl uBegi nPol ygon(t obj);

gl uTessVertex(tobj, vi, vl);

gl uTessVertex(tobj, v2, v2);

gl uTessVertex(tobj, v3, v3);

gl uTessVertex(tobj, v4, v4); gl uNext Contour (tobj
GLU_I NTERI OR) ;

gl uTessVertex(tobj, v5, vb5);

gl uTessVertex(tobj, v6, v6);

gl uTessVertex(tobj, v7, v7); gl uEndPol ygon(tobj);

SEE ALSO
gl uNewTess, gl uNext Contour, gluTessCall back, gluTessVertex,
gl uTessBegi nPol ygon, gl uTessBegi nCont our



NANMVE
gl uBegi nSurface, gluEndSurface - delimt a NURBS surface
definition

C SPECI FI CATI ON
voi d gl uBegi nSurface( G.Unurbs* nurb )

voi d gl uEndSurface( G.Unurbs* nurb )

PARAMETERS
nurb Specifies the NURBS object (created with
gl uNewNur bsRenderer) .

DESCRI PTI ON
Use gl uBegi nSurface to mark the begi nning of a NURBS surface
definition. After calling gluBeginSurface, nmake one or nore
calls to gl uNurbsSurface to define the attributes of the
surface. Exactly one of these calls to gl uNurbsSurface nust
have a surface type of G._MAP2_VERTEX 3 or GL_MAP2_VERTEX 4.
To mark the end of the NURBS surface definition, cal
gl uEndSur f ace.

Trimm ng of NURBS surfaces is supported with gl uBeginTrim
gl uPwW Curve, gl uNurbsCurve, and gl uEndTrim See the
gl uBegi nTri m ref erence page for details.

GL evaluators are used to render the NURBS surface as a set
of polygons. Evaluator state is preserved during rendering
with gl PushAttri b(G._EVAL _BIT) and gl PopAttrib(). See the
gl PushAttrib reference page for details on exactly what
state these calls preserve

EXAMPLE
The foll owi ng commands render a textured NURBS surface with
normal s; the texture coordinates and nornmals are al so
descri bed as NURBS surfaces:



gl uBegi nSur f ace( nobj ) ;

gl uNur bsSurface(nobj, ..., G._MAP2_ TEXTURE_COCRD 2);
gl uNur bsSurface(nobj, ..., G._MAP2 NORMNAL);
gl uNur bsSurface(nobj, ..., G._MAP2 VERTEX 4);

gl uEndSur f ace( nobj ) ;

SEE ALSO
gl uBegi nCurve, gl uBegi nTrim gl uNewNur bsRender er,
gl uNur bsCurve, gl uNurbsSurface, gl uPw Curve



NANMVE
gl uBegi nTrim gl uEndTrim - delimt a NURBS trinm ng | oop
definition

C SPECI FI CATI ON
voi d gl uBegi nTri m( GLUnur bs* nurb )

void gl uEndTri m( GLUnur bs* nurb )

PARAMETERS
nurb Specifies the NURBS object (created with
gl uNewNur bsRenderer) .

DESCRI PTI ON
Use gluBeginTrimto mark the beginning of a trimmng |oop,
and gl uEndTrimto mark the end of a trimmng |oop. A
trimming loop is a set of oriented curve segnents (fornmng a
cl osed curve) that define boundaries of a NURBS surface. You
i nclude these triming |loops in the definition of a NURBS
surface, between calls to gluBegi nSurface and gl uEndSurf ace.

The definition for a NURBS surface can contain many tri mm ng
| oops. For exanple, if you wote a definition for a NURBS
surface that resenbled a rectangle with a hole punched out,
the definition would contain two trinm ng | oops. One | oop
woul d define the outer edge of the rectangle; the other
woul d define the hole punched out of the rectangle. The
definitions of each of these trimmng | oops woul d be
bracketed by a gl uBegi nTri n’ gl uEndTri m pair.

The definition of a single closed trimrng | oop can consi st
of multiple curve segnents, each described as a piecew se
i near curve (see gluPw Curve) or as a single NURBS curve
(see gl uNurbsCurve), or as a conbination of both in any
order. The only library calls that can appear in a trimmng
| oop definition (between the calls to gl uBeginTrim and

gl UEndTrim are gl uPwW Curve and gl uNur bsCurve.

The area of the NURBS surface that is displayed is the
region in the domain to the left of the trimmng curve as
the curve paraneter increases. Thus, the retained region of
the NURBS surface is inside a counterclockw se triming |oop
and outside a clockwise trimrng |oop. For the rectangle
nmentioned earlier, the trinmng loop for the outer edge of
the rectangl e runs counterclockw se, while the triming |oop
for the punched-out hole runs clockw se.

If you use nore than one curve to define a single trimmng

| oop, the curve segnents nmust forma closed |oop (that is,

t he endpoi nt of each curve must be the starting point of the
next curve, and the endpoint of the final curve must be the
starting point of the first curve). If the endpoints of the
curve are sufficiently close together but not exactly
coincident, they will be coerced to match. |f the endpoints
are not sufficiently close, an error results (see

gl uNur bsCal | back) .

If atriming |oop definition contains nultiple curves, the
direction of the curves nmust be consistent (that is, the
inside nust be to the left of all of the curves). Nested
trimming | oops are legal as long as the curve orientations
alternate correctly. If trimming curves are self-



i ntersecting, or intersect one another, an error results.

If no trinming information is given for a NURBS surface, the
entire surface is drawn.

EXAMPLE
This code fragnent defines a trimrming | oop that consists of
one piecew se linear curve, and two NURBS curves:

gl uBegi nTri m( nobj ) ;

gl uPw Curve(..., GLU MAP1_TRI M 2);

gl uNur bsCurve(..., GLU_MAP1_TRI M 2);

gl uNur bsCurve(..., GLU MAP1_TRI M 3); gl uEndTri m(nobj);
SEE ALSO

gl uBegi nSur f ace, gl uNewNur bsRender er, gl uNur bsCal | back,
gl uNur bsCurve, gl uPw Curve

NAME
gl uBui | d1DM praps - builds a 1-D mi pmap

C SPECI FI CATI ON
GLint gl uBuil d1DM prmaps( G.enum t ar get,
GLi nt internal Fornat,
GLsi zei width,
G_.enum f or mat,
GLenum t ype,
const void *data )

PARANVETERS
t ar get Specifies the target texture. Mist be
GL_TEXTURE_1D.

i nternal Format Requests the internal storage format of the
texture inmage. Mist be 1, 2, 3, or 4 or one
of the followi ng symbolic constants:
GL_ALPHA, GL_ALPHA4, GL_ALPHA8, G._ALPHA12,
GL_ALPHA16, GL_LUM NANCE, G._LUM NANCE4,
GL_LUM NANCE8, GL_LUM NANCE12,

GL_LUM NANCE16, G._LUM NANCE_ALPHA,



GL_LUM NANCE4_ALPHA4, GL_LUM NANCE6_ALPHA2,
GL_LUM NANCE8S_ALPHAS, GL_LUM NANCE12 ALPHA4,
GL_LUM NANCE12_ALPHA12,

GL_LUM NANCE16_ALPHA16, GL_I NTENSI TY,

GL_I NTENSI TY4, GL_I NTENSI T8,

GL_I NTENSI TY12, GL_I NTENSI TY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGBS,
GL_RGB10, GL_RGB12, GL_RGB16, GL_RGBA,
GL_RGBA2, GL_RGBA4, GL_RGB5_Al, GL_RGBAS,
GL_RGB10_A2, GL_RGBA12 or GL_RGBA16.

wi dt h Specifies the width, in pixels, of the
texture inage.

f or mat Specifies the format of the pixel data.
Must be one of GL_COLOR_|I NDEX, GL_RED,
GL_GREEN, G._BLUE, G._ALPHA, G._RGB
GL_RGBA, G._LUM NANCE, and
GL_LUM NANCE_ALPHA

type Specifies the data type for data. Mist be
one of GL_UNSI GNED_BYTE, G._BYTE, G._BI TVAP,
GL_UNSI GNED_SHORT, GL_SHORT
GL_UNSI GNED_| NT, GL_I NT, or G__FLOAT.

dat a Specifies a pointer to the inage data in
menory.

DESCRI PTI ON
gl uBui | d1DM praps builds a series of prefiltered 1-D texture
maps of decreasing resolutions called a mpmap. This is used
for the antialiasing of texture mapped prinmitives.

A return value of 0 indicates success, otherwise a GLU error
code is returned (see gluErrorString).

Initially, the width of data is checked to see if it is a
power of two. If not, a copy of data (not data) is scaled up
or down to the nearest power of two. This copy will be used
for subsequent mi prmappi ng operations described below (If
width is exactly between powers of 2, then the copy of data
will scale upwards.) For exanple, if width is 57 then a
copy of data will scale up to 64 before m pmappi ng takes

pl ace.

Then, proxy textures (see gl Texl nagelD) are used to
determne if the inplenentation can fit the requested
texture. If not, width is continually halved until it fits.

Next, a series of nmpmap levels is built by decimating a
copy of data in half until size 1 is reached. At each |evel,
each texel in the halved m pnmap |l evel is an average of the
corresponding two texels in the larger mpmap | evel.

gl Texl agelD is called to | oad each of these mipmap |evels.
Level 0 is a copy of data. The highest level is [og2(w dth).
For exanple, if width is 64 and the inplenentation can store
a texture of this size, the following nmpmap |levels are
built: 64x1, 32x1, 16x1, 8x1, 4x1, 2x1 and 1x1. These
correspond to levels O through 6, respectively.

See the gl Texl magelD reference page for a description of the
acceptabl e values for type. See the gl DrawPi xel s reference
page for a description of the acceptable values for data.



NOTES
Note that there is no direct way of querying the naximm
I evel . This can be derived indirectly via
gl Get TexLevel Paraneter. First, query for the width actually
used at level 0. (The width nmay not be equal to width since
proxy textures m ght have scaled it to fit the
i npl enentation.) Then the maxi num |l evel can be derived from
the formula | og2(wi dth).

ERRORS
GLU_ I NVALI D VALUE is returned if width is < 1.

GLU INVALID ENUM is returned if internal Fornat, format or
type are not |egal.

SEE ALSO
gl DrawPi xel s, gl Texl magelD, gl Texl mage2D, gl uBuil d2DM praps,
gl uError String, gluScal el nage



NAVE

gl uBui | d2DM prmaps - builds a 2-D m pmap

C SPECI FI CATI ON

GLint gl uBui | d2DM prmaps( GLenum t ar get ,

PARANVETERS
t ar get

i nt er nal For mat

wi dth, hei ght

f or mat

type

dat a

DESCRI PTI ON

GLi nt internal Fornmat,
GLsi zei wi dth,

GLsi zei hei ght,
GLenum f or mat
GLenum t ype,

const void *data )

Specifies the target texture. Mist be
G._TEXTURE_2D.

Requests the internal storage format of the
texture inage. Mist be 1, 2, 3, or 4 or one
of the follow ng synbolic constants:
GL_ALPHA, GL_ALPHA4, GL_ALPHA8, G._ALPHA12,
GL_ALPHA16, GL_LUM NANCE, GL_LUM NANCE4,
GL_LUM NANCES, GL_LUM NANCE12,

GL_LUM NANCE16, G._LUM NANCE ALPHA,

GL_LUM NANCE4_ALPHA4, GL_LUM NANCE6_ALPHA2,
GL_LUM NANCES8_ALPHA8, GL_LUM NANCE12_ALPHA4,
GL_LUM NANCE12_ALPHA12,

GL_LUM NANCE16_ALPHA16, GL_| NTENSI TY,

GL_I NTENSI TY4, GL_I NTENSI TY8,

GL_I NTENSI TY12, GL_I NTENSI TY16, G._RGB,
G._R3_G3_ B2, GL_RGB4, GL_RGB5, G._ RGBS,
GL_RGB10, GL_RGB12, G._RGB16, GL_RGBA,
GL_RGBA2, GL_RGBA4, GL_RGB5_Al, G._RGBAS,
GL_RGB10_A2, GL_RGBA12 or G._RGBAIG.

Specifies the width and height,
respectively, in pixels of the texture
i mage.

Specifies the format of the pixel data.
Must be one of: G._COLOR | NDEX, G._RED,
GL_GREEN, G__BLUE, G__ALPHA, GL_RGB,
GL_RGBA, G._LUM NANCE, and

GL_LUM NANCE_ALPHA,

Specifies the data type for data. Mist be
one of: GL_UNSI GNED BYTE, GL_BYTE,

GL_BI TMAP, GL_UNSI GNED_SHORT, GL_SHORT,
GL_UNSI GNED_I NT, GL_I NT, or GL_FLOAT.

Specifies a pointer to the inage data in
nmenory.

gl uBui | d2DM praps builds a series of prefiltered 2-D texture
maps of decreasing resolutions called a mpmap. This is used
for the antialiasing of texture nmapped primtives.

A return value of 0 indicates success, otherwise a G.U error
code is returned (see gluErrorString).

Initially, the width and hei ght of data are checked to see



if they are a power of two. If not, a copy of data (not
data), is scaled up or down to the nearest power of two.
This copy will be used for subsequent m prmapping operations
described below. (If width or height is exactly between
powers of 2, then the copy of data will scale upwards.) For
exanple, if width is 57 and height is 23 then a copy of data
will scale up to 64 and down to 16, respectively, before

nm prmappi ng takes pl ace.

Then, proxy textures (see gl Texl nage2D) are used to
determne if the inplenentation can fit the requested
texture. If not, both dinmensions are continually halved
until it fits. (If the OpenG version is <= 1.0, both

maxi mum t exture di nensions are clanped to the val ue returned
by gl Getintegerv with the argument GL_MAX_TEXTURE_SI ZE.)

Next, a series of mipmap levels is built by decimting a
copy of data in half along both dinensions until size 1x1 is
reached. At each level, each texel in the halved m pnap

I evel is an average of the corresponding four texels in the
larger m pmap level. (In the case of rectangul ar inmages, the
decimation will ultimately reach an Nx 1 or 1 x N
configuration. Here, two texels are averaged instead.)

gl Texl mage2D is called to | oad each of these m pmap | evels.
Level 0 is a copy of data. The highest level is

| og2(max(w dt h, height)). For exanple, if width is 64 and
height is 16 and the inplenmentation can store a texture of
this size, the following mpmap |evels are built: 64x16,
32x8, 16x4, 8x2, 4x1, 2x1 and 1x1. These correspond to
levels O through 6, respectively.

See the gl Texl magelD reference page for a description of the
acceptabl e values for format. See the gl DrawPi xel s reference
page for a description of the acceptable values for type.

NOTES
Note that there is no direct way of querying the maxi num
I evel . This can be derived indirectly via
gl Get TexLevel Paraneter. First, query for the width & height
actually used at level 0. (The width & height nay not be
equal to width & height respectively since proxy textures
nm ght have scaled themto fit the inplenentation.) Then the
maxi mum | evel can be derived fromthe fornmula
| og2( max(w dt h, hei ght)).

ERRORS
GLU INVALID VALUE is returned if width or height are < 1

GLU INVALID ENUMis returned if internal Format, fornat or
type are not |egal

SEE ALSO
gl DrawPi xel s, gl Texl nagelD, gl Texl mage2D, gl uBui | d1DM praps,
gl uErrorString, gluScal el mage



NAVE

gluCylinder - draw a cylinder

C SPECI FI CATI ON

voi d gl uCylinder( G.Uguadric* quad,
GLdoubl e base,
GLdoubl e top,
GLdoubl e hei ght,
GLint slices,
GLint stacks )

PARAMETERS
guad Specifies the quadrics object (created with
gl uNewQuadric).
base Specifies the radius of the cylinder at z = 0.
top Specifies the radius of the cylinder at z = height.

hei ght Specifies the height of the cylinder

slices Specifies the nunber of subdivisions around the z
axis.

stacks Specifies the number of subdivisions along the z
axi s.

DESCRI PTI ON

gluCylinder draws a cylinder oriented along the z axis. The
base of the cylinder is placed at z = 0, and the top at
z=height. Like a sphere, a cylinder is subdivided around the
z axis into slices, and along the z axis into stacks.

Note that if top is set to 0.0, this routine generates a
cone.



If the orientation is set to GLGU QUTSIDE (wth

gl uQuadri cOrientation), then any generated nornals point
away fromthe z axis. Qtherwi se, they point toward the z
axis.

If texturing is turned on (with gluQuadricTexture), then
texture coordinates are generated so that t ranges linearly
from0.0 at z =0to 1.0 at z = height, and s ranges from
0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y
axis, to 0.75 at the -x axis, and back to 1.0 at the +y
axis.

SEE ALSO
gl ubi sk, gl uNewQuadric, gluPartial Di sk, gluQuadricTexture,
gl uSphere



NANMVE
gl uDel et eNur bsRenderer - destroy a NURBS obj ect

C SPECI FI CATI ON
voi d gl uDel et eNur bsRender er (  GLUnur bs* nurb )

PARAMETERS
nurb Specifies the NURBS object to be destroyed.

DESCRI PTI ON
gl uDel et eNur bsRender er destroys the NURBS object (which was
created wi th gl uNewNur bsRenderer) and frees any menory it
uses. Once gl uDel et eNur bsRenderer has been called, nurb
cannot be used agai n.

SEE ALSO
gl uNewNur bsRender er

NANMVE
gl ubDel eteQuadric - destroy a quadrics object

C SPECI FI CATI ON
voi d gl uDel et eQuadri c( G.Uquadric* quad )

PARANVETERS
guad Specifies the quadrics object to be destroyed.



DESCRI PTI ON
gl uDel et eQuadri c destroys the quadrics object (created with
gl uNewQuadric) and frees any nmenory it uses. Once
gl ubDel et eQuadri c has been call ed, quad cannot be used again.

SEE ALSO
gl uNewQuadri c

NANMVE
gl ubDel et eTess - destroy a tessellation object

C SPECI FI CATI ON
voi d gl uDel eteTess( GLUtesselator* tess )

PARAMETERS
tess Specifies the tessellation object to destroy.

DESCRI PTI ON
gl uDel et eTess destroys the indicated tessellation object
(whi ch was created with gl uNewTess) and frees any nenory
that it used.

SEE ALSO
gl uBegi nPol ygon, gl uNewTess, gl uTessCal | back



NAVE

gl ubi sk - draw a di sk

C SPECI FI CATI ON

voi d gl uDi sk( G.Uguadric* quad,
GLdoubl e i nner,
GLdoubl e outer,
Gint slices,
GLint | oops )

PARAMETERS

guad Speci fies the quadrics object (created with
gl uNewQuadric).

i nner Specifies the inner radius of the disk (may be 0).
out er Specifies the outer radius of the disk

slices Specifies the number of subdivisions around the z
axi s.

| oops Speci fies the nunber of concentric rings about the
origin into which the disk is subdivided.

DESCRI PTI ON

gl ubDi sk renders a disk on the z = 0 plane. The disk has a
radi us of outer, and contains a concentric circular hole
with a radius of inner. If inner is 0, then no hole is
generated. The disk is subdivided around the z axis into
slices (like pizza slices), and also about the z axis into
rings (as specified by slices and | oops, respectively).

Wth respect to orientation, the +z side of the disk is



considered to be "outside" (see gluQuadricOrientation).
This nmeans that if the orientation is set to GU _QUTSI DE,
then any normal s generated point along the +z axis.

O herwi se, they point along the -z axis.

If texturing has been turned on (with gluQuadricTexture),
texture coordinates are generated linearly such that where
r=outer, the value at (r, 0, 0) is (1, 0.5), at (0, r, 0) it
is (0.5, 1), at (-r, 0, 0) it is (0, 0.5), and at (0, -r, 0)
it is (0.5 0).

SEE ALSO
gl uCyli nder, gl uNewQuadric, gluPartial D sk,
gl uQuadricOrientation, gluQuadricTexture, gluSphere

NAMVE
gluErrorString - produce an error string froma G. or GLU
error code

C SPECI FI CATI ON
const GLubyte * gluErrorString( GLenumerror )

PARAVETERS
error Specifies a G or G.U error code.

DESCRI PTI ON
gluErrorString produces an error string froma G or GU
error code. The string is in 1SO Latin 1 format. For
exanpl e, gluErrorString(G._OUT_OF MEMORY) returns the string
out of menory.

The standard GLU error codes are GLU_I NVALI D ENUM

GLU_I NVALI D_VALUE, and GLU OQUT_OF MEMORY. Certain other G.U
functions can return specialized error codes through

cal | backs. See the gl GetError reference page for the Iist
of GL error codes.

SEE ALSO
gl Get Error, gl uNurbscCall back, gl uQuadricCall back,
gl uTessCal | back



NANME
gl uGet Nur bsProperty - get a NURBS property

C SPECI FI CATI ON
voi d gl uGet Nur bsProperty( G.Unurbs* nurb,
GLenum property,
G.float* data )

PARAMVETERS
nurb Speci fies the NURBS object (created with
gl uNewNur bsRender er) .

property Specifies the property whose value is to be
fetched. Valid values are GLU CULLI NG
GLU_SAMPLI NG_TOLERANCE, GLU_DI SPLAY_MODE,
GLU_AUTO LOAD MATRI X, GLU_PARAMETRI C_TOLERANCE,
GLU_SAMPLI NG_METHOD, GLU_U STEP, and GLU_V_STEP.

dat a Specifies a pointer to the location into which the
val ue of the named property is witten.

DESCRI PTI ON
gl uGet NurbsProperty retrieves properties stored in a NURBS
object. These properties affect the way that NURBS curves
and surfaces are rendered. See the gl uNurbsProperty
reference page for infornmation about what the properties are
and what they do.

SEE ALSO
gl uNewNur bsRender er, gl uNur bsProperty

NANMVE
gluGetString - return a string describing the GLU version or
GLU ext ensi ons

C SPECI FI CATI ON
const GLubyte * gluGetString( G.enum name )



PARAMETERS
nane Specifies a synbolic constant, one of GU VERSION, or
GLU_EXTENSI ONS

DESCRI PTI ON
gluGetString returns a pointer to a static string describing
the GLU version or the GLU extensions that are supported.

The version nunber is one of the follow ng fornmns:

maj or _nunber . m nor _nunber
maj or _nunber . m nor _nunber . rel ease_nunber .

The version string is of the followi ng form
ver si on nunber <space>vendor - specific information

Vendor-specific information is optional. Its format and
contents depend on the inplenentation

The standard GLU contains a basic set of features and
capabilities. |If a conpany or group of conpanies wish to
support other features, these may be included as extensions
to the GLU. If nane is GLU EXTENSI ONS, then gluGetString
returns a space-separated |ist of nanes of supported GLU
extensions. (Extension nanes never contain spaces.)

Al'l strings are null-term nated.

NOTES
gluGetString only returns informati on about G.U ext ensi ons.
Call glGetString to get a list of GL extensions.

gluGetString is an initialization routine. Calling it after
a gl NewLi st results in undefined behavior.

ERRORS
NULL is returned if nane is not GLU VERSI ON or
GLU_EXTENSI ONS

SEE ALSO
gl Get String



NANMVE
gl uGet TessProperty - get a tessellation object property

C SPECI FI CATI ON
voi d gl uGet TessProperty( GLUt essel ator* tess,
GLenum whi ch,
GLdoubl e* data )

PARAMETERS
tess Specifies the tessellation object (created with

gl uNewTess) .

which Specifies the property whose value is to be fetched.
Valid val ues are GLU_TESS W NDI NG_RULE,
GLU_TESS_BOUNDARY_ONLY, and GLU TESS TOLERANCE.

dat a Specifies a pointer to the location into which the
val ue of the named property is witten.

DESCRI PTI ON
gl uGet TessProperty retrieves properties stored in a
tessellation object. These properties affect the way that
tessellation objects are interpreted and rendered. See the
gl uTessProperty reference page for information about the
properties and what they do.

SEE ALSO
gl uNewTess, gl uTessProperty



NANMVE
gl uLoadSanpl i ngvatrices - | oad NURBS sampling and culling
matrices

C SPECI FI CATI ON
voi d gl uLoadSanpl i nghatri ces( G.Unurbs* nurb,
const GLfl oat *nodel,
const GLfloat *perspective,
const GLint *view )

PARAMETERS
nurb Speci fies the NURBS object (created with
gl uNewNur bsRenderer) .
nodel Specifies a nodelview matrix (as froma

gl GetFloatv call).

perspective Specifies a projection matrix (as froma
gl GetFl oatv call).

Vi ew Specifies a viewport (as froma gl Getlntegerv
call).

DESCRI PTI ON
gl uLoadSanpl i ngMatri ces uses nodel, perspective, and view to
reconmpute the sanmpling and culling matrices stored in nurb.
The sanpling matrix determi nes how finely a NURBS curve or
surface must be tessellated to satisfy the sanpling
tol erance (as determ ned by the GLU SAMPLI NG TOLERANCE
property). The culling matrix is used in deciding if a
NURBS curve or surface should be culled before rendering
(when the GLU CULLI NG property is turned on).

gl uLoadSanpl i ngMatrices is necessary only if the
GLU_AUTO LOAD MATRI X property is turned off (see

gl uNur bsProperty). Although it can be convenient to | eave
the GLU AUTO LOAD MATRI X property turned on, there can be a
per formance penalty for doing so. (Around trip to the G
server is needed to fetch the current values of the

nodel view matri x, projection matrix, and viewport.)

SEE ALSO
gl uGet Nur bsProperty, gl uNewNur bsRenderer, gl uNurbsProperty



NANVE
gl uLookAt - define a view ng transformation

C SPECI FI CATI ON

voi d gl uLookAt ( GLdoubl e eyeX,
GLdoubl e eyeY,
GLdoubl e eyeZ,
GLdoubl e center X,
GLdoubl e centerY,
GLdoubl e center Z,
GLdoubl e upX,
GLdoubl e upY,
GLdoubl e upz )

PARAVETERS
eyeX, eyeY, eyeZ
Specifies the position of the eye point.

center X, centerY, centerZ
Specifies the position of the reference
poi nt .

upX, upY, upZ Specifies the direction of the up vector

DESCRI PTI ON
gl uLookAt creates a viewing matrix derived froman eye
point, a reference point indicating the center of the scene,
and an UP vector.

The matrix maps the reference point to the negative z axis
and the eye point to the origin. Wen a typical projection
matrix is used, the center of the scene therefore maps to
the center of the viewport. Similarly, the direction

descri bed by the UP vector projected onto the view ng pl ane
is mapped to the positive y axis so that it points upward in
the viewport. The UP vector nust not be parallel to the
line of sight fromthe eye point to the reference point.

Let
( centerX - eyeX )
F= |
| centerY - eyeY |
( centerz - eyeZ )

Let UP be the vector (upX upY,upZ).

Then normmlize as follows: f =
|| Fl

U =
|1 UPl |

Finally, let s =f x U”, and u =s x f.

Mis then constructed as foll ows:



s[ 0] 2
ufo]  uf1]  u[Z2]
0

I
M= |

= O [eoNe)

)
I
I
I
I

and gl uLookAt is equivalent to glMiltMatrixf(M;
gl Transl ated (-eyex, -eyey, -eyez);

SEE ALSO
gl Frustum gl uPerspective

NANMVE
gl uNewNur bsRenderer - create a NURBS obj ect

C SPECI FI CATI ON
GLUnur bs* gl uNewNur bsRenderer ( void )

DESCRI PTI ON
gl uNewNur bsRenderer creates and returns a pointer to a new
NURBS object. This object nust be referred to when calling
NURBS rendering and control functions. A return value of 0O
neans that there is not enough nenory to allocate the
obj ect ..

SEE ALSO
gl uBegi nCurve, gl uBegi nSurface, gl uBeginTrim
gl uDel et eNur bsRender er, gl uNurbsCal | back, gl uNurbsProperty



NANMVE
gl uNewQuadric - create a quadrics object

C SPECI FI CATI ON
GLUguadri c* gl uNewQuadric( void )

DESCRI PTI ON
gl uNewQuadric creates and returns a pointer to a new
qguadrics object. This object nust be referred to when
calling quadrics rendering and control functions. A return
val ue of O nmeans that there is not enough nmenory to allocate
t he obj ect.

SEE ALSO
gl uCylinder, gluDel eteQuadric, glubisk, gluPartial D sk,
gl uQuadri cCal | back, gl uQuadricDrawStyle, gluQuadricNornals,
gl uQuadricOrientation, gluQuadricTexture, gluSphere



NANVE
gl uNewTess - create a tessellation object

C SPECI FI CATI ON
GLU essel ator* gl uNewTess( void )

DESCRI PTI ON
gl uNewTess creates and returns a pointer to a new
tessellation object. This object nmust be referred to when
calling tessellation functions. A return value of 0 means
that there is not enough nmenory to allocate the object.

SEE ALSO
gl uTessBegi nPol ygon, gl uDel et eTess, gl uTessCal | back



NANMVE
gl uNext Contour - mark the begi nning of another contour

C SPECI FI CATI ON
voi d gl uNext Contour ( G.Ut essel ator* tess,
GLenum type )

PARAMETERS
tess Specifies the tessellation object (created with
gl uNewTess) .

type Specifies the type of the contour being defined. Valid
val ues are GLU EXTERI OR, GLU I NTERI OR, GLU_UNKNOVWW,
GLU_CCW and GLU CwW

DESCRI PTI ON
gl uNext Contour is used in describing polygons with nultiple
contours. After the first contour has been described through
a series of gluTessVertex calls, a gl uNext Contour cal
i ndicates that the previous contour is conplete and that the
next contour is about to begin. Another series of
gluTessVertex calls is then used to describe the new
contour. This process can be repeated until all contours
have been descri bed.

type defines what type of contour follows. The Iega
contour types are as follows:

GLU _EXTERI OR An exterior contour defines an exterior
boundary of the polygon

GLU I NTERI OR An interior contour defines an interior
boundary of the polygon (such as a hole).

GLU_UNKNOMN An unknown contour is analyzed by the
library to determne if it is interior or
exterior.

G.uU_ccw

GuU Ccw The first GLU CCWor G.U_CW contour

defined is considered to be exterior. All
ot her contours are considered to be
exterior if they are oriented in the sane
direction (clockwi se or countercl ockw se)
as the first contour, and interior if they
are not.

If one contour is of type GLU CCWor G.U CW then al
contours nust be of the same type (if they are not, then al
GLU CCWand GLU CWcontours wi Il be changed to GLU UNKNOM) .

Note that there is no real difference between the GLU CCW
and GLU_CW contour types.



Before the first contour is described, gluNextContour can be
called to define the type of the first contour. |If

gl uNext Contour is not called before the first contour, then
the first contour is marked GLU EXTERI OR

This command is obsolete and is provided for backward
conpatibility only. Calls to gl uNextContour are mapped to
gl uTessEndCont our foll owed by gl uTessBegi nCont our.

EXAMPLE

A quadrilateral with a triangular hole in it can be
descri bed as foll ows:

gl uBegi nPol ygon(tobj);

gl uTessVertex(tobj, vi, vi);

gl uTessVertex(tobj, v2, v2);

gl uTessVertex(tobj, v3, v3);

gl uTessVertex(tobj, v4, v4); gl uNext Contour(tobj
GLU I NTERI OR) ;

gl uTessVertex(tobj, v5, vb5);

gl uTessVertex(tobj, v6, v6);

gl uTessVertex(tobj, v7, v7); gl uEndPol ygon(tobj);

SEE ALSO

gl uBegi nPol ygon, gl uNewTess, gl uTessCal |l back, gluTessVertex,
gl uTessBegi nCont our

gl uNur bsCal | back - define a call back for a NURBS object

C SPECI FI CATI ON

voi d gl uNurbsCal | back( G.Unurbs* nurb,
GLenum whi ch,
GLvoid (*Cal | BackFunc) ( )

PARAMETERS

nurb Speci fies the NURBS object (created with
gl uNewNur bsRenderer) .
whi ch Specifies the call back being defined. Valid

val ues are G_LU NURBS BEGQ N_EXT,
GLU_NURBS_VERTEX_EXT, GLU_NORMAL_EXT,



GLU_NURBS_COLOR_EXT,
GLU_NURBS_TEXTURE_COORD EXT, GLU END_EXT,
GLU_NURBS_BEG N_DATA_EXT,
GLU_NURBS_VERTEX_DATA_EXT,
GLU_NORMAL_DATA EXT, GLU_NURBS_COLOR_DATA_EXT,
GLU_NURBS_TEXTURE_COORD DATA_EXT,

GLU_END _DATA EXT, and GLU ERROR.

Cal | BackFunc Specifies the function that the call back
calls.

DESCRI PTI ON
gl uNur bsCal | back is used to define a callback to be used by
a NURBS object. |If the specified callback is already
defined, then it is replaced. |If CallBackFunc is NULL, then
this callback will not get invoked and the related data, if
any, will be lost.

Except the error callback, these call backs are used by NURBS
tessellator (when GLU NURBS _MODE EXT is set to be

GLU _NURBS_TESSELLATOR EXT) to return back the openG. pol ygon
primtives resulted fromthe tessellation. Note that there
are two versions of each callback: one with a user data

poi nter and one without. If both versions for a particular
cal | back are specified then the callback with the user data
pointer will be used. Note that "userData" is a copy of the
poi nter that was specified at the last call to

gl uNur bsCal | backDat aEXT.

The error call back function is effective no matter which

val ue that GLU NURBS_MODE_EXT is set to. Al other callback
functions are effective only when GLU NURBS_MODE _EXT is set
to GLU NURBS_TESSELLATOR EXT.

The | egal call backs are as foll ows:

GLU_NURBS_BEG N_EXT
The begin call back indicates the start of a
primtive. The function takes a single argunent of
type GLenum which can be one of G._LI NES,
G._LINE_STRIPS, G._TRI ANGLE_FAN
G__TRI ANGLE_STRI P, GL_TRI ANGLES, or G._QUAD STRI P.
The default begin callback function is NULL. The
function prototype for this callback |ooks |iKke:
void begin ( GLenumtype );

GLU_NURBS_BEGQ N_DATA_EXT
The sane as the GLU NURBS BEG N _EXT cal | back
except that it takes an additional pointer
argunent. This pointer is a copy of the pointer
that was specified at the last call to
gl uNur bsCal | backDat aEXT. The default call back
function is NULL. The function prototype for this
cal | back function | ooks like:
voi d begi nData (G.enum type, void *userData);

GLU_NURBS_VERTEX_EXT
The vertex call back indicates a vertex of the
primtive. The coordi nates of the vertex are
stored in the paraneter "vertex". Al the
generated vertices have dinension 3, that is,
honbgeneous coordi nates have been transforned into
affine coordi nates. The default vertex call back
function is NULL. The function prototype for this
cal I back function |ooks Iike:
void vertex ( G.float *vertex );



GLU_NURBS_VERTEX_DATA_EXT
The sane as the GLU _NURBS_VERTEX EXT cal | back
except that it takes an additional pointer
argunent. This pointer is a copy of the pointer
that was specified at the last call to
gl uNur bsCal | backDat aEXT. The default call back
function is NULL. The function prototype for this
cal I back function | ooks Iike:
void vertexData ( G.float *vertex, void *userData

)

GLU_NORMAL_EXT
The normal callback is invoked as the vertex
normal is generated. The conponents of the nornma
are stored in the paraneter "normal". In the case
of a NURBS curve, the callback function is
ef fective only when the user provides a nornmal nap
(GL_MAP1 _NORMAL). In the case of a NURBS surface
if a normal map (GL_MAP2_NORMAL) is provided, then
the generated normal is computed fromthe nornal
map. |If a normal nap is not provided then a
surface normal is conputed in a nanner simlar to
that described for evaluators when G._AUTO NORNMAL
is enabled. The default normal callback function
is NULL. The function prototype for this callback
function | ooks like:
void normal ( G.float *normal );

GLU_NORVAL_DATA_EXT
The sane as the GLU NURBS NORMAL EXT cal | back
except that it takes an additional pointer
argunent. This pointer is a copy of the pointer
that was specified at the last call to
gl uNur bsCal | backDat aEXT. The default call back
function is NULL. The function prototype for this
cal I back function |ooks Iike:
void nornal Data ( G.float *nornmal, void *userData

)

GLU_NURBS_COLOR_EXT
The col or callback is invoked as the color of a
vertex is generated. The conponents of the col or
are stored in the paraneter "color". This
cal Il back is effective only when the user provides
a color map (GL_MAP1 COLOR 4 or GL_MAP2 COLOR 4).
"color" contains four components: R G B, A The
default col or callback function is NULL. The
prototype for this callback function |ooks like:
void color ( Gfloat *color );

GLU_NURBS_COLOR _DATA EXT
The sane as the GLU NURBS COLOR _EXT cal | back
except that it takes an additional pointer
argument. This pointer is a copy of the pointer
that was specified at the last call to
gl uNur bsCal | backDat aEXT. The default call back
function is NULL. The function prototype for this
cal I back function | ooks Iike:
voi d colorData ( G.float *color, void *userData );

GLU_NURBS_TEXTURE_COORD_EXT
The texture callback is invoked as the texture
coordi nates of a vertex are generated. These
coordi nates are stored in the paraneter
"texCoord". The nunber of texture coordi nates can



be 1, 2, 3, or 4 depending on which type of
texture map is specified (GL_MAP* TEXTURE COORD 1,
GL_MAP* TEXTURE_COORD 2, GL_MAP* TEXTURE_COORD 3,
GL_MAP* TEXTURE_COORD 4 where * can be either 1 or
2). If no texture map is specified, this callback
function will not be called. The default texture
cal I back function is NULL. The function prototype
for this callback function | ooks |ike:

void texCoord ( G.float *texCoord );

GLU_NURBS_TEXTURE_COCRD_DATA_EXT
The sane as the GLU NURBS_TEXTURE COCRD EXT
cal | back except that it takes an additiona
poi nter argunent. This pointer is a copy of the
poi nter that was specified at the last call to
gl uNur bsCal | backDat aEXT. The default call back
function is NULL. The function prototype for this
cal I back function | ooks Iike:
voi d texCoordData (G.fl oat *texCoord, void
*user Dat a) ;

GLU_END_EXT
The end cal Il back is invoked at the end of a
primtive. The default end call back function is
NULL. The function prototype for this call back
function | ooks |ike:
void end ( void );

GLU_END_DATA EXT
The sane as the GLU NURBS TEXTURE COCRD EXT
cal | back except that it takes an additiona
poi nter argunment. This pointer is a copy of the
poi nter that was specified at the last call to
gl uNur bsCal | backDat aEXT. The default call back
function is NULL. The function prototype for this
cal I back function |ooks Iike:
void endData ( void *userData );

GLU ERROR The error function is called when an error is
encountered. |Its single argunment is of type
GLenum and it indicates the specific error that
occurred. There are 37 errors unique to NURBS
named GLU _NURBS_ERRORL t hrough GLU NURBS_ERROR37.
Character strings describing these errors can be
retrieved with gl uErrorString.

SEE ALSO
gl uError String, gl uNewNur bsRenderer

NAME
gl uNur bsCal | backDat aEXT - set a user data pointer



C SPECI FI CATI ON
voi d gl uNur bsCal | backDat aEXT( GLUnur bs* nurb,
GLvoi d* userData )

PARAMETERS
nurb Speci fies the NURBS object (created with
gl uNewNur bsRender er) .

userData Specifies a pointer to the user’s data.

DESCRI PTI ON
gl uNur bsCal | backDat aEXT is used to pass a pointer to the
application’s data to NURBS tessellator. A copy of this
pointer will be passed by the tessellator in the NURBS
cal I back functions (set by gl uNurbsCal | back).

SEE ALSO
gl uNur bsCal | back

NAME
gl uNurbsCurve - define the shape of a NURBS curve

C SPECI FI CATI ON

voi d gl uNurbsCurve( GLUnurbs* nurb,
GLi nt knot Count
G.fl oat *knots,
GLint stride,
GL.float *control,
GLi nt order,
GLenum type )

PARAVETERS
nurb Speci fies the NURBS object (created with



gl uNewNur bsRender er) .

knot Count Specifies the nunber of knots in knots.
knot Count equal s the nunber of control points
pl us the order.

knot s Specifies an array of knot Count nondecreasi ng
knot val ues.

stride Specifies the offset (as a nunber of single-
precision floating-point val ues) between
successi ve curve control points.

control Specifies a pointer to an array of control
poi nts. The coordi nates nust agree with type,
speci fied bel ow.

or der Specifies the order of the NURBS curve. order
equal s degree + 1, hence a cubic curve has an
order of 4.

type Specifies the type of the curve. If this curve is
defined within a gl uBegi nCurve/ gl uEndCurve pair
then the type can be any of the valid one-
di mensi onal eval uator types (such as
GL_MAP1_VERTEX_3 or GL_MAP1_COLOR 4). Between a
gl uBegi nTri m gl UEndTrim pair, the only valid
types are GLU_ MAP1_TRIM 2 and GLU_MAP1_TRI M 3

DESCRI PTI ON
Use gl uNurbsCurve to describe a NURBS curve.

VWhen gl uNur bsCurve appears between a

gl uBegi nCurve/ gl uEndCurve pair, it is used to describe a
curve to be rendered. Positional, texture, and col or

coordi nates are associ ated by presenting each as a separate
gl uNur bsCurve between a gl uBegi nCurve/ gl uEndCurve pair. No
nore than one call to gl uNurbsCurve for each of color
position, and texture data can be nmade within a single

gl uBegi nCur ve/ gl uEndCurve pair. Exactly one call mnust be
made to describe the position of the curve (a type of
GL_MAP1_VERTEX_ 3 or G._MAP1_VERTEX 4).

When gl uNur bsCurve appears between a gl uBegi nTri m gl uEndTri m
pair, it is used to describe a trinmng curve on a NURBS
surface. If type is GLGU MAP1L TRIM 2, then it describes a
curve in two-dinensional (u and v) paraneter space. If it is
GLU MAP1 TRIM 3, then it describes a curve in two-

di mensi onal honogeneous (u, v, and w) paranmeter space. See
t he gl uBegi nTri m reference page for nore discussion about
trimmng curves.

EXAMPLE
The foll owi ng commands render a textured NURBS curve with
nor mal s:

gl uBegi nCur ve( nobj ) ;

gl uNur bsCurve(nobj, ..., G._MAP1 TEXTURE COORD 2);
gl uNur bsCurve(nobj, ..., G._MAP1 NORMNAL);
gl uNur bsCurve(nobj, ..., G._MAP1_VERTEX 4);

gl uEndCur ve( nobj );

NOTES
To define trimcurves which stitch well, use gl uPw Curve.



SEE ALSO

gl uBegi nCurve, gl uBegi nTrim gl uNewNur bsRender er
gl uPw Curve

NAVE

gl uNur bsProperty - set a NURBS property

C SPECI FI CATI ON
voi d gl uNu

PARANVETERS
nurb

property

val ue

DESCRI PTI ON
gl uNur bsPr
NURBS obj e
curve isr
foll ows:

rbsProperty( G.Unurbs* nurb,
GLenum property,
G.fl oat val ue )

Specifies the NURBS object (created with
gl uNewNur bsRender er) .

Specifies the property to be set. Valid values are
GLU_SAMPLI NG_TOLERANCE, GLU DI SPLAY_ MODE,
GLU_CULLI NG GLU AUTO LOAD MATRI X,

GLU_PARAMETRI C_TOLERANCE, GLU_SAMPLI NG_METHOD
GLU U STEP, G.U V_STEP, or G.U NURBS MODE EXT

Specifies the value of the indicated property. It
may be a nuneric value, or one of

GLU_QUTLI NE_PCOLYGON, GLU FI LL, G.U_QUTLI NE_PATCH
GL_TRUE, G._FALSE, GLU _PATH LENGTH

GLU_PARAMETRI C_ERROR, GLU_DOVAI N_DI STANCE
GLU_NURBS_RENDERER_EXT, or

GLU NURBS_TESSELLATOR_EXT.

operty is used to control properties stored in a
ct. These properties affect the way that a NURBS
endered. The accepted values for property are as

GLU_NURBS_MODE_EXT

val ue shoul d be set to be either
GLU_NURBS_RENDERER_EXT or
GLU_NURBS_TESSELLATOR_EXT. When set to

GLU NURBS RENDERER EXT, NURBS objects are
tessellated into openGL primtives and sent
to the pipeline for rendering. Wen set to
GLU NURBS TESSELLATOR EXT, NURBS objects are



tessellated into openG prinitives but the
vertices, nornals, colors, and/or textures
are retrieved back through a call back
interface (see gl uNurbsCallback). This all ows
the user to cache the tessellated results for
further processing.

GLU_SAMPLI NG_METHOD
Speci fies how a NURBS surface shoul d be
tessellated. value may be one of
GLU_PATH LENGTH, GLU_PARAMETRI C_ERROR,
GLU_DOVAI N_DI STANCE
GLU_OBJECT_PATH_LENGTH_EXT, or
GLU_OBJECT_PARAMETRI C_ERROR_EXT. \When set to
GLU PATH LENGTH, the surface is rendered so
that the maxi numlength, in pixels, of the
edges of the tessellation polygons is no
greater than what is specified by
GLU_SAMPLI NG_TOLERANCE

GLU_PARAMETRI C_ERROR specifies that the
surface is rendered in such a way that the
val ue specified by G.U PARAMETRI C_TOLERANCE
descri bes the maxi mum di stance, in pixels,
bet ween the tessellation polygons and the
surfaces they approxi mate.

GLU_DOVAI N_DI STANCE al | ows users to specify,
in paranetric coordi nates, how nany sanple
points per unit length are taken in u, v
direction.

GLU _OBJECT_PATH LENGTH EXT is simlar to

GLU PATH LENGTH except that it is view

i ndependent, that is, the surface is rendered
so that the maxi mum |l ength, in object space,
of edges of the tessellation polygons is no
greater than what is specified by

GLU_SAMPLI NG_TOLERANCE

GLU_OBJECT_PARAMETRI C ERROR EXT is simlar to
GLU PARAMETRI C_ ERROR except that it is view

i ndependent, that is, the surface is rendered
in such a way that the val ue specified by
GLU_PARAMETRI C_TOLERANCE descri bes the

maxi mum di stance, in object space, between
the tessellation polygons and the surfaces

t hey approxi mat e.

The initial value of GLU SAVPLI NG METHOD i s
GLU_PATH_LENGTH.

GLU_SAMPLI NG_TOLERANCE

Specifies the maxi mumlength, in pixels or in
obj ect space length unit, to use when the
sampling nethod is set to GLU PATH LENGTH or
GLU_OBJECT_PATH_LENGTH_EXT. The NURBS code
is conservative when rendering a curve or
surface, so the actual |ength can be sonewhat
shorter. The initial value is 50.0 pixels.

GLU_PARAMETRI C_TOLERANCE
Speci fies the nmaxi num di stance, in pixels or
in object space length unit, to use when the
sampling nethod is GLU PARAMETRI C_ERROR or



GLU_U_STEP

GLU_V_STEP

GLU OBJECT_PARAMETRI C ERROR EXT. The initial
value is 0.5.

Speci fies the nunmber of sanple points per
unit length taken along the u axis in
paranetric coordinates. It is needed when
GLU SAMPLI NG METHOD is set to

GLU DOVAI N DI STANCE. The initial value is
100.

Speci fies the nunmber of sanple points per
unit length taken along the v axis in
parametric coordinate. It is needed when
GLU_SAMPLI NG_METHOD is set to

GLU DOVAI N DI STANCE. The initial value is
100.

GLU_DI SPLAY_MODE

GLU CULLI NG

val ue can be set to GLU OQUTLI NE_PCOLYGON,

GLU FILL, or GLU QUTLI NE_PATCH. When
GLU_NURBS_MODE_EXT is set to be

GLU NURBS RENDERER EXT, val ue defines how a
NURBS surface shoul d be rendered. Wen val ue
is set to GLU FILL, the surface is rendered
as a set of polygons. Wen value is set to
GLU_QUTLI NE_PCOLYGON, the NURBS |ibrary draws
only the outlines of the polygons created by
tessel l ati on. Wen value is set to

GLU _QUTLI NE_PATCH just the outlines of
patches and trim curves defined by the user
are drawn.

When GLU NURBS MODE EXT is set to be
GLU_NURBS_TESSELLATOR_EXT, val ue defines how
a NURBS surface shoul d be tessellated. Wen
GLU DI SPLAY_MXDE is set to GLU FILL or
GLU_QUTLI NE_PCLY, the NURBS surface is
tessellated into openG triangle primtives
whi ch can be retrieved back through call back
functions. If GU D SPLAY_MODE is set to

GLU _QUTLI NE_PATCH, only the outlines of the
patches and trimcurves are generated as a
sequence of line strips which can be
retrieved back through callback functions.

The initial value is GLU FILL.

val ue is a bool ean val ue that, when set to
GL_TRUE, indicates that a NURBS curve should
be discarded prior to tessellation if its
control points |ie outside the current
viewport. The initial value is G._FALSE

GLU_AUTO_LOAD_ MATRI X

val ue is a bool ean val ue. Wen set to
GL_TRUE, the NURBS code downl oads the
projection matrix, the nodelview matrix, and
the viewport fromthe G. server to conpute
sanpling and culling matrices for each NURBS
curve that is rendered. Sanpling and culling
matrices are required to determne the
tessellation of a NURBS surface into line
segnents or polygons and to cull a NURBS
surface if it lies outside the viewport.



If this nbde is set to GL_FALSE, then the
program needs to provide a projection matrix,
a nodel view matrix, and a viewport for the
NURBS renderer to use to construct sanpling
and culling matrices. This can be done with
t he gl uLoadSanplingMatrices function. This
node is initially set to G._TRUE. Changing
it fromG_TRUE to GL_FALSE does not affect
the sanpling and culling matrices unti

gl uLoadSanpl i ngMatrices is called.

NOTES
If GLU AUTO LOAD MATRI X is true, sampling and culling may be
executed incorrectly if NURBS routines are conpiled into a
di splay list.

A property of GLU PARAMETRI C_TOLERANCE, GLU_SAMPLI NG_METHCD,
GLU_U _STEP, or GU_V_STEP, or a value of G.U_PATH LENGTH,
GLU PARAMETRI C_ ERROR, GLU DOVAI N DI STANCE are only avail abl e
if the GLU version is 1.1 or greater. They are not valid
paranmeters in GLU 1.0.

gluCGetString can be used to deternine the GU version.

SEE ALSO
gl uGet Nur bsProperty, glulLoadSanplingMatrices,
gl uNewNur bsRenderer, gluCGetString, gl uNurbsCall back

NAME
gl uNur bsSurface - define the shape of a NURBS surface

C SPECI FI CATI ON
voi d gl uNurbsSurface( GLUnurbs* nurb,

GLi nt sKnot Count,
A fl oat* sKnots,
GLi nt t Knot Count,
GL.fl oat* tKnots,
Glint sStride,
GAint tStride,
G.fl oat* control,
Gint sOder,
Gint tOder,
GLenum type )

PARAMETERS
nurb Speci fies the NURBS object (created with
gl uNewNur bsRenderer) .

sKnot Count  Specifies the nunber of knots in the paranetric
u direction.

sKnot s Specifies an array of sKnot Count nondecreasi ng
knot values in the paranetric u direction.



t Knot Count  Specifies the nunber of knots in the paranetric
v direction.

t Knot s Specifies an array of tKnotCount nondecreasing
knot values in the paranetric v direction

sStride Specifies the offset (as a nunber of single-
precision floating point val ues) between
successive control points in the paranetric u
direction in control

tStride Specifies the offset (in single-precision
fl oati ng-poi nt val ues) between successive
control points in the paranetric v direction in
control

control Specifies an array containing control points for
the NURBS surface. The offsets between
successive control points in the paranetric u
and v directions are given by sStride and
tStride.

sOr der Specifies the order of the NURBS surface in the
paranetric u direction. The order is one nore
than the degree, hence a surface that is cubic
in u has a u order of 4.

t O der Specifies the order of the NURBS surface in the
paranmetric v direction. The order is one nore
than the degree, hence a surface that is cubic
inv has a v order of 4.

type Specifies type of the surface. type can be any
of the valid two-di nensional eval uator types
(such as GL_MAP2_VERTEX_ 3 or GL_MAP2_COLOR 4).

DESCRI PTI ON
Use gl uNurbsSurface within a NURBS (Non-Uniform Rati onal B-
Spline) surface definition to describe the shape of a NURBS
surface (before any trimring). To mark the begi nning of a
NURBS surface definition, use the gl uBegi nSurface conmmand.
To mark the end of a NURBS surface definition, use the
gl uEndSur face command. Call gl uNurbsSurface within a NURBS
surface definition only.

Positional, texture, and color coordinates are associated
with a surface by presenting each as a separate

gl uNur bsSur f ace between a gl uBegi nSurf ace/ gl uEndSur f ace
pair. No nmore than one call to gl uNurbsSurface for each of
color, position, and texture data can be nade within a

si ngl e gl uBegi nSur f ace/ gl uEndSur f ace pair. Exactly one cal
nmust be made to describe the position of the surface (a type
of GL_MAP2_VERTEX 3 or GL_MAP2_VERTEX 4).

A NURBS surface can be trimmed by using the commands
gl uNur bsCurve and gl uPw Curve between calls to gl uBegi nTrim
and gl uEndTri m

Note that a gl uNurbsSurface with skKnot Count knots in the u
direction and tKnot Count knots in the v direction with
orders sOrder and tOrder nust have (sKnot Count - sOrder) x
(tKnot Count - tOrder) control points.

EXAMPLE
The foll owi ng commands render a textured NURBS surface with



normal s; the texture coordinates and nornmals are al so NURBS
surf aces:

gl uBegi nSur f ace( nobj ) ;

gl uNur bsSurface(nobj, ..., G._MAP2_TEXTURE_COCRD 2);
gl uNur bsSurface(nobj, ..., G._MAP2 NORMAL);
gl uNur bsSur face(nobj, ..., G._MAP2_VERTEX 4);

gl uEndSur f ace( nobj ) ;

SEE ALSO

gl uBegi nSur f ace, gl uBegi nTri m gl uNewNur bsRender er,
gl uNur bsCurve, gl uPw Curve



NANMVE
gluOrtho2D - define a 2D orthographic projection matrix

C SPECI FI CATI ON
void gl uOrtho2D( GL.double |eft,
GLdoubl e ri ght,
GLdoubl e bott om
GLdoubl e top )

PARAMETERS
left, right Specify the coordinates for the left and right
vertical clipping planes.

bottom top Specify the coordinates for the bottomand top
hori zontal clipping pl anes.

DESCRI PTI ON
gl uOtho2D sets up a two-di nensional orthographic view ng
region. This is equivalent to calling glOtho with near=-1
and far=1

SEE ALSO
gl Otho, gluPerspective

NAME
gluPartial Disk - draw an arc of a disk

C SPECI FI CATI ON

void gluPartial Di sk( G.Uquadric* quad,
GL.doubl e i nner,
GLdoubl e outer,
GLint slices,
GLi nt | oops,
GLdoubl e start,
GLdoubl e sweep )



PARANVETERS
guad Specifies a quadrics object (created with

gl uNewQuadric).

i nner Specifies the inner radius of the partial disk (can
be 0).

out er Specifies the outer radius of the partial disk

slices Specifies the nunber of subdivisions around the z
axi s.

| oops Specifies the nunmber of concentric rings about the
origin into which the partial disk is subdivided.

start Specifies the starting angle, in degrees, of the
di sk portion.

sweep Specifies the sweep angle, in degrees, of the disk
portion.

DESCRI PTI ON
gluPartial Disk renders a partial disk on the z=0 plane. A
partial disk is sinmlar to a full disk, except that only the
subset of the disk fromstart through start + sweep is
i ncluded (where 0 degrees is along the +y axis, 90 degrees
along the +x axis, 180 along the -y axis, and 270 al ong the
-X axis).

The partial disk has a radius of outer, and contains a
concentric circular hole with a radius of inner. If inner is
0, then no hole is generated. The partial disk is subdivided
around the z axis into slices (like pizza slices), and al so
about the z axis into rings (as specified by slices and

| oops, respectively).

Wth respect to orientation, the +z side of the partial disk
is considered to be outside (see gluQuadricOrientation).
This nmeans that if the orientation is set to GLU OUTSI DE
then any normal s generated point along the +z axis.

O herwi se, they point along the -z axis.

If texturing is turned on (with gluQuadricTexture), texture
coordi nates are generated linearly such that where r=outer
the value at (r, 0, 0) is (1.0, 0.5, at (0, r, 0) it is
(0.5, 1.0), at (-r, 0, 0) it is (0.0, 0.5), and at (O, -r,
0) it is (0.5 0.0).

SEE ALSO
gl uCyli nder, gl ubi sk, gluNewQuadric, gluQuadricOientation
gl uQuadri cTexture, gl uSphere



NANMVE
gl uPerspective - set up a perspective projection matrix

C SPECI FI CATI ON
voi d gl uPerspective( G.doubl e fovy,
GLdoubl e aspect,
GLdoubl e zNear,
GLdoubl e zFar )

PARAMETERS
fovy Specifies the field of view angle, in degrees, in
the y direction.

aspect Specifies the aspect ratio that determnes the field
of viewin the x direction. The aspect ratio is the
ratio of x (wdth) toy (height).

zNear Specifies the distance fromthe viewer to the near
clipping plane (al ways positive).

zFar Specifies the distance fromthe viewer to the far
clipping plane (al ways positive).

DESCRI PTI ON
gl uPer spective specifies a viewing frustuminto the world
coordi nate system In general, the aspect ratio in
gl uPer spective should match the aspect ratio of the
associ ated viewport. For exanple, aspect=2.0 neans the
viewer's angle of viewis twice as wide in x as it isiny.
If the viewport is twice as wide as it is tall, it displays
the i mage wi thout distortion.

The matrix generated by gl uPerspective is nmultipled by the
current matrix, just as if glMultMatrix were called with the
generated matrix. To |load the perspective matrix onto the
current matrix stack instead, precede the call to



gl uPerspective with a call to gl Loadldentity.
Gven f defined as follows:
f = cotangent ( )
2

The generated matrix is

( )
I aspect 0 0 0 I
I 0 f 0 0

I 0 O zNear - zFar zNear - zFar

( 0 0 -1 0 :

NOTES
Depth buffer precision is affected by the val ues specified
for zNear and zFar. The greater the ratio of zFar to zNear
is, the less effective the depth buffer will be at
di stingui shing between surfaces that are near each other
| f

r =
zNear

roughly log r bits of depth buffer precision are |ost.
Because r approaches infinity as zNear approaches 0, zNear
nmust never be set to O.

SEE ALSO
gl Frustum gl Loadldentity, gl MiltMatrix, gluOtho2D



NAMVE
gl uPi ckMvatrix - define a picking region

C SPECI FI CATI ON
voi d gl uPi ckMvatri x( GLdoubl e x,
GLdoubl e vy,
GLdoubl e del X,
GLdoubl e del Y,
GLint *viewport )

PARAVETERS
X, y Specify the center of a picking region in w ndow
coor di nat es.

del X, delY
Specify the width and hei ght, respectively, of the
pi cking regi on in wi ndow coordi nat es.

Vi ewport
Specifies the current viewport (as froma gl Getlntegerv
call).
DESCRI PTI ON

gl uPi ckMatrix creates a projection matrix that can be used
to restrict drawing to a small region of the viewport. This
is typically useful to determ ne what objects are being
drawn near the cursor. Use gluPickMatrix to restrict
drawing to a small region around the cursor. Then, enter
sel ection node (with gl Render Mbde) and rerender the scene.
Al primtives that woul d have been drawn near the cursor
are identified and stored in the selection buffer.

The matrix created by gluPickMatrix is multiplied by the
current matrix just as if glMultMatrix is called with the
generated matrix. To effectively use the generated pick
matrix for picking, first call glLoadldentity to |oad an
identity matrix onto the perspective matrix stack. Then
call gluPickwMatrix, and finally, call a command (such as
gl uPerspective) to multiply the perspective matrix by the
pi ck matrix.

When using gl uPickMatrix to pick NURBS, be careful to turn
of f the NURBS property GLU AUTO LOAD MATRI X. If

GLU AUTO LOAD MATRI X is not turned off, then any NURBS
surface rendered is subdivided differently with the pick
matrix than the way it was subdivi ded without the pick
mat ri x.

EXAMPLE
When rendering a scene as foll ows:
gl Mat ri xMode( GL_PRQIECTI ON); gl Loadl dentity();
gl uPerspective(...); gl MatrixMode(G._MODELVIEW ; /* Draw the
scene */

a portion of the viewport can be selected as a pick region
i ke this:

gl Mat ri xMode( GL_PRQIECTI ON); gl Loadl dentity();

gl uPi ckMatri x(x, y, wdth, height, viewport);

gl uPerspective(...); gl Matri xMode(G._MODELVIEW ; /* Draw the
scene */



SEE ALSO
gl Get, gl Loadlndentity, gl MultMatrix, gl Render Mode,
gl uPer specti ve

NAME
gl uProject - map object coordinates to w ndow coordi nates

C SPECI FI CATI ON

GLint gl uProject( G.doubl e obj X,
GLdoubl e obj Y,
GLdoubl e obj Z,
const GLdoubl e *nodel
const GLdouble *proj,
const GLint *view,
GLdoubl e* wi nX,
GLdoubl e* wi nY,
GLdoubl e* winzZ )

PARAMETERS
obj X, objY, objz
Speci fy the object coordinates.

nodel Specifies the current nodel view matrix (as
froma gl Get Doubl ev call).

pr oj Specifies the current projection matrix (as



froma gl Get Doubl ev call).

Vi ew Specifies the current viewport (as froma
gl Getlntegerv call).

wi nX, wnY, wnZ
Return the conputed wi ndow coordi nat es.

DESCRI PTI ON
gl uProject transforms the specified object coordinates into
wi ndow coordi nates using nodel, proj, and view. The result
is stored in winX, winY, and winZ. A return value of G._TRUE
i ndi cates success, a return value of GL_FALSE indicates
failure.

To compute the coordi nates, |et v=(obj X objY, objZz 1.0)
represented as a matrix with 4 rows and 1 colum. Then
gl uProj ect conputes v' as follows:

v =P Xx Mx v

where P is the current projection matrix proj, Mis the
current nodel view nmatrix nmodel (both represented as 4x4
matrices in colum-mgjor order) and 'Xx’ represents matrix
mul tiplication.

The wi ndow coordi nates are then conmputed as foll ows:

WinX = view(0) + view(2) * (v’ (0) + 1) / 2

winY = viem(l) + view(3) * (v' (1) +1) / 2
winzZ = (v (2 +1) / 2
SEE ALSO

gl Get, gl uUnProject



NANMVE
gl uPwW Curve - describe a piecewise |inear NURBS trimm ng
curve

C SPECI FI CATI ON
voi d gl uPw Curve( G.Unurbs* nurb,
GLi nt count,
G.float* data
GLint stride,
GLenum type )

PARAMETERS
nurb Speci fies the NURBS object (created with
gl uNewNur bsRender er) .

count Speci fies the nunber of points on the curve.
dat a Specifies an array containing the curve points.

stride Specifies the offset (a number of single-precision
fl oating-point val ues) between points on the curve.

type Specifies the type of curve. Mist be either
GLU MAP1_TRIM 2 or GLU MAP1_TRI M 3

DESCRI PTI ON
gl uPwW Curve describes a piecewi se linear trimmng curve for
a NURBS surface. A piecewi se |inear curve consists of a
list of coordinates of points in the paraneter space for the
NURBS surface to be trinmed. These points are connected with
line segnments to forma curve. If the curve is an
approxination to a curve that is not piecew se |linear, the
poi nts shoul d be close enough in parameter space that the
resulting path appears curved at the resolution used in the
application.

If type is GLU MAP1L TRIM 2, then it describes a curve in
two-di nensional (u and v) paraneter space. If it is

GLU MAP1 TRIM 3, then it describes a curve in two-

di mensi onal honpbgeneous (u, v, and w) paraneter space. See
t he gl uBegi nTri m reference page for nore information about
trimmng curves.

NOTES

To describe a trimcurve that closely follows the contours
of a NURBS surface, call gl uNurbsCurve.

SEE ALSO



gl uBegi nCurve, gl uBegi nTri m gl uNewNur bsRenderer,
gl uNur bsCurve

NANMVE
gl uQuadri cCal | back - define a callback for a quadrics object

C SPECI FI CATI ON
voi d gl uQuadri cCal | back( GLUquadric* quad,
GLenum whi ch,
GLvoid (*Cal | BackFunc) ( )



PARAMETERS

guad Specifies the quadrics object (created with
gl uNewQuadric).
whi ch Speci fies the call back being defined. The

only valid value is GLU ERROR

Cal | BackFunc Specifies the function to be call ed.

DESCRI PTI ON
gl uQuadricCal I back is used to define a new call back to be
used by a quadrics object. |If the specified callback is

already defined, then it is replaced. If CallBackFunc is
NULL, then any existing callback is erased.

The one | egal callback is GLU ERROR

GLU_ERROR The function is called when an error is
encountered. Its single argunent is of type
GLenum and it indicates the specific error
that occurred. Character strings describing
these errors can be retrieved with the
gluErrorString call

SEE ALSO
gl uErrorString, gluNewQuadric

NANMVE
gl uQuadricDrawsStyl e - specify the draw style desired for
guadri cs

C SPECI FI CATI ON
voi d gl uQuadri cDrawstyl e( G.Uquadric* quad,
GLenum draw )

PARAMETERS
guad Specifies the quadrics object (created with
gl uNewQuadri c) .

draw Specifies the desired draw style. Valid values are
GLU FILL, GLU LINE, G.U SILHOUETTE, and GLU PO NT

DESCRI PTI ON
gl uQuadri cDrawStyl e specifies the draw style for quadrics
rendered with quad. The |legal values are as follows:

GLU FILL Quadrics are rendered with pol ygon



GLU_LI NE
GLU_SI LHOUETTE

GLU PO NT

SEE ALSO
gl uNewQuadri c,

primtives. The polygons are drawn in a
count ercl ockwi se fashion with respect to
their nornmals (as defined with

gl uQuadricOrientation).

Quadrics are rendered as a set of lines.
Quadrics are rendered as a set of I|ines,
except that edges separating copl anar faces
will not be drawn.

Quadrics are rendered as a set of points.

gl uQuadri cNormal s, gluQuadricOrientation,

gl uQuadri cTexture

NAVE

gl uQuadricNormal s - specify what kind of normals are desired

for quadrics

C SPECI FI CATI ON

voi d gl uQuadricNormal s( G.Uguadri c* quad,

PARAMETERS

GLenum normal )

guad Speci fes the quadrics object (created with
gl uNewQuadri c) .

normal Specifies the desired type of normals. Valid val ues
are GLU NONE, GLU FLAT, and G.U _SMOOTH

DESCRI PTI ON

gl uQuadri cNornmal s specifies what kind of nornmals are desired
for quadrics rendered with quad. The | egal values are as

fol |l ows:
GLU_NONE

GLU_FLAT

GLU_SMOOTH

SEE ALSO
gl uNewQuadri c,

No nornal s are generat ed.

One nornal is generated for every facet of a
guadri c.

One nornal is generated for every vertex of a
quadric. This is the initial value.

gl uQuadricDrawstyl e, gluQuadricOientation

gl uQuadri cTexture



NANMVE
gluQuadricOrientation - specify inside/outside orientation
for quadrics

C SPECI FI CATI ON
void gluQuadricOrientation( G.Uguadric* quad,
GLenum orientation )

PARAMETERS
guad Specifies the quadrics object (created with
gl uNewQuadric).

orientation Specifies the desired orientation. Valid val ues
are GLU OQUTSI DE and GLU_I NSI DE.

DESCRI PTI ON
gluQuadricOrientation specifies what kind of orientation is
desired for quadrics rendered with quad. The orientation
val ues are as foll ows:

GLU _QUTSI DE Quadrics are drawn with normals pointing
outward (the initial value).

GLU_I NSI DE Quadrics are drawn with normals pointing
i nwar d.

Note that the interpretati on of outward and i nward depends
on the quadric being drawn.

SEE ALSO
gl uNewQuadri c, gluQuadricDrawstyl e, gluQuadricNormals,
gl uQuadri cTexture



NAVE

gl uQuadricTexture - specify if texturing is desired for
qguadri cs

C SPECI FI CATI ON

voi d gl uQuadricTexture( G.Uguadric* quad,

GLbool ean texture )

PARANVETERS

guad Specifies the quadrics object (created with
gl uNewQuadri c) .

texture Specifies a flag indicating if texture coordinates
shoul d be generat ed.

DESCRI PTI ON

gl uQuadri cTexture specifies if texture coordinates shoul d be
generated for quadrics rendered with quad. |f the value of
texture is GL_TRUE, then texture coordi nates are generated,
and if texture is GL_FALSE, they are not. The initial value
is GL_FALSE.

The manner in which texture coordinates are generated
depends upon the specific quadric rendered.

SEE ALSO

NAVE

gl uNewQuadri c, gluQuadricDrawstyl e, gluQuadricNormals,
gl uQuadricOrientation

gl uScal el mage - scale an inmage to an arbitrary size

C SPECI FI CATI ON

GLint gl uScal el mage( GLenum f or mat ,



G.si zei W n,

GLsi zei hln,
GLenum t ypel n,
const void *datal n,
Gsi zei wQut,

Gsi zei hQut,
GLenum t ypeQut,
GLvoi d* dataCQut )

PARAMETERS
f or mat Specifies the format of the pixel data. The
foll owi ng synmbolic values are valid:
GL_COLOR_| NDEX, GL_STENCI L_I NDEX
GL_DEPTH_COVMPONENT, GL_RED, GL_GREEN, G._BLUE,
GL_ALPHA, GL_RGB, G._RGBA, G._LUM NANCE, and
GL_LUM NANCE_ALPHA.

win, hlin Specify the wi dth and hei ght, respectively, of the
source image that is scal ed.

typeln Specifies the data type for dataln. Miust be one of
GL_UNSI GNED BYTE, GL_BYTE, G._BI TVAP,
GL_UNSI GNED_SHORT, GL_SHORT, GL_UNSI GNED | NT,
GL_INT, or G._FLOAT.

dat al n Specifies a pointer to the source inage.

wQut , hQut
Specify the width and height, respectively, of the
desti nati on i nmage.

typeQut Specifies the data type for dataQut. Must be one of
GL_UNSI GNED_BYTE, GL_BYTE, GL_BI TMAP,
GL_UNSI GNED_SHORT, GL_SHORT, GL_UNSI GNED_|I NT,
GL_INT, or G._FLOAT.

dat aCut Specifies a pointer to the destination inage.

DESCRI PTI ON
gl uScal el mage scal es a pi xel inage using the appropriate
pi xel store nodes to unpack data fromthe source i nage and
pack data into the destination inage.

VWhen shrinking an i mage, gluScal el nage uses a box filter to
sanpl e the source inage and create pixels for the
destination i mage. When magni fying an i mage, the pixels from
the source image are linearly interpolated to create the
destination image.

A return value of 0 indicates success, otherwise a G.U error
code is returned (see gluErrorString).

See the gl ReadPi xel s reference page for a description of the
acceptabl e values for format, typeln, and typeQut.

ERRORS
GLU INVALID VALUE is returned if win, hln, wQut, or hQut are
< 0.

GLU INVALID ENUMis returned if format, typeln, or typeCut
are not | egal

SEE ALSO
gl DrawPi xel s, gl ReadPi xel s, gl uBui |l d1DM pnaps,



gl uBui | d2DM prmaps, gl uErrorString

NAVE

gl uSphere - draw a sphere

C SPECI FI CATI ON

voi d gl uSphere( G.Uquadri c* quad,
GLdoubl e radi us,
Gint slices,
GLint stacks )

PARAMETERS
guad Specifies the

quadrics object (created with

gl uNewQuadri c) .

radius Specifies the

slices Specifies the
axis (simlar

stacks Specifies the
axis (simlar

DESCRI PTI ON

radi us of the sphere.

nurmmber of subdivisions around the z
to lines of |ongitude).

nunmber of subdivisions along the z
to lines of latitude).

gl uSphere draws a sphere of the given radius centered around
the origin. The sphere is subdivided around the z axis into

slices and along the z axis into stacks (simlar to lines of
| ongi tude and | atitude).

If the orientation is

set to GLU_QUTSIDE (with

gl uQuadricOrientation), then any normal s generated point



away fromthe center of the sphere. O herw se, they point
toward the center of the sphere.

If texturing is turned on (with gluQuadricTexture), then
texture coordi nates are generated so that t ranges fromO0.0
at z=-radius to 1.0 at z=radius (t increases linearly along
[ ongitudinal lines), and s ranges fromO0.0 at the +y axis,
to 0.25 at the +x axis, to 0.5 at the -y axis, to 0.75 at
the -x axis, and back to 1.0 at the +y axis.

SEE ALSO
gl uCylinder, gl ubi sk, gluNewQuadric, gluPartial D sk,
gl uQuadri cOrientation, gluQuadricTexture

NAMVE
gl uTessBegi nCont our, gl uTessEndContour - delinmit a contour
description

C SPECI FI CATI ON
voi d gl uTessBegi nCont our ( GLUt essel ator* tess )

voi d gl uTesseEndCont our ( GLUt essel ator* tess )

PARAMETERS
tess Specifies the tessellation object (created with
gl uNewTess) .

DESCRI PTI ON
gl uTessBegi nCont our and gl uTessEndCont our delimt the
definition of a polygon contour. Wthin each
gl uTessBegi nCont our/ gl uTessendCont our pair, there can be
zero or nore calls to gluTessVertex. The vertices specify a
cl osed contour (the last vertex of each contour is
automatically linked to the first). See the gluTessVertex
reference page for nore details. gluTessBegi nContour can
only be call ed between gl uTessBegi nPol ygon and
gl uTessEndPol ygon.

SEE ALSO
gl uNewTess, gl uTessBegi nPol ygon, gl uTessVertex,
gl uTessCal | back, gl uTessProperty, gl uTessNor nmal
gl uTessEndPol ygon



NAMVE
gl uTessBegi nPol ygon - delinmit a pol ygon description

C SPECI FI CATI ON
voi d gl uTessBegi nPol ygon( G.Ut essel ator* tess,
GLvoi d* data )

PARAVETERS
tess Specifies the tessellation object (created with
gl uNewTess) .

data Specifies a pointer to user polygon data.

DESCRI PTI ON
gl uTessBegi nPol ygon and gl uTessEndPol ygon delimt the
definition of a convex, concave or self-intersecting
pol ygon. Wthin each gl uTessBegi nPol ygon/ gl uTessEndPol ygon
pair, there nust be one or nore calls to
gl uTessBegi nCont our/ gl uTessEndCont our. Wt hin each contour
there are zero or nore calls to gluTessVertex. The vertices
specify a closed contour (the |ast vertex of each contour is
automatically linked to the first). See the gluTessVertex,
gl uTessBegi nCont our, and gl uTessEndCont our reference pages
for nore details.

data is a pointer to a user-defined data structure. If the
appropriate call back(s) are specified (see gluTessCall back),
then this pointer is returned to the call back function(s).
Thus, it is a convenient way to store per-pol ygon

i nformation.

Once gl uTessEndPol ygon is called, the polygon is
tessellated, and the resulting triangles are described

t hrough cal | backs. See gl uTessCal | back for descriptions of
t he cal | back functions.

EXAMPLE
A quadrilateral with a triangular hole in it can be
descri bed as foll ows:

gl uTessBegi nPol ygon(tobj, NULL);
gl uTessBegi nCont our (tobj);
gl uTessVertex(tobj, vi, vi);
gl uTessVertex(tobj, v2, v2);
gl uTessVertex(tobj, v3, v3);
gl uTessVertex(tobj, v4, v4);
gl uTessEndCont our (t obj ) ;
gl uTessBegi nCont our (t obj ) ;
gl uTessVertex(tobj, v5, vb5);
gl uTessVertex(tobj, v6, v6);
gl uTessVertex(tobj, v7, v7);
gl uTessEndCont our (t obj ); gl uTessEndPol ygon(tobj);



SEE ALSO
gl uNewTess, gl uTessBegi nContour, gluTessVertex,
gl uTessCal | back, gl uTessProperty, gl uTessNor nmal
gl uTessEndPol ygon

NANMVE
gl uTessCal | back - define a callback for a tessellation
obj ect

C SPECI FI CATI ON
voi d gl uTessCal | back( GLUt essel ator* tess,
GLenum whi ch,
GLvoid (*Cal | BackFunc) ( )

PARAMETERS
tess Specifies the tessellation object (created
wi t h gl uNewTess) .

whi ch Speci fies the call back being defined. The



followi ng values are valid: G.U TESS BEG N,
GLU_TESS BEG N_DATA, GLU TESS EDGE_FLAG

GLU TESS EDGE _FLAG DATA, GLU TESS VERTEX,
GLU TESS VERTEX DATA, GLU_TESS END
GLU_TESS_END DATA, GLU_TESS_COMBI NE,
GLU_TESS_COMWBI NE_DATA, GLU_TESS_ERROR, and
GLU TESS ERROR _DATA.

Cal | BackFunc Specifies the function to be call ed.

DESCRI PTI ON
gl uTessCal I back is used to indicate a callback to be used by
a tessellation object. |If the specified callback is already

defined, then it is replaced. If CallBackFunc is NULL, then
t he existing call back becones undefi ned.

These cal | backs are used by the tessellation object to
descri be how a pol ygon specified by the user is broken into
triangles. Note that there are two versions of each
cal I back: one with user-specified polygon data and one
without. If both versions of a particular callback are
specified, then the callback with user-specified polygon
data will be used. Note that the pol ygon _data paraneter used
by sone of the functions is a copy of the pointer that was
speci fi ed when gl uTessBegi nPol ygon was cal |l ed. The | ega
cal | backs are as foll ows:

GLU_TESS BEG N
The begin call back is invoked Iike glBegin to
indicate the start of a (triangle) primtive. The
function takes a single argunment of type G.enum
If the GLU TESS BOUNDARY_ONLY property is set to
GL_FALSE, then the argunent is set to either
GL_TRI ANGLE_FAN, GL_TRI ANGLE_STRI P, or
GL_TRIANGLES. |f the GLU TESS BOUNDARY ONLY
property is set to G._TRUE, then the argument will
be set to G._LINE _LOOP. The function prototype for
this call back is:
void begin ( G.enumtype );

GLU_TESS _BEGQ N_DATA
The sane as the GLU TESS BEGQ N cal | back except
that it takes an additional pointer argument. This
pointer is identical to the opaque pointer
provi ded when gl uTessBegi nPol ygon was cal |l ed. The
function prototype for this callback is:
voi d begi nData ( GLenumtype, void *pol ygon_data

GLU_TESS_EDGE_FLAG
The edge flag callback is simlar to gl EdgeFl ag.
The function takes a single boolean flag that
i ndi cates which edges lie on the pol ygon boundary.
If the flag is GL_TRUE, then each vertex that
foll ows begins an edge that |ies on the pol ygon
boundary, that is, an edge that separates an
interior region froman exterior one. |If the flag
is GL_FALSE, then each vertex that follows begins
an edge that lies in the polygon interior. The
edge flag callback (if defined) is invoked before
the first vertex call back.

Since triangle fans and triangle strips do not
support edge flags, the begin callback is not
called with GL_TRI ANGLE_FAN or G._TRI ANGLE_STRI P



if a non-NULL edge flag callback is provided. (If
the callback is initialized to NULL, there is no

i mpact on performance). |Instead, the fans and
strips are converted to independent triangles. The
function prototype for this callback is:

voi d edgeFl ag ( G.boolean flag );

GLU_TESS_EDGE_FLAG DATA
The sane as the GLU TESS EDGE FLAG cal | back except
that it takes an additional pointer argunent. This
pointer is identical to the opaque pointer
provi ded when gl uTessBegi nPol ygon was cal |l ed. The
function prototype for this callback is:
voi d edgeFl agData ( GLbool ean flag, void
*pol ygon_data );

GLU_TESS_VERTEX
The vertex call back is i nvoked between the begin
and end cal Il backs. It is simlar to gl Vertex, and
it defines the vertices of the triangles created
by the tessellation process. The function takes a
pointer as its only argunent. This pointer is
identical to the opaque pointer provided by the
user when the vertex was described (see
gl uTessVertex). The function prototype for this
cal | back is:
void vertex ( void *vertex_data );

GLU_TESS_VERTEX_DATA
The sane as the Q.U TESS VERTEX cal | back except
that it takes an additional pointer argument. This
pointer is identical to the opaque pointer
provi ded when gl uTessBegi nPol ygon was cal |l ed. The
function prototype for this callback is:
void vertexData ( void *vertex data, void
*pol ygon_data );

GLU_TESS_END
The end cal | back serves the sane purpose as gl End.
It indicates the end of a prinitive and it takes
no argunents. The function prototype for this
cal | back is:
void end ( void );

GLU_TESS_END_DATA
The sane as the GLU TESS END cal | back except that
it takes an additional pointer argunent. This
pointer is identical to the opaque pointer
provi ded when gl uTessBegi nPol ygon was cal |l ed. The
function prototype for this callback is:
void endData ( void *pol ygon_data);

GLU_TESS_COWBI NE

The conbine callback is called to create a new
vertex when the tessellation detects an
i ntersection, or wishes to nerge features. The
function takes four argunents: an array of three
el ements each of type G.double, an array of four
pointers, an array of four elenments each of type
G.float, and a pointer to a pointer. The prototype
is:
voi d conbi ne( G.doubl e coords[3], void
*vertex_datal 4],

G.float weight[4], void **outData );



The vertex is defined as a |inear conbination of
up to four existing vertices, stored in

vertex _data. The coefficients of the linear

conbi nati on are given by weight; these weights

al ways add up to 1. Al vertex pointers are valid
even when sone of the weights are 0. coords gives
the | ocation of the new vertex.

The user nust allocate another vertex, interpolate
par anmeters using vertex_data and wei ght, and
return the new vertex pointer in outData. This
handl e is supplied during rendering call backs.

The user is responsible for freeing the nenory
sone tinme after gluTessEndPol ygon is call ed.

For exanple, if the polygon lies in an arbitrary
pl ane in 3-space, and a color is associated with
each vertex, the QLU TESS COMBI NE cal | back m ght
| ook l'ike this:
voi d nyConbi ne( G.doubl e coords[ 3], VERTEX *d[4],
G.float W 4], VERTEX **dataCut ) {
VERTEX *new = new vertex();

new >x = coords[0];

new >y = coords[1];

new >z = coords[2];

new>r = w0]*d[0]->r + w1]*d[1]->r +
w 2] *d[2]->r + W 3]*d[3]->r;

new->g = W 0]*d[0]->g + w[1]*d[1]->g +
W 2]*d[ 2] ->g + W 3] *d[3]->g;

new>p = wW0]*d[0]->b + w1]*d[1]->b +
W 2]*d[2]->b + W 3] *d[ 3] - >b;

new>a = W0]*d[0]->a + w1]*d[1]->a +
W 2] *d[ 2] ->a + w 3] *d[ 3] - >a;

*dataQut = new, }

If the tessellation detects an intersection, then
the GLU TESS COMBI NE or GLU TESS_COVBI NE_DATA
cal | back (see bel ow) nust be defined, and it nust
wite a non-NULL pointer into dataOQut. O herwi se
the GLU TESS NEED COWVBI NE_CALLBACK error occurs,
and no output is generated.

GLU_TESS_COMVBI NE_DATA

The sane as the GLU TESS _COMBI NE cal | back except
that it takes an additional pointer argunent. This
pointer is identical to the opaque pointer
provi ded when gl uTessBegi nPol ygon was cal |l ed. The
function prototype for this callback is:
voi d conbi neData ( G.doubl e coords[3], void
*vertex_datal 4],

G.float weight[4], void
**out Dat a,

voi d *pol ygon_data );

GLU_TESS_ERROR
The error callback is called when an error is
encountered. The one argunent is of type G.enum
it indicates the specific error that occurred and
will be set to one of
GLU_TESS M SSI NG_BEG N_POLYGON,
GLU_TESS_M SSI NG_END_POLYGON,
GLU TESS M SSI NG BEG N_CONTOUR,
GLU_TESS M SSI NG_END_CONTOUR
GLU_TESS_COORD_TOO_LARGE,



GLU_TESS_NEED_ COMBI NE_CALLBACK or

GLU QUT_OF _MEMORY. Character strings describing
these errors can be retrieved with the
gluErrorString call. The function prototype for
this call back is:

void error ( G.enumerrno );

The GLU library will recover fromthe first four
errors by inserting the mssing call(s).

GLU TESS COORD TOO LARGE indicates that sone
vertex coordi nate exceeded the predefined constant
GLU TESS MAX COORD i n absolute value, and that the
val ue has been cl anped. (Coordi nate val ues nust be
snmal | enough so that two can be nultiplied

t oget her without overflow.)
GLU_TESS_NEED COMBI NE_CALLBACK i ndi cates that the
tessellation detected an intersection between two
edges in the input data, and the GLU TESS COVBI NE
or GLU_TESS_COMBI NE_DATA cal | back was not

provi ded. No output is generated.

GLU OQUT_OF _MEMORY indicates that there is not
enough nenory so no output is generated.

GLU_TESS ERRCOR DATA
The sane as the GLU TESS ERROR cal | back except
that it takes an additional pointer argunent. This
pointer is identical to the opaque pointer
provi ded when gl uTessBegi nPol ygon was cal |l ed. The
function prototype for this callback is:
void errorData ( GL.enum errno, void *pol ygon data

)

EXAMPLE
Pol ygons tessellated can be rendered directly like this:

gl uTessCal | back(tobj, GLU TESS BEG N, gl Begin);
gl uTessCal | back(tobj, G.U TESS VERTEX, gl Vertex3dv);
gl uTessCal | back(tobj, G.U TESS END, gl End);
gl uTessCal | back(tobj, G.U TESS COMBI NE, myConbi ne);
gl uTessBegi nPol ygon(tobj, NULL);
gl uTessBegi nCont our (tobj ) ;
gl uTessVertex(tobj, v, v);

glﬁféssEndCbntour(tobj); gl uTessEndPol ygon(tobj);

Typically, the tessellated pol ygon should be stored in a
display list so that it does not need to be retessellated
every time it is rendered.

SEE ALSO
gl Begi n, gl EdgeFl ag, gl Vertex, gluNewTess, gluErrorString,
gl uTessVert ex, gl uTessBegi nPol ygon, gl uTessBegi nCont our
gl uTessProperty, gluTessNorma



NANMVE
gl uTessEndPol ygon - delimt a pol ygon description

C SPECI FI CATI ON
voi d gl uTessEndPol ygon( GLUt essel ator* tess )

PARAMVETERS
tess Specifies the tessellation object (created with
gl uNewTess) .

DESCRI PTI ON
gl uTessBegi nPol ygon and gl uTessEndPol ygon delimt the
definition of a convex, concave or self-intersecting
pol ygon. Wthin each gl uTessBegi nPol ygon/ gl uTessEndPol ygon
pair, there nust be one or nore calls to
gl uTessBegi nCont our/ gl uTessEndCont our. Wt hin each contour
there are zero or nore calls to gluTessVertex. The vertices
specify a closed contour (the |ast vertex of each contour is
automatically linked to the first). See the gluTessVertex,
gl uTessBegi nCont our and gl uTessEndCont our reference pages
for nore details.

Once gl uTessEndPol ygon is called, the polygon is
tessellated, and the resulting triangles are described

t hrough cal | backs. See gl uTessCal |l back for descriptions of
t he cal | back functions.



EXAMPLE
A quadrilateral with a triangular hole in it can be
described like this:

gl uTessBegi nPol ygon(tobj, NULL);
gl uTessBegi nCont our (t obj);
gl uTessVertex(tobj, vi, vi);
gl uTessVertex(tobj, v2, v2);
gl uTessVertex(tobj, v3, v3);
gl uTessVertex(tobj, v4, v4);
gl uTessEndCont our (t obj ) ;
gl uTessBegi nCont our (tobj ) ;
gl uTessVertex(tobj, v5, vb5);
gl uTessVertex(tobj, v6, v6);
gl uTessVertex(tobj, v7, v7);
gl uTessEndCont our (t obj); gl uTessEndPol ygon(tobj);

In the above exanple the pointers, vl through v7, should
point to different addresses, since the values stored at
t hese addresses will not be read by the tessel ator unti
gl uTessEndPol ygon is called

SEE ALSO
gl uNewTess, gl uTessBegi nContour, gluTessVertex,

gl uTessCal | back, gl uTessProperty, gl uTessNor nal
gl uTessBegi nPol ygon



NANMVE
gl uTessNormal - specify a nornmal for a polygon

C SPECI FI CATI ON
void gluTessNormal ( GLUt essel ator* tess,
GLdoubl e val ueX,
GLdoubl e val ueY,
GLdoubl e val uez )

PARAVETERS
tess Specifies the tessellation object (created with
gl uNewTess) .

val ueX Specifies the first conponent of the normal.
val ueY Specifies the second conponent of the normal.
valuezZz Specifies the third conponent of the nornal

DESCRI PTI ON
gl uTessNornal describes a normal for a polygon that the
programis defining. Al input data will be projected onto
a pl ane perpendicular to one of the three coordi nate axes
before tessellation and all output triangles will be
oriented CCWwi th respect to the normal (CWorientation can
be obtai ned by reversing the sign of the supplied normal).
For exanple, if you know that all polygons lie in the x-y
pl ane, call gluTessNormal (tess, 0.0, 0.0, 1.0) before
rendering any pol ygons.

If the supplied normal is (0.0, 0.0, 0.0) (the initial
value), the normal is determ ned as follows. The direction
of the normal, up to its sign, is found by fitting a plane
to the vertices, without regard to how the vertices are
connected. It is expected that the input data lies
approximately in the plane; otherw se, projection

per pendi cul ar to one of the three coordinate axes may
substantially change the geonmetry. The sign of the normal is

chosen so that the sumof the signed areas of all input
contours i s nonnegative (where a CCWcontour has positive
area) .

The supplied normal persists until it is changed by anot her

call to gl uTessNor nmal

SEE ALSO
gl uTessBegi nPol ygon, gl uTessEndPol ygon



NANMVE
gl uTessProperty - set a tessellation object property

C SPECI FI CATI ON
void gluTessProperty( G.Utessel ator* tess,
GLenum whi ch,
GLdoubl e data )

PARAVETERS
tess Specifies the tessellation object (created with
gl uNewTess) .



which Specifies the property to be set. Valid values are
GLU_TESS_W NDI NG_RULE, GLU_TESS_BOUNDARY_ONLY,
GLU_TESS_TOLERANCE

dat a Specifies the value of the indicated property.

DESCRI PTI ON
gl uTessProperty is used to control properties stored in a
tessell ati on object. These properties affect the way that
t he polygons are interpreted and rendered. The | egal val ues
for which are as foll ows:

GLU_TESS W NDI NG_RULE
Det er mi nes which parts of the polygon are on
the "interior". data may be set to one of
GLU_TESS_ W NDI NG_QODD,
GLU_TESS_W NDI NG_NONZERQ,
GLU_TESS_W NDI NG_PGCsSI Tl VE, or
GLU TESS_W NDI NG_NEGATI VE, or
GLU_TESS W NDI NG_ABS CEQ TWD.

To understand how the wi nding rul e works,
consi der that the input contours partition
the plane into regions. The winding rule

det erm nes whi ch of these regions are inside
t he pol ygon.

For a single contour C, the w nding nunmber of
a point x is sinply the signed nunber of
revol utions we nmake around x as we travel
once around C (where CCWis positive). \Wen
there are several contours, the individual

wi ndi ng nunbers are sumred. This procedure
associ ates a signed integer value with each
point x in the plane. Note that the wi nding
nunber is the sane for all points in a single
regi on.

The winding rule classifies a region as
"inside" if its w nding nunber belongs to the
chosen category (odd, nonzero, positive,
negative, or absolute value of at |east two).
The previous GLU tessellator (prior to GLU
1.2) used the "odd" rule. The "nonzero" rule
i s another common way to define the interior.
The other three rules are useful for polygon
CSG operati ons.

GLU_TESS BOUNDARY_ONLY
Is a bool ean val ue ("val ue" should be set to
GL_TRUE or GL_FALSE). Wen set to GL_TRUE, a
set of closed contours separating the polygon
interior and exterior are returned instead of
a tessellation. Exterior contours are
oriented CCWw th respect to the nornal;
interior contours are oriented CW The
GLU_TESS BEG N and GLU_TESS BEGQ N_DATA
cal | backs use the type G._LINE LOOP for each
cont our.

GLU_TESS_TOLERANCE
Specifies a tolerance for nmerging features to
reduce the size of the output. For exanple,
two vertices that are very close to each
ot her m ght be replaced by a single vertex.



The tolerance is nmultiplied by the | argest
coordi nate magni tude of any input vertex;
this specifies the maxi mum di stance that any
feature can nove as the result of a single
nmerge operation. If a single feature takes
part in several nerge operations, the tota
di stance noved coul d be | arger

Feature nmerging is conpletely optional; the
tolerance is only a hint. The inplenentation
is free to nerge in some cases and not in
others, or to never nerge features at all.
The initial tolerance is O.

The current inplenentation merges vertices
only if they are exactly coincident,

regardl ess of the current tol erance. A vertex
is spliced into an edge only if the

i mpl ementation is unable to distinguish which
side of the edge the vertex lies on. Two
edges are nerged only when both endpoints are
i denti cal

SEE ALSO

gl uGet TessProperty

gl uTessVertex - specify a vertex on a pol ygon

C SPECI FI CATI ON

voi d gluTessVertex( CGLUt essel ator* tess,
GLdoubl e *| ocati on,
GLvoi d* data )

PARAMETERS

tess Specifies the tessellation object (created with
gl uNewTess) .

| ocation Specifies the |ocation of the vertex.
dat a Speci fi es an opaque poi nter passed back to the

programwith the vertex call back (as specified by
gl uTesscCal | back) .

DESCRI PTI ON

gl uTessVertex describes a vertex on a pol ygon that the
program defi nes. Successive gluTessVertex calls describe a
cl osed contour. For exanple, to describe a quadrilatera

gl uTessVertex should be called four tines. gluTessVertex
can only be called between gl uTessBegi nCont our and

gl uTessEndCont our .

data nornmally points to a structure containing the vertex

| ocation, as well as other per-vertex attributes such as
color and normal. This pointer is passed back to the user

t hrough the GLU TESS VERTEX or GLU TESS VERTEX DATA cal | back
after tessellation (see the gluTessCall back reference page).

EXAMPLE

A quadrilateral with a triangular hole in it can be
descri bed as foll ows:

gl uTessBegi nPol ygon(tobj, NULL);



gl uTessBegi nCont our (tobj ) ;
gl uTessVertex(tobj, vi, vl);
gl uTessVertex(tobj, v2, v2);
gl uTessVertex(tobj, v3, v3);
gl uTessVertex(tobj, v4, v4);
gl uTessEndCont our (t obj ) ;
gl uTessBegi nCont our (tobj);
gl uTessVertex(tobj, v5, vb5);
gl uTessVertex(tobj, v6, v6);
gl uTessVertex(tobj, v7, v7);
gl uTessEndCont our (tobj); gl uTessEndPol ygon(tobj);

NOTES
It is a commpn error to use a |ocal variable for |ocation or
data and store values into it as part of a |oop. For
exanmple: for (i = 0; i < NVERTICES; ++i) {
GLdoubl e data[ 3];

data[0] = vertex[i][O0];
data[1] = vertex[i][1];
data[2] = vertex[i][2];

gl uTessVertex(tobj, data, data);
}

This doesn’t work. Because the pointers specified by

| ocation and data mi ght not be dereferenced unti

gl uTessEndPol ygon is executed, all the vertex coordinates
but the very last set could be overwitten before
tessel | ati on begins.

Two conmmon synptons of this problemare consists of a single
poi nt (when a local variable is used for data) and a

GLU TESS NEED COWVBI NE_CALLBACK error (when a |ocal variable
is used for location).

SEE ALSO
gl uTessBegi nPol ygon, gl uNewTess, gl uTessBegi nCont our
gl uTessCal | back, gl uTessProperty, gl uTessNor nal
gl uTessEndPol ygon



NAME
gl uUnProj ect - map w ndow coordinates to object coordinates

C SPECI FI CATI ON

GLi nt gl uUnProj ect ( G.doubl e w nX,
GLdoubl e wi nY,
GLdoubl e wi nZ,
const GLdoubl e *nodel
const GLdouble *proj,
const GLint *view,
GLdoubl e* obj X,
GLdoubl e* obj Y,
GLdoubl e* obj Z )

PARAMETERS
w nX, winY, wnZ
Speci fy the wi ndow coordi nates to be mapped.

nodel Specifies the nodelview matrix (as froma
gl Get Doubl ev cal l).

pr oj Specifies the projection matrix (as froma
gl Get Doubl ev cal l).

Vi ew Specifies the viewport (as froma
gl Getlntegerv call).

obj X, objY, objz
Returns the conputed object coordinates.

DESCRI PTI ON
gl uUnProj ect maps the specified wi ndow coordi nates into
obj ect coordinates using nodel, proj, and view. The result
is stored in objX, objY, and objZ A return value of G._TRUE
i ndi cates success; a return value of G._FALSE indicates
failure.

To conpute the coordinates (obj X, objY, and objZ2),
gl uUnProject nultiplies the normalized device coordinates by
the inverse of nodel *proj as follows:

| |
| |
«C ) | vi ey 2] -1
| obj X | | |
| objY | = INV(PM]| -1
] | vi ey 3] |
| objz | | 2(winz) - 1 |
( w ) | |
( 1 )

INV() denotes matrix inversion. Wis an unused vari abl e,
i ncl uded for consistent natrix notation.



SEE ALSO
gl Get, gl uProject



