
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 1

Trigger Inheritance and Overriding in an Active Object

Database System

Elisa Bertino, Giovanna Guerrini, Isabella Merlo

Abstract|An active database is a database in which some

operations are automatically executed when speci�ed events

happen and particular conditions are met. Several systems

supporting active rules in an object-oriented data model

have been proposed. However, several issues related to the

integration of triggers with object-oriented modeling con-

cepts have not been satisfactorily addressed. In this paper,

we discuss issues related to trigger inheritance and re�ne-

ment in the context of the Chimera active object-oriented

data model. In particular, we introduce a semantics for an

active object language that takes into account trigger in-

heritance and supports trigger overriding. Moreover, we

state conditions on trigger overriding ensuring that trigger

semantics is preserved in subclasses.

Keywords|Triggers, object-oriented data models, inherit-

ance and re�nement.

I. Introduction

The relevance of reactive capabilities as a unifying

paradigm for handling a number of database features and

applications is well-established. An active database system

is a database system which automatically performs certain

operations in response to certain events occurring or cer-

tain conditions being satis�ed [1]. Active databases enable

important applications, such as alerting users that a given

event has occurred, reacting to events by means of suit-

able actions, and controlling the invocation of operations

and procedures. Examples of functions that can be e�ect-

ively performed by active database systems are integrity

constraint enforcement, monitoring, authorization, statist-

ics gathering and view handling.

Active database systems are centered around the notion

of rule. Rules are syntactic constructs by means of which

the reactions of the system are speci�ed. Active rules, often

referred to as triggers, are usually de�ned according to the

event-condition-action (ECA) paradigm. Events are mon-

itored and their occurrences cause the rule to be triggered;

a condition is a declarative formula that must be satis�ed

in order for the action to be executed, whereas the action

speci�es what must be done when the rule is triggered and

its condition is true.

Most of the research and development e�orts on active

databases and commercial implementations have focused on

active capabilities in the context of relational database sys-

A preliminary version of a part of this paper has appeared in the

Proc. of the Fifth Int'l Conference on Deductive and Object-Oriented

Databases, Montreaux (Switzerland), December 1997.

Elisa Bertino is with the Dipartimento di Scienze dell'Informazione,

Universit�a di Milano, Via Comelico, 39/41 - 20135 Milano, Italy. E-

mail: bertino@dsi.unimi.it.

Giovanna Guerrini and Isabella Merlo are with the Diparti-

mento di Informatica e Scienze dell'Informazione, Universit�a di

Genova, Via Dodecaneso, 35 - 16146 Genova, Italy. E-mail:

fguerrini,merloisag@disi.unige.it.

tems. Several approaches have however been proposed to

incorporate active rules into object-relational and object-

oriented database systems. Both in the relational and in

the object frameworks, active rules provide a comprehens-

ive means to formally state the semantics of data, the high-

level semantic operations on data and the integrity con-

straints. Though recently proposed relational database sys-

tems provide stored procedures, and object-relational and

object-oriented database systems provide methods, as an

alternative means to express behavior of data, specifying

the semantics of data through rules has three important ad-

vantages over coding it into methods (stored procedures).

First, the behavior represented by methods must be expli-

citly invoked by the user or by applications, while active

rules are autonomously activated. Second, the semantics

represented by a single rule often needs to be replicated in

the code of several methods. Consider for instance integ-

rity constraints: since a single constraint can be potentially

violated by the execution of di�erent methods, the code for

enforcing the constraint should be replicated in all those

methods. Finally, a specialized trigger subsystem, internal

to the database system, supports a more e�cient active

behavior processing compared to the approach where the

active behavior is coded into methods.

The paradigm shift from the relational model to the

object-oriented one, requires revisiting the functionalities

as well as the mechanisms by which reactive capabilities

are incorporated into the object-oriented data model [2].

There are several factors not present in relational database

systems that complicate the extension of object-oriented

database systems to include active behavior. Among them,

let us mention that in object-oriented data models, in con-

trast to a �xed number of prede�ned primitive events of

the relational model, every method/message is a potential

event. Moreover, issues related to scope, accessibility, and

visibility of object states with respect to rules should be

addressed. Other important, open issues concern trigger

inheritance and overriding. Because inheritance is a central

notion of the object-oriented data model, the de�nition of

a proper approach to rule inheritance is crucial. However,

those issues have been largely neglected by current imple-

mentations and research proposals, or only simplistic solu-

tions are adopted. Those solutions are inadequate to model

the large variety of rule semantics, that arise in practical

applications. The approach taken by the majority of the

systems for rule inheritance is to simply apply all rules,

de�ned in a class, to the entire extent of the class, that is,

to all the instances of the class itself

1

. No rule overriding is

1

An object is a proper instance of a class if this class is the most

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 2

supported by those systems. Only few systems [3], [4] sup-

port rule overriding, though in a completely uncontrolled

way.

In our opinion, there are several cases in which rule over-

riding is useful. However, we believe that rules should not

be overridden in a uncontrolled way, rather they should

only be re�ned in subclasses, that is, they can be overrid-

den provided that (i) the rede�ned rule is triggered each

time the overridden one would be; (ii) the rede�ned rule

does at least what the overridden one would do. A no-

tion of behavioral re�nement of triggers can be introduced,

which is analogous to the notion of behavioral subtyping

developed in the context of object-oriented programming

languages [5]. This property aims at ensuring that, if a

class c is a subclass of a class c

0

, every object instance of c

behaves like some object of class c

0

. Such property leads to

a notion of semantic method re�nement: consider as an ex-

ample an initmethod initializing the attributes of an object,

the implementation of such method in each class initializes

to the proper values the attributes of that class. An init

implementation in class c that only extends the init imple-

mentation of class c

0

with a new piece of code to initialize

the additional attributes of c is an example of behavior re-

�nement. Examples of mechanisms that could be exploited

to obtain a correct behavioral subtyping are super calls or

the inner mechanism.

We believe that behavioral re�nement is even more cru-

cial for triggers than for methods, since triggers codify ob-

ject behavior that is autonomously activated, rather than

exhibited upon request (invocation), as in the case of meth-

ods. This results in di�culties in predicting and managing

the behavior of active systems. These di�culties are ampli-

�ed in systems supporting uncontrolled trigger overriding,

since the expected behavior of a trigger can be totally di�er-

ent from the one exhibited by one of its rede�nitions, which

is executed instead. We think that the possibility must be

given to the database designer to limit and control trigger

rede�nition, for example by specifying at trigger de�nition

time whether a trigger can be arbitrarily overridden in sub-

classes or if, instead, it can only be re�ned, ensuring a sort

of behavior preservation.

In this paper, we address issues related to trigger inher-

itance in the context of the Chimera active object-oriented

data model [6], [7] developed as part of the ESPRIT Pro-

ject Idea P6333. In particular, we investigate some issues

concerning trigger inheritance which have not been sat-

isfactorily addressed so far, by revisiting notions such as

trigger priority and method selection in trigger actions in

the context of inherited triggers and specifying a formal

semantics for active object rule languages. Moreover, we

propose a trigger re�nement policy, based on static restric-

tions, ensuring that the trigger semantics is preserved in

subclasses. Though developed in the context of the Chimera

language, our discussion is highly independent from Chi-

mera, and applies to other object-oriented active languages

specialized class in the inheritance hierarchy to which the object be-

longs. An object is an instance of a class if it is a proper instance of

this class or a proper instance of any subclass of this class.

as well. In particular, the semantics speci�ed for Chimera

models a generic set-oriented object active rule language.

The static conditions devised for trigger re�nement rely on

the speci�c Chimera action speci�cation language. We be-

lieve, however, that the Chimera action language is powerful

enough, in that it provides all data manipulation statements

supported by commercial database management systems.

Moreover, its declarative style can be useful at least at the

speci�cation level to formulate triggers and to reason about

them [8].

Notice, moreover, that the issues addressed in this paper

also apply to object-relational databases with reactive cap-

abilities, and in particular to the SQL-3 standard proposal

[9]. We discuss in detail the application of our results to

object-relational database systems at the end of the paper.

The contributions of the paper can then be summarized

as follows:

(i) de�nition of a semantics for active object-oriented

rule languages, modeling trigger inheritance and over-

riding;

(ii) investigation of issues related to rule inheritance,

namely method selection in subclasses;

(iii) de�nition of semantic properties for trigger re�ne-

ment;

(iv) identi�cation of static conditions ensuring semantic

trigger re�nement;

(vi) discussion on the application of our approach for

trigger inheritance and overriding to active object-

relational databases.

This paper is organized a follows. Section II reviews the

state-of-the-art in the �eld of active object-oriented data-

bases. Section III motivates the need for trigger overriding

and informally introduces the basic ideas behind our ap-

proach. Section IV presents the reference active rule lan-

guage. In Section V trigger semantics is formalized. Section

VI deals with trigger rede�nition. The application of our

approach to object-relational database systems is discussed

in Section VII. A short overview of related work on trig-

ger semantics and overriding in existing systems is given in

Section VIII. Finally, Section IX concludes the work. Ap-

pendix I presents the de�nition of update semantics in our

language.

II. Active Object-Oriented Databases

In the last ten years, there has been a growing interest

in extending object-oriented database systems with react-

ive capabilities. One of the earliest object-oriented active

database projects is HiPAC [10], [11]. HiPAC provides an

expressive active database rule language with exible exe-

cution semantics, supporting a full complement of coupling

modes through a nested transaction model. There are some

projects on active object-oriented databases that are follow-

on from HiPAC: among them, Sentinel [12] and REACH

[13]. One of the best known active object-oriented database

systems is Ode [3], [14], which extends the O++ database

programming language with facilities for expressing rules in

the form of constraints and triggers. Among other projects

we would like to mention Adam [15], NAOS [16], SAMOS

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 3

[17] and TriGS [4].

In Table I we compare these systems along a number of

dimensions. Among the considered systems, NAOS and

TriGS are extensions of commercial object-oriented data-

base systems with active capabilities. All the proposals

support ECA rules. However, in some systems, such as

Ode, conditions are part of the event speci�cation as a mask

which quali�es the event and can refer to parameters of the

method call de�ning the event.

In an active rule, the event speci�es what causes the rule

to be triggered. Relevant triggering events are internal

events related to database operations, temporal events, ex-

ternal (that is, raised by the application), and user-de�ned

events. Database operations are object accesses, attribute

value updates, object creations and deletions, method exe-

cutions and calls to transaction primitives (e.g. commit).

In Chimera, also object migration between classes is in-

cluded among events. In addition, in some systems it is

possible to specify whether a rule must be triggered after

or before its triggering event. Triggering a rule before its

event is meaningful when methods are considered as events,

and allows method preconditions to be tested. Triggering

events may also be composite, that is, combinations of other

events. Useful operators for combining events are logical

operators, such as conjunction, disjunction and negation,

and sequences. Some systems allow events to be paramet-

erized; when a parameterized event occurs, values related

to the event are bound to the event parameters, and these

parameter values can be referenced in rule conditions or ac-

tions. Some systems only consider as an implicit parameter

the identi�er of the object receiver of the event.

In an active rule, the condition speci�es an additional

condition to be checked once the rule is triggered and before

the action is executed. Conditions are predicates over the

database state. If the rule language supports parameterized

events, the condition language includes a mechanism for

referencing the values bound to the event parameters. In

some systems, values related to the condition can be passed

to the action. In the most common approach for parameter

passing, the condition is expressed as a query returning

data, that are then passed to the rule action. Moreover,

some systems allow triggers to refer to past database states.

In an active rule, the action is executed when the rule

is triggered and its condition is true. Possible actions in-

clude database operations and calls to application proced-

ures. Several active database rule languages allow sets of

actions to be speci�ed in rules, usually with an ordering,

so that the actions in a set are sequentially executed.

The considered systems di�er not only with respect to

the supported rule language, but also in terms of rule ex-

ecution semantics. First of all, active database rule execu-

tion can be either instance-oriented or set-oriented. With

an instance-oriented execution, a rule is executed once for

each database \instance" triggering the rule and satisfy-

ing the rule condition. By contrast, rule execution is set-

oriented if a rule is executed once for all database instances

triggering the rule and satisfying the rule condition. The

issue of instance-oriented versus set-oriented execution is

obviously related to the issue of rule processing granular-

ity. The most straightforward approach is to evaluate a

triggered rule condition and to execute its action within

the same transaction in which the triggering event occurs,

at the soonest rule processing point. However, for some

applications it may be useful to delay the evaluation of a

triggered rule condition or the execution of its action until

the end of the transaction; or it may be useful to evaluate

a triggered rule condition or execute its action in a separ-

ate transaction. These possibilities result in the notion of

coupling modes [11]. One coupling mode can specify the

transactional relationship between a rule triggering event

and the evaluation of its condition, while another coupling

mode can specify the transactional relationship between a

rule condition evaluation and the execution of its action.

Possible coupling modes are: immediate (immediately fol-

lowing, within the same transaction), deferred (at the com-

mit point of the current transaction), decoupled (in a sep-

arate transaction).

Among the considered systems, all but Chimera sup-

port an instance-oriented rule execution. Chimera supports

set-oriented rule execution, while NAOS rule execution is

instance-oriented for immediate rule and set-oriented for

deferred ones.

A further aspect in rule execution is to consider the net

e�ect of a sequence of operations performed in the trigger-

ing transaction. For instance, if a rule is triggered by the

creation of an object, but this object happens to be deleted

before the actual execution of the rule, the rule should not

be executed. The net e�ect of events is computed based

on the classical composition of pairs of operations applied

to the same object

2

. Another di�erence among existing

systems is whether rule de�nitions are attached to classes.

Attaching rule de�nitions to classes enhances modulariza-

tion and supports an e�cient detection of relevant events

while there are sometimes useful rules triggered by events

spanning sets of objects possibly from di�erent classes (un-

targeted rules).

Finally we introduce the priority notion that is extremely

relevant for active rule semantics. The execution semantics

for active rules sometimes requires that one rule is selec-

ted from a set of eligible rules. For this reason, an act-

ive database rule language may include a mechanism for

specifying rule priorities. Priorities might be speci�ed by

ordering the set of rules, by declaring relative priorities

between pairs of rules, or by assigning a numeric priority

value to each rule. Relative priorities are the most exible

approach, since they subsume the other two types of prior-

ity speci�cation. Ordering the entire set of rules may not

be necessary to achieve the correct behavior, while numeric

priorities can be di�cult to use since they may need to be

adjusted as the set of rules evolves. In the following sec-

tion we will discuss how priorities could be used to simulate

trigger overriding and point out the disadvantages and the

2

Note that net e�ect is supported with di�erent semantics in NAOS

and Chimera. Whereas in NAOS the elimination of events due to net

e�ect composition results in the de-triggering of rules, this is not true

for Chimera.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 4

HiPAC Ode Adam NAOS TriGS SAMOS Chimera

Reference [10] [3], [14] [15] [16] [4] [17] [18]

o-o data

model OODAPLEX new new O

2

GemStone new new

messages messages messages messages messages messages messages

primitive db ops db ops db ops db ops db ops

events temporal temporal user-def temporal migrations

external user-def

event

composition YES YES NO YES NO YES YES

(1)

parametric

events YES NO YES NO

(2)

NO

(3)

YES NO

parameter E ! C;A E ! A E ! C; A C ! A E ! C;A

(3)

NO C ! A

passing C ! A

conditions on

past states NO NO NO NO NO NO YES

net

e�ect NO NO NO YES NO NO optional

evaluation immediate immediate immediate immediate user- immediate immediate

mode deferred deferred deferred

(5)

speci�ed deferred deferred

(5)

decoupled decoupled

(4)

decoupled

untargeted/

targeted untargeted targeted untargeted

(6)

untargeted both both both

rules

overriding NO YES

(7)

NO NO YES NO NO

Legenda:

(1)

In [18] only disjunction of events is considered; an extension of Chimera with other kinds of event composition is described in [19].

(2)

The only parameter is the object receiver of the event (on which the rule is being executed).

(3)

Delta tables are used for referring to objects a�ected by events.

(4)

This coupling mode is between Event and Action; immediate and deferred coupling modes between Event and Condition can

be supported by means of event composition.

(5)

This coupling mode is between Event and Condition; coupling mode between Condition and Action is always immediate.

(6)

Triggers are de�ned outside the scope of classes, however they are indexed on classes for e�cient detection of relevant events.

(7)

Rules can be overridden provided that they are not activated in the superclass.

TABLE I

Comparison of active object-oriented data models

problems of that approach.

III. Trigger Overriding

In this section we �rst motivate the need for supporting

trigger overriding and then provide an overview of the ap-

proach to trigger inheritance and overriding proposed in

the paper.

A. Motivating Examples

The inuence of inheritance on triggers has not been ex-

tensively investigated in existing object-oriented database

systems. Under some proposals [2], [16], [20], triggers are

always inherited and can never be overridden nor re�ned.

Such an approach, that we refer to as full trigger inherit-

ance, simply means that event types are propagated across

the class inheritance hierarchy. Consider the event of a

rule r, say op(c

0

), characterizing the operation op on a class

c

0

. If c

0

has a subclass c, when an operation op occurs on a

proper instance of c, rule r is triggered, as well as any other

rule having as event op(c). Thus, inheritance of triggers is

accomplished by applying a trigger to all the instances of

the class in which the trigger is de�ned, rather than only to

the proper instances of this class.

Full trigger inheritance is, however, not always appropri-

ate, as shown by the examples below. There are situations

in which trigger overriding is required. Moreover the mean-

ing of the ISA hierarchy is to de�ne a class in terms of

another class, possibly re�ning its attributes, methods and

triggers. This modeling approach is one of the key features

of the object-oriented paradigm. Thus the possibility of re-

de�ning triggers in subclasses, instead of simply inheriting

them, should be provided.

In a system supporting trigger inheritance, but not trig-

ger overriding

3

, as in the full inheritance case, the only

way to re�ne the behavior of a trigger in a subclass is to

de�ne in the subclass a trigger on the same events which

performs the re�ned action. However, for this addition to

be e�ective, the trigger in the superclass must have priority

over the trigger in the subclass. Thus, upon occurrence of

the common triggering event on an object belonging to the

subclass, both triggers are activated, but, since the trigger

de�ned in the superclass is executed �rst, the action in the

trigger de�ned in the subclass \prevails". However, it is not

always possible to re�ne the behavior of a trigger in a sub-

class by adding a new trigger, even by specifying that the

subclass trigger has lower priority than (thus, is executed

3

We remark that this is almost always the case for existing active

object-oriented database systems.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 5

after) the superclass one. Consider the following examples.

Example 1: Suppose that a class employee and a sub-

class manager are de�ned. Moreover suppose that in the

former class an attribute rank is de�ned. Consider a trig-

ger r

1

that increases the salary of an employee each time

the rank of that employee is increased. Moreover consider

a corresponding trigger r

2

for the class manager that in-

creases the salary of a manager of an amount greater than

that of a simple employee. Notice that the trigger r

2

is the

re�nement of r

1

for the class manager. If trigger overriding

is not supported we have to de�ne two di�erent triggers as

follows

4

:

� trigger r

1

on class employee

Events: modify(rank)

Condition: employee(X),occurred(modify(rank),X),

Y=X.rank,old(Y>X.rank)

Action: modify(employee.salary, X,

X.salary + 50)

� trigger r

2

on class manager

Events: modify(rank)

Condition: manager(X),occurred(modify(rank),X),

Y=X.rank, old(Y>X.rank)

Action: modify(manager.salary, X,

X.salary + 100)

In the above triggers whenever the rank of an employee

is increased, both r

1

and r

2

are triggered and if r

1

has pri-

ority over r

2

(as under the default ordering we mentioned

above) r

1

is executed �rst. The execution of r

1

increases

the manager salary by 50 and the execution of r

2

increases

again the salary by 100, thus at the end the manager salary

has been increased by 150, instead of only by 100, which

is not the desired result. This problem can be overcome

by increasing the salary of a manager by the right amount

in r

2

keeping into account that the salary has already been

increased by r

1

, but this is not intuitive and not object-

oriented, since it does not model a re�nement. In the case

of complex class hierarchies, these calculi become very com-

plex and not always possible. 4

Example 2:

Consider a class person with a subclass employee. Sup-

pose, moreover, that a third class department is de�ned,

with an attribute nbr of employees which maintains the

number of employees of the department. Suppose that a

trigger r

1

is de�ned on class person such that, whenever

the age of a person is greater than 100, creates an object of

a class person log whose state refers to the deleted object

(the class person log is used for monitoring purposes) and

then deletes the object. Suppose that a corresponding trig-

ger r

2

is de�ned on class employee, such that, whenever the

age of an employee is greater than 100, creates an object

of a class employee log, decrements the value for attribute

nbr of employees of the department in which the employee

works, and �nally deletes the employee. The triggers are

expressed in Chimera as follows:

� trigger r

1

on class person

Events: modify(age)

4

The syntax used in these examples is Chimera syntax which will

be formally introduced in Section IV.

Condition: person(X),occurred(modify(age),X),

X.age > 100

Action: create(person log,(who:X,age:X.age),O);

delete(person,X)

� trigger r

2

on class employee

Events: modify(age)

Condition: employee(X),occurred(modify(age),X),

X.age > 100, department(Y),

X.department = Y

Action: create(employee log,(who:X,age:X.age,

salary:X.salary), O);

modify(department.nbr of employees,Y,

Y.nbr of employees-1);

delete(employee,X)

Whenever the age of an employee is set to 101, both

r

1

and r

2

are triggered and, if r

1

has priority over r

2

(as

under the default ordering we mentioned above), r

1

is ex-

ecuted �rst. The execution of r

1

deletes the involved object,

and then the execution of r

2

does not have any e�ect. In-

deed, when r

2

is executed the object whose age attribute

has been modi�ed, has already been deleted. Therefore, it

cannot be accessed any longer. As a consequence, the ob-

ject does not satisfy trigger r

2

condition and therefore the

value of attribute nbr of employees is not decremented.

Intuitively trigger r

2

is just the re�nement of r

1

because it

has a behavior similar to that of r

1

but re�ned for subclass

employee. In a system supporting inheritance and trigger

overriding, trigger r

2

would be the re�nement of trigger

r

1

, thus for the objects proper instances of employee only

trigger r

2

would be executed giving a correct result. 4

As shown by the previous examples, the lack of trigger

overriding capabilities does not allow triggers to manage

in di�erent ways the proper and non-proper instances of a

class.

Note that in Example 2 above trigger r

2

performs a be-

havioral re�nement of trigger r

1

. This means that after the

modi�cation of the age of an employee the execution of r

2

ensures the expected e�ect of r

1

(that is, the creation of

the appropriate person log object and the deletion of the

employee, if the age is greater than 100). This ensures that

the intended semantics is inherited by the subclass.

B. Overview of the Proposed Approach

Our approach extends the Chimera rule language with

the possibility of overriding triggers in subclasses. In the

current version of Chimera trigger overriding is not allowed

and only full trigger inheritance is supported. The way in

which trigger overriding is accomplished in our approach

is simple. Let r be a trigger de�ned in a class c

0

, r can

be overridden by the de�nition of a new trigger in class c,

subclass of c

0

, with the same name of r. Chimera supports

late binding, thus at execution time for each object a�ected

by the execution of the speci�ed trigger the most speci�c

implementation will be chosen.

In order to fully investigate our approach to trigger in-

heritance and overriding, we develop a formal de�nition of

our reference language and its semantics to have a strong,

well-de�ned formalism. One of the problems arising in de-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 6

�ning the semantics of an active object language supporting

trigger inheritance is method selection with respect to in-

herited triggers. Consider a trigger r de�ned in a class c

0

and invoking in its action an operation op on the objects

a�ected by the event. Consider moreover a subclass c of

c

0

and suppose that operation op is rede�ned in c. Rule

r is triggered when the event monitored by r occurs both

on objects proper instances of c

0

and on objects proper in-

stances of c. For objects proper instances of c

0

the method

implementation in class c

0

is selected, where the trigger it-

self is de�ned. By contrast, for objects proper instances of

c two di�erent options are possible: (i) choosing the most

specialized implementation of op (that is, the implementa-

tion in class c); (ii) choosing the implementation according

to the class where the rule is de�ned (that is, the imple-

mentation in class c

0

). We refer to the �rst and second ap-

proach as object-speci�c method selection and rule-speci�c

method selection, respectively. In our model, we have ad-

opted the �rst approach, because it is consistent with the

object-oriented approach, in that it conforms to the prin-

ciple of exhibiting the most speci�c behavior. The rule-

speci�c method selection is not consistent with the object-

oriented approach because it refers to the static nature of

objects, that is, the class in which the trigger is de�ned,

and not to their dynamic nature, that is, the classes the ob-

jects are proper instances of. Even though the rule-speci�c

method selection is not coherent with the object-oriented

approach, it is used in some active object-oriented data-

base systems, like Ode [14].

After having de�ned the semantics of the language, we

investigate semantic properties of trigger re�nement. Be-

cause our model directly supports trigger overriding, it is

important to give the possibility of specifying that trigger

semantics must be preserved in subclasses. In particular,

in order to preserve trigger semantics, it must be ensured

that: (i) the trigger in the subclass is executed at least each

time the trigger in the superclass would be executed; (ii)

what would be executed by the trigger in the superclass is

also executed by the re�ned trigger. In this case we say that

the trigger in the subclass is a behavioral re�nement of the

trigger in the superclass. Trigger re�nement is formalized

in the paper in terms of the de�ned semantics and, unfor-

tunately, will be stated as undecidable (see Proposition 1).

The following step is thus that of devising some su�-

cient static conditions ensuring trigger re�nement that can

be checked at trigger de�nition time. These properties are

based on query containment for what concerns the condi-

tion part, and on a static net e�ect computation for what

concerns the action part. As we will show in the remainder

of the paper, these condition can also be exploited to detect

redundant triggers in an active object database schema.

IV. Active Rule Language: Syntax

As reference rule language we consider a subset

5

of the

Chimera active rule language [18]. Chimera supports set-

oriented active rules [21]: rules react to sets of changes to

the database and may perform sets of changes. This ap-

proach is consistent with the remainder of Chimera, which

supports a set-oriented, declarative query and update lan-

guage. In this respect, Chimera is di�erent frommost other

active object-oriented databases where rules are triggered

by method activations, and are used to test pre and post

conditions for method applications to individual objects.

Active rules in Chimera have several innovative fea-

tures: (i) they support optional composition of event ef-

fects (called net e�ect computation), when the same object

is the target of multiple operations; (ii) they support dif-

ferent event consumption modes, that is, di�erent models

for processing events; (iii) they support di�erent processing

modes, that is, di�erent activation times; and �nally (iv)

they provide mechanisms for accessing intermediate states

of a�ected objects during transaction execution. In Chi-

mera, the processing mode of an active rule (which is the

coupling mode between event and condition) may be either

immediate or deferred. Immediate rules are considered for

execution at the end of the transaction unit or reaction in

which triggering occurs. Deferred rules are processed at the

end of the transaction (after the commit command). In Chi-

mera, two distinct event consumption modes are possible

for each active rule; this feature is relevant when a given

rule is considered multiple times within the same transac-

tion. Events can be consumed after the consideration of a

rule, therefore, each event instance is considered by a rule

only at its next execution, and then disregarded. Alternat-

ively, events can be preserved, that is, all events since the

transaction start are considered at each rule consideration.

However, we do not consider all these features here, since

they are not relevant with respect to the problems of trig-

ger inheritance and rede�nition. Thus, we restrict ourselves

to a simpler rule execution model, allowing a clear under-

standing of rule overriding and supporting only deferred,

preserving rules without net e�ect composition. For the

sake of simplicity in presentation, moreover, we consider

here only targeted rules, disregarding untargeted ones. The

restriction to targeted rules does not a�ect the generality

of the problem.

Active rules in Chimera are called triggers. Each trig-

ger is characterized by �ve components: a name, a class,

a set of events

6

, a condition and a reaction. Events are

denoted by the name of the primitive operation and the

schema element to which the operation is applied. Primit-

ive operations are object creations, deletions, modi�cations

and object migrations in the inheritance hierarchy. Modi�c-

ations refer to speci�c attributes. In addition, active rules

5

This restriction, as we will discuss in what follows, allows us to

focus on problems related to trigger inheritance and overriding. The

proposed approach can however be generalized to the full Chimera

language.

6

The set has a disjunction semantics (the trigger becomes active if

any of its triggering events occurs).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 7

may monitor operation calls (methods), although rule ex-

ecution remains set-oriented. Method execution itself is

indeed set-oriented.

In the remainder of this section we formally state the

trigger de�nition language. In the de�nitions we make use

of a set of class names CN , of a set of attribute names AN

and of a set of method names MN .

De�nition 1: (Event). Let c 2 CN be a class name, a 2

AN be an attribute name and op 2 MN be a method

name. A Chimera event has one of the following forms:

� create;

� delete;

� generalize(c);

� specialize(c);

� modify(a);

� op. 2

The condition, that is, the formula monitoring the execu-

tion of the reaction part, is a conjunction of atomic formulas

and it is interpreted as a predicate calculus expression over

typed variables. Conditions may contain, in addition to

conjunctions of atoms, event formulas and references to old

state. Event formulas are particular formulas supported by

the declarative language of Chimera, built by means of the

binary predicate occurred. This predicate is used to inspect

the events that have occurred during a transaction. Syn-

tactically, this predicate has two arguments: an event name

and a variable ranging over the oids of the objects a�ected

by the event, which becomes bound to oids of instances

which are receivers of the event. References to past data-

base states are allowed in active rule conditions through the

use of function old. Such a function, applied to an atomic

formula, indicates that the formula must be evaluated in a

previous database state. Since we restrict ourselves to event

preserving rules the old state always refers to the state at

transaction start.

Chimera terms are de�ned as follows. Constants (except

oids) and variables are terms; structured terms can be built

by applying set, list and record constructors. Path expres-

sions (built by making use of the dot notation) are terms,

too. In addition Chimera supports several standard pre-

de�ned operators that can be used to build terms. These

prede�ned operators include arithmetic operators, set op-

erators and list operators.

Chimera atomic formulas can be of four types, in which

t

1

; t

2

are terms:

� Comparison Formulas: t

1

op t

2

where op 2 f<;>

;�;�;=;==;==

d

g

7

;

� Membership Formulas: t

1

in t

2

or t

1

in c where c

is a class name;

� Class Formulas: c(X), where X is a variable and c

is a class (or type) name;

� Event Formulas: occurred(e;X), where X is a vari-

able and e is an event according to De�nition 1.

7

Notice that Chimera provides three di�erent types of equality: =

denotes equality by identity, == denotes equality by value on the

direct attributes, while ==

d

denotes equality by value on all the at-

tributes, even the ones recursively reached by means of oid based

references.

Atomic formulas may be applied to the state at transaction

start through the old function. All variables are assumed

to be implicitly quanti�ed as in Datalog [22].

Complex formulas (or simply formulas) are obtained

from atomic formulas and negated atomic formulas by

means of conjunctions. Formally, if F is an atomic com-

parison or membership formula

8

, then :F and old(F) are

(complex) formulas; if F

1

and F

2

are formulas, then F

1

; F

2

is a (complex) formula, where the symbol \;" denotes the

and logical connective.

We require that each formula contains exactly one class

formula for each variable, specifying the type of the vari-

able. In addition, we require formulas to be range restric-

ted, to avoid formulas that are satis�ed by an in�nite set

of instances.

The reaction is a sequence of database operations, in-

cluding update primitives, class operations or transactional

statements. A condition and an action may share some

atomic variables, in which case the action must be executed

for every binding produced by the condition on the shared

variables. Moreover, operations that constitute the action

are executed in sequence, because each of them may have

side e�ects.

De�nition 2: (Action). Let c; c

0

2 CN be class names,

a 2 AN be an attribute name, and O be an object-denoting

variable. Moreover, let op 2 MN be an operation name

and t; t

1

; : : : ; t

n

be terms. A Chimera action has one of the

following forms:

� create(c; t; O);

� delete(c;O);

� generalize(c; c

0

; O);

� specialize(c; c

0

; O; t);

� modify(c:a;O; t);

� O:op(t

1

; : : : ; t

n

);

� rollback. 2

We are now able to give the de�nition of trigger.

De�nition 3: (Trigger). A Chimera trigger is a 5-tuple

(Name; Class; Events; Condition; Action)

9

where:

Name is the trigger identi�er;

Class is the class the trigger is targeted to;

Events is the set of operations monitored by the trigger,

each event in the set is as in De�nition 1;

Condition is a Chimera formula;

Action is a sequence of actions (cfr. De�nition 2);

such that the following conditions are satis�ed:

1. each variable occurring as input parameter of an op-

eration in the Action must appear in some positive

atomic formulas of the Condition (safety condition);

2. for each event formula occurred(e;X) in the

Condition, e must appear in Events. 2

We remark that in Chimera events are not parametric

and there is no parameter passing between the event and

8

Class and event formulas cannot be neither negated nor tested on

past database states.

9

In the following, given a trigger r, r.Name, r.Class, r.Events,

r.Condition, r.Action denote the respective components of trigger r.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 8

other rule components. Thus, events only cause rules to be

triggered; rules are then considered and executed with no

reference to the triggering events. However, the triggering

events can be explicitly bound to variables in rule conditions

by means of event formulas.

Example 3: The following is a Chimera trigger, de�ned

on a class employee, whose e�ect is to prevent an employee

from earning more than his manager. If an employee is

assigned a salary higher than the salary of his manager, the

employee salary is automatically overwritten by assigning

it a salary equal to the manager salary.

Events: create, modify(salary)

Condition: employee(X),X.salary > X.mgr.salary

Action: modify(employee.salary,X,X.mgr.salary)

Another example of Chimera trigger is the following, also

de�ned on the class employee, that has the e�ect of spe-

cializing each new employee earning more than 40000 by

inserting the employee in the class specialEmp

10

).

Events: create

Condition: employee(X), occurred(create,X),

X.salary > 40000

Action: specialize(employee,specialEmp,X,()

4

In order to provide a consistent behavior when multiple

triggers are activated by the same events, it is important

that a well-de�ned policy is established. In an object-

oriented system, an important question is whether the trig-

gers inherited by the superclasses of a class should have

higher priority than triggers de�ned in the class, especially

when dealing with action re�nement in triggers.

A partial order <

r

is considered on the set of triggers to

express trigger priorities. The meaning of the order is as

follows: given two triggers r

1

and r

2

, r

1

<

r

r

2

means that

when r

1

and r

2

are both triggered then r

1

is considered and

executed before r

2

. In our model the approach is to de�ne

the priority order on triggers by combining user-de�ned

priorities among triggers belonging to the same class c (de-

noted by <

c

r

), with the order induced by inheritance rela-

tionships among classes. Thus, local priorities, speci�ed

by the user for triggers in the same class, are combined by

the system with the order induced by ISA relationships

11

.

To privilege the most speci�c behavior, the reverse ISA or-

dering is considered as a default for relating triggers de�ned

in di�erent classes. That is, given two classes c and c

0

,

such that c is a subclass of c

0

, each trigger r

0

de�ned in

c

0

has priority over r de�ned in c (r

0

<

r

r), that is, it is

executed �rst. Note that this policy is in accordance with

the intuition discussed in Section III for simulating trigger

overriding when it is not directly supported. Our policy

for trigger priority is formally established by the following

de�nition.

De�nition 4: (Priority Order on Triggers). A trigger r

1

has priority over a trigger r

2

(denoted as r

1

<

r

r

2

) if either

10

In the trigger symbol () denotes the empty record value. Class

specialEmp, indeed, has no proper attributes in addition to those

inherited by class employee.

11

Given two classes c and c

0

, c �

ISA

c

0

denotes that c is a subclass

of c

0

.

� 9 c 2 CN such that r

1

<

c

r

r

2

, or

� r

2

:Class �

ISA

r

1

:Class. 2

If for each class c the local priority ordering <

c

r

is an

order, the priority ordering <

r

de�ned in De�nition 4 is a

(partial) order. Note that the acyclicity of the local trigger

ordering is checked upon trigger de�nition. The default pri-

ority ordering of triggers obtained as in De�nition 4 could

be modi�ed by the user in the subclass de�nition.

Trigger overriding is accomplished by de�ning a new trig-

ger in the subclass with the same name as the inherited trig-

ger. When a trigger r

1

is overridden by a trigger r

2

such

that r

1

:Name = r

2

:Name and r

2

:Class �

ISA

r

1

:Class,

the occurrence of an event e 2 r

1

:Event on class r

2

:Class

does not trigger r

1

. Notice that a trigger can be overridden

in a subclass only by a trigger with the same name de�ned

in the subclass and that, viceversa, a trigger in a subclass

that has the same name as a trigger r in a superclass over-

rides r.

V. Active Rule Language: Semantics

In this section we present a formal semantics of Chimera

triggers. We start by providing an intuitive idea of the act-

ive rule execution model, then we formalize the notions of

database state, set of bindings, and reactive process, and

�nally in Subsection V-C we present the semantics. The

semantics de�ned in this section will be the basis for invest-

igating trigger semantic re�nement, that will be discussed

in Section VI.

A. Intuitive Idea

When one of the events of an active rule occurs, the rule

is said to be triggered; several rules may be triggered at

the same time. Trigger processing consists of an iterative

execution of rule processing steps, each of which in turn

consists of four phases, called rule activation, selection,

consideration and execution:

� rule activation consists of determining the triggered

rules, that is, the ones for which any of the triggering

events has occurred;

� rule selection consists of non deterministically choosing

one of the triggered rules at highest priority;

� rule consideration consists of evaluating the condition,

which is a declarative formula; at this point the selec-

ted rule is detriggered;

� rule execution occurs if the condition is true, that is,

produces some bindings; the execution is performed by

sequentially executing the operations in the reaction

part of the rule.

Trigger execution consists of updates, which may in turn

trigger other rules. The rule processing activity is iterated

until a state is reached where no rule is triggered. Clearly,

the possibility of in�nite rule processing due to chains of

active rules triggering each other exists in Chimera; tech-

niques and tools for detecting the possible sources of non-

termination in a rule set have been developed [18].

A transaction in Chimera is a sequence of data manipula-

tion statements, each of which may trigger some rules. Re-

member, however, that we consider a language supporting

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 9

deferred, preserving rules without net e�ect composition.

Considering deferred rules means that for each command

the corresponding event is added to the previous set of col-

lected events, but no rule is executed. The set of rules,

triggered by the set of events associated with the transac-

tion, is computed when the transaction ends. Therefore, the

end of the transaction corresponds to reactive processing

activation. On this set of triggered rules, rule selection and

the other phases of rule processing are then iterated until

no rule is triggered any longer.

In order to formalize the semantics we have, �rst of all,

to model the following preliminary notions.

B. Preliminaries

Before formalizing the rule language semantics, we need

to introduce some preliminary de�nitions. In particular we

introduce the notions of database state, set of bindings and

reactive process. In the following we consider: a set V of

values; a set OID of all possible oids; a set CN of classes; a

set V ar of variables. In the following the set Rule denotes

the set of rules de�ned for a database. Moreover: let S be

a set, then 2

S

denotes the powerset of S; let hel

1

; : : : ; el

n

i

be a n-tuple, then �

i

, i 2 [1; n], denotes the projection on

the i-th component of the tuple.

B.1 Database State

In the literature di�erent de�nitions, some of which quite

complex, of object-oriented database state have been pro-

posed. The notion of state we propose here is complete

(according to our needs) but simple and quite similar to

the ones that can be found in literature [23].

Our model, like most object-oriented data models, dis-

tinguishes between the schema level, which represents the

database structure de�nition and is the time-invariant com-

ponent, and the instance level, which represents the data-

base content and is the time-varying component. Inform-

ally, a database schema is a set of class de�nitions, related

by inheritance relationships. A class de�nition consists of a

class name, a list of attribute de�nitions (name and domain

of each attribute), a list of method de�nitions (name and

signature of each method), and a list of triggers.

De�nition 5: (Database State). A database state (data-

base for short) is a pair S = (�; �) where:

� � : CN ! 2

OID

is a function associating with a class

the set of its oids, that is, for each c 2 CN , �(c) =

foidjoid 2 OID and is the oid of an object belonging

to class cg. �(c) is called the extent of class c.

� for each oid 2 OID, �(oid) returns the state of the ob-

ject, that is, the value of its attributes; let the attribute

names be a

1

; : : : ; a

n

, and v

1

; : : : ; v

n

the corresponding

values, then �(oid) = [a

1

: v

1

; : : : ; a

n

: v

n

]

12

. 2

We remark that �(c) denotes the proper instances of class

c, that is, the set of oids of those objects for which c is the

12

To denote the value of an attribute a

j

; j 2 [1; n], we use the fol-

lowing notation: �(oid):a

j

= v

j

. Note that � is a function, because,

given an object, its state is unique. Moreover, � is not injective: given

two distinct objects, � can return the same state, although they are

distinct entities, and � is partial since OID is the set of all possible

oids that can be allocated by the system.

most speci�c class in the inheritance hierarchy. In what

follows �

�

(c) denotes the whole extent of class c, that is,

the set of all its instances. S:�, S:� denote the �rst and the

second component of the database state S, respectively.

B.2 Set of Bindings

Informally we can state that a set of bindings B is a set

of substitutions. As we said before, in our language the

bindings obtained by the evaluation of the condition are

passed to the action part of the rule. The set of bindings

is the means by which such variable passing is achieved.

Because condition and action parts share some variables,

the action must be executed for every binding generated by

the condition on the shared variables. We are interested in

de�ning the set of bindings that satisfy a given condition,

that is, the set of values which, substituted to the variables

in the condition, makes the condition true. We model a

set of bindings as a set of ground substitutions.

De�nition 6: (Substitution and Set of Bindings). A

ground substitution �

13

is a partial function from V ar to

V, � : V ar ! V. A set of bindings B is a set of ground

substitutions f�

1

; : : : ; �

m

g

14

. 2

Intuitively, the set of bindings B = f�

1

; : : : ; �

m

g satisfy-

ing a condition C is the set of ground substitutions such

that the application of each �

i

(i 2 [1;m]) to C, denoted

as C�

i

, is a ground formula which is true according to �rst

order logic. GivenX, Y , Z,W variables and a set of values

V including integers, the following are examples of substi-

tutions:

�

1

= fX=5; Y=7; Z=8g �

2

= fX=7;W=10g �

3

= fW=8g:

In what follows, given a substitution � and a set of vari-

ables V , �

jV

denotes the restriction of substitution � to

variables in V . Moreover, given a set of substitutions S,

S

jV

denotes the set of substitutions f�

jV

j � 2 Sg.

B.3 Reactive Process

First we have to establish, given a set of events, which is

the set of rules triggered by the occurrence of events in the

set.

De�nition 7: (Event Instance). Let e be an event as in

De�nition 1, c the class name such event is related to, and

O be the set of oids of the objects a�ected by the event,

then the triple he; c; Oi is an event instance. 2

For example the event corresponding to the action

create(c; t; O) is create and a corresponding event instance

is hcreate; c; Oi, where O denotes the set of the oids of the

created objects

15

. For the sake of simplicity, we will of-

ten use the word event to denote event instances, when the

meaning is clear from the context.

13

In general a substitution is a partial function � : V ar! T where

T is the set of terms of the language. V � T are the simple ground

terms, that is, terms with no variables and no operators.

14

In the following, we often refer to substitutions as a subset of the

cartesian product V ar � V which includes only pairs for which � is

de�ned.

15

Note that O in create(c; t;O) denotes a variable while in

hcreate; c; Oi denotes a set of oids.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 10

Given an event instance a relevant issue is how to estab-

lish which rule has to be triggered for each oid in the set of

objects a�ected by the event. Consider two classes c and

c

0

, where c is a subclass of c

0

and the action delete(c;O).

Since each object instance of c is an instance of c

0

as well,

objects of class c have been deleted, but objects of class c

0

have been deleted as well. This means that the delete event

is propagated along the ISA hierarchy. Triggers de�ned in

class c

0

, and not rede�ned in class c, must be activated, as

class c inherits them from class c

0

. Moreover, since our lan-

guage supports trigger overriding, given an event instance,

establishing which rules have to be triggered for each ob-

ject a�ected by the event is not trivial. Trigger overriding

is accomplished by de�ning a new rule in the subclass with

the same name as the inherited trigger. Trigger semantics,

however, is complicated by the fact that usually an event

instance does not trigger a single rule but a set of rules, pos-

sibly de�ned in di�erent classes in the ISA hierarchy. The

basic idea is to partition the set O of the objects a�ected

by the event into disjoint subsets of oids, say O

1

; : : : ; O

n

,

according to the most speci�c class of each object. Then,

for each class c

i

, i 2 [1; n], the set of the triggered rules

is determined through a lookup mechanism. An ascending

visit of the ISA hierarchy is performed, collecting in the

set of triggered rules all triggers whose event part contains

the occurred event and for which a trigger with the same

name has not yet been included in the set

16

. Thus, the set

of rules triggered by an event is computed by taking into

account that, for each object, the most speci�c rules are

triggered, as formalized by the following de�nition.

De�nition 8: (Rule Triggered by an Event Instance). A

rule r = (N; c;Ev;C;A) is triggered by an event instance

e = he; c

e

; Oi if the following conditions are veri�ed:

� e 2 Ev,

� 9 oid 2 O such that c = min

�

ISA

f�c j oid 2 �

�

(�c) and

9 �r = (N; �c;

�

Ev;

�

C;

�

A) 2 Ruleg. 2

We make use of the following notation. Let oid 2 O,

then trig(oid; he; c

e

; Oi) = fr j r = (N; c;Ev;C;A) and

e 2 Ev and c = min

�

ISA

f�c j oid 2 �

�

(�c) and 9 �r =

(N; �c;

�

Ev;

�

C;

�

A) 2 Rulegg.

De�nition 9: (React). Let e = he; c; Oi be an event in-

stance, E be a set of event instances, then react(e) =

frjr 2 Rule and r is triggered by eg and react(E) =

S

e2E

react(e). 2

De�nition 10: (Reactive Process). Given a transaction

T , let E be the set of event instances associated with T ,

react(E) is said to be the reactive process of transaction

T . 2

Given a reactive process, that is, a set of rules, in

the rule selection phase we have to choose one of the

triggered rules at highest priority. Since there can be sev-

eral rules at highest priority, the choice is non determin-

istic. We therefore introduce function get max, which non-

deterministically chooses a rule among the rules with the

highest priority in a set of rules. In this context we do not

16

This most speci�c trigger overrides the one which is currently

under examination.

deal with issues related to non determinism in rule selec-

tion. We refer the reader to [24] for an analysis of such

issues.

De�nition 11: (Function get max). Let R be a reactive

process, then function get max : 2

Rule

! Rule returns one

of the rules at highest priority belonging to R. Formally:

given R 2 2

Rule

if get max(R) = r then 6 9 r

0

2 R : r

0

<

r

r.

2

C. Trigger Semantics

First of all we introduce semantic domains and semantic

functions. In de�ning semantic domains we refer to well-

formed triggers de�ned according to De�nition 3.

De�nition 12: (Semantic Domains). The semantic do-

mains we consider in giving the semantics are the following:

� Bind = set of possible sets of bindings.

� State = set of possible database states.

� Event = set of possible sets of event instances.

� Cond = set of possible condition parts of rules.

� Update = set of possible action parts of rules

17

.

� Rule = set of possible rules of the language. 2

De�nition 13: (Semantics). The semantics of the trigger

language is a family of functions de�ned as follows:

C : (Cond� State)! ((State �Event) ! Bind)

U : (Update� State)! ((Bind� State � Event)!

(Bind � State �Event))

R : (Rule � State) ! ((State �Event) !

(State � Event))

P : (2

Rule

� State) ! ((State �Event) ! State). 2

Function C models condition evaluation; function U mod-

els action execution, whereas functions R and P model

reactive processing semantics. Notice that the argu-

ments of the semantics functions are pairs of the form

hconstruct to be evaluated; statei, where the state, accord-

ing to our assumption of event preserving rules, is the one

at the beginning of the transaction. We need the state as

argument for two reasons: (i) evaluation of old formulas;

(ii) rollback upon transaction errors.

In the �rst case to evaluate formulas of the form old(F)

we need to evaluate the formula F in the state at the begin-

ning of the transaction. In the case of errors in evaluating

a rule, such as a division by zero in a condition or other er-

rors, according to the transaction all or nothing philosophy,

the transaction must be aborted and the initial state must

be restored.

In what follows, to simplify the notation, we will often

omit the argument S

i

, the initial state, if it is not strictly

necessary.

As we have said, we consider deferred event preserving

rules. From a semantic point of view this means that during

the execution of the transaction, events (event instances)

are collected. When the transaction terminates two situ-

ations can arise:

17

Update corresponds to the set of well-formed update sequences of

the language.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 11

� the transaction ends with a rollback; in this case the

resulting state is the one at the beginning of the trans-

action;

� the transaction ends with a commit; in this case the re-

active process is activated and all rules triggered by the

events occurred during the transaction are executed.

Function P models the semantics of the reactive process as-

sociated with a transaction by establishing a transformation

from the state at the end of the transaction to the state at

the end of the reactive process. Thus, function P, at each

step: (i) selects from the set of rules constituting the re-

active process the rule at highest priority through function

get max, let r be this rule; (ii) evaluates r through func-

tion R; (iii) deletes r from the reactive process; (iv) adds

the rules triggered by the action part of r to the reactive

process; (v) evaluates the new set of rules by function P on

the state resulting from the evaluation of r through func-

tion R and so on. The evaluation of a rule r is performed

by function R and consists of evaluating the condition of r

using function C, obtaining a set of bindings and evaluating

through function U the action of r on this set of bindings.

The result of the evaluation of a rule is a new database

state and a new set of events. No set of bindings is given

as result because, in Chimera triggers, bindings are local

to rules.

C.1 Condition Semantics

Let C be a rule condition (a formula), S be a database

state and E be a set of event instances, then:

C [[C]]SE = B

where each substitution � 2 B is such that the instantiation

of C with respect to it, that is C�, evaluates to true in state

S and with respect to events in E, according to �rst order

logic.

As several approaches to semantic evaluation of �rst or-

der logic formulas can be found in the literature [25], we do

not discuss them in this context. Rather, we focus on event

and old formulas which are typical of trigger conditions.

First we analyze the semantics of occurred formulas.

We have to evaluate the semantics of a formula of form

occurred(e;X) appearing in the condition part of a trigger

r, given a database state S and a set of event instances E.

Notice that, during a transaction, a trigger r can be activ-

ated by several update operations. This fact corresponds

to the insertion of r in the reactive process of transaction

T and to the insertion in E of event instances activating

r. Thus, when we evaluate occurred(e;X) in r we have

to take into account all event instances that have activated

r. Moreover for each event instance e = he; c

e

; Oi that has

activated r, we have to choose only the oids belonging to O

which actually have activated r, that is, those oids for which

r is the most speci�c trigger. Formally, the evaluation of

the formula occurred(e;X) in trigger r is:

C [[occurred(e;X)]]SE = B

where B = ffX=oidg j 9 he; c; Oi 2 E and r 2

trig(oid; he; c; Oi)g.

For what concerns old formulas, as we consider event pre-

serving triggers, the formulaF in old(F) must be evaluated

in the state at the beginning of the transaction, that is, S

i

.

Formally the semantics is:

C [[old(F)

S

i

]]SE = C [[F

S

i

]]S

i

E:

C.2 Action Semantics

Function U models the semantic evaluation of a sequence

of updates, u

1

;...;u

n

, that is, an action part of a rule r.

The semantics of update concatenation is quite intuitive.

At each step the �rst update of the sequence is evaluated.

Such evaluation gives as result a new set of bindings, a new

state and a new set of event instances with respect to which

the remainder of the sequence is evaluated. Formally:

U [[u

1

; : : : ;u

n

]]BSE = U [[u

2

; : : : ;u

n

]] (U [[u

1

]]BSE):

For what concerns the evaluation of a single update, func-

tion U is speci�ed for each di�erent type of atomic update,

that is, create, delete and so on, and for method calls. A

complete de�nition of function U can be found in Appendix

I.

Note that in de�ning function U we consider an object-

speci�c method selection, that is, during trigger execution,

if a method is invoked in the trigger action, for each con-

sidered object, the most speci�c method implementation for

that object is chosen.

Our strategy is based on the assumption that methods

rede�ned in subclasses are a behavioral re�nement of cor-

responding methods in superclasses, according to the be-

havior re�nement constraints imposed on Chimera method

rede�nitions in [26].

To model reactive process activation, at transaction com-

mit, the following semantics is speci�ed for the rollback and

commit transactional statements:

U [[rollback

S

i

]]BSE = h;; S

i

; ;i

U [[commit

S

i

]]BSE = h;;P [[react(E)

S

i

]]SE; ;i

Notice that since rollback (commit) is the last command

of a transaction, the output values of B and E are set to

; because they are not meaningful. The only interesting

value is the resulting state, the second component of the

result.

C.3 Reactive Process Semantics

Now we can formally de�ne the semantic functions R and

P.

De�nition 14:

(Rule Semantics). Let r = (N; c;Ev;C;A) be a rule, let

E be a set of event instances, let S be a database state,

and, �nally, let C [[C]]SE = B, then:

R [[r]]SE = hS

0

; E

0

i

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 12

where S

0

= �

2

(U [[A]]BSE) and E

0

= �

3

(U [[A]]BSE).

2

Notice that the set of bindings, resulting from

the evaluation of the sequence u

1

; : : : ;u

n

, that is,

�

1

(U [[A]]BSE), does not appear in the previous de�nition

because in Chimera triggers there is no variable passing

among rules in the reactive process. The semantics of a

reactive process is given by the following de�nition.

De�nition 15: (Reactive Process Semantics). Let R be

a set of rules, E be a set of event instances, and S be a

database state, P [[R]]SE is de�ned as follows:

P [[R]]SE =

8

>

>

<

>

>

:

S if R = ;

P [[R n frg [react(E

0

)]]S

0

E [E

0

if R 6= ;; r = get max(R);

and R [[r]]SE = hS

0

; E

0

i:

2

Notice that the recursive de�nition of semantic function P

corresponds to the idea that the reactive process is iterated

till a quiescent state is reached. When there are no more

triggered rules, that is, R = ;, the reactive process stops

and the current state is returned.

VI. Trigger Refinement

As we have already discussed, in our approach a class

can rede�ne a trigger of one of its superclasses, instead of

simply inheriting it. Rule overriding is supported in some

systems such as TriGS [4] and Ode [27], but no restrictions

are imposed on rule overriding, thus a rule may override

another rule on completely di�erent events and performing

completely di�erent actions. In our model, as in those sys-

tems, trigger overriding is directly supported. However, we

support the possibility to impose that the overriding trigger

in the subclass is a behavioral re�nement of the trigger in

the superclass, that is, (i) the trigger in the subclass is ex-

ecuted at least each time the trigger in the superclass would

be executed; (ii) what would be executed by the trigger in

the superclass is also executed by the overriding trigger.

More speci�cally, a trigger r

2

is a behavioral re�nement

of a trigger r

1

if the portion of state manipulated by r

2

includes the portion of state manipulated by r

1

and the

portion of state modi�ed by both is modi�ed in the same

way

18

. To formally de�ne this notion, we must �rst model

the changes made by a trigger execution. Given a trigger

r, let �(r) be the set of classes manipulated by r (either

through a create, a delete, or a modify operation)

19

. Given

a trigger r and a class c, let �

r

(c) be the set of objects

deleted from class c and �

r

(c) the set of objects inserted

in class c as a consequence of the execution of trigger r;

moreover, given an object oid and an attribute name a, let

�

r

(oid):a be de�ned if and only if the execution of trigger r

has modi�ed the value of attribute a of the object identi�ed

by oid, and, if de�ned, let it contain the new value of the

attribute. Those notions are formally de�ned as follows.

18

Note that a trigger executed on an object (set of objects) in-

stance(s) of a class may manipulate objects of other classes.

19

They can be deduced syntactically.

De�nition 16: (Portion of State Manipulated by a Trig-

ger). Given a trigger r such that �(r) is the set of

classes manipulated by r and a database state S, such that

R [[r]]SE = hS

0

; E

0

i, consider the following functions:

� 8 c 2 �(r) then �

r

(c) = S:�(c) n S

0

:�(c)

� 8 c 2 �(r) then �

r

(c) = S

0

:�(c) n S:�(c)

� 8 c 2 �(r), 8 oid 2 S

0

:�(c) then let �

r

(oid):a = v if

and only if the execution of trigger r has modi�ed the

value of the attribute a of object oid setting it equal to

v.

The triple h�

r

; �

r

; �

r

i models the portion of state manipu-

lated by trigger r. 2

De�nition 17: (Behavioral Trigger Re�nement). Trigger

r

2

is a behavioral re�nement of trigger r

1

, with r

2

:Name =

r

1

:Name and r

2

:Class �

ISA

r

1

:Class, if �(r

1

) � �(r

2

)

and if, for each database state, the execution of r

1

and r

2

restricted to the objects in r

2

:Class satis�es the following

conditions:

� 8�c 2 �(r

1

): �

r

1

(�c) � �

r

2

(�c) and �

r

1

(�c) � �

r

2

(�c);

� 8�c 2 �(r

1

); 8a attribute of �c, 8 oid instance of �c: if

�

r

1

(oid):a is de�ned, then �

r

2

(oid):a is de�ned and

�

r

1

(oid):a = �

r

2

(oid):a. 2

Unfortunately, the following proposition (proved in [28])

holds.

Proposition 1: Trigger re�nement is undecidable.

We have, however, devised some su�cient static condi-

tions ensuring that a trigger r

2

is a re�nement of a trigger

r

1

. These conditions can be checked at trigger de�nition

time, so that the overriding of a trigger in a subclass can

be disallowed if the overriding trigger is not a re�nement

of the overridden one. These conditions are referred to as

re�nement conditions. In what follows we illustrate those

conditions, by �rst analyzing each trigger component sep-

arately.

A. Events

The re�ned trigger must be activated each time the in-

herited trigger would be activated. Thus, we impose the

condition that for each event in the event component of the

inherited trigger, a corresponding event is present in the

event component of the re�ned trigger.

De�nition 18: (Event Re�nement). An event set Ev is

a re�nement of an event set Ev

0

if and only if Ev

0

� Ev.

2

Example 4: Consider a class person, with an attribute

income, and a trigger that if the value of income is less than

0, assigns 0 to the income. The event component of that

trigger is the set f modify(income) g. Consider moreover

a class employee, subclass of person, with two attributes

income and fees and suppose to re�ne the trigger so that

whenever the amount of income minus the amount of fees

is less than 0, the attribute income is set to the value of

attribute fees. The event component of the re�ned trigger

is f modify(income), modify(fees) g. 4

B. Condition

The basic idea behind condition re�nement is that, with

respect to the instances of the subclass, the condition in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 13

the re�ned trigger must be less selective than the condition

in the inherited trigger. This ensures that the action of

the re�ned trigger is executed each time the action of the

inherited trigger would have been executed on an instance

of the subclass.

Example 5: Consider the classes person and employee,

and the constraint that the age of a person must be greater

than 0, while the age of an employee must be greater than

15. Suppose this constraint is enforced in person by the

following trigger:

Events: modify(age)

Condition: person(X), occurred(modify(age),X),

X.age < 0

Action: rollback

whereas the constraint is enforced in employee by the fol-

lowing re�ned trigger:

Events: modify(age)

Condition: employee(X), occurred(modify(age),X),

X.age < 15

Action: rollback

4

To formalize this notion we �rst need to introduce a new

concept, that is, the one of specialized condition. Since

conditions are formulas we give the general concept of spe-

cialized formula in the following de�nition.

De�nition 19: (Specialized Formula). Let c

1

and c

2

be

two classes such that c

2

is subclass of c

1

. Moreover, let F

be a formula, then F [c

1

=c

2

], the specialized formula of F

with respect to class c

2

, denotes the formula obtained from

F by substituting each class formula c

1

(X) with a class

formula c

2

(X). 2

Example 6: Let F be the �rst condition of Ex-

ample 5, then F [person=employee] = employee(X);

occurred(modify(age);X); X:age< 0. 4

The bindings produced by the evaluation of the condition

are represented as a set of ground substitutions, as seen in

Section V-B.2. A substitution � is a renaming of variables

if � = fX

1

=t

1

; : : : ; X

n

=t

n

g, and, for each i 2 [1; n], t

i

is

a distinct variable. Moreover, we introduce the following

notations.

Notations

� Given a trigger r, let BV ar(r) denote the set

of variables appearing in r:Condition and in

r:Action (that is, the variables employed for

passing bindings).

� Given a renaming of variables �, let -

�

denote

subset (non strict) inclusion modulo renaming

�. That is, let B and B

0

be sets of substitutions

(sets of bindings) or set of variables, B -

�

B

0

means B � B

0

�; let w

�

denote equality modulo

renaming �, B w

�

B

0

means B = B

0

�. Equality

modulo renaming � also holds between terms.

Let t and t

0

be terms, t w

�

t

0

means t = t

0

�

where t

0

� is the term t

0

where each variable has

been substituted according to renaming �.

� Given a formulaF , let F

�E

denote the formula

obtained by eliminating the event formulas ap-

pearing in F .

We can now formalize the condition re�nement notion.

De�nition 20: (Condition Re�nement). A condition

r

2

:Condition is a re�nement of a condition r

1

:Condition

(denoted as r

2

:Condition �

�

c

r

1

:Condition) if and only if

the following conditions hold:

1. BV ar(r

1

) -

�

BV ar(r

2

), and

2. for each event formulas occurred(e;X) in r

1

:Condi-

tion, a corresponding event formulas occurred(e;X

0

)

is in r

2

:Condition, such that X w

�

X

0

, and

3. 8S database state,

C [[r

1

:Condition

�E

[r

1

:Class=r

2

:Class]]]S; -

�

(C [[r

2

:Condition

�E

]]S;)

jBVar(r

1

)

for a renaming of variables �. 2

Condition 3 of De�nition 20 above is that the special-

ized condition corresponding to r

1

:Condition

�E

is sub-

sumed by r

2

:Condition

�E

. Query subsumption (also called

query containment) has been widely investigated, and al-

gorithms for deciding subsumption among object-oriented

queries have been proposed [29], [30]. Algorithms for test-

ing subsumption among Chimera formulas have been also

developed [31]. Subsumption can be easily extended to

handle also predicates on past database states, as long as

the referred past state is the same state in both formulas

20

.

Indeed, old(F) subsumes old(G) if and only if F subsumes

G.

We remark that, though the test for subsumption has a

cost exponential in the formulas that can appear in rule

conditions, this is not a problem. First of all, this complex-

ity is exponential in the dimension of the formula and the

schema, not in the dimension of the database. Second, the

analysis of whether a rule is a correct re�nement of another

one is executed once at rule de�nition time. More e�cient

subsumption tests for rule conditions could be used at the

expense of reducing the expressiveness of the language for

condition speci�cation [29].

Example 7: Given trigger r

2

on class employee and trig-

ger r

1

on class person such that

� r

2

:Condition = employee(X),

occurred(modify(age),X), X.age > 65,

department(Y), X.department = Y, and

� r

1

:Condition = person(X),

occurred(modify(age),X), X.age > 100

r

2

:Condition is a re�nement of r

1

:Condition under the

empty renaming of variables �, indeed:

1. BV ar(r

1

) = fXg -

�

BV ar(r

2

) = fX; Yg;

2. occurred(modify(age),X) is in r

1

:Condition, and

occurred(modify(age),X) is in r

2

:Condition;

3. r

1

:Condition

�E

[r

1

:Class=r

2

:Class] = employee(X),

X.age > 100 is subsumed by r

2

:Condition

�E

=

employee(X), X.age > 65, department(Y),

X.department = Y restricted to variable X. 4

C. Action

The basic approach to achieve behavior consistency is

based on ensuring that, for each action in the inherited

20

Note that this is the case here, since we consider only event pre-

serving rules, for which the referred past state is the state at transac-

tion start.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 14

trigger, there is a corresponding action in the re�ned trig-

ger. However, since rule actions are sequences, the corres-

ponding action could be discarded by some complementary

action executed after it in the sequence. Consider as an

example the case of an inherited trigger creating an object

in its action, overridden by a trigger whose action �rst of

all creates a corresponding object and then deletes it. We

consider, therefore, the net e�ect of the actions in the se-

quence. We state that for each action in the net e�ect of

the inherited trigger there must be a corresponding action

in the net e�ect of the re�ned one. Note that the notion

of net e�ect employed here is purely syntactical and relies

only on complementary database operations.

We now formalize these notions. Given a record term t

and a class c, let t

jc

denote the restriction of the term to

the �eld whose labels are attributes of c.

De�nition 21: (Basic Action Re�nement). An action u

is a re�nement of an action u

0

under the renaming of vari-

ables � (denoted as u �

�

b

u

0

) if and only if one of the fol-

lowing conditions holds:

� u = create(c; t; O), u

0

= create(c

0

; t

0

; O

0

) and c �

ISA

c

0

, O w

�

O

0

, t

jc

0
w

�

t

0

;

� u = delete(c;O), u

0

= delete(c

0

; O

0

) and c �

ISA

c

0

,

O w

�

O

0

;

� u = generalize(c; c

1

; O), u

0

= generalize(c

0

; c

0

1

; O

0

)

and c �

ISA

c

0

, c

0

1

�

ISA

c

1

, O w

�

O

0

;

� u = specialize(c; c

1

; O; t), u

0

= specialize(c

0

; c

0

1

; O

0

; t

0

)

and c �

ISA

c

0

, c

1

�

ISA

c

0

1

, O w

�

O

0

, t

jc

0

1

w

�

t

0

;

� u = modify(c:attr;O; t), u

0

= modify(c

0

:attr; O

0

; t

0

)

and c �

ISA

c

0

, t w

�

t

0

, O w

�

O

0

;

� u = O:op(t

1

; : : : ; t

n

), u

0

= O

0

:op(t

0

1

; : : : ; t

0

n

) and for

each i; i 2 [1; n], t

i

w

�

t

0

i

, O w

�

O

0

;

� u = rollback and u

0

= rollback. 2

Net e�ect computation consists of composing the e�ects

of those actions whose e�ect was compensated by a sub-

sequent action on the same object. Classical compensations

[16], [21] are performed as follows:

� a sequence of create and delete primitives on the same

object, possibly with an arbitrary number of interme-

diate modify primitives on that object, has a null net

e�ect;

� a sequence of create and several modify primitives on

the same object has the net e�ect of a single create

operation;

� a sequence of several modify and a delete primitive on

the same object has the net e�ect of a single delete

operation on that object;

� a sequence of several modify primitives on the same

object has the net e�ect of a single modify operation

on the old object which modi�es it in the newest.

In addition to those classical compensations, we consider

also compensations involving object migrations along the

hierarchy. For the sake of brevity, we omit all rules for

computing the net e�ect of a sequence of actions. Given a

sequence of actions A, let Net(A) denote the net e�ect of

the sequence. The net e�ect of the sequence is performed

at a syntactic level, by considering compensating actions on

the same object-denoting term, contained in the sequence.

De�nition 22: (Action Re�nement). A reaction

r

2

:Action is a re�nement of a reaction r

1

:Action (denoted

as r

2

:Action �

�

a

r

1

:Action) if the following conditions hold:

� Net(r

1

:Action) = u

0

1

; : : : ;u

0

n

, Net(r

2

:Action) =

u

1

; : : : ;u

m

and m � n;

� for each u

0

i

, i 2 [1; n], in Net(r

1

:Action), u

j

, j 2 [1;m],

in Net(r

2

:Action) exists, such that u

j

�

�

b

u

0

i

, that is,

u

j

is a re�nement of u

0

i

according to De�nition 21;

let function � : f1; : : : ; ng ! f1; : : : ;mg, such that

�(i) = j, model this correspondence;

� if u

0

i

precedes u

0

k

in Net(r

1

:Action) u

�(i)

precedes u

�(k)

in Net(r

2

:Action). 2

We remark that, since both basic action re�nement and

the computation of net e�ect only rely on syntactical prop-

erties of the trigger action, action re�nement is decidable.

Example 8: Suppose employee log �

ISA

person log

and employee �

ISA

person, then

� r

2

:Action = create(employee log, (who:X,

age:X.age, salary:X.salary), O)

is a re�nement of

r

1

:Action = create(person log, (who:X,

age:X.age), O)

under renaming �, and

� r

2

:Action = modify(department.nbr of employees,

Y, Y.nbr of employees-1);

delete(employee,X)

is a re�nement of

r

1

:Action = delete(person,X)

under renaming �. 4

Note, that our notion of corresponding action is correct

if and only if a notion of behavior re�nement is imposed

on Chimera operations. Indeed, we can ensure that if an

operation op is invoked in the action of the inherited trigger,

then operation op is invoked in the action of the re�ned

one. Conditions on behavioral subtyping in Chimera are

presented in [26].

D. Restrictions on Trigger Overriding

The following subsection summarizes the restrictions on

trigger rede�nition.

De�nition 23: (Static Trigger Re�nement). A trigger

r

2

= (N; c;Ev;C;A) is a static re�nement of a trigger

r

1

= (N

0

; c

0

; Ev

0

; C

0

; A

0

), if �, renaming of variables, ex-

ists such that the following conditions are satis�ed:

� Ev

0

� Ev, that is, Ev is a re�nement of Ev

0

according

to De�nition 18;

� C �

�

c

C

0

, that is, C is a re�nement of C

0

according to

De�nition 20;

� A �

�

a

A

0

, that is, A is a re�nement of A

0

according to

De�nition 22. 2

The following properties (proved in [28]) hold for re-

de�ned triggers.

Proposition 2: Given two triggers r

1

and r

2

:

1. we can decide whether r

2

is a static re�nement of r

1

;

2. if r

2

is a static re�nement of r

1

, r

1

:Name = r

2

:Name

and r

2

:Class �

ISA

r

1

:Class, each event on proper

instances of r

2

:Class, that triggers r

1

also triggers r

2

;

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 15

3. if r

2

is a static re�nement of r

1

, r

1

:Name = r

2

:Name

and r

2

:Class �

ISA

r

1

:Class, r

2

is a behavioral re�ne-

ment of r

1

according to De�nition 17.

We can state the following rule.

Rule 1: Given the set of triggers R of a database schema,

for each r

1

, r

2

belonging to R if r

1

:Name = r

2

:Name and

r

2

:Class �

ISA

r

1

:Class then r

2

must be a static re�nement

of r

1

according to De�nition 23. �

Note moreover that, according to Proposition 2, r

2

is a

behavioral re�nement of r

1

.

Finally, let us mention that whenever the conditions of

De�nition 23 hold among two triggers, then, under certain

conditions, the more general of the two triggers is redund-

ant, as stated by the following de�nition.

De�nition 24: (Redundant Trigger). A trigger r

2

=

(N; c;Ev;C;A) is redundant with respect to a class c if

a trigger r

1

= (N

0

; c

0

; Ev

0

; C

0

; A

0

) exists, with c �

ISA

c

0

and N 6= N

0

, such that:

� Ev � Ev

0

, that is, Ev

0

is a re�nement of Ev according

to De�nition 18;

� C

0

�

�

c

C, that is, C

0

is a re�nement of C according to

De�nition 20;

� A

0

�

�

a

A, that is, A

0

is a re�nement of A according to

De�nition 22. 2

Example 9: Consider the classes person and employee,

with employee subclass of person, and the following trigger

r

1

on class person:

Events: modify(income)

Condition: person(X), occurred(modify(income),X),

X.income < 0

Action: rollback

Suppose that the following trigger r

2

is de�ned on class

employee:

Events: modify(income)

Condition: employee(X), occurred(modify(income),X),

X.income < 100

Action: rollback

Then, trigger r

1

, inherited in class employee, is redundant

with respect to this class. 4

Detecting redundant triggers allows one to save useless

rule executions during rule processing, thus restricting the

set of rules to be executed to a minimal one realizing the

intended e�ect on the database.

VII. Trigger Inheritance and Overriding in

Object-Relational DBMS

Object-relational DBMS represent one of the most in-

teresting extensions of relational DBMS and many of them

support active capabilities. In particular, the forthcoming

database standard SQL-3 [9] relies on an object-relational

data model and provides active capabilities. In our opinion,

the issues discussed in this paper apply to active object-

relational data models as well, and our approach can help

in clarifying how active capabilities can be integrated in

object-relational DBMS. Thus, the contribution of the pa-

per has value beyond the speci�c data model, Chimera, in

the context of which it has been developed.

Though some object-relational data models do not cur-

rently support inheritance (e.g. DB2 [32] and Oracle [33]),

all of them mention inheritance as one of the most relev-

ant planned extensions to the model. Inheritance, both at

the type (ADT) and at the table level, is part of the SQL-

3 data model; however, no discussion on how inheritance

interacts with triggers is included in the standard docu-

mentation. Note that in SQL-3 triggers are not de�ned in

the context of tables. However, an SQL-3 trigger monitors

a single event, thus it is implicitly associated with the table

to which the monitored event refers.

Example 10: By transposing our approach in the SQL-

3 context, given a table employees and a table managers,

created as UNDER employees, a trigger de�ned as:

CREATE TRIGGER upd rank

AFTER UPDATE OF rank ON employees

...

would react also to updates to the rank attribute of tuples

of the managers table, unless the following rede�nition is

included, overriding the trigger above:

CREATE TRIGGER upd rank

AFTER UPDATE OF rank ON managers

... 4

The semantic framework we have developed can be easily

extended for specifying the semantics of trigger on object-

relational databases. In particular, Chimera immediate

triggers corresponds to SQL-3 statement-level after trig-

gers. Dealing with immediate rules implies that the reactive

process is started after the execution of any update oper-

ation, rather than only after the execution of the commit

statement. The semantics we have presented in the paper

can easily model this execution mode. A semantics mod-

eling the execution of other kinds of SQL-3 triggers, that

is, row-level and before triggers, could be de�ned as well,

relying on the same semantics framework.

A (syntactic) di�erence between SQL-3 (and DB2) trig-

gers and Chimera ones is that in SQL-3 there is no para-

meter passing between condition and action parts, and that

actions contain SQL DML statements, that is, statements

of the form UPDATE-SET-WHERE, DELETE-WHERE, that both

specify the action to be performed and select the objects on

which the action has to be performed. In Chimera triggers,

instead, these two tasks are decoupled in the action and

condition components. We remark that, however, this is a

syntactic di�erence, since we can easily establish a corres-

pondence between each SQL DML statement and a (set of)

Chimera condition-action pair(s) [8].

Example 11: The following SQL-3 trigger reacts to in-

sertions of new employees, whose rank is manager. It sets

the salary of all employees in the inserted manager depart-

ment whose salary excedes the salary of the newly inserted

manager, to the salary of that manager.

CREATE TRIGGER upd_sal

AFTER INSERT ON employees

REFERENCING NEW AS nemp

FOR EACH STATEMENT

WHEN nemp.rank = 'manager'

UPDATE employees

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 16

SET salary = nemp.salary

WHERE employees.dept = nemp.dept AND

employees.salary > nemp.salary

It corresponds to the Chimera trigger:

Events: create

Condition: employee(X), employee(Y),

occurred(create,Y), Y.rank ='manager',

X.salary > Y.salary

Action: modify(employee.salary, X, Y.salary)

4

Finally, also the proposed conditions, specifying when

trigger re�nement is allowed, could be applied to object-

relational active databases. The Chimera action language

actually allows one to specify sequences of SQL DML state-

ments (modulo the correspondences sketched above). Se-

quences of SQL DML statements are exactly the actions

that can be speci�ed in DB2 triggers, and a meaningful sub-

set of the actions that can be speci�ed in SQL-3 triggers.

In particular, SQL-3 trigger actions are sequences con-

taining SQL DML statements and SQL control statements

(SQL/PSM). While our static conditions do not cover SQL

control statements such as loop statements, trigger re�ne-

ment can be tested by exploiting our techniques as long

as trigger actions contain SQL DML statements only. The

following example illustrate the discussion.

Example 12: Let employees, employee log be tables in-

heriting from tables persons, person log, respectively.

Consider the following SQL-3 trigger, corresponding to the

trigger r

2

of Example 2, whose condition has been modi�ed

to select all employees whose age exceeds 65:

CREATE TRIGGER del_old

AFTER UPDATE age ON employees

REFERENCING NEW AS nemp

FOR EACH STATEMENT

BEGIN ATOMIC

UPDATE department

SET nbr_empl = nbr_empl - 1

WHERE nemp.age > 65 AND

nemp.dept = department.name;

INSERT INTO employee_log

SELECT name, age, salary

FROM nemp

WHERE nemp.age > 65;

DELETE FROM employees

WHERE nemp.name = employees.name AND

nemp.age > 65;

END;

According to the conditions stated in Section VI it is a

re�nement of the following SQL-3 trigger, corresponding to

the trigger r

1

of Example 2:

CREATE TRIGGER del_old

AFTER UPDATE age ON persons

REFERENCING NEW AS npers

FOR EACH STATEMENT

BEGIN ATOMIC

INSERT INTO person_log

SELECT name, age

FROM npers

WHERE npers.age > 100;

DELETE FROM persons

WHERE npers.name = persons.name AND

npers.age > 100;

END:

4

VIII. Related Work

In this section we compare our work with existing ap-

proaches dealing with active rule semantics and trigger

overriding in existing systems.

A. Active Rule Semantics

The growing interest in active database systems has led

to the development of formal techniques to analyze the main

characteristics of these systems as the rule de�nition lan-

guage and the execution model. In the following we present

a brief overview of how the problem of de�ning a semantics

for active database systems has been addressed in the lit-

erature. We refer the interested reader to [34] for a more

detailed overview.

An approach to the de�nition of a semantics which is the

most similar to ours is described in [35] and proposes a

denotational semantics for the Starbust system. As in our

approach, the semantics is seen as a function which maps a

transaction and the current database state into a resulting

state. The main limitation of these semantics is that it is

tightly bound to the Starbust execution model, devoting

little attention to the condition and action language.

Another important work is [36] where a generic frame-

work for formally specifying the semantics of di�erent sys-

tems is proposed, relying on the Object-Z formalism [37].

The formalism used is object-oriented but totally abstract.

The main drawback of this approach, like the previous one,

is that no aspect concerning the active rule language is ana-

lyzed.

Another line of thinking is the one which has adapted the

semantics of deductive databases to active systems. The

main works in this direction are [38], [39], and [40]. In

[38], the database version of the Event Calculus is exploited.

Through the Event Calculus, the set of logical consequences

derived by the event history creates a sequence of sets of

facts, each of those can be seen as the extensional part

(EDB) of a deductive database (DDB). The main contribu-

tion of this approach is the de�nition of speci�cation lan-

guages for active rule languages with a logical semantics.

In [39], an integration between the classical operational se-

mantics of the deductive databases and the semantics of act-

ive databases is described. The approach is based on the

syntactical notion of XY-strati�cation and underlines the

declarative nature of database updates. Such an approach,

however, does not support the analysis of some important

features of active rules, concerning the execution model,

such as coupling modes.

A simple speci�cation language of the form condition-

action is introduced in [41]. The aim of that approach is

to develop a rule execution formalism for reasoning about

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 17

the basic properties of rules. A drawback is the restrict-

ive assumptions characterizing the approach, for example a

single coupling mode is supported.

The last approach [42] we mention here is particularly

relevant as it gives a semantics for the Chimera active rule

language. Such an approach, applicable to a generic act-

ive database system, tries to provide a formal model onto

which the various aspects of such a system, such as execu-

tion of a set of rules, coupling modes, consumption modes

and so on, can be mapped. Three steps are distinguished:

the �rst step consists of a translation of the rules into an in-

termediate syntax to make explicit the characteristics of the

rules of a particular system; the second step consists of a

translation of the set of rules, obtained in the previous step,

in an inner format (core format); the third step consists of

an execution model, speci�ed through an algorithm, for the

rules expressed in the core format. The main drawback of

this approach is that rule semantics is not speci�ed dir-

ectly, rather through the translation of rules in an auxiliary

format, and thus it is less intuitive.

This short overview highlights the fact that most propos-

als formalizing active database system semantics deal with

relational systems rather than with object-oriented ones and

the few that follow the object-oriented approach do not ad-

dress issues related to inheritance and overriding.

B. Overriding in Active Object Systems

Under most proposals [2], [16], [20], triggers are always

inherited and can never be overridden nor re�ned. Such an

approach, that we have referred to as full trigger inherit-

ance, simply means that events are propagated across the

class inheritance hierarchy. Thus, inheritance of triggers is

accomplished by applying a trigger to all the instances of

the class in which the trigger is de�ned, rather than only to

proper instances of this class. The approach proposed by

Shyy and Su [43] achieves the same result, but it is com-

plicated by the fact that events are not propagated along

the class hierarchy.

Rule overriding is supported in TriGS [4]. A lookup

mechanism is used that starts from the class of the ob-

ject for which the event was signaled, and ends at the class

where the method corresponding to the event

21

is de�ned

(in the worst case at the root of the class hierarchy). To re-

cognize rule overriding, a mechanism based on the equality

of rule names is used. At implementation level, a transient

rule dictionary is used to �lter overridden rules. In TriGS,

however, this process is simpli�ed since only single inher-

itance is considered. No restrictions are imposed on rule

overriding, thus a rule may also override another rule on

completely di�erent events.

In Ode [27] a subclass may contain a di�erent de�nition

for a trigger de�ned in a superclass. Then, if the trigger

is activated on a subclass object, only the most speci�c

trigger applies to it, thus trigger overriding is supported.

Note, however, that if the trigger activation is part of the

superclass constructor, than both triggers apply to a sub-

21

We recall that in TriGS events are only method calls.

class object, and there is no way to override the trigger.

Moreover, also in Ode no controls are performed on trig-

ger rede�nition; thus a rule may override another rule on

completely di�erent events.

In [16] the possibility is suggested to program rule over-

riding \by hand" as follows. Suppose that a trigger r

0

=

(N; c

0

; Ev

0

; C

0

; A

0

) is de�ned and suppose, moreover, that it

needs to be overridden by a rule with the same events Ev

0

,

but di�erent conditions and actions, C and A, in a class c,

with c subclass of c

0

. Then, in class c a trigger r can be

declared such that r has priority over r

0

, and r:Action ex-

ecutes A and deactivates (that is, disables) trigger r

0

. With

this approach, only r will be executed, but it is responsib-

ility of the rule programmer to enforce the overriding. This

approach, however, does not account for true overloading

and overriding, as the new trigger r cannot have the same

name as trigger r

0

. Other drawbacks of this approach are

that only few systems allow a rule to be disabled in the

action of another rule and that most systems require rules

to be explicitly re-activated once deactivated; therefore, it

is not clear when and by whom rule r

0

is re-activated.

Finally, trigger overriding has been recently addressed in

[44]. Their approach, however, is very di�erent from ours,

since they consider rules over multiple classes with para-

meterized events and address the issues of trigger signa-

ture rede�nition and trigger (multiple) dispatching. They

do not discuss at all trigger re�nement.

IX. Conclusions and Future Work

Active object-oriented databases are being extensively

investigated. Though several research projects are be-

ing carried on and some prototype systems have been de-

veloped, a relevant issue in integrating triggers with object-

oriented modeling capabilities has been so far neglected,

namely trigger inheritance. In this paper, we have ana-

lyzed trigger inheritance and overriding in the context of

the Chimera active object language, by formally specifying

a semantics and by investigating under which restrictions

triggers can be overridden in subclasses. In [28] we discuss

how the existing architecture of the Chimera prototype [45]

can be modi�ed to support trigger overriding.

Our work can be extended along a number of di�erent

dimensions. First of all, our conditions for trigger over-

riding can be extended to consuming rules, for which the

old state referred by predicates on past database states de-

pends on the last rule activation, and to triggers with com-

posite events [19]. Our notion of event containment can

be extended to more complex event languages, since it is

possible to establish static conditions ensuring that a com-

posite event will occur each time another composite event

occurs. Moreover, the inuence of multiple inheritance and

multiple class direct membership [46] on triggers should be

considered. For multiple inheritance, the main issue is how

to order triggers (on the same events) inherited from dif-

ferent superclasses; this could be achieved by imposing a

total order on classes, or by allowing a class to modify the

relative priorities of triggers in its superclasses.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 18

References

[1] S. Ceri and J. Widom, Active Database Systems - Triggers and

Rules for Advanced Database Processing, Morgan-Kaufmann,

1996.

[2] C. Beeri and T. Milo, \A Model for Active Object Oriented

Database," in Proc. Seventeenth Int'l Conf. on Very Large Data

Bases, G. M. Lohman, A. Sernadas, and R. Camps, Eds., 1991,

pp. 337{349.

[3] N. Gehani and H. Jagadish, \Ode as an Active Database: Con-

straints and Triggers," in Proc. Seventeenth Int'l Conf. on Very

Large Data Bases, 1991, pp. 327{336.

[4] G. Kappel, S. Rausch-Schott, and W. Retschitzegger, \Beyond

Coupling Modes: Implementing Active Concepts on Top of a

Commercial ooDBMS," in Proc. Int'l Symp. on Object-Oriented

Methodologies and Systems, E. Bertino and S. Urban, Eds., 1994,

number 858 in Lecture Notes in Computer Science.

[5] G. Leavens and W. Weihl, \Reasoning about Object-Oriented

Programs that use Subtypes," in Proc. Fifth Int'l Conf. on

Object-Oriented Programming: Systems, Languages, and Ap-

plications joint with Fourth European Conference on Object-

Oriented Programming, 1990, pp. 212{223.

[6] S. Ceri and R. Manthey, \Chimera: A Model and Language for

active DOOD Systems," in Extending Information System Tech-

nology, Proc. Second International East/West Database Work-

shop, J. Eder and L. Kalinichenko, Eds., 1994, pp. 9{21.

[7] G. Guerrini, E. Bertino, and R. Bal, \A Formal De�nition of the

Chimera Object-Oriented Data Model," Journal of Intelligent

Information Systems, vol. 11, no. 1, pp. 5{40, 1998.

[8] S. Ceri and P. Fraternali, Designing Database Applications with

Objects and Rules - The IDEA Methodology, Addison-Wesley,

1997.

[9] N. Mattos, \An Overview of the SQL3 Standard," Database

Technology Institute, IBM Santa Teresa Lab., San Jose - Cali-

fornia, July 1996.

[10] U. Dayal, A. Buchmann, and S. Chakravarthy, \The HiPAC

project," in Active Database Systems, S. Ceri and J. Widom,

Eds. Morgan-Kaufmann, 1996.

[11] D. McCarthy and U. Dayal, \The Architecture of an Active Data

Base Management System," in Proc. of the ACM SIGMOD Int'l

Conf. on Management of Data, 1989, pp. 215{223.

[12] E. Anwar, L. Maugis, and S. Chakravarthy, \A New Perspective

on Rule Support for Object-OrientedDatabases," in Proc. of the

ACM SIGMOD Int'l Conf. on Management of Data, P. Bune-

man and S. Jajodia, Eds., 1993, pp. 99{108.

[13] H. Branding, A. Buchmann, T. Kudrass, and J. Zimmerman,

\Rules in an Open System: the REACH Rule System," in Proc.

First International Workshop on Rules in Database Systems,

N. Paton and M. Williams, Eds., 1993, Workshops in Computer

Science, pp. 111{126.

[14] N. Gehani and H. Jagadish, \Active Database Facilities in Ode,"

inActive Database Systems, S. Ceri and J. Widom, Eds. Morgan-

Kaufmann, 1996.

[15] O. Diaz, N. Paton, and P. Gray, \Rule Management in Object

Oriented Databases: A Uniform Approach," in Proc. Seven-

teenth Int'l Conf. on Very Large Data Bases, G. M. Lohman,

A. Sernadas, and R. Camps, Eds., 1991, pp. 317{326.

[16] C. Collet, T. Coupaye, and T. Svensen, \Naos: E�cient and

Modular Reactive Capabilities in an Object-Oriented Database

System," in Proc. Twentieth Int'l Conf. on Very Large Data

Bases, 1994, pp. 132{143.

[17] S. Gatziu and K. Dittrich, \SAMOS: an Active Object-Oriented

Database System," IEEE Data Engineering Bulletin, Special

Issue on Active Databases, vol. 15, no. 4, pp. 23{26, December

1992.

[18] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca, \Active Rule

Management in Chimera," in Active Database Systems, S. Ceri

and J. Widom, Eds. Morgan-Kaufmann, 1996.

[19] R. Meo, G. Psaila, and S. Ceri, \Composite Events in Chimera,"

in Proc. Fifth Int'l Conf. on Extending Database Technology,

P. Apers, Ed., 1996, number 1057 in Lecture Notes in Computer

Science, pp. 56{76.

[20] C. Medeiros and P. Pfe�er, \Object Integrity Using Rules," in

Proc. Fifth European Conference on Object-Oriented Program-

ming, P. America, Ed., 1991, number 512 in Lecture Notes in

Computer Science, pp. 219{230.

[21] J. Widom and S. J. Finkelstein, \Set-Oriented Production Rule

in Relational Database Systems," in Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, H. Garcia-Molina and H.V.

Jagadish, Eds., 1990, pp. 259{270.

[22] S. Ceri, G. Gottlob, and L. Tanca, Logic Programming and

Databases, Springer-Verlag, 1990.

[23] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,

Addison-Wesley, 1995.

[24] J. Widom, R. J. Cochrane, and B. G. Lindsay, \Implementing

Set-OrientedProduction Rules as an Extension to Starburst," in

Proc. Seventeenth Int'l Conf. on Very Large Data Bases, G. M.

Lohman, A. Sernadas, and R. Camps, Eds., 1991, pp. 275{285.

[25] J.H. Gallier, Logic for Computer Science, Harper and Row,

1986.

[26] E. Bertino, G. Guerrini, and I. Merlo, \A Set-Oriented

Method De�nition Language for Object Databases," Tech.

Rep. DISI-TR-97-11, Dipartimento di Informatica e Scienze

dell'Informazione, Universit�a di Genova, 1997, Submitted for

publication.

[27] D. Lieuwen, N. Gehani, and R. Arlein, \The Ode Active Data-

base: Trigger Semantics and Implementation," in Proc. Twelfth

IEEE Int'l Conf. on Data Engineering, 1996.

[28] E. Bertino, G. Guerrini, and I. Merlo, \Trigger Inherit-

ance and Overriding in an Active Object Database System,"

Tech. Rep. DISI-TR-97-4, Dipartimento di Informatica e Scienze

dell'Informazione, Universit�a di Genova, 1997.

[29] M. Buchheit, M. Jeusfeld, W. Nutt, and M. Staudt, \Subsump-

tion Between Queries to Object-Oriented Databases," in Proc.

Fourth Int'l Conf. on Extending Database Technology, M. Jarke,

J. Bubenko, and K. Je�ery, Eds., 1994, number 779 in Lecture

Notes in Computer Science, pp. 15{22, Extended version in In-

formation Systems, 19(1).

[30] E. Chan, \Containment and Minimization of Positive Conjunct-

ive Queries in OODBs," in Proc. of the Eleventh ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Sys-

tems, 1992, pp. 202{211.

[31] E. Bertino, R. Ferrari, and G.Guerrini, \Containment among

Chimera Positive Conjunctive Queries," Technical Report, 1997.

[32] D. Chamberlin, Using the New DB2 - IBM's Object-Relational

Database System, Morgan-Kaufmann, 1996.

[33] Oracle Corporation,Oracle8 Server SQL Reference, Release 8.0,

1997.

[34] N. Paton, J. Campin, A.A.A. Fernandes, and M. Howard Willi-

ams, \Formal Speci�cation of Active Database Functionality: A

Survey," in Rules in Database Systems, Proc. of the 2nd Inter-

national Workshop RIDS'95, T . Sellis, Ed., 1995, number 985

in Lecture Notes in Computer Science, pp. 21{35.

[35] J. Widom, \A Denotational Semantics for the Starbust Produc-

tion Rule Language," SIGMOD Record, vol. 21, no. 3, pp. 4{9,

September 1992.

[36] J. Campin, N. Paton, and H. Williams, \SpecifyingActive Data-

bases Systems in an Object-OrientedFramework," Software En-

gineering and Knowledge Engineering, vol. 7, no. 1, pp. 101{123,

1997.

[37] G. A. Rose, \Object-Z," in Object Orientation in Z,

S. Stepheney, R. Barden, and D. Cooper, Eds., pp. 59{77.

Springer-Verlag, 1992.

[38] R. Kowalsky, \Database Updates in Event Calculus," Journal

of Logic Programming, vol. 12, pp. 121{146, 1992.

[39] C. Zaniolo, \A Uni�ed Semantics for Active and DeductiveData-

bases," in Rules in Database Systems, N. W. Paton and M. H.

Williams, Eds. Springer-Verlag, 1994.

[40] A. Fernandes, H. Williams, and N. Paton, \A Logic-Based In-

tegration of Active and Deductive Databases," New Generation

Computing, vol. 15, no. 2, pp. 205{244, 1997.

[41] Y. Zhou and M. Hsu, \A Theory of Rule Triggering Systems,"

in Proc. Second Int'l Conf. on Extending Database Technology,

1990, pp. 407{421.

[42] P. Fraternali and L. Tanca, \A Structured Approach for the

De�nition of the Semantics of Active Databases," ACM Trans-

actions on Database Systems, vol. 20, no. 4, pp. 414{471, 1995.

[43] Y. Shyy and S. Su, \Re�nement Preservation for Rule Selection

in Active Object-Oriented Database Systems," in Proc. Fourth

International IEEE Workshop on Research Issues in Data En-

gineering - Active Database Systems, J. Widom and S. Chakrav-

arthy, Eds., 1994, pp. 115{123.

[44] N. A. Chaudhry, J. R. Moyne, and E. A. Rundensteiner, \A

Formal Model for Rule Inheritance and Overriding in Active

Object-Oriented Databases," in Proc. of the Third Int'l Conf.

on Integrated Design and Process Technology, IDPT - Volume

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 19

2, International Workshop on Issues and Applications of Data-

base Technology (IADT'98), M. T.

�

Ozsu and A. Dogac and

�

O.

Ulusoy, Ed., 1998, pp. 128{135.

[45] G. Guerrini and D. Montesi, \Design and Implementation of

Chimera Active Rule Language," Data and Knowledge Engin-

eering, vol. 24, pp. 39{67, 1997.

[46] E. Bertino and G. Guerrini, \Objects with Multiple Most Spe-

ci�c Classes," in Proc. Ninth European Conference on Object-

Oriented Programming, W. Oltho�, Ed., 1995, number 952 in

Lecture Notes in Computer Science, pp. 102{126.

Appendix

I. Update Semantics

In this appendix we sketch the semantics of Chimera up-

dates. We refer the reader to [26] for an extensive present-

ation.

In giving the semantics two kinds of updates are dis-

tinguished: atomic and non-atomic. An update is atomic

when it cannot be decomposed into simpler updates. The

atomic updates of our language are create, delete, modify,

specialize, generalize, while the non-atomic updates are

method invocations. Atomic operations transform the data-

base from one state to another without intermediate states,

whereas non-atomic updates require several intermediate

states.

The semantics of atomic update statements is presented

in Table II. In that de�nition, besides the ones in De�nition

12, the semantics domains are:

� Term = set of the well-formed terms of the language.

� 2

V

= powerset of V, set of possible values of the lan-

guage.

Note moreover that the semantic domains Cond and

Update denote condition and action parts both of rules and

of methods. Actually, trigger conditions slightly di�er from

method conditions. For example, in trigger conditions event

formulas can appear while in method conditions they can-

not. Analogously, in rule action parts rollback operations

can appear whereas in method action parts they cannot.

We consider these constraints as static constraints.

The following semantic functions are used:

E : (Term � State) ! ((Bind � State)! 2

V

)

CM : (Cond� State) ! ((Bind � State)! Bind)

U : (Update� State) ! ((Bind� State � Event)!

(Bind � State �Event))

Function E models the semantics of Chimera terms. We

do not present here the formal de�nition of such semantics

since it is the usual interpretation of terms constructed by

the standard arithmetical set, record and list operators of a

general programming language. Function CM corresponds

to function C (De�nition 13) for method conditions. Note

that the functionality of function CM is di�erent from the

one of C. Both of them take as input a condition, the con-

struct to be evaluated, and a database state which is the

initial state. Conditions for methods must be evaluated in

the current database state and with respect to the current

set of bindings, as in Chimera methods there is parameter

passing and no event set is needed, because event formu-

las may not appear in method conditions. By contrast, in

function C a rule's condition is evaluated with respect to the

current database state and the current event set, necessary

for occurred formula evaluation, and no set of bindings is

considered, since rules have no parameters.

In what follows, given a set of bindings B and a variable

�

O, let

�

O

B

be the interpretation of

�

O in B, that is, the set

of oids to which

�

O is bound in B.

We do not elaborate further on atomic update operations

in this context. In particular we do not analyze issues re-

lated to dynamic errors. We refer the reader to [26] for an

extensive discussion.

Method calls are the only non-atomic updates of our lan-

guage. A method invocation has the form O:op(t

1

; : : : ; t

n

)

where O is the object receiver of the event, op the method

name, and t

1

,: : : ,t

n

, the actual parameters, are terms. A

method call is implemented by several rules, where each

rule has the form: condition! u

1

; : : : ;u

n

.

The semantics of condition evaluation is speci�ed through

function CM, which takes a condition C and a state S and

returns a set of bindings f�

1

; : : : �

n

g such that condition C

where each variable has been substituted with the corres-

ponding value in �

i

, i 2 [1; n], is a ground formula which

evaluates to true in state S.

In specifying the semantics of method calls, four phases

can be distinguished:

1. Selection of method implementation.

2. Generation of the set of bindings in which the rule

conditions are evaluated.

3. Evaluation of the method implementation.

4. Generation of the set of bindings to return as result.

Selection of method implementation is the most interest-

ing phase for what concerns method inheritance and over-

riding. In the de�nition of the semantics of method calls a

fundamental problem is to establish which method has to

be invoked for each oid bound to the variable, on which the

method is invoked. This way of proceeding is in accordance

with the one adopted for establishing the rule triggered by

an event instance in De�nition 8. Our language supports

late binding, that is, at run-time, for each object the method

related to its most speci�c class is invoked.

We do not consider these phases further in this context,

all the details can however be found in [26].

Elisa Bertino received the doctor degree in

Computer Sciences from the University of Pisa,

Italy, in 1980. She is currently professor of

database systems in the Department of Com-

puter Science of the University of Milan where

she heads the Database Systems Group. Since

October 1997, she is also the chair of the Com-

puter Science School of the University of Mil-

ano. She has also been on the faculty in the De-

partment of Computer and Information Science

of the University of Genova, Italy. Until 1990,

she was a researcher for the Italian National Research Council in Pisa,

Italy, where she headed the Object-Oriented Systems Group. She has

been a visiting researcher at the IBM Research Laboratory (now Al-

maden) in San Jose, at the Microelectronics and Computer Techno-

logy Corporation in Austin, Texas, at George Mason University in

Fairfax, Virginia, and at Rutgers University in Newark, New Jersey.

Her main research interests include object-oriented databases, dis-

tributed databases, deductive databases, multimedia databases, in-

teroperability of heterogeneous systems, integration of arti�cial in-

telligence and database techniques, database security. In those areas,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 20

U [[create(�c;

�

t;

�

O)]]BSE = hB

0

; S

0

; E [fhcreate; �c; OIDNEW igi

B

0

= f�

1

[h

�

O=oid

f(1)

i; : : : , �

m

[h

�

O=oid

f(m)

ig, where:

f : f1; : : : ;mg ! f1; : : : ; kg, k � m, is a function such that given V the set of variables in term

�

t,

f(i) = j if �

i

j

V

= �

j

, where f�

1

; : : : ; �

k

g = f�

i

j

V

j i = 1; : : : ;mg: Let foid

1

; : : : ; oid

k

g = OIDNEW:

S

0

= h�

0

; �

0

i, where:

�

0

(c) =

n

�(c) [OIDNEW if c = �c

�(c) if c 6= �c

�

0

(oid

i

) =

n

�(oid

i

) if oid

i

=2 OIDNEW

E [[

�

t]]�

i

S if oid

i

2 OIDNEW; 1 � i � k

U [[delete(�c;

�

O)]]BSE = hB;S

0

; E [fhdelete; �c;

�

O

B

igi

S

0

= h�

0

; �

0

i where:

�

0

(c) =

n

�(c) n

�

O

B

if c = �c

�(c) if c 6= �c

�

0

(oid) =

n

�(oid) if oid =2

�

O

B

? if oid 2

�

O

B

U [[modify(�c:A;

�

O;

�

t)]]BSE = hB;S

0

;E [fhmodify; �c;

�

O

B

igi

S

0

= h�

0

; �

0

i, where:

�

0

(c) = �(c) �

0

(oid:A

k

) =

8

<

:

�(oid:A

k

) if oid =2

�

O

B

or if oid 2

�

O

B

and A

k

6= A

v if oid 2

�

O

B

; A

k

= A and if �

i

(

�

O) = oid

then E [[

�

t]] �

i

S = fvg

U [[specialize(c

1

; c

2

;

�

O;

�

t)]]BSE = hB;S

0

;E [fhspecialize(c

2

); c

1

;

�

O

B

igi

S

0

= h�

0

; �

0

i where:

�

0

(c) =

(

�(c) if c 6= c

1

and c 6= c

2

�(c) n

�

O

B

if c = c

1

�(c) [

�

O

B

if c = c

2

�

0

(oid) =

n

�(oid) if oid =2

�

O

B

�(oid)

�

[

(1)

E [[

�

t]] �

i

S if oid 2

�

O

B

, �

i

(

�

O) = oid

U [[generalize(c

1

; c

2

;

�

O)]]BSE = hB;S

0

;E [fhgeneralize(c

2

); c

1

;

�

O

B

igi

S

0

= h�

0

; �

0

i where:

�

0

(c) =

(

�(c) if c 6= c

1

and c 6= c

2

�(c) n

�

O

B

if c = c

1

�(c) [

�

O

B

if c = c

2

�

0

(oid) =

�

�(oid) if oid =2

�

O

B

�(oid)

(2)

j

c

2

if oid 2

�

O

B

and �

i

(

�

O) = oid

Legenda:

(1)

The symbol

�

[denotes the record concatenation.

(2)

�(oid)

j

c

2

denotes the restriction of �(oid) to the attribute of c

2

.

TABLE II

Semantics of atomic update operations

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO. Y, MONTH 1999 21

Prof. Bertino has published several papers in all major refereed journ-

als, and in proceedings of international conferences and symposia.

She is a co-author of the books "Object-Oriented Database Systems

- Concepts and Architectures" 1993 (Addison-Wesley International

Publ.), and "Indexing Techniques for Advanced Database Systems"

1997 (Kluwer Academic Publishers). She is member of the advisory

board of the IEEE Transactions on Knowledge and Data Engineer-

ing and a member of the editorial boards of the following scienti�c

journals: the International Journal of Theory and Practice of Ob-

ject Systems, the Very Large Database Systems (VLDB) Journal, the

Parallel and Distributed Database Journal, the Journal of Computer

Security, Data & Knowledge Engineering, the International Journal

of Information Technology, the International Journal of Cooperative

Information Systems. She has been consultant to several italian com-

panies on data management systems and applications and has given

several courses to industries. She has been also involved in several

European Projects sponsored by the EEC under the ESPRIT pro-

gramme.

Elisa Bertino is a senior member of IEEE and a member of ACM

and AICA and has been been named a Golden Core Member for

her service to the IEEE Computer Society. She has served as Pro-

gramCommitteemembers of several international conferences, such as

ACM SIGMOD and VLDB, as Program Chair of the 1996 European

Symposium on Research in Computer Security (ESORICS'96), as

General Chair of the 1997 International Workshop on Multimedia In-

formation Systems, and as Program Co-Chair of the 1998 IEEE In-

ternational Conference on Data Engineering (ICDE).

Giovanna Guerrini is an assistant professor

at the Department of Computer and Informa-

tion Sciences of the University of Genova. She

received the MS and PhD degrees in Computer

Science from the University of Genova, Italy, in

1993 and 1998, respectively. Her research in-

terests include object-oriented, active, deduct-

ive and temporal databases, semi-structured

data.

IsabellaMerlo received a MS Degree in Com-

puter Science (with honours) at the University

of Genova in 1996. Since November 1996, she is

enrolled in a PhD program, under the supervi-

sion of Prof. Elisa Bertino, in the Department

of Computer and Information Sciences of the

University of Genova as a member of the Data-

base and Information System Group. Her cur-

rent research interests include object-oriented,

active and temporal databases, data models for

management of semi-structured data.

