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Corso Italia 40 - I56125 Pisa, Italy
guerrini@disi.unige.it

3 Dipartimento di Informatica e Scienze dell’Informazione - Università di Genova
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Abstract. In this paper we address the problem of evolving a set of
DTDs so to obtain a description as precise as possible of the structures
of the documents actually stored in a source of XML documents. This
problem is highly relevant in such a dynamic and heterogeneous envi-
ronment as the Web. The approach we propose relies on the use of a
classification mechanism based on document structure and on the use of
data mining association rules to find out frequent structural patterns in
data.

1 Introduction

XML [8] has recently emerged as the most relevant standardization effort for
document representation and exchange on the Web. XML documents share most
of the features of semi-structured data [1], but they also have some peculiarities,
such as the notion of DTD. At the same time, databases are more and more often
integrated with Web applications. The availability of a unified format for data
interchange on the Web and for the representation in the database is therefore
very attractive. It avoids all intermediate steps for converting and preparing data,
taking advantage of the presence, in XML documents, of both the structure and
the meaning of data.

A database schema provides all the information on data structure and seman-
tics thus allowing the organization of data so that database operations can be
executed efficiently. XML documents stored in a database are structured accord-
ing to the hierarchical composition of elements specified by a set of DTDs. This
structure can evolve over time. The need of maintaining different information in
a document or of organizing the same information in different ways can indeed
lead to modifications to the document structure. A document structure can vary
for several reasons. First, the real world (i.e., the application domain) reflected
in the document can change. Second, a change of the document structure can



be decided by the document producer, because the user interests in data repre-
sented in the document change. Moreover, in such a flexible and heterogeneous
environment as the Web, it is not realistic to fix the structure of a document
once for all without the possibility of subsequent evolutions, nor to fix it in a
centralized manner, so that anybody else producing documents of that kind will
adhere to it.

Changes in document structures obviously have a major impact on the data-
base storing the documents. If document structures evolve the database storing
the documents can neither be efficient, in that an efficient storing and a fast
access are no longer possible, nor correct, in that the database schema no longer
reflects document structure and semantics.

In this paper, we propose an approach to evolve a set of DTDs, representative
of the documents already stored in a database, so to adapt it to the structure
of new documents entering the database. To obtain a representative structure
of a set of documents, the first step is to group together similar documents.
Therefore, each document entering the database is classified against the set of
DTDs the database schema consists of, to determine the DTD in the set best
describing the structure of the document. A possibility is to use validators in this
preliminary classification phase. This approach, however, has the drawback that
classification based on validators is very rigid, with a boolean answer. Requiring
the validity of each document entering the database with respect to a DTD
in the schema would lead, in such a heterogeneous environment as the Web,
to reject a large amount of documents, thus resulting in a considerable loss of
information. Thus, we rely on a more flexible classification approach [2], based
on an algorithm to measure the structural similarity between a document and
a DTD that produces a numeric rank in the range [0, 1]. Actually, in this paper
we rely on a slightly modified version of the algorithm that allows one to obtain
a numeric evaluation of the structural similarity of each single element in a
document with respect to the corresponding element declaration in the DTD.
This measure will be referred to as local similarity and allows one to support an
evolution procedure with a variable level of granularity, ranging from the entire
document to a single element.

The scenario we refer to in this paper is the following. We consider a source
of XML documents, gathered from the Web or created as local data, and a set of
DTDs. These DTDs can be extracted from a sample document set, or they can
be defined by an expert of the application domain. Through the classification
approach proposed in [2], each document, created outside the source, can be
associated with a DTD in the source, the one best describing its structure.
If a document, matched against each DTD in the source, does not produce a
similarity value above a fixed threshold, it is stored in a separate repository,
containing unclassified documents. Otherwise, the document is handled as an
instance of the DTD for which the evaluation produced the highest similarity
value. After having classified a certain number of documents, the documents
instances of a DTD can present some regularities that, if captured by the DTD,
would restrict the divergence between the structure of documents as specified



by the DTD and the actual structures of documents instances of the DTD. The
goal of the evolution approach we propose is to capture these regularities thus
adapting the set of DTDs to the set of documents. A variable to be taken into
account in the evolution process is how to weight new documents with respect
to the already classified ones, in order to obtain a set of DTDs describing the
structure of most documents at a level of detail accurate enough.

The evolution process consists of two phases: a recording phase in which
peculiarities of documents entering the source are acquired, for the portions of
documents not conforming to the corresponding DTD, and an evolution phase,
in which the recorded information are used to update the schema and to adapt it
to the actual population of the source. The recorded information are associated
with each single element of each DTD, in ad-hoc data structures. The evolution
phase is based on the use of data mining association rules [4] to find out frequent
structural patterns in documents.

The paper is structured as follows. Section 2 presents an overview of our
approach. Section 3 discusses the recording phase. Section 4 is devoted to the
evolution phase, whereas Section 5 discusses related work. Finally, Section 6
concludes the paper.

2 Overview of the Approach

Given a dynamic set of XML documents and a set of DTDs we aim at obtaining a
new set of DTDs reflecting as much as possible the actual structure of documents.
Guided by exceptions, that is, data that are not captured by the current schema,
the schema itself is updated by means of heuristic policies. The goal is thus to
obtain a new set of DTDs, originated from the previous set of DTDs updated
so that deviations in the structures of documents in the source are taken into
account. After having classified a certain number of documents, the documents
instances of a DTD can present some regularities that, if captured by the DTD,
would restrict the divergence between the structure of documents as specified by
the DTD and the actual structures of documents instances of the DTD. These
regularities can be summarized as follows:

– Some documents miss some elements specified in the DTD. In this case, in
the evolution process, by taking into account the percentage of documents
missing the element, some elements can be removed from the DTD.

– Some documents contain some new elements, not defined in the DTD. In this
case, in the evolution process, these elements, for which the correct definition
must be deduced, will be inserted in the DTD.

– Elements in the document and in the DTD match, but the underlying struc-
tures do not, that is, the constraints defined by operators in the DTD are
not met. In this case, the portion of the DTD which does not conform to
the operators must be rebuilt, generating a new structure binding elements
together.

The evolution process cannot be started for each DTD instance which is
not valid for the DTD. The evolution has an impact on applications working



on the source, and should thus be performed whenever the source contains a
certain amount of documents that are not valid for the DTD with which they
have been associated, and that present some regularities. The exact number of
such documents depends on the features of document themselves and on the
application domain, that influences the precision level at which the structure
of documents in the source should be captured. There is an obvious trade-off
between the frequency and the precision of the evolution process on one side
and its cost, both in terms of execution time and storage space required for
maintaining auxiliary information, on the other side.

The approach we take is therefore the following. After having classified each
document, some structural information of the document are extracted (recording

phase). These information are then used during the evolution phase. The record-
ing phase allows one to carry on the evolution phase without need of analyzing
again the documents, since information that are relevant for the evolution have
already been associated with the DTD. Such an approach results in a faster
evolution phase, even though it requires some storage space.

The need of evolving the set of DTDs can arise for both classified and un-
classified documents (i.e., also for documents stored in the repository). In the
following we do not address the problem of generating a DTD from documents
with similar structures in the repository, rather we focus on the evolution of a
DTD based on its instances. Documents in the repository cannot take advan-
tage of the presence of a DTD in the source. Therefore, for such documents our
approach or other approaches already developed for extracting structural infor-
mation from the documents, as those described in Section 5, can be equivalently
applied.

A graphical overview of our approach is shown in Figure 1, in which rectangles
denote the main functional components of the approach, cylinders denote data
stores, thick arrows denote the control flow1, and thin arrows denote data flow.
In what follows we briefly describe each phase of the approach. The initialization

phase consists of the definition of the initial set of DTDs and of the setting of
the similarity threshold σ. This threshold determines how close the structure of
the documents classified in a DTD is to the structure specified by the DTD.

Each time a document, created outside the source, enters the source it is
initially inserted in a queue of “to-be-processed” documents. When it is then se-
lected, it is associated with a DTD in the source, that is, the one best describing
its structure, through the classification algorithm proposed in [2]. If a document,
matched against each DTD in the source, does not produce a similarity value
above the threshold σ, it is inserted in a separate repository, containing unclassi-
fied documents. Otherwise, the document is handled as an instance of the DTD
for which the evaluation produced the highest similarity value.

1 Note that there are two iterated activities: one involving the classification and check
phases, corresponding to the fact that new documents are classified till the evolution
process is triggered, and a second one corresponding to the iteration of the whole
evolution approach over time. This cycle includes all the activities in our approach,
but the ones in the initialization phase.
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Figure 1. Overview of the evolution process

Once the classification phase is completed and thus the DTD of which the
document is an instance has been selected, some structural information are ex-
tracted from the document. Specifically, information about valid and non valid
parts of the documents are extracted, distinguishing among common, plus, and
minus elements. Common elements are those elements appearing both in the
document and in the DTD; plus elements are those appearing in the document
but not in the DTD; minus elements are those appearing in the DTD but not in
the document. In the recording phase these information are associated with the
DTD in a data structure referred to as extended DTD. The use of such informa-
tion avoids analyzing again the document in the subsequent phases. Moreover,
these information are structural rather than content information, and they are
aggregate over the whole set of analyzed documents, thus they do not require
much storage space.

The classification and recording activities are iterated till the evolution phase
is triggered. The evolution phase is activated after a certain number of documents
have been classified. Specifically, we decided to trigger the evolution phase for a
DTD when, among the documents classified in that DTD, the percentage of non
valid documents, and the percentage of non valid elements in the documents,
are above a fixed threshold. Thus, we compute the sum of the percentage of
non valid elements for each document, normalized by the number of analyzed



documents. The evolution phase for a DTD T is thus triggered when

∑
D∈DocT

#{e|e element in D non valid for T}
#{e|e element in D}

#DocT
> τ

where DocT is the set of all documents classified in T , and τ is an a-priori fixed
activation threshold. The check phase allows to determine whether the evolution
phase should be activated.

The evolution phase of the evolution process is responsible for generating a
new set of DTDs and should be able to work at different granularities, ranging
from a very coarse granularity, regenerating the whole DTD, to a very fine gran-
ularity, regenerating the structure of a single element in the DTD. Exploiting
the information collected in the recording phase, some association rules are ex-
tracted that represent relationships between presence/absence of subelements of
an element. Based on such rules, on some heuristic policies we have identified,
and on the evolution windows discussed in Section 4, the new DTD is generated.

Finally, after the evolution phase, the documents in the repository are clas-
sified again against the restructured set of DTDs in order to check whether the
similarity is now above the threshold σ for some DTD in the source so that the
document can be considered as instance of such DTD.

3 Recording Phase

The recording phase for a document d is performed in two steps. In the first step,
among the DTDs in the source, the DTD most similar to document d is selected.
The similarity degrees are computed and the corresponding evaluations stored in
the auxiliary structures associated with the DTD. Then, in the second step, once
the most similar DTD has been selected, the more relevant structural information
are extracted from d and stored in auxiliary data structures associated with
such DTD. Since the similarity degrees have been computed in the first step,
the second step is very quick. Because of the operations performed in these two
steps, the document will not be considered again during the evolution phase.

Documents and DTDs are represented as labeled trees. Formal definitions and
properties of this representation can be found in [2]. The labels used for labeling
a document are from a set EN of element tags, and a set V of #PCDATA values. By
contrast, the labels used for labeling a DTD are from the set EN∪ET ∪OP, where
ET = {#PCDATA, ANY} is the set of basic types for elements, and OP = {AND, OR,
?, ∗, +} is a set of operators. The AND operator represents a sequence of elements,
the OR operator represents an alternative of elements2, the ? operator represents
an optional element, whereas the * and + operators represent repeatable elements
(0 or more times and 1 or more times, respectively). Examples of an XML
document and DTD and of their tree representations are shown in Figure 2.
Given a subtree T of a document or a DTD, function αβ returns the set of tags
associated with the direct subelements of T . Note that whenever function αβ

2 Note that at least one of the possible alternatives must be selected.



<a>

<b>5</b>
<c>7</c>

</a>

(a)

a

c

5

b

7

(b)

<ELEMENT a (b, c)>
<ELEMENT b (#PCDATA)>
<ELEMENT c (d)>
<ELEMENT d (#PCDATA)>

(c)

a

AND
b

d
#PCDATA

#PCDATA

c

(d)

Figure 2. (a,c) Examples of XML document and DTD and (b,d) their tree represen-
tations

is applied to a node in a DTD, it returns the direct subelements independently
from the operators used in the element type declaration. For instance, referring
to the DTD in Figure 2 (c,d), αβ(a) = {b, c}.

In the remainder of the section we discuss through an example local and
global similarity. Then, we present the notion of extended DTD, a DTD enriched
with additional data structures for storing structural information of documents
classified against it.

3.1 Global and Local Similarity

The global similarity of an element ed of the document and an element e of the
DTD is the evaluation of “how much” the subelements of ed meet the constraints
imposed by declaration of e in the DTD, taking into account the DTD declara-
tions of subelements of e as well. Global similarity is the numeric counterpart
of the (boolean) notion of validity. If a document is valid w.r.t. a DTD their
global similarity is full (i.e. the global similarity degree is 1). By contrast, local
similarity does not take into account the declarations of subelements of e in the
DTD. That is, it just evaluates “how much” the direct subelements of ed match
the direct subelements specified in the declaration of e in the DTD.

Example 1. Consider the document and DTD of Figure 2. Element a in the
document contains subelements b and c. The DTD declaration requires the
same subelements. Therefore, their local similarity is full. By contrast, if we
move down in the DTD declaration for element c, an element d is required,
whereas element c in the document has a data content. Therefore, the global
similarity of the document and the DTD is not full. ◦

Distinguishing between global and local similarity is important for DTD evo-
lution. Because of local similarity, element a in the DTD declaration of Exam-
ple 1 does not need to be modified. By contrast, element c could be modified if
a huge number of documents, with the same structure as the one above, have
been classified against such DTD.



Global and local similarity are computed by means of a recursive function.
Such function is an enhanced version of the one presented in [2] for computing
global similarity. Intuitively, the function visits at the same time the tree repre-
sentations of a document and a DTD associating with each node an evaluation of
plus, common and minus components between the two structures at that level
of the tree representations. The evaluation is represented by means of triples
(p,m, c) in which p, m, c are the evaluation of plus, minus, and common com-
ponents, respectively. Starting from these triples, an evaluation function E [2] is
then used for computing the global and local similarity, respectively.

3.2 Extended DTD

The DTD is extended with auxiliary data structures for containing the relevant
information for the evolution phase. Such data structures are associated with
each node of the DTD. The DTD with the auxiliary data structures is called
extended DTD. In each element of the DTD we store information about the
elements with the same tag found in that position in the hierarchical structure
of the document. Such information are of two different kinds depending on the
local similarity degree between the element of the document and the one of
the DTD. If an element ed in the document has a full local similarity w.r.t.
the element e of the DTD, the counters of “number of valid instances” and
“number of documents containing valid elements” are incremented. By contrast,
if the local similarity is not full the counter “number of non valid instances” is
incremented, the labels in αβ(ed) are added to the set of labels found for e, and
the set αβ(ed) is added to the set of sequences for e. A sequence is a set of tags of
direct subelements of ed disregarding order and repetitions.3 Moreover, for each
label l belonging to αβ(ed), the following structural information are stored.

– The number of non valid instances of e containing l.
– The number of non valid instances of e containing l in which l is repeated

more than once.
– If l does not appear in the declaration of e (i.e. l 6∈ αβ(e)), the structural

information about subelements of l. This information is used for extracting
from the instances with the same label a DTD declaration for l.

– If l is repeated more than once, the subsets of αβ(ed) containing l and
other tags that are repeated the same number of times, which we refer to
as groups. With each group S, included in the extended DTD, a counter
r is associated. The counter is incremented each time S is found in the
elements classified against e. Groups are used during the evolution phase for
determining relationships among subelements of e.

Example 2. Let T be the DTD in Figure 3(a) and D1 and D2 be two sets of doc-
uments whose structures are reported in Figure 3(b). The label of root elements
is a both for documents in D1 and D2 and all documents contain a sequence

3 The set of sequences associated with e due to the classification of non valid elements
will be used in the evolution phase to determine relationships among subelements.



of b and c elements. However, such sequence in documents in D1 is followed by
a sequence of d elements, whereas in documents in D2 it is followed by an e

element. Documents in both sets are not valid w.r.t. T. Figure 3(c) presents a
sketch of the extended DTD. Element a is associated with the set {b, c, d, e} of
element tags found in the documents classified against T . Moreover, it contains
information about the fact that {b, c} forms a group since elements b and c are
repeated the same number of times and the fact that element d is repeatable
and optional (there are documents that do not contain it). ◦

By means of the information stored in these data structures the invalidity

ratio (I) for each element can be determined. If n is the number of elements in
the documents classified against an element e of the DTD, and m is the number
of elements for which the local similarity is less than 1 (m ≤ n), then I(e) = m

n
.

Relying on such value the evolution algorithm determines how to evolve the ele-
ment. The possible modifications range from maintaining the current definition
of the DTD declaration for element e to completely updating its structure to
adhere to the new instances of the element found since last evolution.
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Figure 3: Recording structural information: (a) DTD, (b) actual structure of
documents classified against the DTD, (c) extended DTD

4 Evolution Phase

In this section we first present the general ideas of the evolution phase. Then we
get into details of one of the most relevant cases: the one in which the structure
of an element of the DTD needs to be redetermined.

4.1 General Ideas

When the evolution phase is triggered the documents contained in the source
can be partitioned in two subsets: DOCold, containing the documents that the
current set of DTDs properly represents, and DOCcur containing the documents
classified in the source since the last evolution. Documents in DOCold do not
“explicitly” contribute to determine the structure of evolved DTDs, but they
“implicitly” do, since their structure is already captured by the current set of
DTDs.



Different requirements should be considered by the evolution algorithm in or-
der to determine the structure of evolved DTDs. First, an appropriate relevance
to documents in DOCold w.r.t. documents in DOCcur should be specified. In-
deed, if documents in DOCold are more relevant than the others, the new DTDs
will be slightly different from the previous ones. By contrast, if documents in
DOCcur are more relevant than the others, the new DTDs could be much more
different from the previous ones. Note that, in the latter case, this can lead to
reduce the similarity of documents in DOCold w.r.t. the new DTDs. This is how-
ever reasonable if we are not very confident about the structures of documents
as specified by the current DTDs, for instance in the early stage of a source.
Another requirement is to keep into account the most frequent deviations from
the structure described by a DTD. For example, it could happen that most of
the documents classified in a DTD contain a common new feature, that the DTD
does not include. In such case, the new DTD will provide such feature because
this can help applications working on such data. By contrast, if documents are
really heterogeneous, adding/removing elements to/from the DTD will not help
to better represent the documents in the source. Therefore, the DTD should not
change. A last requirement is that relevant modifications can involve only few
elements of the DTD. Therefore, DTD evolution should be performed only on
such elements leaving the others unchanged. This “locality” of modifications is
really important in order to reduce the impact on applications working on the
source.

In order to address the above requirements the evolution algorithm works
element by element by checking whether it is better to change the structure
of the element or to leave it unchanged. The check is performed considering
the invalidity ratio of elements introduced in Section 3. Such value is used for
determining the behavior of the evolution algorithm depending on a threshold ψ
(0 ≤ ψ ≤ 0.5). By means of this threshold it is possible to define three windows.
If the value I(e) is in the range [0, ψ], element e falls in the old window, whereas
it falls in new window if I(e) is in the range [1 − ψ, 1]. In the other cases (i.e.,
I(e) ∈ (ψ, 1 − ψ)) element e falls in the misc window. Changing the value of
the ψ parameter we can give more or less relevance to non valid elements w.r.t.
valid ones.

If an element falls in the old window then the amount of elements that do
not conform to the DTD declaration is too low to trigger the modification of
the DTD declaration. More relevance is thus given to documents in DOCold and
the evolution algorithm leaves the DTD declaration of this element unchanged.
However, it is possible in this case to adapt the DTD structure to the valid
elements classified against such element. For example, suppose to have a DTD
declaration for element a that requires the presence of the subelement b repeated
from 0 to many times (by means of the * operator). If all the elements a classified
against this DTD contain at least an element b, it is possible to change the *

operator in the + operator. This will give more relevance to the new documents
w.r.t. the ones in DOCold. This operation has been called restriction of operators.



For each operator the possible restrictions have been identified and the respective
conditions formalized.

If an element falls in the new window, then the amount of elements that
do not conform to the DTD declaration is high. Thus the DTD structure must
be changed. In this case the algorithm will determine a new structure for the
element, possibly adding and removing subelements, and changing the operators
binding them, in order to obtain a DTD declaration of such element that cor-
rectly describes the new instances of the DTD. The new window handling will
be presented in the remainder of the section.

If an element does not fall in any of the previous windows, the evolution
algorithm gives the same relevance to documents in DOCold and in DOCcur.
Therefore, documents in DOCcur are used for obtaining the new structure of the
DTD declaration of the element. Then, such definition is bound, by means of
the OR operator, with the previous declaration of the DTD. A better formulation
of the DTD is then obtained by means of “DTD re-writing rules” like the ones
described in [2], that allows one to rewrite a DTD in a simpler, yet equivalent4,
one.

4.2 Determining the new Structure of an Element

Consider an element e of the DTD, let E = {ed1
. . . , edn

} be the elements classi-
fied against e during the recording phase and Label = ∪n

i=1αβ(edi
) be the labels

of the subelements of the elements classified against e. If e falls in the new win-
dow then either elements ed1

. . . , edn
contain some elements not appearing in

the DTD, or these elements only contain subelements declared in the DTD but
the operators used to bind subelements are not met. The new DTD declaration
for element e is obtained by exploiting the structural information stored in the
extended DTD during the recording phase by means of association rules and a
set of heuristic policies, that are described in the remainder of the section.

Association Rules Having extracted from the elements classified against e the
tags used in the subelements and the groups of tags that are found together,
we want to determine how “frequently” the presence of some elements implies
the presence of others. This result has been achieved by using association rules

typical of data mining. An association rule is a rule of the form X → Y , where X
and Y are sets of items from a set I and X ∩Y = ∅. An association rule specifies
that the presence of items X determine the presence of items Y . A sequence S

is a set of items s.t. S ⊆ I. An association rule X → Y has support c in a set of
sequences if the c% of sequences in the set contains X ∪ Y . It has confidence c
if the c% of sequences containing X, also contain Y .5

4 That is, with the same set of valid documents.
5 In our case “items” are element tags and the set of sequences is the one associated

with element e.



Example 3. Consider the set of sequences S = {{a, b, c}, {a, b}, {b, c, d}} and
the association rule R = c → a, b. Support(R) = Support({a, b, c}) = 1

3 .

Confidence(R) = Support({a,b,c})
Support({c}) = 1

2 . ◦

Association rules can also be used for determining relationships like “the
presence of some elements implies the absence of others” by considering the
concept of absent element. Given an element edi

(1 ≤ i ≤ n) the absent elements
for edi

are Label \ αβ(edi
). If b is an absent element for edi

, the notation b̄ is
used for representing its absence.

Example 4. Consider the sequences of Example 3 and suppose that each se-
quence corresponds to the subelement tags found in a document element. Then,
the set Label is {a, b, c, d}. The only absent element for the sequence {a, b, c} is
d, whereas c and d are absent for the sequence {a, b}. The sequences in S can
then be represented as S = {{a, b, c, d̄}, {a, b, c̄, d̄}, {ā, b, c, d}}. ◦

Note that the introduction of absent elements in the sequences makes it
possible to determine from the set of sequences associated with e also association
rules of the form “if element b is absent then element c is present”. Such kind
of rules is useful for determining subelements of element e that never appear
together (i.e., that are bound through the OR operator).

Starting from a threshold µ representing the minimum support for a sequence
of element tags, and an element e that falls in the new window, the steps followed
by the evolution algorithm are the following.

1. For each sequence associated with e, the algorithm updates the sequences of
elements to include the absent elements, according to the notion of absent
element introduced above, as we have done in Example 4.

2. Those sequences are then used for computing the most frequent sequences.
The most frequent sequences are those having support greater than µ. The
other sequences are discarded since they are not representative enough.

3. Association rules are extracted from the most frequent sequences. These rules
represent the relationships among subelements of the elements ed1

. . . , edn
.

The relationships represented by those rules are of two types: “the presence
of these elements implies the presence of these elements”; “the absence of
these elements implies the presence of these elements”.

4. Association rules with the maximal confidence (i.e., 1) are extracted.

Let Rules be the set of rules computed according to the previous steps. Those
rules represent the most common relationships found in the elements ed1

. . . , edn

and are used by the heuristic policies we have devised to determine the DTD
declaration of element e.

Heuristic Policies Different policies have been developed in order to deter-
mine the operators that bind together the subelements of an element e that falls
in the new window. Such policies are based on the association rules previously



discussed, on the information about the repetition of each single subelement,
and on the groups to which the subelements belong. Our approach is based on
two basic principles. Let X = {x}, Y = {y}, X,Y ⊆ EN be two subsets of the
tag element set.

P1 (Extraction of the AND-binding between two elements). If {x → y, y → x} ⊆
Rules, then in most cases subelements x and y are present together. Therefore,
these elements are bound by the AND operator.

P2 (Extraction of the OR-binding between two elements). If {x → ȳ, ȳ → x} ⊆
Rules, then in most cases when subelement x is present subelement y is absent
and viceversa. Therefore, these elements are alternative and are thus bound by
an OR operator.
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Figure 4: Policies and their relationships

These principles do not take into account that subelements can be repeated
more than once and not always the same number of times. However, such prin-
ciples can be generalized to sets of elements containing more than one element
and that can be repeated more than once.

The algorithm for extracting the new structure of an element takes as input
a set C of elements, a set Rules of association rules, and information about the
repetitions of each element in C and of subset of elements in C. The set C is



generated by considering the elements associated with the tags in Label. Relying
on our representation of elements, C is thus a set of trees.

Starting from these input parameters the algorithm applies 13 policies we
have identified for determining the new structure of the element e. Each policy
is composed of two parts: the condition and the re-writing parts. The first part
of the policy specifies a condition on a subset C1 of C and the association rules
that should belong to Rules for the policy to be applicable. If the condition is
verified, in the re-writing part of the policy, the set C1 is removed from C and a
new tree is added to C. Such tree represents the new structure for the elements
contained in C1. Each policy is applied exhaustively, that is, the algorithm finds
all the subsets of C for which the policy condition is verified and, when the next
policy is applied, it is not possible to consider again the previous one. Policies
are thus applied in turn till set C becomes a singleton. When C is a singleton
the process terminates and the obtained element represents the new binding of
the subelements of the element to be restructured.

In addition to the 13 policies there are three policies that handle basic cases.
The basic cases arise when the starting set C is already a singleton (that is,
C = {T}). Then, no rule can be applied and the actual tree produced depends
on the optionality and repeatability of T . Specifically, if T is neither optional
nor repeatable it is left unchanged. Otherwise, it is replaced by T ′ = (v′, [T ]),
where v′ is a new vertex whose label is ?, +, or +, depending on whether T is
optional, repeatable, or optional and repeatable.

The 13 policies are defined in Appendix A. Figure 4 graphically depicts their
interactions. The input of a policy can be an element, i.e., a tree whose root
label belongs to EN , or an operator, i.e. a tree whose root label belongs to OP,
and produces a tree labeled by an operator. Policies 1, 4, 5, 9 take as input only
subsets of C labeled by an element tag, whereas policies 11, 12, 13 take as input
only trees labeled by operators. The other policies consider both trees labeled
by element tags and operators. In the figure we point out the type of element
considered and the root label of the generated tree. A bullet in the grid means
that the output of a rule (the horizontal line) can be the input of another rule
(the one reached by the vertical line).

Example 5. Consider the document, the DTD and the extended DTD of Exam-
ple 2. Suppose that element a falls into the new window. The set C = {b, c, d, e}
is computed. The set Rules contains the rules {b → c, c → b, d → ē, ē → d}.
Such rules have been identified by applying the steps we have outlined in the
above discussion on association rules. The set Rules also contains other rules
that, however, are not relevant for this example.

Consider the group {b, c}. The elements of such group are always repeated
the same number of times. Policy 1 can be applied on such group (the condition
part is reported in Figure 5). Therefore elements b and c can be removed from
C and the tree (1) in Figure 5 can be added to the DTD.

On the new set C neither policy 1 can be applied, nor policies 2 and 3. By
contrast, policy 4 (whose condition part is reported in Figure 5) can be applied
on {d, e}. Indeed, when element d is present, element e is absent and viceversa
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Figure 5: Application of the evolution algorithm

(the two elements are alternative). Therefore elements e and d can be removed
from C and the tree (2) in Figure 5 can be added to the DTD.

C is now only composed of trees whose root labels are operators (in one
case the * operator, in the other the OR operator). Thus, only policies 11, 12,
13 can be applied on them. Conditions of policies 11 and 12 do not hold, rather
the condition of policy 13 holds; thus such policy is applied and the two trees
are replaced in C by a new tree (tree (3) in Figure 5) whose root label is the
AND operator and whose children are the previous two trees. Set C becomes a
singleton and, thus, the new DTD declaration for element a is determined.

Note that, since element d and e are plus elements, no declaration is provided
for them. However, by recursively applying the evolution algorithm for each
of them, considering as DTD an empty DTD, their actual structure can be
extracted as shown in Figure 5 (tree (4)). ◦

5 Related Work

A related problem that has been investigated for semi-structured data [7, 9]
and XML [3, 6] is that of structure extraction, that is, the discover of schema
information (in the form of a data guide or of a DTD, respectively) from a set
of documents.

In [7] a technique is proposed for extracting implicit schema information,
in the form of an approximate type assignment, from semi-structured data. The
type assignment is approximate since data are not required to exactly conform to
the type assigned to them. The approach is based on the idea of defining Datalog
programs to type a set of semi-structured objects. Starting from a perfect typing
(that is, a type for any distinct object), the number of types is then reduced by



collapsing the types of objects with a slightly different structure. To determine
which types to collapse some measures are used based on the number of type
instances and on Manhattan distance between types.

The Road Map approach [9] is based on the idea of extracting, from a set
of semi-structured documents on the same topic, their common structure, thus
discovering the similarities among the documents. The approach can be param-
eterized according to user needs. For instance, the user can set the minimal
frequency of expressions due to common structures in documents. The approach
is based on a weaker than order among document structures represented as trees,
and on the association of a numeric support with structures. The approach allows
one to extract a structure that describes the maximum number of documents.

XTRACT [3] is based on an algorithm for extracting, given a set of docu-
ments, a DTD for these documents being at the same time concise (that is, small)
and precise (that is, capturing all the document structures). The algorithm is
based on three steps:

– heuristic algorithms are used for finding patterns in input documents and
replacing them with appropriate regular expressions to produce more general
candidate DTDs;

– common subexpressions are factored out from the generalized candidate
DTDs obtained from the previous step, in order to make them more concise;

– among the candidate DTDs the one providing the most concise representa-
tion of input documents in terms of the DTD is chosen.

The approach described in [6] has been developed for re-engineering the struc-
tures of Web documents. The starting point is the extraction of each document
structure, in the form of a document tree, and the grouping of documents with
similar structure in clusters. This grouping is performed through pattern match-
ing algorithms applied to document trees. Then, a general structure is extracted
for each document cluster, through a data structure referred to as spanning

graph, which is a DAG containing information on the structures of the original
document trees, and it is incrementally built while document trees are analyzed.
From this structure a DTD is finally obtained, through the use of a set of heuris-
tic rules, that is representative of all the documents in the group.

Despite of their differences, all those proposals have the common goal of de-
veloping approaches to extract schema information from data, that is, to extract
structures from raw data. They have some similarities with our approach, since
the goal is common, i.e., to obtain, from examined data, an adequate repre-
sentation of their structure. This structure should be representative of as many
documents as possible, but, at the same time, should be as accurate as possible,
as in [9]. Another common aspect is that all the techniques, like ours, rely on
the maintainance of internal information extracted from documents. Specifically,
the data structure we employ, i.e., the extended DTD, is similar to the Spanning

Graph proposed in [6]. Another common point with [6] is the preliminary phase
of document clustering based on similarity, though this clustering is achieved in
different ways. Finally, heuristic policies are employed in XTRACT to generalize
structural expressions.



However, all those approaches substantially differ from ours in that they do
not address how the structure extraction mechanisms can exploit some a-priori
knowledge on the data schema. We remark that this knowledge, that we assume
in our approach, often occurs in practice, for instance when integrating semi-
structured data, discovered on the Web, with data having a known structure.
Moreover, those approaches work by examining a set of documents at a time,
and extracting the schema from these documents. It is not specified whether and
how the insertion of new data, once the schema is set, can result in schema mod-
ifications. Our approach, by contrast, is incremental. Structural information are
extracted and recorded for each document when the document is classified, and
the evolution process, triggered by an appropriate event, can be applied several
times, to adapt the current schema to the newly classified documents. Thus,
two separate steps (recording and evolution steps) characterize our approach,
whereas these two steps are merged in other approaches. Another difference is
related to the granularity of the process, which is finer, i.e. a single element in
our approach, whereas it is the whole document in other approaches. Thus, local
reorganizations are possible in our approach. Moreover, an important improve-
ment of our approach with respect to [6] is that our approach allows one to
generate DTDs containing the OR operator, that is not generated in [6]. A final
difference with XTRACT, is that we do not address the problem of generating
DTDs that are as concise as possible. However, the use of “re-writing rules” as
proposed in [2] makes it possible the definition of simpler DTDs.

6 Conclusions

In this paper we have proposed an approach to adapt a set of DTDs to a dynamic
set of XML documents. We are currently experimentally evaluating the proposed
approach, with the main goal of assessing the quality of the obtained DTDs.
Since a DTD can be considered as a kind of XML schema, we are currently
extending the approach to the evolution of XML schemas. A related problem
that is currently under investigation is how to adapt documents, already stored
in the source, to the new structure prescribed by the evolved set of DTDs.

There are a number of directions along which the proposed approach can
be extended. The first one concerns the possibility of evolving tag names as
well as their structure by relying on the use of a Thesaurus [5]. The Thesaurus
allows one to evaluate structural similarity shifting from tag equality to tag
similarity, as sketched in [2]. A second direction is related to the development
of an evolution trigger language, by using which applications can specify and
automatically activate DTD evolution.
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A Heuristic Policies

In the definition of the heuristic policies we will use the following notations.

– Documents and DTDs are referred to as (T, ϕ) pairs, where T is a tree and ϕ is
a vertex labeling function. Specifically, T is either a vertex v or a vertex v with a
list [T1, . . . , Tn] of subtrees.

– Given a tree, function label return its root label.
– Given a tree representing an element, function R returns the number of repetitions

of such element. This information is maintained in the extended DTD.
– C = {T1, . . . , Tn} is a set of trees. Initially, this set contains only trees labeled by

an element tag.
– Ln = {x1, . . . , xn} is the set of labels associated with trees whose root labels are

element tags. Initially, there is a 1:1 correspondence with the trees in C. A label
xk is always associated with the tree Tk.

– Given Lk subset of Ln, the relation Lk ⊆M Ln means that the set Lk is maximal
subset of Ln on which a property required by a policy holds. That is, if the set
Lk ∪{x̄} with x̄ ∈ Ln \Lk is considered, then the property does not hold anymore.

Policy 1 (Extraction of an AND-binding). If Lk ⊆M Ln exists s.t. the following condi-
tion holds

∀i, 1 ≤ i ≤ k, {xi → x1 . . . xi−1xi+1 . . . xk, x1 . . . xi−1xi+1 . . . xk → xi} ⊆ Rules

then the policy is applicable and the generated tree depends on the number of repetitions
of the trees in Lk, and on the most frequent groups among those collected during the
recording phase.



– If ∀i, j, 1 ≤ i, j ≤ k, R(Ti) = R(Tj) = 1, then the tree (v, [T1, . . . , Tk]) is gener-
ated, with v a new vertex, and ϕ(v) = AND.

– If ∀i, j, 1 ≤ i, j ≤ k, R(Ti) = R(Tj) = m, m > 1, and a group ({x1, . . . , xk}, m) is
present, then the tree (v1, [(v2, [T1, . . . , Tk])]) is generated, with v1, v2 new vertices,
and ϕ(v1) = *, ϕ(v2) = AND.

– If the previous conditions do not hold (the trees are repeated, but not the same
number of times), the groups in a set G s.t. for each G ∈ G, G ⊆ Lk, and for each
G′, G′′ ∈ G s.t. G′ 6= G′′, G′ ∩ G′′ = ∅, are considered. Let L̄ = Lk \ ∪G′∈GG′, be
the set of elements which are repeated only once or are repeated more than once
but separately. Let ST be a set, initially empty, of trees. The following steps are
performed.
• For each T ′ ∈ L̄, if R(T ′) > 1, then the tree (v, [T ′]), with v a new vertex and

ϕ(v) = +, is added to ST , otherwise T ′ itself is added to ST .
• For each G′ ∈ G, G′ = {x1, .., xh}, 1 ≤ h ≤ k, K ′ = {T1, .., Th}, where Ti is

the tree corresponding to xi, 1 ≤ i ≤ h, the tree T ′ = (v1, [(v2, [T1, . . . , Th])]) is
generated, with v1, v2 new vertices, ϕ(v1) = +, ϕ(v2) = AND. ST = ST ∪ {T ′}.

The tree (v1, ST ) is then generated, with v1 a new vertex and ϕ(v1) = AND.

The generated tree is added to C and the trees T1, . . . , Tk are removed from C. 2

Policy 2 (Extraction of an AND-binding between a tree labeled by an element tag and
a * labeled tree). Let A = {T |T ∈ C, label(T ) = ∗}. For each T ∈ A, if ∃x ∈ Ln s.t.
αβ(T ) → x ∈ Rules, then the policy is applicable and the tree (v, [T, Tx]) is generated,
with v a new vertex and ϕ(v) = AND. The generated tree is added to C and the trees T

and Tx are removed from C. 2

Policy 3 (Extraction of an AND-binding between a tree labeled by an element tag
and an AND labeled tree). Let A = {T |T ∈ C, label(T ) = AND}. For each T ∈ A,
T = (v, [T ′

1, . . . , T
′
h]), if ∃ T ′ ∈ [T ′

1, . . . , T
′
h] s.t. label(T ′) ∈ EN , and ∃ Lk ⊆ Ln, s.t.

∀xi ∈ Lk:

– xi → label(T ′) ∈ Rules,
– xi → x1 . . . xi−1xi+1 . . . xk 6∈ Rules,
– xi = label(Ti),

then the policy is applicable and the tree (v, [T ′
1, . . . , T

′
h, T ′

1, . . . , T
′
k]) is generated. Each

T ′
j , 1 ≤ j ≤ k, is of the form (v, [Tj ]). If R(Tj) = 1 then ϕ(v) = ?, otherwise ϕ(v) =

*. The generated tree is added to C and the trees T1, . . . , Tk, T are removed from C. 2

Policy 4 (Extraction of an OR-binding). If Lk ⊆M Ln exists s.t. the following condition
holds

∀i, 1 ≤ i ≤ k, {xi → x1 . . . xi−1xi+1 . . . xk, x1 . . . xi−1xi+1 . . . xk → xi} ⊆ Rules

then the policy is applicable and the tree (v, [T ′
1, . . . T

′
k]) is generated, with v a new

vertex and ϕ(v) = OR. If R(Tj) > 1, 1 ≤ j ≤ k, T ′
j is of the form (v, [Tj ]) with v a new

vertex and ϕ(v) = +. Otherwise, T ′
i is Ti itself. The generated tree is added to C and

the trees T1, . . . , Tk are removed from C. 2

Policy 5 (Extraction of a simple AND/OR-binding). If Lk ⊆M Ln exists s.t. the follow-
ing condition holds

∀i, 1 ≤ i ≤ k − 1, {xi → x1 . . . xi−1xi+1 . . . xk−1, xi → xk} ⊆ Rules



then the policy is applicable and the tree generated depends on the number of repeti-
tions of the tree Tk. If R(Tk) = 1, the tree (v1, [(v2, [T1, . . . , Tk−1]), Tk]) is generated,
with v1, v2 new vertices and ϕ(v1) = AND, ϕ(v2) = OR. Otherwise (R(Tk) > 1), the
tree (v1, [(v2, [T1, . . . , Tk−1]), (v3, [Tk])]) is generated, with v1, v2, v3 new vertices and
ϕ(v1) = AND, ϕ(v2) = OR and ϕ(v3) = +. The generated tree is added to C and the trees
T1, . . . , Tk are removed from C. 2

Policy 6 (Extraction of a complex AND/OR-binding). Let A = {T |T ∈ C, label(T ) =
AND}. For each T ∈ A, T = (v, [T ′

1, . . . , T
′
h]), if Lk ⊆M Ln, exists s.t. the following

condition holds: ∀i, 1 ≤ i ≤ k,

– xi → x1 . . . xi−1xi+1 . . . xk ∈ Rules,
– ∀j, 1 ≤ j ≤ h, if label(Tj) ∈ EN then xi → label(Tj) ∈ Rules,

then the policy is applicable and the tree (v1, [T
′
1, . . . , T

′
h, (v2, [T1, . . . , Tk])]) is generated,

with v1, v2 new vertices and ϕ(v1) = AND, ϕ(v2) = OR. The generated tree is added to
C and the trees T1, . . . , Tk are removed from C. 2

Policy 7 (Extraction of a weak OR-binding). Let A = {T |T ∈ C, label(T ) = ∗}. For
each T ∈ A s.t. T = (v, [T ′]), label(T ′) = AND and {y1, . . . , yh} = αβ(T ′), if Lk ⊆M Ln

exists s.t. the following condition holds: ∀i, 1 ≤ i ≤ k,

– xi → y1 . . . yh ∈ Rules,
– xi → x1 . . . xi−1xi+1 . . . xk 6∈ Rules,
– ∃yj ∈ {y1, . . . , yh} s.t. yjxi → y1 . . . yj−1yj+1 . . . yh ∈ Rules,

then the policy is applicable and the tree (v1, [(v2, [T
′]), (v′

1, [T1]), . . . , (v
′
k, [Tk])]) is gen-

erated, with v1, v2, v′
1, . . . , v

′
k new vertices, ϕ(v1) = OR, ϕ(v2) = +. If R(Ti) = 1, 1 ≤

i ≤ k, then ϕ(v′
i) = ?, ϕ(v′

i) = * otherwise. The generated tree is added to C and the
trees T1, . . . , Tk, T are removed from C. 2

Policy 8 (Extraction of an AND/OR-binding between a tree labeled by an element tag
and a OR labeled tree). Let A = {T |T ∈ C, label(T ) = OR}. For each T ∈ A, if x ∈ Ln

exists s.t.
∀y ∈ αβ(T ), y → x ∈ Rules

then the policy is applicable and the tree (v, [T, Tx]) is generated, with v a new vertex
and ϕ(v) = AND. The generated tree is added to C and the trees T, Tk are removed from
C. 2

Policy 9 (Extraction of an AND-binding by means of a dependency). Let {xa, xb} ⊆
Ln. If xb → xa ∈ Rules then the policy is applicable and the tree (v1, [Ta, (v2, [Tb])]) is
generated, with v1, v2 new vertices, ϕ(v1) = AND. If R(Tb) = 1, then ϕ(v2) = ?, ϕ(v2) =
* otherwise. The generated tree is added to C and the trees Ta, Tb are removed from C.

2

Policy 10 (Extraction of an OR-binding between AND labeled trees and trees labeled
by an element tag). Let A = {T |T ∈ C, label(T ) = AND}. If Lk ⊆M Ln, exists s.t. the
following condition holds: ∃B = {T ′

1, . . . , T
′
h} ⊆ A s.t. ∀T ′ ∈ B

– ∀y ∈ αβ(T ′), y → y′
1 . . . y′

nx1 . . . xk ∈ Rules, where {y′
1, . . . , y

′
n} = ∪T∈(B\{T ′})αβ(T ),

– ∀i, 1 ≤ i ≤ k, xi → x1 . . . xi−1xi+1 . . . xky′
1 . . . y′

m ∈ Rules, where {y′
1, . . . , y

′
m} =

∪T∈Bαβ(T ),



then the policy is applicable and the tree (v, [T ′
1, . . . , T

′
h, T1, . . . , Tk]) is generated, with v

a new vertex and ϕ(v) = OR. The generated tree is added to C and the trees T ′
1, . . . , T

′
h,

T1, . . . , Tk are removed from C. 2

Policy 11 (Extraction of an OR-binding between AND labeled trees). Let {T1, . . . , Th} ⊆
C s.t. ∀i, 1 ≤ i ≤ h, label(Ti) = AND. Let {Th+1, . . . , Tn} ⊆ C s.t. ∀i, h + 1 ≤ i ≤
n, label(Ti) = ∗. If n > 1 then the policy is applicable and the tree (v, [T1, . . . , Tn]) is
generated, with v a new vertex and ϕ(v) = OR. The generated tree is added to C and
the trees T1, . . . , Tn are removed from C. 2

Policy 12 (Extraction of an AND-binding between OR labeled trees). Let {T1, . . . , Tn} ⊆
C s.t. ∀i, 1 ≤ i ≤ n, label(Ti) = OR. If n > 1 then the policy is applicable and the tree
(v, [T1, . . . , Tn]) is generated, with v a new vertex and ϕ(v) = AND. The generated tree
is added to C and the trees T1, . . . , Tn are removed from C. 2

Policy 13 (Extraction of the final AND-binding). Let {T1, . . . , Th} ⊆ C s.t. ∀i, 1 ≤
i ≤ h, label(Ti) = OR. Let {Th+1, . . . , Tl} ⊆ C s.t. ∀i, h + 1 ≤ i ≤ l, label(Ti) = *. let
{Tl+1, . . . , Tn} ⊆ C s.t. ∀i, l+1 ≤ i ≤ n, label(Ti) = AND. If n > 1 the policy is applicable
and the tree (v, [T1, . . . , Tn]) is generated, with v a new vertex and ϕ(v) = AND. The
generated tree is added to C and the trees T1, . . . , Tn are removed from C. 2


