
A Linguistic Framework for Querying Dimensional Data

Elisa Bertino1 Tsz S. Cheng2 Shashi K. Gadia3 Giovanna Guerrini4

1DSI - Università di Milano

Milano - Italy

bertino�dsi.unimi.it

2IBM Global E-Business

Solution Center, Dallas - Texas

sheng�us.ibm.om

3Department of Computer Science

Iowa State University - Iowa

gadia�s.iastate.edu

4DISI - Università di Genova

Genova - Italy

guerrini�disi.unige.it

Abstract

This paper deals with dimensional data. Examples of

dimensions are space and time. Thus, temporal, spatial,

spatiotemporal values are examples of dimensional data.

We define the notion of dimensional object, extending an

object-oriented ODMG-like type system to include dimen-

sional types. We then address the problem of querying di-

mensional objects. Linguistic constructs are introduced that

allow objects with different dimensions to be mixed in the

same phrases. This allows the user to formulate both asso-

ciative and navigational accesses seamlessly without hav-

ing to worry about the dimensions of the various data ele-

ments involved.

1 Introduction

The notion of parametric or dimensional data has been

proposed in [12] to model in a uniform way ordinary, tem-

poral, spatial, spatiotemporal data. That notion has also

been applied to multilevel security [10] and to model mul-

tiple beliefs. However, a formal treatment of dimensional

data has not been given. The basic notion beyond dimen-

sional data is that of dimensional element, that is, a finite

union of points in the dimensional space; attribute values

are functions with dimensional elements as domains. The

parametric data model is based on dimensional relations,

such that all values in the attributes of a tuple have the same

dimensional domain and a key is declared for each rela-

tion, in such a way that no key attribute value of a tuple

can change from one point in the dimensional space to an-

other. An algebra for the parametric model has been de-

fined, with the main goal of minimizing the “user complex-

ity” of queries. A uniform handling of dimensional data is

achieved through dimension alignment, that automatically

allows lower dimensional data and queries to be used in

higher dimensional contexts.

Object database systems (both the pure object-oriented

systems and the object-relational ones) are currently replac-

ing conventional relational database systems. The notion of

dimensional data is orthogonal to the specific data model

considered. In this paper, we present a rigorous treatment

of dimensional objects, that is suitable for object-oriented

databases. This formal treatment entails addressing several

interesting issues. First, parametric non-1NF data need to

be considered. In the object model attribute values can be

of any type of the (complex) type system, including, for

instance, set and tuple constructors. A dimensional object

thus requires the introduction, in the type system, of the no-

tion of dimensional type, in order to type in a uniform way

dimensional and non-dimensional data. We consider a sim-

ple object model, that is a simplified version of the ODMG

standard data model [3].

We then investigate how dimensional objects can be used

together in queries. We do not develop a full query lan-

guage, rather we focus on how objects with different dimen-

sions can be mixed together in the same queries. Specifi-

cally, we consider both associative queries (based on classi-

cal comparison operators) and navigational queries (based

on the notion of path expression). The basic goal of the

constructs we define is to allow a user to query dimensional

objects without having to worry about the dimensions of the

various data elements involved in the query. The constructs

we introduce in this paper will form the basis for query lan-

guages for dimensional object collections.

Note that, though several different temporal object-

oriented data models ([13, 14]) and query languages (e.g.

1

[7, 8, 15]) have been proposed, the emphasis of this paper

is on a uniform handling of several dimensions, and on di-

mension alignment at the data and language levels.

The remainder of the paper is structured as follows. Sec-

tion 2 introduces the notion of dimensional object, whereas

Section 3 is devoted to queries on dimensional objects. Sec-

tion 4 concludes the work and discusses some issues that are

currently under investigation.

2 Dimensional Object Model

In this section we briefly introduce the dimensional type

system which constitutes the basis of the dimensional object

model.

2.1 Dimensional Elements

We assume a set S = fD

1

; : : : ;D

n

g of dimensions and

an underlying universal dimensional domain P as the carte-

sian productD
1

�D

2

� : : :�D

n

of these dimensions. The

user can view it as a set of points in the dimensional space.

Let DN denote the set of names of dimensions in S.

We postulate that certain subsets of P , called dimen-

sional elements, are of interest to users, and they are

closed under union ([), intersection (\), difference (n), and

complementation (). Dimensional values will be modeled

as functions from dimensional elements, such that if a

function maps a dimensional element � to a given value v

this means that it assigns v to every dimensional point in

�. We are indeed interested in modeling functions with sets

of dimensional points as domains. The general principles

for identifying legitimate domains for dimensional values

are: (i) a real world object should correspond to a single

object in the database; (ii) whatever domains users consider

important, should be admitted as dimensional element; (iii)

the domains should allow easy and flexible queries. Ap-

plying these principles to temporal databases means: (i) an

interval is not enough, but a finite union of intervals is; (ii)

users like to compute the state of an object at a point, thus

a point should be a temporal element; (iii) queries will re-

quire dimensional elements to be closed under set-theoretic

operations (since conjunction corresponds to intersec-

tion, disjunction to union, negation to complementation).

Therefore, temporal elements are finite unions of intervals.

Note that, by this definition, an instant is also a temporal

element. Thus, if the dimensional domain is the set of time

instants TIME = [0; now℄ = f0; 1; 2; : : : ; nowg, then the

dimensional elements are temporal elements [9]. For in-

stance, [11; 40℄ [[57; now℄ is a temporal element. In spatial

databases users will like to use certain elementary spatial

domains. Then dimensional spatial elements will be finite

unions of those domains. Thus, if the dimensional domain

is the spatial domain SPACE, then the dimensional ele-

ments are spatial elements [5]. In a two-dimensional space,

a dimensional element will be a union of cross-products of

one-dimensional elements. Specifically, if the dimensional

domain is TIME � SPACE we get spatiotempo-

ral elements. An example of spatiotemporal element is

([11; 40℄� reg

1

) [([57; 62℄� reg

2

) [([75; now℄� reg

2

).

Let DEL denote the set of dimensional elements of

the dimensional space P . Moreover, given a set D =

fD

1

; : : : ; D

k

g, k � n, of dimension names, denoting a

subset fD
i

1

; : : : ;D

i

k

g of S, let DEL
D

1

;:::;D

k

denote the

set of dimensional elements with dimensionsD
i

1

; : : : ;D

i

k

.

Given a dimensional element � 2 DEL, and a set D of

dimension names, let �
D

� denote the projection of � on

dimensions in D. As a particular case, given a dimension

name D, �
D

� denotes the component of � corresponding

to dimension D.

Note that, whenever a dimension is missing in a dimen-

sional element, the whole corresponding dimensional do-

main is assumed. In our model, indeed, each value is di-

mensional; if a value has no explicitly specified element for

a given dimension it refers to every point of that dimension.

Thus, given a dimensional element � 2 DEL

D

1

;:::;D

k

, and

a set D0

� DN , its completion to D0 is a dimensional ele-

ment ��D
0

2 DEL

D

0 , such that, 8D0

j

2 D

0:

�

D

0

j

�� =

�

�

D

0

j

� if D0

j

2 fD

1

; : : : ; D

k

g

D

i

j

otherwise

As a particular case, the completion to the whole set of

dimensions, namely, ��

DN

2 DEL is simply denoted as

��. For instance, if fTIME; SPACEg � S, D =

fTIME; SPACEg;

1
� 2 DEL

SPACE

= reg

1

[reg

2

, then

��

D

= (reg

1

� [0; now℄) [(reg

2

� [0; now℄).

2.2 Types

The types of the dimensional object model are ob-

tained as an extension of the usual set of types of an

object model. We postulate the existence of a set of

predefined basic literal types BLT (containing the types

integer; real; boolean; harater and string). Moreover,

class names are also basic types, referred to as object types.

We consider a set CI of class names. Finally, we consider

structured types obtained by applying the set and record

constructors to existing types. The following definition in-

troduces non-dimensional types.

Definition 1 (Non-dimensional Types). The set of non-

dimensional literal typesNLT is recursively defined as fol-

lows:

1We denote the name of dimensions in typewriter font.

2

� the predefined basic literal types are literal types

(BLT �NLT);

� if T is a literal type or an object type then sethT i is a

non-dimensional literal type;

� if a
1

; :::; a

n

2 AN are distinct labels and T
1

; :::T

n

are

literal or object types, then struthT
1

a

1

; :::; T

n

a

n

i is

a non-dimensional literal type.

The set of non-dimensional types NT is defined as the

union of literal types NLT and object types OT = CI.

This set of types is extended with a collection of dimen-

sional types. Dimensional types are introduced to type in

a uniform way dimensional (e.g., temporal) variables, and

non-dimensional variables, that is, variables with which no

dimension is associated.

Definition 2 (Dimensional Types). Let T 2 NT be a non-

dimensional type, D
1

; : : : ; D

k

2 DN be dimension names,

then T [D
1

; : : : ; D

k

℄ is a dimensional type.

Example 1 If we consider TIME and SPACE as dimen-

sions, and integer and Person as non-dimensional types,

integer[TIME℄; Person[SPACE℄;

sethPersoni[TIME; SPACE℄

are examples of dimensional types.

Intuitively, instances of type T [D℄ are partial functions

from dimensional elements of dimension D to instances of

type T , as discussed in the following section. Note that

dimensional types cannot be nested; note moreover that the

set of legal values for T [D
1

℄[D

2

℄ would correspond to the

set of legal values of T [D
1

; D

2

℄.

Let DT be the set of dimensional types as defined by

Definition 2. In our model, dimensional types can be used

in the definition of set and struct literal types, as stated by

the following definition.

Definition 3 (Literal Types). The set of literal types LT is

recursively defined as follows:

� non-dimensional literal types are literal types

(NLT �LT);

� if T is a literal type, or an object type, or a dimensional

type then sethT i is a literal type;

� if a
1

; :::; a

n

2 AN are distinct labels and T

1

; :::T

n

are literal, object, or dimensional types, then

struthT

1

a

1

; :::; T

n

a

n

i is a literal type.

The set of types T of our dimensional model is defined

as the union of literal types LT , object types OT , and di-

mensional types DT .

2.3 Values

We now introduce the set of legal values of our model.

Oids in OI are handled as values. Thus, an object identi-

fier i is a value of an object type in OT . The set of objects

instances of a class depends on the point of the dimensional

space we refer to. Thus, to define the extension, that is,

the set of legal values for each type, we introduce a func-

tion �: CI � DEL ! 2OI , assigning an extent to each

class, for each dimensional element �. For each 2 CI,

for each � 2 DEL, �(; �) is the set of the identifiers

of objects that, at the dimensional points in �, belong to

class . By contrast, the set of instances of a literal type

does not vary over dimensions (e.g, the set of instances of

integer is always Z, the set of instances of boolean is

always ftrue; falseg). Given a literal type T , let ext(T)

denote this invariant set of instances.

Definition 4 (Non-dimensional Type Legal Values). Let

T 2 LT [OT be a non-dimensional type and � 2 DEL be

a dimensional element, then fjT jg

�

denotes the extension

(i.e., the set of legal values) of type T at �:

fjT jg

�

=

8

>

>

>

<

>

>

>

:

ext(T) if T 2 BLT

�(T; �) if T 2 OT

2

fj T

0

jg

� if T = sethT

0

i

f(a

1

: v

1

; : : : ; a

n

: v

n

) j if T = strut

v

i

2 fj T

i

jg

�

; 1 � i � ng hT

1

a

1

; : : : ; T

n

a

n

i

The set of instances of a dimensional type T [D℄, for-

mally specified by the following definition, is the set of par-

tial functions from dimensional elements of D to instances

of type T . Note that this set does not vary over the dimen-

sional space, that is, for a dimensional type T [D
1

; : : : ; D

k

℄,

fjT [D

1

; : : : ; D

k

℄ jg

�

is the same for all � 2 DEL

D

1

;:::;D

k

,

thus it will be denoted simply as fjT [D
1

; : : : ; D

k

℄ jg .

Definition 5 (Dimensional Type Legal Values). Let

T [D

1

; : : : ; D

k

℄ 2 DT be a dimensional type, then

fjT [D

1

; : : : ; D

k

℄ jg denotes the set of legal values of type

T [D

1

; : : : ; D

k

℄:

fjT [D

1

; : : : ; D

k

℄ jg =

ff j f : DEL

D

1

;:::;D

k

!

S

�2DEL

fjT jg

�

such that, for each � 2 DEL
D

1

;:::;D

k

;

if f(�) is defined then f(�) 2 fjT jg

��

g

Note that we will denote a function in this set as a set of

pairs fh�
1

; v

1

i, : : :, h�
n

; v

n

ig, where v

1

; : : : ; v

n

are legal

values for type T , and �
1

; : : : ; �

n

are dimensional elements

in DEL
D

1

;:::;D

k

such that the function assumes value v
i

for

dimensional element �
i

, i = 1; : : : ; n.

Given a dimensional value v, operator [[v ℄℄ denotes

its dimensional domain. Thus, the dimensional domain

of the spatial value fhreg

1

; wheati; hreg

2

; ornig,

3

denoted as [[fhreg

1

; wheati; hreg

2

; ornig ℄℄ is

reg

1

[reg

2

, whereas the domain of the temporal

value fh[60; 65℄; 20Ki; h[66; 80℄; 35Kig is [60; 80℄. More-

over, given a dimensional value v, let Æ(v) � DN be

the set of dimensions of value v. That is, if v is a value

of type T [D

1

; : : : ; D

k

℄, Æ(v) = fD

1

; : : : ; D

k

g. We also

define the notion of restriction of a dimensional value to a

dimensional element, formalized as follows.

Definition 6 (Restriction of a Dimensional Value to a Di-

mensional Element). Given a dimensional value v, of

type T [D

1

; : : : ; D

k

℄, and a dimensional element � 2

DEL

D

0

1

;:::;D

0

h

, such that fD0

1

; : : : ; D

0

h

g � fD

1

; : : : ; D

k

g,

the restriction of v to �, denoted as v
j

�

, is a dimensional

value of type T [D

1

; : : : ; D

k

℄ such that [[v

j

�

℄℄ = [[v ℄℄ \

��

D

1

;:::;D

k

; and 8� 2 [[v ℄℄ \ ��

D

1

;:::;D

k

: v

j

�

(�) = v(�).

For instance, given the spatiotemporal value

v = fh(reg

1

� [45; 57℄) [(reg

1

� [80; now℄); wheati;

hreg

2

� [40; now℄; ornig, and the temporal element

� = [50; 60℄ [[80; 90℄

v

j

�

= f h(reg

1

� [50; 57℄) [(reg

1

� [80; 90℄); wheati;

h(reg

2

� [50; 60℄)[(reg

2

� [80; 90℄); ornig.

2.4 Classes and Objects

Here we will focus only on the signature of a class, that

contains all the information for the use of the class and its

instances, and, specifically, on the information about the at-

tributes contained in the signature of a class. Each attribute

is characterized by its name and its type. Consider the fol-

lowing example. Note that, because of the homogeneity as-

sumption, all the attributes of a class must have the same di-

mensions, thus, it is most convenient to specify the dimen-

sion in the class declaration. Thus, only non-dimensional

types are used in the definition of attribute domains, and a

dimensional attribute a of type T [D
1

; : : : ; D

k

℄ is specified

by means of the pair (a; T), once the corresponding class

has been declared as dimensional in D
1

; : : : ; D

k

.

Example 2 In what follows we sketch the definition of some

dimensional classes, inspired from [12]. Non-relevant at-

tributes are omitted and substituted by dots. These classes

refer to: persons (the information about persons are time

dependent); lands (owned by persons, with a soil with a cer-

tain texture and a specific crop grown, these information are

space dependent); monitors (referring to the concentration

of chemicals in up-gradient and down-gradient wells, these

information are both time and space dependent). Moreover,

there are non-dimensional classes related to soil textures,

crops, and chemicals (with the environmentally acceptable

range of chemicals in the soil).

lass Person (dimension TIME) f

attribute string name;

attribute strut h string street,

string ityi address;

attribute integer inome;

attribute sethPersoni hildren;

attribute sethLandi owns; g

lass Land (dimension SPACE) f

attribute Person owner;

attribute integer ares;

attribute Texture texture;

attribute Crop rop;

attribute string tillage; g

lass Texture f

attribute string desription;

...; g

lass Crop f

attribute string name;

...; g

lass Monitor (dimension TIME,SPACE) f

attribute Chemial hemial;

attribute short U/G well;

attribute short D/G well; g

lass Chemial f

attribute string name;

attribute integer max level;

attribute integer min level; g

A dimensional object is an object whose value (state) is a

dimensional value. Thus, we adopt a rather standard notion

of object, formalized as follows.

Definition 7 (Object). An object o is a triple (i; v;),

where

i 2 OI is the oid of o;

v 2 V is a struct value of the form: (a
1

: v

1

; : : : ; a

n

: v

n

),

where a
1

; : : : ; a

n

2AN are the names of the attributes

of o, and v
1

; : : : ; v

n

2 V are their values;

 is the most specific class to which o belongs

such that [[v

1

℄℄ = : : : = [[v

n

℄℄ , that is, all the object at-

tributes have the same dimensional domain2 (homogeneity

assumption [9]), and v is in accordance with the attribute

specification given in class .

The dimensional domain of an object o, denoted [[o ℄℄ , is

simply the domain of any of its attributes.

2Note that, however, the attributes can assume different values in dif-

ferent dimensional elements of that domain, thus our model is based on

attribute timestamping rather than on object timestamping.

4

Example 3 The following are examples of objects, refer-

ring to the classes of Example 23.

i =m

1

v = (hemial : f h([0; now℄ � p

1

) [([0; now℄ � p

2

);

1

ig,

U=G well : f h[0; now℄ � p

1

; 1:0i; h[0; 5℄ � p

2

; 1:5i;

h[6; now℄ � p

2

; 3:5ig

D=G well : f h[0; now℄ � p

1

; 0:9i; h[0; 10℄ � p

2

; 1:4i;

h[11; now℄ � p

2

; 2:9ig)

 = Monitor

i =m

2

v = (hemial : f h([0; now℄ � p

1

);

2

ig,

U=G well : f h[0; 9℄ � p

1

; 10i; h[10; now℄ � p

1

; 12:2ig

D=G well : f h[0; now℄ � p

1

; 9:2ig)

 = Monitor

i =

1

v = (name :

0

atrazine

0 , max level : 3:0, min level : 0:05)

 = Chemial

i =

2

v = (name :

0

simazine

0 , max level : 35:0 min level : 0:05)

 = Chemial

i =p

1

v = (name : f h[5; 45℄;

0

john

0

ig,

address : f h[5; 30℄; (street :

0

12th

0

; ity :

0

ames

0

)i;

h[31; 45℄; (street :

0

4th

0

;

ity :

0

iowaity

0

)ig

inome : f h[5; 20℄; 1000i; h[21; 40℄; 1500i;

h[41; 45℄; 2000ig

hildren : f h[5; 45℄; fgig

owns : f h[5; 40℄; fgi; h[41; 45℄; fl

1

gig)

 = Person

i =l

1

v = (owner : f hreg

1

[reg

2

[reg

3

; p

1

ig,

ares : f hreg

1

; 40i; hreg

2

; 80i; hreg

3

; 30ig

:::)

 = Land

As in any object-oriented data model, classes are related

by a user-defined ISA hierarchy, that induces a subtype hier-

archy on types of our type system. For a subclass both sub-

stitutability (the subclass must have all the attributes of the

superclass, and optionally some additional ones) and extent

inclusion (the instances of the subclass are also instances

of the superclass) are required. Due to space limitations,

we do not discuss issues related to inheritance in this pa-

per. Moreover, in this preliminary work, we do not consider

attribute refinement, nor any subtype relationship holding

among dimensional types with different dimensions.

3Only the attributes of object l
1

that are used in the following are re-

ported, for the sake of conciseness.

3 Querying Dimensional Objects

In this section we address the problem of querying di-

mensional objects. The query language we refer to com-

bines features typical of associative query languages, fea-

tures typical of navigational query languages proposed for

object models, and features typical of dimensional data.

The definition of a full query language is beyond the scope

of this paper, in what follows we introduce and illustrate

through examples the most interesting/peculiar aspects of

dimensional data handling.

Before introducing the various kinds of expressions that

can be used to assemble a query, let us first briefly discuss

how dimensional values can be used together, combined,

and compared in expressions. Classical operators extends to

a dimensional context in a straightforward way: they sim-

ply operate pointwise. For instance, given two expressions

e

1

and e
2

of type integer[TIME℄ their sum e

1

+e

2

has type

integer[TIME℄ and the corresponding value is a function s

such that, if v
1

and v

2

are the values denoted by e

1

and e

2

,

respectively, 8� 2 DEL

TIME

: s(�) = v

1

(�) + v

2

(�). Sim-

ilarly, their comparison e

1

> e

2

has type boolean[TIME℄

and the corresponding value is a function b such that 8� 2

DEL

TIME

: b(�) = v

1

(�) > v

2

(�).

Example 4 Referring to the database schema of Ex-

ample 2, given variables p, q of type Person and

variable m of type Monitor, p:inome+ q:inome

is an expression of type integer[TIME℄, whereas

m:U=G well� m:D=G well > 1 is an expression of type

boolean[TIME,SPACE℄. Referring to the objects of Exam-

ple 3, this expression evaluated on m

1

returns [6; 10℄� p

2

,

whereas evaluated on m

2

it returns [10; now℄� p

1

.

The only further point to consider is what happens when

values with different dimensions are used together. Fol-

lowing [12] we take the approach that, when a dimen-

sion is missing in a value, the whole dimension domain

is intended. Thus, two expressions e

1

and e

2

of types

T

1

[D

0

1

; : : : ; D

0

k

℄ and T

2

[D

00

1

; : : : ; D

00

h

℄, 0 � h; k � n, can

be combined through operator op if operator op can be ap-

plied to non-dimensional values of types T
1

; T

2

, producing

a result of type T . The resulting expression will have type

T [D

1

; : : : ; D

w

℄ with fD

1

; : : : ; D

w

g = fD

0

1

; : : : ; D

0

k

g [

fD

00

1

; : : : ; D

00

h

g. e

1

are e

2

are extended to dimensions

D

1

; : : : ; D

w

simply associating with them the whole di-

mension domain for missing dimensions, as already dis-

cussed.

Example 5 Referring to the database schema of Exam-

ple 2, given variable l of type Land and variable p of

type Person, l:ares > p:inome is an expression of type

boolean[SPACE; TIME℄.

5

We do not detail the set of operators we consider to com-

bine dimensional values; however, they surely include clas-

sical arithmetic, set, and comparison operators.

3.1 Dimensional Expressions

A dimensional expression is an expression that evaluates

in a dimensional element. Dimensional expressions derive

from temporal expressions proposed in [12] and are defined

as follows.

Definition 8 (Dimensional Expressions). The setDE of di-

mensional expressions is defined as follows:

� a constant dimensional element in
S

1�k�n

DEL

D

1

;:::;D

k

is a dimensional expression;

� if e is an expression of a dimensional type

T [D

1

; : : : ; D

k

℄, [[e ℄℄ is a dimensional expression, de-

noting a dimensional element � 2 DEL

D

1

;:::;D

k

cor-

responding to the points in which e is defined;

� if e is an expression of a boolean dimensional

type boolean[D

1

; : : : ; D

k

℄, [[e ℄℄

b is a dimensional

expression, denoting a dimensional element � 2

DEL

D

1

;:::;D

k

corresponding to the points in which e

has value true;

� if �; � 2 DE are dimensional expressions, then so are

� [�, � \ �, � n �, �.

We extend function Æ introduced in Section 2.1 to work

on dimensional expressions, thus, given a dimensional ex-

pression e, Æ(e) � DN returns its dimensions. We remark

that whenever two dimensional expressions e
1

, e
2

with dif-

ferent dimensions are used together in a more complex ex-

pression, they are aligned to a common set of dimensions

D = Æ(e

1

) [Æ(e

2

), by considering the whole dimensional

domain for the missing dimensions.

Example 6 Referring to the database schema

of Example 2, given variable p of type

Person and variable m of type Monitor,

[[p:inome ℄℄ \ [[m:U=G well� m:D=G well > 1 ℄℄

b is

a dimensional expression denoting a dimensional el-

ement with dimensions TIME,SPACE, corresponding

to the spatiotemporal points in which the value of the

U/G well of m is greater then the value of its D/G well

plus one, and in whose time components the income

of p is defined. Note that Æ([[p:inome ℄℄) = TIME,

whereas Æ([[m:U=G well� m:D=G well > 1 ℄℄

b

) =

fTIME; SPACEg. Referring to objects m

2

and p

1

of

Example 3 the dimensional expression above denotes

([5; 45℄� SPACE) \ ([10; now℄� p

1

) = [10; 45℄� p

1

.

3.2 Boolean Expressions

A boolean expression is an expression that evaluates in

a non-dimensional boolean value. Boolean expressions are

defined as follows.

Definition 9 (Boolean Expressions). The set BE of

boolean expressions is defined as follows:

� if e is an expression of the boolean non-dimensional

type boolean, e is a boolean expression;

� if �; � are dimensional expressions in DE , such that

Æ(�) = Æ(�), � � � is a boolean expression;

� if e is an expression of a boolean dimensional type

boolean[D

1

; : : : ; D

k

℄, eS is a boolean expression, that

is used as a shorthand for [[e ℄℄

b

6= ;;

4

� if e is an expression of a boolean dimensional type

boolean[D

1

; : : : ; D

k

℄, eA is a boolean expression, that

is used as a shorthand for [[e ℄℄

b

= [[e ℄℄ ;5

� if f; g 2 BE are boolean expressions, then so are f ^g,

f _ g, :f .

Example 7 Referring to the database schema of Example

2, given variable of type Chemial and variable m of

type Monitor, the following are examples of boolean ex-

pressions:

� :max level > :min level;

� (m:U=G well� m:D=G well > 1)

A;

� (m:U=G well� m:D=G well > 1)

S;

� [[m:U=G well > 1:0 ℄℄

b

� [[m:D=G well > 1:5 ℄℄

b.

3.3 Path Expressions

A path expression is an expression that allows one to

navigate through aggregation hierarchies on objects. Navi-

gational access to temporal objects has been investigated in

OOTempSQL [4], and revisited in [2]. The notion of path

expression we propose here, besides being generalized to

a multidimensional context, actually combines and extends

the two notions. In particular, we distinguish among sim-

ple path expressions (inspired by [4]), that navigate through

the object aggregation hierarchy, aligning the dimensions

of the traversed objects; qualified path expressions (inspired

by [2]), in which the portion of the dimensional space one is

interested in navigating can be restricted; and single-valued

4
S is a shorthand for sometimes, since it corresponds to the fact that the

boolean expression is sometimes true.
5
A is a shorthand for always, since it corresponds to the fact that the

boolean expression is always true.

6

qualified path expression (also inspired by [2]) in which the

dimensional value obtained through the navigation can be

instantiated to a single dimensional point, thus obtaining a

non-dimensional value. The two latter notions also allow

one to specify a boolean condition to hold for the path ex-

pression to be defined, this is another extension with respect

to the notions of path expressions previously proposed.

A path expression evaluates in a value v, that can be used

in other expressions provided that type correctness is en-

sured. Path expressions are defined as follows.

Definition 10 (Path Expressions). If e is an expres-

sion of type T [D

1

; : : : ; D

k

℄, T 2 OT , 1 � k �

n, a is an attribute of T with type dom(a; T) =

T

0

[D

0

1

; : : : ; D

0

h

℄, 1 � h � n, e:a is a path expression.

This expression, whose type is T

0

[D

00

1

; : : : ; D

00

w

℄, where

fD

00

1

; : : : ; D

00

w

g = fD

0

1

; : : : ; D

0

h

g [fD

1

; : : : ; D

k

g, de-

notes the value such that 8� 2 DEL

D

00

1

;:::;D

00

w

: e:a(�) =

e(�

D

1

;:::;D

k

�):a(�

D

0

1

;:::;D

0

h

�).

Example 8 Consider an expression e of type

C[TIME℄, such that in class C attribute a has type

integer[SPACE,TIME℄. Suppose that e denotes the value

fh[10; 20℄;

1

i; h[21; now℄;

2

ig and suppose moreover that

1

:a = f hreg

1

� [0; 15℄; 10i; hreg

1

� [15; 40℄; 20i;

hreg

2

� [15; 35℄; 50ig

2

:a = f hreg

1

� [15; 40℄; 30i; hreg

1

� [41; now℄; 40i;

hreg

2

� [40; 50℄; 70ig

then e.a denotes the following value of type

integer[SPACE,TIME℄:

f hreg

1

� [10; 15℄; 10i; hreg

1

� [15; 20℄; 20i;

hreg

2

� [15; 20℄; 50i; hreg

1

� [21; 40℄; 30i;

hreg

1

� [41; now℄; 40i; hreg

2

� [40; 50℄; 70ig

Often, however, a user is not interested in navigating

through the whole set of values taken by a dimensional

value over the dimensional space, rather it is interested to

restrict them to a specific dimensional element. This can

be achieved through the notion of qualified path expression,

formalized as follows.

Definition 11 (Qualified Path Expressions). If e:a is a

path expression of type T [D
1

; : : : ; D

k

℄, f is a boolean ex-

pression, � is a dimensional expression such that Æ(�) �

fD

1

; : : : ; D

k

g, e:a # (f; �) is a qualified path expres-

sion. This expression, whose type is T [D0

1

; : : : ; D

0

h

℄, where

fD

0

1

; : : : ; D

0

h

g = Æ(�) n fD

1

; : : : ; D

k

g, denotes the value

denoted by e:a
j

�

if f holds, it is undefined otherwise.

When the boolean expression f is missing in a quali-

fied path expression, the boolean constant true is implicitly

assumed, and when the dimensional expression � is miss-

ing, the null dimensional element in DEL
;

is implicitly as-

sumed.

Example 9 Referring to the database schema of Example

2, given variable l of type Land and variable m of type

Monitor, the following are examples of qualified path ex-

pressions:

� m:D=G well # ((m:hemial:name=

0

atrazine

0

)

A

;

[[m:D=U well > m:hemial:max level ℄℄

b

),

whose type is short[TIME,SPACE℄, and that, eval-

uated on object m
1

of Example 3, denotes the value

fh[6; 10℄� p

2

; 1:4i; h[11; now℄� p

2

; 2:9ig;

� l:owner # ([[l:ares > 50 ℄℄

b

):inome, whose type

is integer[SPACE,TIME℄, and that, evaluated on ob-

ject l
1

of Example 3, denotes the value

fhreg

2

� [5; 20℄; 1000i; hreg

2

� [21; 40℄; 1500i;

hreg

2

� [41; 45℄; 2000ig.

Finally, when a path expression evaluates to a value v

and is qualified by a dimensional element �, such that v

assigns a single value to �, the user can be interested in

simply obtaining that (non-dimensional) value. This can be

achieved through the notion of single-valued qualified path

expression, formalized as follows.

Definition 12 (Single-Valued Qualified Path Expressions).

If e:a is a path expression of type T [D

1

; : : : ; D

k

℄, f is a

boolean expression, � is a dimensional expression such that

Æ(�) = fD

1

; : : : ; D

k

g, e:a ## (f; �) is a single-valued

qualified path expression. This expression, whose type is

T , denotes the value denoted by e:a(�) if f holds and e:a

assumes a single value over �, it is undefined otherwise.

Example 10 Referring to the database schema of Example

2, given variable p of type Person the following is an ex-

ample of single-valued qualified path expression:

p:address ## ((ount(p:owns) 6= 0)

S

;

[[p:inome � 2000 ℄℄

b

):ity

whose type is string, and that, evaluated on object p
1

of

Example 3, denotes the value 0iowaity0.

4 Conclusions

In this paper we have proposed a notion of dimensional

object, and we have investigated some issues at the basis for

queries on dimensional objects. This work can be regarded

as an important stepping stone for a dimensional object data

model and query language.

In extending the proposed framework to model and

query collections several issues will have to be revisited. We

will investigate the implications of removing the homogene-

ity assumption, that is, the requirement that all the attributes

7

of an object must have the same dimensional domain. Re-

moving this assumption will require to deal with null val-

ues. Moreover, we assume that if a dimension is missing

in a value, then that value is intended to be valid for all the

elements in that dimension. Thus, there is no equivalent of

the notion of static attribute nor of that of static object with

the meaning in [1]: each value and each object are dimen-

sional; if no dimension is specified, the whole dimensional

space is assumed. Note that static values in a temporal con-

text naturally refer to now; for other dimensions, however,

it could not be possible to identify such a default point to

associate with (static) data for which the dimension is miss-

ing. Finally, we are also interested in extending our model

to a multigranularity context, in which granularities are seen

as dimensions, and dimension alignment as a way to reveal

granularities.

For what concerns the query language, the basic idea is

that of extending with the essential constructs of the para-

metric relational algebra at the basis of TempSQL [12] (i.e.

dimension alignment and restructuring) the object query

language of the ODMG standard, OQL [3], and to inves-

tigate how that language can be employed to query dimen-

sional data. One of the main consequences of an OQL-like

query language is that the result of a query is a set of either

values or objects of the appropriate type; in particular, the

result of a projection can be a set of record values (tuples).

Since, however, algebraic optimization is crucial also for

object databases, a dimensional object algebra will be de-

fined. This algebra is obtained as a dimensional extension

of object algebras that are the formalisms under OQL [6].

“Classical” algebraic identities will be revisited, to obtain

a set of identities still holding between dimensional object

algebra expressions, and to clarify how the new constructs

dealing with data dimensionality interact with existing ones

[11].

References

[1] E. Bertino, E. Ferrari, and G. Guerrini. T Chimera:

A Temporal Object-Oriented Data Model. Theory and

Practice of Object Systems, 3(2):103–125, 1997.

[2] E. Bertino, E. Ferrari, and G. Guerrini. Naviga-

tional Accesses in a Temporal Object Model. IEEE

Transactions on Knowledge and Data Engineering,

10(4):656–665, 1998.

[3] R. Cattel et al. The Object Database Standard:

ODMG 3.0. Morgan-Kaufmann, 1999.

[4] T. S. Cheng and S. K. Gadia. An Object-Oriented

Model for Temporal Databases. In Proc. of the

Int’l Workshop on an Infrastructure for Temporal

Databases, 1993.

[5] T. S. Cheng and S. K. Gadia. A Pattern Matching Lan-

guage for Spatio-Temporal Databases. In Proc. of the

Third Int’l Conf. on Information and Knowledge Man-

agement, pages 288–295, 1994.

[6] S. Cluet and C. Delobel. A General Framework for

the Optimization of Object-Oriented Queries. In Proc.

of the ACM SIGMOD Int’l Conf. on Management of

Data, pages 383–392, 1992.

[7] C. Combi and G. Cucchi. GCH-OSQL: A Temporally-

Oriented Object-Oriented Query Language Based on

a Three-Valued Logic. In Proc. of the Fourth Int’l

Workshop on Temporal Representation and Reason-

ing, pages 119–127, 1997.

[8] L. Fegaras and R. Elmasri. A Temporal Object Query

Language. In Proc. of the Fifth Int’l Workshop on

Temporal Representation and Reasoning, pages 51–

59, 1998.

[9] S. K. Gadia. A Homogeneous Relational Model

and Query Language for Temporal Databases. ACM

Transactions on Database Systems, 13(4):418–448,

1988.

[10] S. K. Gadia. Applicability of Temporal Data Mod-

els to Query Multilevel Security Databases: A Case

Study. In Temporal Databases: Research and Prac-

tice, LNCS 1399, pages 238–256, 1997.

[11] S.K. Gadia and S.S. Nair. Algebraic Identities and

Query Optimization in a Parametric Model for Re-

lational Temporal Databases. IEEE Transactions on

Knowledge and Data Engineering, 10(5):793–807,

1998.

[12] S.K. Gadia and S.S. Nair. Temporal Databases: A Pre-

lude to Parametric Data. In A. Tansel et al., editors,

Temporal Databases: Theory, Design, and Implemen-

tation, pages 28–66. Benjamin/Cummings, 1993.

[13] I. Goralwalla, M. Özsu, and D. Szafron. An Object-

Oriented Framework for Temporal Data Models. In

Temporal Databases: Research and Practice, LNCS

1399, pages 1–35, 1997.

[14] R. T. Snodgrass. Temporal Object-Oriented

Databases: A Critical Comparison. In W. Kim,

editor, Modern Database Systems: The Object

Model, Interoperability and Beyond, pages 386–408.

Addison-Wesley/ACM Press, 1995.

[15] S. Su, S. Hyun, and H. Chen. Temporal Associa-

tion Algebra: A Mathematical Foundation for Pro-

cessing Object-Oriented Temporal Databases. IEEE

Transactions on Knowledge and Data Engineering,

10(3):389–408, 1998.

8

