
Navigating through Multiple Temporal Granularity Objects

Elisa Bertino1 Elena Ferrari1 Giovanna Guerrini2 Isabella Merlo1

1DSI - Università degli Studi di Milano - Italy 2DISI - Università di Genova - Italy

fbertino,ferrarie,merloisag@dsi.unimi.it guerrini@disi.unige.it

Abstract

Managing and relating temporal information at differ-

ent time units is an important issue in many applications

and research areas, among them temporal object-oriented

databases. Due to the semantic richness of the object-

oriented data model, the introduction of multiple temporal

granularities in such a model poses several interesting is-

sues. In particular, object-oriented query languages pro-

vide a navigational approach to data access, performed via

path expressions. In this paper we present an extension to

path expressions to a multi-granularity context. The syntax

and semantics of the proposed path expressions are formally

defined.

1 Introduction

Managing and relating temporal information at different

time units is an important issue in many applications and

research areas, among them temporal databases. Some in-

teresting issues arise in extending a database model to store

and query data with multiple temporal granularities [3].

In particular, the introduction of multiple temporal gran-

ularities in an object-oriented data model poses several in-

teresting issues, due to the semantic richness of such a

model. Most of the temporal object-oriented data models

proposed so far do not deal with temporal granularities. The

only ones dealing with temporal granularities [5, 12, 13, 15]

support multiple temporal granularities as extensions to the

set of types of the temporal model. However, the specifica-

tion and management of different granularities, e.g., how to

convert from a granularity to another, is completely left to

the user.1

Object-oriented database systems provide, in addition to

traditional query languages, a navigational approach to data

access. Given an oid, the system directly accesses the cor-

responding object and navigates through objects referred to

1An exception is represented by a previous work of ours [10] dealing

with expressions involving data with multiple granularities.

by its components. This access modality can be combined

with the query-based (e.g., SQL-like) access. Thus, condi-

tions in a query can be imposed on the nested properties,

denoted by path expressions, of the queried objects.Most of

the temporal object-oriented query languages do not con-

sider navigational acces to data .

Temporal path expressions [1, 7] are obtained as an ex-

tension of classical path expressions of object-oriented lan-

guages, in that for each property access a time can be spec-

ified, in addition to the property name. In this paper, the

notion of temporal path expression is extended to a multi-

granularity context. Thus, for each property access a set of

granules has to be specified in order to access the property.

A specific set of granules can be denoted either explicitly or

implicitly. To explicitly denote a set of granules we refer to

the notion of temporal element. To symbolically denote a

set of granules we use temporal expression, which extends

the notion of temporal expression presented in [1], which

has been in turn inspired by the one proposed by Gadia and

Nair in [7].

The paper is organized as follows. In Section 2 the tem-

poral multi-granularity reference object model is presented.

Section 3 presents how multi-granularity temporal values

can be combined and compared, and the syntax and seman-

tics of temporal expressions. Section 4 presents temporal

path expressions. Finally, Section 5 concludes the paper.

2 Preliminaries: The Reference Temporal

Object Model

In this section we introduce the temporal object model

we refer to throughout the paper [9, 11].

We adopt the classical notion of temporal granularity

[3]. Given a time domain (IN,�)2 and an index set IS, a

granularity G is a mapping from IS to 2

IN such that (i)

if i < j and G(i) and G(j) are non-empty, then each el-

ement of G(i) is less than all elements of G(j) and (ii) if

2IN is the set of natural numbers and represents the set of time instants,

and � is the order on IN.

i < k < j and G(i) and G(j) are non-empty, then G(k) is

non-empty. Intuitively, a granularity defines a countable set

of granules, each granule G(i) is identified by an integer.

The set of granularities is denoted by G.

The usual collections days, months, and weeks are

granularities. For each non-empty granule, we use a “tex-

tual representation”, termed as label. For example, days are

in the form mm=dd=yyyy. By contrast, when we refer to

a generic granularity G and an index i, lG
i

denotes the label

corresponding to the ith granule of G. When we refer to

usual labels, such as the ones for days, i
l

denotes the index

corresponding to the granule denoted by label l.

A granularity G is said to be finer than a granularity H

[3], denoted G � H , if for each index i, there exists an

index j such that G(i) � H(j).3 For example, days �

months. The finer than relationship will be used to evaluate

path expressions involving several granularities.

We extend now the notion of temporal interval [8] and

temporal element [6] to a multi-granularity model.

Definition 1 (Temporal Interval). Let G 2 G be a granu-

larity and i; j 2 IS be two indexes such that i � j. Then

[i; j℄

G = fG(k) j i � k � j; k 2 ISg is called temporal

interval, with respect to granularity G.
�

Definition 2 (Temporal Element). Let G 2 G be a granu-

larity, then every subset of the set of granules associated to

G, fG(i) j i 2 ISg, is called temporal element with respect

to granularity G.
�

For instance, fmonths(i) j i 2 IS and i

01=1999

�

i � i

12=1999

g is a temporal element representing the

set of the months of year 1999. Every temporal ele-

ment can be represented as a finite union of intervals.

That is, let [i

1

; j

1

℄

G

; : : : ; [i

n

; j

n

℄

G be temporal intervals.

Then, [i

1

; j

1

℄

G

[: : : [[i

n

; j

n

℄

G represents the tempo-

ral element which includes all the granules included in

each interval.4 For instance, [i
01=1999

; i

07=1999

℄

months

[

[i

10=1999

; i

12=1999

℄

months represents a temporal element.

In what follows temporal elements will be frequently de-

noted through the symbol �G where G is the granularity

of the temporal element. The set of all temporal elements

with respect to a granularity G is denoted by T ELEM
G

;

in addition, T ELEM =

S

G2G

T ELEM

G

. In [6], where

temporal elements are subsets of the time domain, it is

proved that the set of all temporal elements is closed under

union, intersection, difference, and complementation and

thus forms a boolean algebra. Such a result similarly ap-

plies to T ELEM
G

. However, we often need to apply these

operations to temporal elements at different granularities.

In this case the sets are first converted to a common granu-

larity: the greatest lower bound (glb) of their granularities

3The symbol “�” denotes the anti-reflexive finer than relationship.
4A granule itself is obviously a temporal element.

with respect to the finer than relationship.5 Thus, we now

formalize the notion of conversion of a temporal interval

and a temporal element from a granularity to another.

Definition 3 (Conversion of a Temporal Interval). Let H 2

G be a granularity and i; j 2 IS be two indexes such that

i � j. G([i; j℄H) denotes the conversion of the temporal in-

terval [i; j℄H to granularity G. G([i; j℄

H

) = [h; k℄

G such

that
S

i�p�j

H(p) �

S

h�p�k

G(p) and �[h

0

; k

0

℄

G such

that
S

i�p�j

H(p) �

S

h

0

�p�k

0

G(p) �

S

h�p�k

G(p).
�

If G = H , obviously G([i; j℄

G

) = [i; j℄

G.

The conversion can be applied if either G � H

(downward conversion) or H � G (upward con-

version). For instance, days([i

1995

; i

2000

℄

years

) =

[i

01=01=1995

; i

31=12=2000

℄

days is a downward conver-

sion, whereas years([i

01=01=1995

; i

31=12=2000

℄

days

) =

[i

1995

; i

2000

℄

years is an upward conversion. The conversion

of a temporal element �H is computed by repeatedly ap-

plying the conversion to each temporal interval composing

the temporal element.

In what follows, given a set of granularities

fG

1

; : : : ; G

n

g, glb(G

1

; : : : ; G

n

) denotes the granular-

ity which is the greatest lower bound of G

1

; : : : ; G

n

in

G with respect to the finer than relationship. Similarly,

lub(G

1

; : : : ; G

n

) denotes the lowest upper bound.

We introduce now some notations. Given an interval

[i; j℄

G, min([i; j℄G) denotes the lower bound i, whereas

max([i; j℄G) denotes the upper bound j. In addition, we

define a projection operation �(�

G

; n), that takes as input

a temporal element �G and a natural number n. � orders

the elements in �

G in increasing order, with respect to their

upper bound, and returns the n-th interval in the ordering.

If j �G

j� n,6 �(�G

; n) is undefined.

We can now introduce the notion of temporal types re-

lated to different granularities. We refer the interested

reader to [2, 9, 11] for a detailed description of the reference

model. In our model object types can be defined through

classes. We consider a classical notion of class [4] where,

in order to store temporal information, the type of a prop-

erty can be a temporal one. Figure 1 presents an example of

a temporal object database schema involving multiple gran-

ularities.

We assume that a set T
R

of types is given. Such

set includes class and literal types.7 For each type

� 2 T

R

and granularity G 2 G, a corresponding tem-

poral type, temporal

G

(�), is defined.8 For instance,

temporal

months

(Person) is an example of a temporal

5Note that two granularities in G are not guaranteed to have a glb in G.

Here and in the remainder of this paper the approach is that two granulari-

ties can be “used together” only if they admit a glb in G.
6Given a generic set S, j S j denotes the cardinality of S.
7Example of types belonging to T

R

are short, Person, and so on.
8Note that temporal types cannot be nested.

class Course f...;

attribute temporal
years

(short) room;

relationship temporal
years

(Professor) T prof

inverse Professor::teaches;

relationship temporal
semesters

(Researcher) T assist

inverse Researcher::assists;

relationship temporal
years

(set<Student>) P stud

inverse Student::attends;g

class I Course extends Course fref relationship temporal
years

(Researcher) T assist

inverse Researcher::assists;

ref relationship temporal
days

(set<Student>) P stud

inverse Student::attends count students;

attribute temporal
weeks

(string) lab;g

class E Course extends Course fref relationship temporal
months

(Researcher) T assist

inverse Researcher::assists main;

attribute temporal
months

(string) lab;g

class T Course extends Course fref attribute temporal
months

(short) room all;g

class Person f...g;

class UnivEmployee extends Person fattribute short emp#;

attribute temporal
months

(short) salary;

attribute temporal
years

(short) room;g;

class Student extends Person f...;

relationship temporal
years

(Professor) supervisor

inverse Professor::supervises;g

class Professor extends UnivEmployee fattribute temporal
years

(string) business hours;

relationship temporal
years

(Course) teaches

inverse Course::T prof;

relationship temporal
years

(set<Student>) supervises

inverse Student::supervisor;g

class Researcher extends UnivEmployee fref attribute temporal
months

(short) room main;

attribute temporal
weeks

(string) supervised lab;

relationship temporal
months

(set<Course>) assists

inverse Course::T assist;g

Figure 1. Example of database schema

type provided that Person2 T
R

andmonths2 G. The set

of types provided by our model, which includes temporal,

literal, and object types, is denoted as T .

Given a non-temporal type � and a time instant t, [[� ℄℄
t

denotes the extent of type � at time t. If � is a literal type

[[� ℄℄

t

simply denotes the set of values of that type, whereas

if � is a class [[� ℄℄

t

returns the set of objects belonging to

type � at time t. Indeed, no literal value can be explicitly

created or deleted, whereas objects belonging to classes are

dynamically created and deleted, thus the extent of a class

depends on time.

The set of values of a non-temporal type with respect to

a time instant is generalized to a granularity G as follows.

[[� ℄℄

G

i

denotes the extension of type � with respect to the

ith granule of G, that is, [[� ℄℄G
i

=

T

t2G(i)

[[� ℄℄

t

.9 The idea

9We frequently use [[� ℄℄

l

G

i

to denote the legal values of a type with

behind this is that if an object o belonging to class
 exists

only during a portion of a granule, it does not belong to the

extent of
 related to such a granule. The set of legal values

of a temporal type temporal

G

(�) is defined as follows:

[[temporal

G

(�) ℄℄ = ff jf : IS !

S

i2IS

[[� ℄℄

G

i

is a

partial func. s.t. 8i 2 IS if f(i) 6=? then f(i) 2 [[� ℄℄

G

i

g.

Example 1 Let Course be a class such that: D =

S

i2IS

[[Course ℄℄
years

i

= fd
1

,d
2

, d
3

, . . . , d
n

g, then

examples of functions, denoted as set of pairs, in

[[temporal

years

(Course) ℄℄ are v
1

= fhi

1992

; d
1

i; hi

1993

;

d
4

ig; v
2

= fhi

1992

; d
1

i; hi

1993

; d
1

i; hi

1994

; d
1

ig.
�

When the function representing a temporal value

is constant for a set of contiguous granules, that

respect to a granule.

is, an interval, we denote temporal values as set

of pairs htemporal interval; valuei. For instance,

fh[i

1992

; i

1994

℄

years, d
1

ig is a compact notation for value

v

2

of Example 1.

We denote with V the set of legal values for types in

T . Let v be a value of type temporal

G

(�), we denote

with v(i) the value of v in ith granule of G. We assume

that, for each granularity H such that H � G, and for

each i; j 2 IS such that H(j) � G(i), the value of

v in granule j of H is the one in the ith granule of G.

This assumption is known in the temporal reasoning com-

munity [14] as downward hereditary property. We sim-

ply denote such value as v

H

(j). For instance, let v
1

2

[[temporal

years

(Department) ℄℄ be the temporal value

presented in Example 1, then vmonths

1

(i

01=1992

) = d

1

.

One can argue that downward hereditary property is not

always appropriate. We believe that this property is realistic

in most cases. In fact, storing the value of an attribute with

respect to a granularity is somehow deciding the temporal

precision associated with the information. If the attribute

granularity is months, then for each granularity finer than

months, such as days, this information is imprecise. How-

ever, since a value has been associated with each month,

this information is as close as possible to the value of each

day.

3 Temporal Expressions

In this section we first briefly discuss how temporal val-

ues related to different temporal granularities can be com-

bined, then we present the syntax and semantics of temporal

expressions. Temporal expressions are the mean by which

the set of granules, that is, the temporal element, with re-

spect to which a query is evaluated, are implicitly specified.

Combining temporal values expressed with respect to

different granularities raises several interesting issues [10].

The intuitive meaning of an operator op applied to two tem-

poral values, v
1

and v
2

, is the “point to point”, that is, “gran-

ule to granule” in our context, evaluation of the operation

denoted by op. For each comparison operator op we intro-

duce a temporal variation (op
T

), whose intuitive meaning

is to answer the following question: “when the relationship

denoted by op holds?” These operators are used in temporal

expressions. In case the two values are expressed with re-

spect to different granularities two cases can be devised. If

one granularity is finer than the other, the “coarser” value is

converted to the finer granularity. If the previous condition

is not verified, but the two granularities are in some way

comparable, that is, a granularity K finer than both of them

exists, the two values are converted to K. If none of the pre-

vious conditions is verified an undefined value is returned,

that corresponds to an error detection. For lack of space we

give only some examples of expressions involving temporal

values, we refer the interested reader to [9, 10] for further

details.

Example 2 Let v

1

= fhi

01=1999

; 100i; hi

02=1999

; 150i;

hi

03=1999

; 300ig and v

2

= fhi

01=1999

; 400i; hi

03=1999

; 50ig

be two values of type temporal

months

(short).

Then: v

1

+ v

2

= fhi

01=1999

; 500i; hi

03=1999

; 350ig,

v

1

> v

2

= fhi

01=1999

; falsei; hi

03=1999

; trueig. In

addition, v

1

>

T

v

2

= [i

03=1999

; i

03=1999

℄

months.

Consider now v

1

= fhi

12=1999

; 5i; hi

01=2000

; 7ig 2

[[temporal

months

(short) ℄℄ and v

2

=

fhi

01=12=1999

; 5i; hi

02=12=1999

; 10i; hi

03=12=1999

; 8i;

hi

04=12=1999

; 1i; :::g 2 [[temporal

days

(short) ℄℄ . Then,

v

1

<

T

v

2

= v

days

1

<

T

v

2

= fdays(i) j v

1

(i) < v

2

(i) =

trueg = fdays(i

02=12=1999

); days(i

03=12=1999

); :::g.
�

3.1 Syntax

Temporal expressions evaluated on an object return the

temporal element in which a boolean condition is satisfied

on the object. They are somehow the temporal counterpart

of boolean expressions. Indeed, they answers the query:

“when” is a certain condition verified? Temporal expres-

sions are built by combining simple expressions which de-

note values in V . Their syntax in BNF form is reported in

Figure 2. Terminal symbol nat represents a natural num-

ber, granularity represents a granularity in G, value

represents an element of V , count denotes the usual ag-

gregate function, att name, rel name represent an at-

tribute, relationship name, respectively.

Example 3 The following are examples of temporal ex-

pressions which can be evaluated with respect to an object

of class Course of the database schema of Figure 1:

room=
T

107 and T assist.room=
T

207,

first(count(P stud)>
T

25 or T prof.salary>
T

70),

years(T assist.salary>
T

55k).
�

3.2 Semantics

The semantics of temporal expressions is built on top of

the semantics of simple expressions (cf. Figure 2). A simple

expression, evaluated on an object, denotes a value. It can

be a value itself, the navigation through a path, the count

operator applied to an expression, and an operation applied

to two expressions. For instance, T prof.salary, is a

simple expression which evaluated on an object of class

Course returns a value storing the history of the salaries

of the professors who have ever taught that course.

In case of paths, which represent the navigation through

objects, the evaluation of a path expression p
1

:p

2

: � � � :p

n

is

the value of property p
n

starting to navigate from the given

object through properties p
1

; : : : ; p

n�1

. Each property p

i

,

htemp expri ::= hsimple expri htemp comp opi hsimple expri j htemp expri hbool opi htemp expri j

hsingle opi (htemp expri) j hslice opi (htemp expri, nat) j granularity(htemp expri)

hsimple expri ::= value j hpathi j count(hsimpl expri) j hsimpl expri hopi hsimpl expri

hpathi ::= att name j rel name j hpathi.att name j hpathi.rel name

htemp comp opi ::= >
T

j<

T

j>=

T

j<=

T

j=

T

j ! =

T

j 2

T

j 62

T

hopi ::= + j - j * j / j [j \ j n hbool opi ::= and j or

hsingle opi ::= notjfirstjlastjfirst instantjlast instant hslice opi ::= slicejinst slice

Figure 2. Syntax of the language for expressing temporal expressions

i 2 [1; n℄ can be expressed with respect to a different gran-

ularity. Consider indeed a path p

1

:p

2

: � � � :p

n

such that p
1

is a property of the class of the object on which the ex-

pression is evaluated whose domain is temporal

G

1

(�

1

) and

p

i

, for i 2 [2; n℄, is a property of class �
i

whose domain

is temporal

G

i

(�

i

). The value denoted by this expression

is a temporal value of granularity glb(G

1

; : : : ; G

n

) whose

value in each granule is obtained by evaluating the value

of the path at that granule. If glb(G
1

; : : : ; G

n

) in G does

not exist, then the value of such expression is not defined.

For instance, the path supervisor.teaches.P stud,

evaluated on an object of class Student of Figure 1 whose

supervisor has ever taught an introductory course, denotes a

temporal value of type temporal

days

(set < Student >).

In addition, in agreement with OQL, we impose the re-

striction that path navigation across multivalued properties

is not allowed. In what follows, given an object o, �(o) de-

notes the value of its properties. If p is a property of o, then

�(o):p denotes the value of p for o. The semantics of simple

expressions is formally defined as follows.

Definition 4 (Semantics of Simple Expressions). Let OI

be a set of objects, V be the set of values, and Exp

simple

be the set of well-formed simple expressions (cf. Figure 2).

Then the semantics of simple expressions is defined through

function: E
simple

: Exp

simple

! (OI ! V), such that,

given an expression e 2 Exp

simple

and an object o 2 OI :

� if e = v, v 2 V , then E
simple

[[v ℄℄ o = v;

� if e = p

1

:p

2

: � � � :p

n

, with p
1

; p

2

; : : : ; p

n

properties,

E

simple

[[p

1

:p

2

: � � � :p

n

℄℄ o =

fhi; (E

simple

[[p

2

: � � � :p

n

℄℄ �(o):p

K

1

(i))

K

(i)i j K =

glb(G

1

; : : : ; G

n

); i 2 ISg if the type of property p

1

for o is temporal

G

1

(

1

) 2 T T and the type of prop-

erty p
j

in

j�1

is temporal

G

j

(

j

) 2 T T , j 2 [2; n℄g;

� if e =
ount(e

0

), e

0

2 Exp

simple

, then

E

simple

[[
ount(e) ℄℄ o =j E

simple

[[e ℄℄ o j;

� if e = e

1

op e

2

, then E

simple

[[e

1

op e

2

℄℄ o =

(E

simple

[[e

1

℄℄ o) op (E

simple

[[e

2

℄℄ o).
�

Intuitively, the resulting value of a temporal expression is

the temporal element in which all the conditions expressed

by each expression composing it are verified.

Example 4 The evaluation of the first temporal expression

of Example 3, room =

T

107 and T assist.room

=

T

207, on an object of class I Course, returns a set of

temporal intervals of granularity months, obtained as the

intersection of the intervals in which the two conditions are

satisfied.
�

The semantics of a temporal expression is formalized by

means of function E
temp

: Exp

temp

! (OI ! T ELEM)

defined in Figure 3. In Figure 3 symbols e, e
1

, and e

2

de-

note temporal expressions, o denotes an object, n denotes a

natural number, and G denotes a granularity.

In case of temporal expressions involving the negation

operator not, the semantics is defined using the set oper-

ation complement. The universe with respect to which the

complement is computed is the set of granules in which ex-

pression e is defined on object o.

Note that the only meaningful use of the conversion op-

eratorG (cf. Definition 3) in temporal expressions is for up-

ward conversion, that is, to convert to a coarser granularity,

to obtain a granule-valued expression, that is, an expression

whose evaluation returns a single granule.

According to the notion of conversion of temporal inter-

val and temporal element we adopt, the semantics of upward

conversion we consider, converts expressions that denote a

superset of the set of instants associated to a set of gran-

ules of the coarser granularity. Actually, upward conversion

could be extended to arbitrary intervals, with different al-

ternative semantics. For lack of space we do not deal with

alternative semantics, we refer the interested reader to [9] .

4 Temporal Path Expressions

Usually, internal nodes of a path expression must pro-

duce a single object to which subsequent accesses are ap-

plied. In a multi-granularity context, to ensure that property,

E

bool

[[e

1

op

T

e

2

℄℄ o = (E

simple

[[e

1

℄℄ o) op

T

(E

simple

[[e

2

℄℄ o) E

temp

[[e

1

ope

2

℄℄ o =

�

E

temp

[[e

1

℄℄ o [E

temp

[[e

2

℄℄ o if op= or

E

temp

[[e

1

℄℄ o \ E

temp

[[e

2

℄℄ o if op= and

E

temp

[[op(e) ℄℄ o =

8

>

>

>

>

>

<

>

>

>

>

>

:

(E

temp

[[e ℄℄ o)

 if op= not

�(E

temp

[[e ℄℄ o; 1) if op= first

�(E

temp

[[e ℄℄ o;m) if op= last and m =j E

temp

[[e ℄℄ o j;

[i; i℄

G if op = first instant and i = min(�(E

temp

[[e ℄℄ o; 1))

[i; i℄

G if op = last instant, i = max(�(E

temp

[[e ℄℄ o;m)), and

if m =j E

temp

[[e ℄℄ j

E

temp

[[op(e; n) ℄℄ o =

8

<

:

�(E

temp

[[e ℄℄ o; n) if op= slice

[i; i℄

G if op = instant slice

and i is the ith granule in E
temp

[[e ℄℄ o

E

temp

[[G(e) ℄℄ o = G(E

temp

[[e ℄℄ o)

Figure 3. Semantics of temporal expressions

whichever the granularities of the accessed property and of

the granule are, we rely on the use of coercion functions.

Coercion functions allow one to convert values from a given

granularity into values of a coarser granularity in a mean-

ingful way. Thus, a coercion functionC is a partial function

such that C : [[temporal

H

(�) ℄℄ ! [[temporal

G

(�) ℄℄ ,

where H � G. In [11] coercion functions were associated

with property definitions allowing one to specialize prop-

erty domains in a type with a granularity finer than the one

in the property domain to be redefined.

Example 5 In Figure 1, the type temporal

years

(short)

of attribute room of class Course is special-

ized in class T Course sub class of Course in

temporal

months

(short). Since months � years,

coercion function all is associated with it in order to

correctly perform object accesses. Coercion function all,

for each granule in the coarser granularity, returns the value

which always appears in the included granules of the finer

one if this value exists, the null value otherwise.
�

Coercion functions have been inspired by semantic as-

sumptions [3], a way of deriving implicit information from

explicitly stored (relational) data. In our approach we

adopt somehow the use of semantic assumption to temporal

object-oriented databases.

In what follows, we first discuss why we need coercion

functions and then how they are used. Consider an access to

a property p of an object o at a granule lG
i

. Let the property

domain be temporal

H

(�). If G � H , we can access the

value of property p at granule lG
i

, and this access uniquely

denotes a value. We denote such access as �(o):pG(i). If,

by contrast, H � G, property p may assume different val-

ues in the granule identified by l

G

i

. For instance, consider

the class E Course of Figure 1. If we access property lab

of an E Course object specifying a year, since that prop-

erty may vary every month, the property may take different

values over the year, corresponding to the fact that the lab-

oratory has been changed during that year. In this case we

make use of coercion functions to obtain a single value start-

ing from those taken by property p in the granule lG
i

. Thus,

here we allow one to attach such functions to property ac-

cesses, and not only to property definitions. If a coercion

function is specified for a property access this function is

used to evaluate the expression, even if a different coercion

function has been specified in the schema for the accessed

property. If, by contrast, no coercion function is specified

for a property access, the one associated with the property

is employed.

Wherever they are specified, coercion functions are em-

ployed to convert a temporal value to a coarser granularity.

In [11] we have devised different kinds of coercion func-

tions. Here, we only refer to selective and user-defined co-

ercion functions. Let fi
1

; : : : ; i

k

g be the set of indexes such

that H(i

p

) � G(j) and let v 2 [[temporal

H

(�) ℄℄ such that

v(i

p

) = v

p

, p 2 [1; k℄. Then, intuitively, in case of selec-

tive coercion functions, one of the possible values among

fv

1

; : : : ; v

k

g is chosen for a generic granule j. Function

main of Example 5 is a selective coercion function. In case

of user-defined coercion functions, the method to convert

from one granularity to the other is completely specified by

the user.

4.1 Syntax

The syntax of temporal path expressions is presented in

Figure 4. Terminal symbol var denotes a variable, gran-

ule denotes a granule label, and temp element denotes

a temporal element. In addition, the rules of the non-

terminal symbols htemp expri and hpathi can be found

in Figure 4.

Example 6 Consider the schema of Figure 1 and let

X be a variable of type Course. X.T assist

1st sem 1999 denotes the assistant of

the course during the first semester of 1999;

X.T prof#first instant(count(P stud)>
T

25).

hpath expri ::= hsimple path expri j hterm path expri

hsimple path expri ::= var j var.hpathi j hsimple path expri # granule j hsimple path expri #
h
oer
 fun
i

granule j

hsimple path expri # htemp expri j hsimple path expri #
h
oer
 fun
i

htemp expri

hcoerc funci ::= hselective coerc funci j huser-def coerc funci

hselective coerc funci ::= first j last j Proj(index) j main j all

huser-def coerc funci ::= meth inv

hterm path expri ::= hsimple path expri # temp element j hsimple path expri #
h
oer
 fun
i

temp element

Figure 4. Syntax of the language for expressing temporal path expressions

business hours # (count(supervises)>
T

5)

denotes the business hours, in time intervals in which

he/she supervised more than five students, of the professor

who was teaching the course in the first instant in which it

was attended by more than 25 students.
�

4.2 Semantics

The semantics of a path expression can only be speci-

fied starting from an object-assignment and depends on the

temporal specifications it contains.

Consider first simple path expressions, for which a gran-

ule l

G

i

is specified (either implicitly or explicitly), that is,

path expressions of the form e:p # l

G

i

with a coercion func-

tion optionally specified (e:p #C l

G

i

). Let o be an object to

which e evaluates, and let the granularity of property p for

object o be H . Moreover, given a temporal property p and

a granule identified by lG
i

, p(i) denotes the value of p in the

granule lG
i

. Let K � G, pK(i) denotes the value of prop-

erty p with respect to granularity K, such value is equal to

p(j) where K(i) � G(j). The value denoted by the path

expression with respect to an object o is:

� �(o):p(i), if G = H (the eventually specified coercion

function is irrelevant);

� �(o):p

G

(i), if G � H (the eventually specified coer-

cion function is irrelevant);

� C(�(o):p)(i) if H � G, where C is the coercion func-

tion specified for the access, if any, and the one asso-

ciated with property p in the class to which o belongs

otherwise;10

� C(�(o):p)

K

(j) if H and G are not comparable under

� but they have a least upper bound K, G(i) � K(j),

and C is the coercion function determined as in the

case above. In this case, C is used to coerce values of

10If H � G and no coercion function is specified for the access, nor

attached to property p in the class to which o belongs, the value of the

expression is undefined.

property p to granularity K and the value of the prop-

erty in the K-granule containing G(i) is accessed.

Example 7 Let o
i

; o

e

; o

t

be objects of classes I Course,

E Course, T Course of Figure 1, respectively.

o

t

:T assist # 1st sem 1999 denotes the value

stored in that granule; o

i

:T assist # 1st sem 1999

denotes the value stored in the year-granule 1999;

o

e

:T assist # 1st sem 1999 denotes the value obtained

by applying coercion function main to the values stored

in the months-granules of the first semester of 1999;

o

e

:T assist #

first

1st sem 1999 denotes the value

obtained by applying coercion function first to the

values stored for the relationship in the months-granules

corresponding to the first semester of 1999.
�

Consider now the terminal path expression e:p # �

G,

where �

G is a temporal element (either explicitly or im-

plicitly denoted). The value associated with this expression

is the restriction of the temporal value �(o):p to the time

instants in �

G. Different interpretations of this path ex-

pression are however possible if the value and the temporal

element are expressed at different granularities. Let o be the

object to which e evaluates and the granularity of property

p for o be H . Different cases can be distinguished:

� G = H : the expression denotes a temporal value of

granularity G which is the restriction of �(o):p to �

G

(cf. Definition 5);

� G � H : the expression denotes a temporal value of

granularity G which is �(o):p seen as a value of gran-

ularity G and restricted to �

G;

� H � G: two alternative interpretations are possible:

– no coercion function is specified for the access:

the expression denotes a temporal value of gran-

ularityH obtained by restricting �(o):p to theH-

granules in �

G;

– a coercion function C is specified for the access:

the expression denotes a temporal value of gran-

ularity G obtaining by restricting C(�(o):p) to

�

G;

� G and H are not comparable: two alternative interpre-

tations are possible:

– no coercion function is specified for the access:

the expression denotes a temporal value of gran-

ularity J = glb(G;H) which is the restriction of

�(o):p (seen as a value of granularity J) to the

J-granules in �

G;

– a coercion function C is specified for the ac-

cess: the expression denotes a temporal value

of granularity G obtaining by restricting the co-

ercion C(�(o):p) of �(o):p at granularity K =

lub(G;H), to �

G.

Example 8 Consider again Figure 1 and let o

a

be

the identifier of a Researcher object for which

ount(assists)>

T

2 denotes a set of intervals at gran-

ularity months.

� o

a

:room # (
ount(assists)>

T

2) denotes a tempo-

ral value of type temporal

months

(short) obtained by

restricting the value of the room attribute to those

months in which the researcher was the assistant of

more than two courses;

� o

a

:room # [01=01=99; 18=01=99℄ denotes a temporal

value of type temporal

days

(short) obtained by re-

stricting the value of the room attribute to those days

belonging to specified temporal interval;

� o

a

:room #

first

[1999; 2000℄ denotes a temporal value

of type temporal

years

(string) obtained by restrict-

ing the value of the room attribute corced to the years

granularity by means of the first function, to years

1999 and 2000;

� o

a

:supervised lab # (
ount(assists)>

T

2) de-

notes a temporal value of type temporal

days

(string)

obtained by restricting the value of the super-

vised lab attribute to those days belonging to

months in which the researcher was the assistant of

more than two courses.
�

The restriction of a temporal value to a temporal element

is formalized by the following definition.

Definition 5 (Temporal Value Restriction). Let v 2

[[temporal

H

(�) ℄℄ be a temporal value and let �

G

2

T ELEM

G

be a temporal element. The restriction of v to

�

G, denoted as v
j�

G , is defined as follows:

� if G � H , v

j�

G 2 [[temporal

G

(�) ℄℄ such that

v

j�

G(i) = v(j) if G(i) 2 �

G and G(i) � H(j),

undefined otherwise;

� if H � G, v

j�

G 2 [[temporal

H

(�) ℄℄ such that

v

j�

G(i) = v(i) if 9G(j) 2 �

G s.t. H(i) � G(j),

undefined otherwise.
�

We are now ready to define the semantics of a path ex-

pression. Let Exp
path

be the set of well-formed path ex-

pressions (cf. Figure 4), # : V ar ! OI

11 be an object-

assignment, and � be the set of all object-assignments. The

semantics of a path expression e under object-assignment #

is defined through the following semantic function E
path

:

Exp

path

! (� ! V) which is formally specified in Fig-

ure 5. In Figure 5 we use function
 to denote the granu-

larity of a temporal value, that is, if v 2 [[temporal

G

(�) ℄℄ ,

(v) = G. In addition, X denotes a variable, p denotes

an object property, lG
i

denotes a granule label, te denotes

a temporal expression, C denotes a coercion function, and

�

G denotes a temporal element.

5 Concluding Remarks

In this paper we have investigated navigation through ob-

jects whose property values are expressed with respect to

several granularities. This can be considered as the core

of a language which extends OQL path expressions [4] to

query data expressed with respect to different granulari-

ties. The proposed navigation has been implemented on top

of ObjectStore Pse as part of a prototype we have devel-

oped. Such prototype implements T ODMG, the temporal

extension to ODMG supporting multiple temporal granular-

ity data we have proposed [9]. Several different semantics

could be devised in evaluating the presented expressions.

We leave for future work the introduction in the language

of syntactic constructs according to which different seman-

tics could be supported. Finally, our future works include

the definition of a full temporal query language and opti-

mization.

References

[1] E. Bertino, E. Ferrari, and G. Guerrini. Navigational Access

in a Temporal Object Model. IEEE TKDE, 10(4), 1998.

[2] E. Bertino, E. Ferrari, G. Guerrini, and I. Merlo. An

ODMG Compliant Temporal Object Model Supporting Mul-

tiple Granularity Management. Technical Report DISI-TR-

00-08, DISI, Università di Genova, 2000.

[3] C. Bettini, S. Jajodia, and X.S. Wang. Time Granulari-

ties in Databases, Data Mining, and Temporal Reasoning.

Springer-Verlag, 2000.

11
V ar is a set of object denoting variables.

E

path

[[X ℄℄# = #(X) E

path

[[X:p ℄℄# = �(E

path

[[X ℄℄#):p =

E

path

[[X:path:p ℄℄# = �(E

path

[[X:path ℄℄#):p

E

path

[[e:p # l

G

i

℄℄# =

8

>

>

>

<

>

>

>

:

�(E

path

[[e ℄℄#):p(i) if G =
(�(E

path

[[e ℄℄#):p) or

(G �
(�(E

path

[[e ℄℄#):p)

E

path

[[e:p #

C

l

G

i

℄℄# if
(�(E
path

[[e ℄℄#):p) � G

and C is the coerc. func. associated with p

undefined otherwise

E

path

[[e:p #

C

l

G

i

℄℄# =

8

>

>

<

>

>

:

E

path

[[e:p # l

G

i

℄℄# if G �
(�(E

path

[[e ℄℄#):p)

C(�(E

path

[[e ℄℄#):p)

K

(j) otherwise,

K = lub(G;
(�(E

path

[[e ℄℄#):p)), and

G(i) � K(j)

E

path

[[e:p # te ℄℄# = E

path

[[e:p # (E

temp

[[te ℄℄#(X)) ℄℄#

E

path

[[e:p #

C

te ℄℄# = E

path

[[e:p #

C

(E

temp

[[te ℄℄#(X)) ℄℄#

E

path

[[e:p # �

G

℄℄# =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�(E

path

[[e ℄℄#):p

j�

G

if
(�(E
path

[[e ℄℄#):p) � G

�(E

path

[[e ℄℄#):p

j�

0G

if G �
(�(E

path

[[e ℄℄#):p)

�

0G

= fG(i) j G(i) 2 �

G

�(E

path

[[e ℄℄#):p

jJ(�

G

)

otherwise (i.e.,
(�(E
path

[[e ℄℄#):p) and G

are not comparable under �),

J = glb(
(�(E

path

[[e ℄℄#):p)); G)

E

path

[[e:p #

C

�

G

℄℄# =

8

<

:

E

path

[[e:p #

C

�

G

℄℄# if G �
(�(E

path

[[e ℄℄#):p)

C(�(E

path

[[e ℄℄#):p)

jK(�

G

)

otherwise,

K = lub(G;
(�(E

path

[[e ℄℄#):p))

Figure 5. Semantics of temporal path expressions

[4] R. Cattel, D. Barry, M. Berler, J. Eastman, D. Jordan, C. Rus-

sel, O. Schadow, T. Stanienda, and F. Velez. The Object

Database Standard: ODMG 3.0. Morgan-Kaufmann, 1999.

[5] C. Combi, G. Cucchi, and F. Pinciroli. Applying Object-

Oriented Technologies in Modeling and Querying Tempo-

rally Oriented Clinical Databases Dealing with Temporal

Granularity and Indeterminacy. IEEE Transactions on In-

formation Technology in Biomedicine, 1(2), 1997.

[6] S.K. Gadia. A homogeneous relational model and query lan-

guages for temporal databases. ACM TODS, 13(4), 1988.

[7] S.K. Gadia and S.S. Nair. Temporal Databases: A Pre-

lude to Parametric Data. In A. Tansel, J. Clifford, S. Ga-

dia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Tempo-

ral Databases: Theory, Design, and Implementation. Ben-

jamin/Cummings, 1993.

[8] C.S. Jensen and C.E. Dyreson. The Consensus Glossary of

Temporal Database Concepts. In Temporal Databases: Re-

search and Practice, number 1399 in LNCS, 1998.

[9] I. Merlo. Extending the ODMG Object Model with Temporal

and Active Capabilities. PhD thesis, Università di Genova,

February 2001.

[10] I. Merlo, E. Bertino, E. Ferrari, S. Gadia, and G. Guerrini.

Querying Multiple Temporal Granularity Data. In S. Good-

win and A. Trudel, editors, IEEE Proc. TIME 2000.

[11] I. Merlo, E. Bertino, E. Ferrari, and G. Guerrini. A Temporal

Object-Oriented Data Model with Multiple Granularities. In

C. Dixon and M. Fischer, editors, IEEE Proc. TIME 1999.

[12] M. T. Ozsu, R. Peters, D. Szafron, B. Irani, A. Lipka, and

A. Munoz. TIGUKAT: A Uniform Behavioral Objectbase

Management System. VLDB Journal, 4(3), 1995.

[13] E. Rose and A. Segev. TOODM - A Temporal Object-

Oriented Data Model with Temporal Constraints. In Proc.

Tenth Int’l Conf. on the Entity-Relationship Approach, 1991.

[14] Y. Shoham. Temporal Logics in AI: Semantical and Onto-

logical Considerations. Artificial Intelligence, 33(1), 1987.

[15] G. Wuu and U. Dayal. A Uniform Model for Temporal and

Versioned Object-Oriented Databases. In A. Tansel, J. Clif-

ford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, ed-

itors, Temporal Databases: Theory, Design, and Implemen-

tation. Benjamin/Cummings, 1993.

