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Università degli Studi di Milano - Italy

fbertino,ferrarieg@dsi.unimi.it

3Department of Computer Science

Iowa State University - Iowa

gadia@cs.iastate.edu

Abstract

Managing and querying information with varying tem-

poral granularities is an important problem in databases.

Although there is a substantial body of work on temporal

granularities for the relational data model [11], a com-

prehensive framework is lacking for the object-oriented

paradigm. To the best of our knowledge, a formal treatment

of temporal queries with multiple granularities has not been

considered in the literature. In this paper we make a step

in this direction. We formally introduce the syntax and se-

mantics of expressions involving data with multiple granu-

larities, comparison between data with different granulari-

ties, and conversion of data from one granularity to another.

We believe that this is an important step towards the devel-

opment of an object-oriented query language that supports

multiple granularities.

Keywords: temporal granularities, temporal object

databases, temporal object query languages.

1. Introduction

Managing and relating temporal information at different

time units is an important issue in many applications and

research areas, among them temporal databases. The intro-

duction of different temporal granularities [3], to store the

historical information in a temporal database has a twofold

advantage. The use of the appropriate granularities to rep-

resent data can save storage and allows one to establish rel-

evant integrity constraints so that data cannot be changed

more often than the specified granularity.

Some interesting issues arise in extending a database

model to store and query data with multiple granularities.

The introduction of temporal granularities in both the re-

lational and the object-oriented database model, has been

investigated in previous works [8, 9, 10, 11, 12]. TSQL-2

[11], a standard for the relational model, provides limited

facilities for querying temporal data with varying granular-

ities. To the best of our knowledge, no extensive work has

been done to formally define how temporal data with differ-

ent granularities can be queried in the object-oriented con-

text. The proposals for temporal object-oriented query lan-

guages [5, 6] do not support facilities for querying data with

different granularities. In particular a consolidated standard

definition does not exist for the object-oriented data model,

even though a preliminary definition can be found in our

previous work [8]. Recently, we have developed an exten-

sion of [8] which has been submitted for publication [1].

In this paper we make a step towards the formal treat-

ment of granularities for object-oriented databases. We de-

fine the syntax and the semantics of expressions involving

data with multiple temporal granularities. The temporal

model we refer to throughout the paper is an extension of an

ODMG-compliant object-oriented model [4]. This model

has been presented in our previous work [8]. The expres-

sions we introduce in this paper are an extension of OQL

[4] binary expressions. They can be regarded as a step for-

ward the definition of an object-oriented query language for

querying multiple temporal granularity data. The semantics

of comparisons and conversions of data with different gran-

ularities is formally defined in the paper. In order to answer

complex queries, the expressions include several types of

comparison operators. For instance, it is possible to answer

if a given inequality/equality always or sometimes holds, as

well as to determine when it holds. Finally, several differ-

ent types of conversions for data from one granularity to

another are considered.

The remainder of this paper is organized as follows. Sec-



tion 2 introduces some preliminary concepts. In Section

3 the syntax of expressions is presented. The correspond-

ing semantics is formally defined in Section 4. Section 5

presents an advanced form of expressions, in which conver-

sions among granularities are associated with operators, in

order to increase the expressive power of the expressions.

Section 6 shows how the defined expressions can be used in

OQL queries. Finally, Section 7 concludes the paper.

2. Preliminaries

In this section we introduce, as a background, some pre-

liminary concepts on temporal granularities and on the set

of types and values of the expressions of our language.

Those notions are mainly taken from two previous papers

[3, 8].

2.1. Multiple Granularities

Issues concerning temporal granularities are a recent re-

search topic in the temporal database area. One of the

best known work dealing with temporal granularities is the

glossary of time granularity concepts [3]. In the glossary

all the main concepts concerning temporal granularities are

formally defined without referring to any particular data

model. To be as general as possible we refer to those defi-

nitions.

As suggested in the glossary, one of the first notion to be

fixed in a temporal context is the time domain, that is, the

set of primitive temporal entities used to define and interpret

time-related concepts. In our context the time domain is

the pair (IN,�), where IN is the set of natural numbers and

represents the set of time instants, and � is the order on IN.

Temporal granularities are formally defined as follows.

Definition 1 (Granularity)[3]. Let IS be an index set, that

is, a set of positive integers, and 2

IN be the power set of the

time domain. A granularityG is a mapping from IS to 2

IN

such that both the following conditions hold:

(1) if i < j and G(i) and G(j) are non-empty, then each

element of G(i) is less than all elements of G(j);

(2) if i < k < j and G(i) and G(j) are non-empty, then

G(k) is non-empty.
2

Intuitively a granularity defines a countable set of gran-

ules, each granule G(i) is identified by an integer. The first

condition in Definition 1 states that granules in a granular-

ity do not overlap and that their index order is the same as

their time domain order. The second condition states that

the subset of the index set that maps to non-empty subsets

of the time domain is contiguous. Figure 1 graphically il-

lustrates those concepts.

The usual collections days, months, weeks and years

are granularities. For readability, we use a “textual rep-

resentation” for each non-empty granule, termed as la-

bel, which is more descriptive than the granule index.

For example, throughout the paper, days are in the form

mm=dd=yyyy, months are in the form mm=yyyy and so

on.

A finer than relationship can be defined among temporal

granularities, with the following meaning.

Definition 2 (Finer Than Relationship)[3]. A granularity

G is said to be finer than a granularity H, denoted G � H,

if for each index i, there exists an index j such that G(i) �

H(j).
2

For example, days is a granularity finer than months

(days � months). In the following the finer than relation-

ship will be used to define comparison operators between

values at different granularities. Note that the finer than re-

lationship establishes a partial order on a set of granularities

G.

Finally, we introduce the notion of temporal element

with respect to a granularity. The notion of temporal ele-

ment is formally introduced in [7]. A temporal element is

a finite union of intervals. Intuitively, every subset of the

set of granules associated with a granularity G is a tempo-

ral element. Thus, in what follows, given a granularity G,

a temporal element T
G

with respect to such granularity is

defined as T
G

= fG(i) j i 2 I; I � ISg.

2.2. Temporal Types and Values

In this section, temporal types related to different gran-

ularities and the notion of set of values of a given type are

formally defined according to the set of temporal types. In

what follows we do not discuss the set of object types, set of

literal types, and so on, of our type system, because they are

not relevant in the present context. We refer the interested

reader to [8, 1] for a detailed description of the reference

model.

In [8, 1] object types can be defined through classes

and temporal information is associated with attributes. We

consider a classical notion of class [2] where, in order to

store temporal information, the type of an attribute can be

temporal

G

(t). Thus, in what follows the terms class and

object type are used as synonyms.

We assume that a set ST of types is given. Such set

includes object and literal types.1 For each type t 2 ST

and granularity G 2 G, a corresponding temporal type,

temporal

G

(t), is defined. Intuitively, instances of type

temporal

G

(t) are partial functions from granules of G to

instances of type t.

1Example of types belonging to ST are integer, person, and so on.
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Figure 1. Graphical representation of granularities

Definition 3 (Temporal Types)[8]. Let t2 ST be a type

and G 2 G be a temporal granularity, then temporal

G

(t) is

the temporal type corresponding to type t and granularity

G. 2

Note that, according to the previous definition, tem-

poral types cannot be nested. That is, if t2 ST

is a type and G and H 2 G are two granularities,

temporal

G

(temporal

H

(t)) is not a legal type of our

model.

Example 1 Let integer and person be two types in

ST , and let years and months be two granular-

ities in G, then examples of temporal types are

temporal

years

(integer) and temporal

months

(person).3

Temporal types, defined with respect to a given granular-

ity, are particularly meaningful in the context of databases.

If an attribute a of an object o has type temporal

G

(t), then

such attribute cannot vary more than once for each gran-

ule of G. Therefore, given a granule G(i), the value of the

attribute is the same for each instant t 2 G(i).

In the following, the whole set of the types provided by

our model is denoted as T . T is an extension of the set of

given types ST , with temporal types. Each type t2 ST

still belongs to T , that is, ST � T . T is partitioned into

three disjoint sets, that is, T = T T [OT T [LT T , where

T T is the set of temporal types, OT T is the set of object

types, and LT T is the set of literal types.

In what follows, we define the set of legal values sup-

ported by our model. Let OID be the set of possible object

identifiers. We define a function � : OT T � IN ! 2

OID,

that, given an object type t and a time instant t, returns the

set of identifiers of objects belonging to type t at time t. In

what follows, given a literal type t, dom(t) denotes the set

of values of that type. We define the set of legal values of

each type t 2 T by using three functions, namely Eval,

Eval

G

and T Eval, formally defined as follows.

Definition 4 (Legal Values of a Non-Temporal Type with

Respect to the Time Domain)[8]. Let t 2 T n T T be a non-

temporal type and t 2 IN be a time instant, then Eval(t; t)

denotes the extension of type t at time t:

Eval(t; t) =

�

dom(t) if t 2 LT T

�(t; t) if t 2 OT T

2

Note that, according to the previous definition, only ob-

ject types have extents which depend on time. Intuitively,

the set of values of a literal type does not change over time

since no literal value can be explicitly created or deleted,

whereas objects belonging to object types are dynamically

created and deleted, thus an object type extent depends on

the considered instant.

When dealing with temporal granularities, function

Eval is generalized to a granularity G through the follow-

ing definition.

Definition 5 (Legal Values of a Non-Temporal Type with

Respect to a Granule)[8]. Let t 2 T n T T be a non-

temporal type, G be a granularity and i 2 IS be an in-

dex, then Eval
G

(t; i) denotes the extension of type t with

respect to the granule identified by i:

Eval

G

(t; i) =

T

t2G(i)

Eval(t; t)



whereG(i) is the set of time instants corresponding to gran-

ule i with respect to granularity G.
2

Example 2 Let department be an object type such that

Eval

years

(department, 1997)2 = fd

1

,d
2

, d

3

g. Then,

for each instant belonging to 1997, d

1

,d
2

, and d

3

must exist. Formally, Eval
years

(department, 1997) =
T

t2I

Eval(department, t), where I denotes the set of in-

stants corresponding to 1997, years(1997) = I � IN. The

idea is that if a department exists only during a portion of

a year, it does not belong to the extent of the object type

department of that year.
3

We are now ready to define the set of legal values for

temporal types with respect to a given time instant t 2 IN.

Intuitively, a legal value of a temporal type temporal

G

(t)

is a partial function from granules of G to legal values of

type t.

Definition 6 (Temporal Type Legal Values)[8]. Let

temporal

G

(t) 2 T T be a temporal type and t 2 IN be

a time instant, then T Eval(temporal

G

(t); t) denotes the

set of legal values of type temporal

G

(t) at instant t:

T Eval(temporal

G

(t); t) =

ff jf =

�

f �G such that �

f : 2

IN
!

S

i2IS

Eval

G

(t; i)

is a partial function such that for each i 2 IS

if �

f(G(i)) is defined then �

f(G(i)) 2 Eval

G

(t; i)g

2

Note that the set of legal values of a temporal type does

not depend on the particular time instant. Formally we can

state that:
S

t2IN T Eval(temporal

G

(t); t) =

T Eval(temporal

G

(t);

�

t), for each �

t 2 IN

Thus, in the following we will omit the time instant argu-

ment. Since the set of values of a given temporal type does

not depend on time, we can extend function Eval
G

(Defi-

nition 5) to temporal types as follows:

Eval

G

(temporal

H

(t); i) =

T

t2G(i)

T Eval(temporal

H

(t); t) =

T Eval(temporal

H

(t); t)

The following example clarifies the above definitions.

Example 3 Let department be an object type such that:

D =

S

i2IS

Eval

years

(department, i) = fd

1

,d
2

, d
3

, . . . ,

d

n

g. Then, according to Definition 6:

T Eval(temporal

years

(department), t) =

ff jf =

�

f � years such that �

f : 2

IN
! D

is a partial function such that for each

i 2 IS if �

f (years(i)) is defined then
�

f (years(i)) 2 Eval

years

(t, i)g

2For simplicity, the label 1997 is used instead of the index i corre-

sponding to such granule.

Examples of functions, denoted as sets of pairs, in

T Eval(temporal

years

(department), t) are: fh1992;

d

1

i; h1993; d

4

ig and fh1995; d

2

i; h1998; d

2

ig. In those

functions 1992, 1993, and so on, are the labels in the form

yyyy, denoting years.
3

3. Expressions

In this section we present the formal syntax of expres-

sions that can be built in our language. Such expressions

can be used in querying data, similarly to expressions used

in OQL queries.

We restrict ourselves to the expressions that can be

built starting from temporal values involving integers and

booleans. Such expressions are simple, but they allow

one to focus on temporal aspects. The extension to gen-

eral types of expressions, involving for example characters,

can be easily done. Thus, we consider temporal values

whose inner type is integer or boolean, that is, values

belonging to the temporal types temporal

G

(integer) and

temporal

G

(boolean), G 2 G. The BNF grammar of tem-

poral expressions is given in Figure 2. Such expressions are

a generalization of OQL binary expressions involving inte-

gers and booleans [4].

Terminal symbols in Figure 2 have the following

meaning. Symbol var denotes an object-denoting vari-

able. Symbol class name denotes a class name. Sym-

bols int value and bool value denote an element be-

longing to dom(integer) and dom(boolean), respec-

tively. For example, 1 or 138 for int value and true

or false for bool value. Symbols int temp value and

bool temp value denote a temporal value whose inner

type is integer and boolean, respectively. That is,

int temp value represents functions belonging to the fol-

lowing set:

T Eval(temporal

G

(integer)) =

ff jf =

�

f �G such that �

f : 2

IN
! dom(integer)

is a partial function such that for each i 2 IS

if �

f(G(i)) is defined then �

f (G(i)) 2 dom(integer)g.

Similarly, bool temp value represents functions belong-

ing to the set T Eval(temporal

G

(boolean)). Finally,

square brackets denote optional symbols, whereas paren-

thesis denote the arbitrary repetition of what is in between.

Let v be a temporal value. Since v is a partial func-

tion, there may exist i 2 IS such that v(G(i)) =?. We

consider such unknown information as null values in OQL.

Thus, they are considered as zero in integer expressions and

three-values logics is adopted for boolean expressions.

In Figure 2 the syntax of path expressions denoting ob-

ject navigation is defined. We consider path expressions

where attribute domains are correct with respect to type

checking. That is, let o be an object of class c and let o:a
1

:a

2



hexpi ::= hint expi j hbool expi j htemp expi

hint expi ::= int value j int temp value j path exp j hint expi hop inti hint expi

hpath expi ::= var f .attribute name g

hop inti ::= + j - j * j / j mod

hbool expi ::= bool value j bool temp value j path exp j hint expi hop bool inti hint expi j hbool expi hop booli hbool expi

hop bool inti ::= =j! =j<j<=j>j>=j=

A

j! =

A

j<

A

j<=

A

j>

A

j>=

A

j=

S

j! =

S

j<

S

j<=

S

j>

S

j>=

S

hop booli ::= and j or

htemp expi ::= hint expi hop temp inti hint expi

hop temp inti ::= =

T

j! =

T

j<

T

j<=

T

j>

T

j>=

T

Figure 2. BNF grammar of expressions

be a path expression, than the attribute domain of a
1

in c is

an object type, and the attribute domain of a
2

is an inte-

ger, boolean, or temporal type according to the expression

in which o:a

1

:a

2

appears. We do not discuss in detail the

syntax and semantics of path expressions since it is out of

the scope of this work. Besides path expressions, in Figure

2 three different types of expressions can be distinguished:

integer, boolean, and temporal expressions. All of them can

involve temporal values. Integer expressions and boolean

expressions involving “classical” (that is, static) values have

the usual semantics of classical integer and boolean expres-

sions. In addition, we allow temporal values in integer and

boolean expressions. The intuitive meaning of such expres-

sions is the evaluation “point to point”, that is, “instant to

instant” in our context, of the expression. For each boolean

operator op on integers we introduce three operators:

1. the always operator (op
A

), whose intuitive meaning

is to evaluate whether the relationship denoted by op

always holds for the time period in which the two val-

ues are defined;

2. the sometimes operator (op
S

), whose intuitive mean-

ing is to evaluate whether the relationship denoted by

op sometimes holds for the time period in which the

two values are defined;

3. the temporal operator (op
T

), whose intuitive mean-

ing is to answer the following question: “when the

relationship denoted by op holds?”

The first and the second kind of operators are a generaliza-

tion of boolean expressions and the result of their evalua-

tion is always true or false. By contrast, the third class of

operators are the extension to a temporal context of boolean

expressions and the result of their evaluation is a temporal

element, thus, the expressions in which such operators ap-

pear are called temporal expressions. In what follows we

present an example to clarify the previous concepts.

Example 4 Let employee be a class with a tempo-

ral attribute salary of type temporal

months

(integer),

and let o

1

and o

2

be two employee objects rep-

resenting two married persons. Let o

1

.salary=

fh01=1999; 100i; h02=1999;150i; h03=1999;300ig and let

o

2

.salary= fh01=1999; 400i; h03=1999; 50ig. If we are

interested in knowing the family income, that is, the sum of

the two salaries, we have to compute the value of the integer

expression o

1

.salary + o

2

.salary. If we are interested in

knowing which one of the two makes more money for each

month, we have to compute o
1

.salary> o

2

.salary. If we

are interested in knowing if the husband, say o

1

, makes al-

ways more money than the wife, say o
2

, we should compute

o

1

.salary >
A

o

2

.salary.3 Finally, if we are interested in

knowing when o

1

made more money than o

2

we have to

compute o

1

.salary >

T

o

2

.salary. The resulting values

of the presented expressions can be found in Example 5.
3

Some implications can be established among the differ-

ent operators. For instance, if v
1

and v

2

are two tempo-

ral values and v

1

op

A

v

2

evaluates true, then v

1

op

S

v

2

eval-

uates true. In what follows we denote with O the set of

classical comparison operators defined for integers, that is,

O = f=; ! =; <;<=; >;>=g. Sets O
A

, O
S

, and O
T

de-

note the always, sometimes, and temporal counterparts of

the set O. In the following section we will elaborate on

the semantics of expressions formally defining which is the

result of each expression of Example 4, even in the case in

which the values are expressed with respect to different time

granularities.

3We do not report the sometimes operator since it is similar to the al-

ways one.
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[[ v

1

opv

2

]] =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

v

1

op

int

v

2

if v
1

, v
2

2 dom(integer)

fhG(i); v

1

(G(i))op

int

v

2

(G(i))i j i 2 ISg if v
1

, v
2

2 T Eval(temporal

G

(integer))

fhG(i); v

1

(G(i))op

int

v

2

i j i 2 ISg if v
1

2 T Eval(temporal

G

(integer)) and v
2

2 dom(integer )

fhG(i); v

1

op

int

v

2

(G(i))i j i 2 ISg if v
1

2 dom(integer) and v
2

2 T Eval(temporal

G

(integer))

E

int

[[ v

1

opR

G

(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer)),
v

2

2 T Eval(temporal

H

(integer)),
andG � H

E

int

[[R

H

(v

1

)opv

2

]] if v
1

2 T Eval(temporal

G

(integer)),

v

2

2 T Eval(temporal

H

(integer)),
andH � G

E

int

[[R

K

(v

1

)opR

K

(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer)),
v

2

2 T Eval(temporal

H

(integer)),

G� H, H � G, K � G, andK � H

? otherwise

E

int

[[ e

1

ope

2

]] = E

int

[[ e

1

]] op

int

E

int

[[ e

2

]]

E

bool

[[ v

1

op

A

v

2

]] =

�

true if E
bool

[[ v

1

opv

2

]] = v, v 2 T Eval(temporal

G

(boolean)), and 8 i s:t: v(G(i)) 6=? v(G(i)) = true

false if E
bool

[[ v

1

opv

2

]] = v, v 2 T Eval(temporal

G

(boolean)), and 9 i s:t: v(G(i)) = false

? otherwise

E

bool

[[ e

1

op

A

e

2

]] = E

bool

[[ E

int

[[ e

1

]] op

A

E

int

[[ e

2

]] ]]

E

bool

[[ v

1

op

S

v

2

]] =

�

true if E
bool

[[ v

1

opv

2

]] = v, v 2 T Eval(temporal

G

(boolean)), and 9 i s:t: v(G(i)) 6=? v(G(i)) = true

false if E
bool

[[ v

1

opv

2

]] = v, v 2 T Eval(temporal

G

(boolean)), and 8 i s:t: v(G(i)) = false

? otherwise

E

bool

[[ e

1

op

S

e

2

]] = E

bool

[[ E

int

[[ e

1

]] op

S

E

int

[[ e

2

]] ]]

E

temp

[[ v

1

op

T

v

2

]] =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

fG(i) j v

1

(G(i))op

bool

v

2

(G(i)) = trueg if v
1

, v
2

2 T Eval(temporal

G

(integer))

fG(i) j v

1

(G(i))op

bool

v

2

= trueg if v
1

2 T Eval(temporal

G

(integer)) and v
2

2 dom(integer)

fG(i) j v

1

op

bool

v

2

(G(i)) = trueg if v
1

2 dom(integer ) and v
2

2 T Eval(temporal

G

(integer))

E

bool

[[ v

1

op

T

R

G

(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer)),

v

2

2 T Eval(temporal

H

(integer)), andG � H

E

bool

[[R

H

(v

1

)op

T

v

2

]] if v
1

2 T Eval(temporal

G

(integer)),
v

2

2 T Eval(temporal

H

(integer)), andH � G

E

bool

[[R

K

(v

1

)op

T

R

K

(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer)),

v

2

2 T Eval(temporal

H

(integer)),

G� H, H � G,K � G, andK � H

? otherwise
E

temp

[[ e

1

op

T

e

2

]] = E

bool

[[ E

int

[[ e

1

]] op

T

E

int

[[ e

2

]] ]]

Figure 3. Semantics of expressions



4. Semantics of Expressions

In what follows we focus on expressions involving tem-

poral values. The semantics of the ones in which no tem-

poral value appears is obvious and is the one supported by

OQL.

Reasoning on temporal values we have to consider that

they can be defined with respect to different granularities.

One idea could be to force temporal values appearing in an

expression to be expressed with respect to the same granu-

larity. We believe that this is too restrictive. In addition,

it is not coherent with the subtyping relationship among

temporal types we have defined in [8]. In [8] the subtyp-

ing relationship establishes that a type t

2

is a subtype of

a type t

1

, t
1

= temporal

G

(t

0

1

), t
2

=temporal

H

(t

0

2

), if

t

0

2

�

type

t

0

1

and G � H. Usually, in programming lan-

guages, values belonging to different types can appear in

the same expression. In addition, temporal information ex-

pressed with respect to different granularities can be com-

pared in several interesting ways, increasing the expressive

power of our language. Thus, we believe that expressions

involving temporal types related to different granularities

have to be managed properly.

The semantic domain Exp is the set of well-formed ex-

pressions defined according to the BNF grammar of Fig-

ure 2. Such domain can be partitioned into three disjoint

sets, that is, Exp = Exp

int

[ Exp

bool

[ Exp

temp

, where

Exp

int

is the set of integer expressions, Exp
bool

is the set

of boolean expressions, and Exp

temp

is the set of tempo-

ral expressions. In giving the semantics, we reason on each

type of expression separately. We define three semantics

functions, one for each kind of expressions.

� E

int

: Exp

int

! T Eval(temporal

G

(integer)) [

dom(integer) gives the semantics of integer ex-

pressions;

� E

bool

: Exp

bool

! T Eval(temporal

G

(boolean))

[ dom(boolean) gives the semantics of boolean ex-

pressions;

� E

temp

: Exp

temp

! fT

G

j T

G

is a temporal

elementg gives the semantics of temporal expres-

sions.

A formal definition of such functions is reported in Fig-

ure 3. In Figure 3, v
1

and v
2

denote values. They represent

integer, boolean or temporal values according to the expres-

sion that is under evaluation. Similarly, e
1

and e

2

denote

more complex expressions. Symbol op denotes an integer or

boolean operator depending on the semantic function which

is being defined. In addition op
A

, op
S

, and op

T

denote al-

ways, sometimes and temporal operators. The interpretation

of an operator is denoted as opint and opbool for integer and

boolean operators, respectively. R
G

, R
H

, and R

K

denote

different kinds of relaxing functions, which are formally de-

fined in Definition 7.

Note that, in Figure 3, the definition of function E

bool

for expressions of type v

1

op v

2

or e
1

op e

2

op 2 O is

not presented, because it is equal to the one for integer ex-

pressions, where the operation interpretation is opbool and

the type integer is substituted by boolean. We do not

have specified the semantics of values that are expressions

as well, since it is trivial. For instance, the semantic eval-

uation of an integer value is the value itself. Similarly, the

semantics of path expressions is not discussed, since it is

not relevant for the presented work.

The semantic function E

int

for the standard operators

belonging to O computes the evaluation of the expression

“granule per granule”, if the two values are expressed with

respect to the same granularity. If the two values are ex-

pressed with respect to different granularities and the type

of one value is subtype of the type of the other, function E
int

“relaxes”, through a relaxing function R, the value belong-

ing to the most specific type to the type of the less specific

value before the expression is evaluated. A relaxing func-

tion, given a temporal value of type t

2

= temporal

H

(t

0

2

)

“relaxes” the value to a finer granularity G.

Definition 7 (Relaxing Function). Let t

1

=

temporal

G

(t

0

1

) and t

2

= temporal

H

(t

0

2

) be two tempo-

ral types such that, t0
2

�

type

t

0

1

and G � H. A relaxing

functionR is a partial function defined as:

R : T Eval(temporal

H

(t

0

2

)) ! T Eval(temporal

G

(t

0

1

))

that maps values of type temporal

H

(t

0

2

) into values of type

temporal

G

(t

0

1

).
2

Given a temporal granularity H, for each granularity G

such that G � H, a relaxing function exists. In what fol-

lows, we denote each of those relaxing functions as R
G

.

Note that, in Definition 7, t
2

is a subtype of t
1

, according

to the subtype relationship we have defined in [8], thus the

relaxing function can be seen as a casting up operation on

the type of the given value.

In case the two values are expressed with respect to dif-

ferent granularities that are in some way comparable, that

is, there exists a granularity K that is finer than both then

two value granularities, the semantic functions “relax” the

two values to such granularity K.4 If none of the previous

conditions is verified an undefined value is returned, that

corresponds to an error detection.

Function E
bool

on always and sometimes operators com-

putes whether the considered inequality always or some-

times holds. Note that we consider the intersection of the

domains of the functions representing the values, that is,

4If K exists, then it is the greatest lower bound of H and G in G.



when both of them are defined, and we do not force the

domain to be the same. This is in accordance with our in-

tuition. If one asks: have John and his son always lived in

the same house? The answer is yes if they have lived in

the same house after John’s son was born. In this case the

domain of the temporal function corresponding to the value

storing the history of the address of John’s son is strictly in-

cluded in the domain of the temporal function correspond-

ing to the value storing the history of the address of John.

Finally, function E
temp

computes the temporal element in

which the considered inequality holds.

In the following example we give the semantics of the

temporal expressions of Example 4. In addition the seman-

tics of some expressions involving values related to differ-

ent granularities is given.

Example 5 According to the semantic functions defined

in Figure 3, the semantics of the expressions of Ex-

ample 4 is the following. We recall that o

1

.salary=

fh01=1999; 100i; h02=1999;150i; h03=1999; 300ig and

o

2

.salary= fh01=1999; 400i; h03=1999; 50ig.

E

int

[[ o

1

:salary+ o

2

:salary ]] =

fh01=1999; 500i; h02=1999; 150i; h03=1999;350ig

E

bool

[[ o

1

:salary > o

2

:salary ]] =

fh01=1999; falsei; h03=1999; trueig

E

bool

[[ o

1

:salary >

A

o

2

:salary ]] = false

E

bool

[[ o

1

:salary >

S

o

2

:salary ]] = true

E

temp

[[ o

1

:salary >

T

o

2

:salary ]] = f03=1999g

Consider now two classes region and city. Suppose

that class region has a temporal attribute temperature

of type temporal

months

(integer) storing the value of

the temperature5 in that region for each month, accord-

ing to some formula.6 Moreover, suppose that class

city has a temporal attribute temperature of type

temporal

days

(integer) storing the value of the temper-

ature in a city for each day.

Let r and c be two objects belonging to region

and city, respectively, such that r.temperature =

fh12=1999; 5i; h01=2000; 7i; :::g and c.temperature =

fh01=12=1999; 5i; h02=12=1999;10i; h03=12=1999;8i;

h04=12=1999; 1i; :::g.7 Suppose that c is a city in region

r and that we are interested in knowing when such city

has had a temperature greater than the value of its region,

we should compute r.temperature<
T

c.temperature,

whose semantics is

E

temp

[[ r:temperature <

T

c:temperature ]] =

E

temp

[[R

days

(r:temperature) <

T

c:temperature ]] =

5Temperatures are expressed in Celsius degrees.
6For example, that value is computed considering different tempera-

tures at different time of the month in different established places.
7We do not report all the values for lack of space.

fdays(i) j r:temperature(days(i)) <

bool

c:temperature(days(i))g =

f02=12=1999; 03=12=1999; :::g

where R
days

(r:temperature) = fh01=12=1999; 5i;

h02=12=1999; 5i; h03=12=1999; 5i; h04=12=1999;5i; :::;

h01=01=2000; 7i; h02=01=2000; 7i; :::g.

3

In the previous example, of course, one can argue that

if the temperature of a region has been stored with respect

to months, it is not realistic to deduce that the temperature

in such region was the same for every day of the month.

This problem is strictly correlated with temporal granular-

ity issues. In fact, storing the value of an attribute with

respect to a granularity is somehow deciding the temporal

precision associated with the information. If the attribute

granularity is months, then for each granularity finer than

months, such as, for instance, days this information is

imprecise. However, since a value has been associated

with each month, this information is the only one we have

“closer” to the value of each day. Consider, for example, the

value of the temperature of a region stored monthly, prob-

ably such value is an average value, thus, it is realistic to

deduce that every day the value of the temperature has been

very close to the stored value. This implies that “relaxing”

the value to the granularity days is a reasonable choice and

allows one to compare this value with the ones of the cities.

5. Advanced Expressions

In order to convert values from a given granularity into

values of a coarser granularity in a meaningful way, in [8]

we have introduced coercion functions, whose formal defi-

nition is the following.

Definition 8 (Coercion Function)[8]. Let t

1

=

temporal

G

(t

0

1

) and t

2

= temporal

H

(t

0

2

) be two tempo-

ral types such that, t0
2

�

type

t

0

1

8 and H � G. A coercion

function C is a partial function defined as:

C : T Eval(temporal

H

(t

0

2

)) ! T Eval(temporal

G

(t

0

1

))

that maps values of type temporal

H

(t

0

2

) into values of type

temporal

G

(t

0

1

).
2

In [8], coercion functions were associated with an at-

tribute definition allowing one to specialize attribute do-

mains in a type with a granularity finer than the one in the

attribute domain to be redefined. In this paper such func-

tions will be used to increase the expressive power of com-

parison operators.

8

�

type

denotes the subtyping relationship.



A large variety of coercion functions could be devised.

We have developed a simple language for defining coercion

functions. The syntax in BNF form of coercion functions is

given in Figure 4. With reference to Figure 4 terminal sym-

bol index denotes an element in IS, and meth inv denotes

a method invocation. As specified in the BNF grammar of

Figure 4, depending on how the value of a granule G(j) is

computed with respect to the values of the granules H(i),

such thatH(i) � G(j), coercion functions can be classified

into three categories: selective, aggregate and user-defined

coercion functions. The formal definition of coercion func-

tion classification can be found in [8]. In Figure 4 terminal

symbols first, last and Proj(index) denote selective

coercion functions of obvious meaning, whereas min, max,

avg and sum denote the well-known SQL aggregate func-

tions.

Let fi
1

; : : : ; i

k

g be the set of indexes such that H(i

k

) �

G(j) and let v be a temporal value of type temporal

H

(t)

such that v(H(i

k

)) = v

k

. Then, intuitively, in case of se-

lective coercion functions, one of the possible values among

fv

1

; : : : ; v

k

g is chosen for a generic granule j. In case of

aggregate coercion functions, an aggregate function, such as

the average or the sum, is applied to the values fv
1

; : : : ; v

k

g

to compute the value of granule j.9 In case of user-defined

coercion functions, the method to convert from one granu-

larity to the other is completely specified by the user.

Example 6 Let t
2

= temporal

months

(integer) such that

fh02=1998; 4i; h04=1998; 5i; h09=1998; 3ig 2 T Eval(t

2

).

Moreover, let t

1

= temporal

years

(integer). An

example of the application of an aggregate coercion

function which maps values of type t

2

into val-

ues of type t

1

is fh1998; 1ig = avg(fh02=1998; 4i;

h04=1998; 5i; h09=1998; 3ig). Moreover an example of the

application of a selective coercion function which maps val-

ues of type t

2

into values of type t

1

is fh1998; 3ig =

last(fh02=1998; 4i; h04=1998;5i; h09=1998;3ig).
3

Note that actually, since we consider expressions involv-

ing boolean and integer values, the inner type in coercion

functions can be integer or boolean. Thus, in what fol-

lows, given a coercion function C, and two granularities G

and H such that H � G, we denote with C
H!G

the coer-

cion function that coerces values with respect to granular-

ity H into values of granularity G. For instance, the coer-

cion function avg used in Example 6 is, more precisely, the

avg

months!years

function.

Coercion functions add expressive power to our opera-

tors. We attach coercion function information to the oper-

ators in order to compute a more complex comparison op-

erator. In addition to the coercion function, we optionally

attach the granularity information to which this comparison

9Obviously, these functions apply in case of set of values for which

such functions are defined, such as, for example integers.

has to refer. We call this new type of expressions advanced

expressions. The BNF grammar and the semantics of such

expressions can be found in Figure 4 and Figure 5, respec-

tively. In the BNF grammar of Figure 5 the optional termi-

nal symbol gran denotes an element in the set G.

For each operator op 2 O[O

A

[O

S

[O

T

, we consider

the advanced, opC operator to which the coercion function

is attached. When an operator opC is applied to two val-

ues, first the coercion of the value expressed with respect

to the finer granularity is computed, so that the two values

are expressed with respect to the same granularity. Then the

expression is evaluated according to the semantics defined

in Figure 3.

The coercion function C can be complemented with a

granularity K, denoted as op

C;K . In this case both the

considered values have to be coerced to the granularity K

which has to be coarser than the granularities of the two val-

ues. After that, the two values are expressed with respect to

the same granularity, thus the expression can be evaluated

according to the semantics defined in Figure 3. The follow-

ing example clarifies those concepts.

Example 7 Consider again objects o
1

and o
2

of Example 4.

If we are interested in knowing whether the average salary

of the wife and the husband is always the same for every

year we should compute o

1

.salary=
avg;years

A

o

2

.salary.

The semantic evaluation of that expression is:

E

bool

[[ o

1

:salary =

avg;years

A

o

2

:salary ]] =

E

bool

[[ avg

months!years

(o

1

:salary) =

avg

months!years

(o

2

:salary) ]] = false

since avg

months!years

(o

1

:salary) = fh1999; 46ig and

avg

months!years

(o

2

:salary) = fh1999; 37ig.

Consider again the two objects r and t of Example 5. If

we are interested in knowing when the maximum temper-

ature of region r is greater than the maximum temperature

of city c for a whole month, we should compute the value

of r.temperature <max

T

c.temperature. Suppose that

max

days!months

(c.temperature)

= fh12=1999; 10i; h01=2000;11i; :::g, then the semantic

evaluation of the previous expression is the following:

E

temp

[[ r:temperature<

max

T

c:temperature ]] =

E

temp

[[ r:temperature<

T

max

days!months

(c:temperature) ]] =

fmonths(i) j r:temperature(months(i)) <

bool

c:temperature(months(i))g = f12=1999; 01=2000; :::g

We recall that r.temperature = fh12=1999; 5i;

h01=2000; 7i:::g.
3



hcoerc funci ::= hselective coerc funci j haggregate coerc funci j huser-def coerc funci

hselective coerc funci ::= first j last j Proj(index)

haggregate coerc funci ::= min j max j avg j sum

huser-def coerc funci ::= meth inv

had expi ::= had exp booli j had exp tempi

had exp booli ::= hint expi hop bool inti

hcoerc funci;[gran]

hint expi

had exp tempi ::= hint expi hop temp inti

hcoerc funci;[gran]

hint expi

Figure 4. BNF grammar of coercion functions and advanced expressions

E

bool

[[ v

1

op

C

v

2

]] =

8

>

>

>

<

>

>

>

:

E

bool

[[C(v

1

)opv

2

]] if v
1

2 T Eval(temporal

G

(integer )),
v

2

2 T Eval(temporal

H

(integer)) and
G � H

E

bool

[[ v

1

opC(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer )),

v

2

2 T Eval(temporal

H

(integer)) and
H � G

? otherwise

E

bool

[[ e

1

op

C

e

2

]] = E

bool

[[ E

int

[[ e

1

]] op

C

E

int

[[ e

2

]] ]]

E

bool

[[ v

1

op

C;K

v

2

]] =

(

E

bool

[[C

G!K

(v

1

)op

C;K

C

G!K

(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer)),
v

2

2 T Eval(temporal

H

(integer)) and
G � K andH � K

? otherwise

E

bool

[[ e

1

op

C;K

e

2

]] = E

bool

[[ E

int

[[ e

1

]] op

C;K

E

int

[[ e

2

]] ]]

E

temp

[[ v

1

op

C

T

v

2

]] =

8

>

>

>

<

>

>

>

:

E

temp

[[C(v

1

)op

T

v

2

]] if v
1

2 T Eval(temporal

G

(integer)),
v

2

2 T Eval(temporal

H

(integer)) and
G � H

E

temp

[[ v

1

op

T

C(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer)),

v

2

2 T Eval(temporal

H

(integer)) and
H � G

? otherwise

E

temp

[[ e

1

op

C

T

e

2

]] = E

temp

[[ E

temp

[[ e

1

]] op

C

T

E

int

[[ e

2

]] ]]

E

temp

[[ v

1

op

C;K

T

v

2

]] =

8

<

:

E

temp

[[C

G!K

(v

1

)op

C;K

T

C

H!K

(v

2

) ]] if v
1

2 T Eval(temporal

G

(integer)),

v

2

2 T Eval(temporal

H

(integer)) and
G � K and H � K

? otherwise

E

temp

[[ e

1

op

C;K

T

e

2

]] = E

temp

[[ E

int

[[ e

1

]] op

C;K

T

E

int

[[ e

2

]] ]]

Figure 5. Semantics of advanced expressions



6. Illustrative Examples

In this section we present some examples of OQL

queries using our expressions. Classes are defined in ODL

syntax [4].

Example 8 Let geo item be a class storing statistic in-

formation concerning geographical entities, which can be

regions or cities. For each geographical item we are in-

terested in representing the name, the temperature, and

the population. The name does not change over time,

whereas information related to the temperature and the pop-

ulation vary over time. Such information are stored ac-

cording to different granularities. The temperature is stored

monthly and the stored value is computed considering dif-

ferent temperatures at different times of the month in differ-

ent established places. The population value is stored every

year according to some average.

class geo item (extent geo items) f

attribute string name;

attribute temporal

months

(integer) temperature;

attribute temporal

years

(integer) population;g

Geographical objects are specialized into two classes

region and city. Each class represents a subclass of the

class geo item. In addition, each class inherits all the at-

tributes of the class geo item and defines some additional

attributes.

class region extends geo item (extent regions) f

attribute set<city> tourist cities;

attribute set<city> art cities;

attribute set<city> fun cities;g

class city extends geo item (extent cities) f

attribute region is in;

attribute temporal

months

(integer) nbr tourists;

attribute temporal

days

(integer) nbr museums;

attribute temporal

weeks

(integer) nbr expositions;

attribute temporal

days

(integer) nbr concerts;

attribute temporal

days

(integer) nbr discos;

attribute temporal

years

(integer) nbr cinemas;

attribute temporal

days

(integer) nbr theater shows;

attribute temporal

days

(integer) nbr markets;g

For each region, information related to the sets of tourist,

art and fun cities are stored in the database. For what con-

cerns cities, statistic tourist information are stored, such as,

for instance, the number of open museums, the number of

expositions, and so on, each one with a different granularity.

The following are OQL queries in which the operators

we introduced are used.

� Return the ratio of the number of tourists with respect
to the population of all the cities of region Liguria.

select struct(n:c.name,

r:(c.nbr_tourists/c.population))

from cities c

where c.is_in.name = "Liguria"

The result of this query is a bag of structs where the

first value is of type string and the second value

is of type temporal

months

(integer). The tempo-

ral value is expressed in months, since the value of

c.population is converted into months, then for

each month the ratio is computed.

� Return the most touristic cities of each region.

select distinct struct(c:c.name,r:c.is in.name)

from cities c

where forall t in

(select k from cities k

where c.is in=k.is in)

c.nbr tourists >=

A

t.nbr tourists

The result of the previous query returns a set of struc-

tures with two fields where both values are of type

string. The first field represents those cities where

the number of tourists is always, that is, for each

month, greater than the number of tourists in all the

other cities of the same region.

� Suppose we are interested in knowing which are
the fun cities, where for fun cities we mean cities
with an average number of museums which is al-
ways less than the average number of discos for each
year, a maximum number of concerts which is always
greater than or equal to the number of theater shows
for every week, and a number of markets which is
sometimes greater than the number of expositions.
The following query finds out those cities:

select c

from cities c

where c.nbr museums <

avg;years

A

c.nbr discos and

c.nbr concerts >=

max;weeks

A

c.nbr theater shows

and c.nbr markets >

S

c.nbr expositions

3

7. Conclusions

In this paper we have addressed the problem of repre-

senting and querying temporal data with multiple granu-

larities. The issue of how to compare values with differ-

ent granularities has been investigated and an extension of

OQL-like expressions to facilitate such comparisons has

been presented. The syntax of such expressions with the

formal semantics have been defined. Finally, problems re-

lated to conversions of data from one granularity to another

have been investigated and appropriate solutions to these

problems have been presented.

This work is being extended in several directions. We

are currently working on an extension of OQL path expres-

sions to facilitate navigation among temporal objects whose



attribute values are objects. We plan to provide an object

query language to query temporal data with multiple gran-

ularities. Such a language will include temporal clauses us-

ing different granularities. The formal semantics of those

clauses is currently under investigation. Finally, we will ad-

dress issues related to the implementation of the extension

we proposed on top of an object-oriented database support-

ing an OQL compliant query language.
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