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Abstract. In this paper we introduce inheritance in deductive object

databases and de�ne an operator for hierarchically composing deductive

objects with state evolution capabilities. Evolution of such objects mod-

els the expected transactional behavior while preserving many important

features of deductive databases. Deductive objects can be organized in

ISA schemas where each object may inherit or rede�ne the rules de�ned

in other objects. The resulting inheritance mechanism handles both the

deductive and the update/transactional issues. Our framework accom-

modates several types of inheritance such as overriding, extension, and

re�nement. Besides presenting the language, this paper de�nes its se-

mantics and provides a description of the interpreter for the language

that has been implemented.

1 Introduction

Deductive and object-oriented databases have been the focus of intense research

over the last years. The former extend the mathematical foundations of relational

databases towards declarative rule databases. The latter provide the modularity

and encapsulation mechanisms lacking in relational databases. It is not surprising

that the area of deductive object-oriented databases has been inuenced, among

the others, from researches in the area of databases, logic programming, arti�cial

intelligence, and software engineering.

In our work we take the database point of view where (deductive) objects have

the granularity of logical theories and extensional updates are expressed within

the rule language to model methods. Cooperation among objects is supported

by message passing, extending the Datalog language, as speci�ed in [BGM95].

The aim of this paper is to extend such an approach to accommodate di�erent

types of inheritance among objects. Thus we de�ne a language, called Obj

inh

-

Datalog, that, in addition to the above notions, expresses simple inheritance,

overriding, extension, and re�nement. The resulting language supports two dif-

ferent cooperation mechanisms among objects: message passing and inheritance.
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An Obj

inh

-Datalog database, indeed, consists of a set of objects that, besides

cooperating through message exchanges, may also inherit predicate de�nitions

one from another. When an object is de�ned as a specialization of another ob-

ject, it must contain all methods of the parent object, but it can change their

implementations. For each method it can keep the implementation de�ned in the

parent object, can totally change it, or can slightly modify it, either by extending

or by re�ning it. The language we propose provides those di�erent possibilities

on a per-rule rather than on a per-predicate basis, thus achieving a broader set

of modeling options and enhancing exibility.

We remark that our proposal focuses on inheritance mechanisms and on

their use to provide a broad spectrum of modeling possibilities and to maximize

code reuse. Thus, the language we consider is a very simple deductive object

language with updates, from which we leave out all the features that are not

relevant to the main stream of our investigation. In particular, the considered

language does not support the notion of class, and inheritance relationships are

de�ned among objects, which can thus be seen as prototypes [SLS

+

94]. These

objects can be very useful to design methods and to verify their properties. The

proposed approach can however be extended to any deductive object language

providing the notion of class and inheritance relationships among classes.

The language has a two step semantics. The �rst step computes the bindings

and collects the updates that will be performed in an all-or-nothing style in

the second step. The resulting semantics models the traditional query-answer

process as well as the transactional behavior. The advantage of this semantics

is to allow a smooth integration between the declarative rule language and the

updates. Indeed, no control is introduced within rules even if updates are de�ned

in rules.

The paper is structured as follows. The language is presented in Section

2 and its semantics is given in Section 3. Section 4 shows how the language

is interpreted in the prototype that has been implemented, whereas Section 5

compares our approach with related work. Finally, Section 6 concludes the work.

2 Language

The language we propose supports two fundamentally di�erent cooperation mech-

anisms among objects: message passing and inheritance. When an object o sends

a message m to an object o

0

it asks o

0

to solve the goal m, thus the evaluation

context is switched to o

0

. When, by contrast, an object o inherits a method m

from an object o

0

, it simply means that the de�nition of m in o

0

is employed, but

the context of evaluation is maintained to be the initial method receiver, that

is, o. Thus, inheritance can be seen as message passing without changing self.

Indeed, messages that cannot be answered using the receiver message protocol

are forwarded to the parent without changing self; when the forwarded message

is answered by executing a parent method, every subsequent message sent to

self will be addressed to the receiver of the initial message. Hence, the contex-
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t of evaluation is maintained to be the initial message receiver. The following

example illustrates the di�erence between the two cooperation mechanisms.

Example 1. Consider an object obj

1

whose state only consists of the fact k(a)

without methods, and an object obj

2

whose state only consists of the fact k(b)

and whose only method m is de�ned by the rule m(X)  k(X). Consider �rst

message passing. obj

1

may ask obj

2

to evaluate the goal ?m(X) (this can be

accomplished by specifying in obj

1

a rule m(X)  obj

2

: m(X)); the result of

evaluating ?m(X) in obj

1

would be X = b since the evaluation is performed

with respect to obj

2

state. Consider now inheritance: if obj

1

inherits method m

from obj

2

(this can be speci�ed by stating obj

1

� obj

2

, since method m is not

de�ned in obj

1

) the result of evaluating ?m(X) in obj

1

would be X = a since

the evaluation is performed with respect to obj

1

state. 3

In the remainder of this section, we �rst introduce objects and the message

passing mechanism, and then we discuss how objects can be combined through

inheritance.

2.1 Objects and Cooperation through Message Passing

Each real-world entity is modeled by an object. Each object has an identi�er

(object identi�er, shortly OID) and a state. The state of an object is represent-

ed by a set of attributes, characterizing the properties of the object. The state of

the object is encapsulated, that is, can only be modi�ed by invoking operations

that are associated with the object. An object communicates with other objects

through message exchanges. A message may contain a request to retrieve an

object attribute or to modify its state. The use of object identi�ers as possi-

ble predicate arguments allows the state of an object to contain a reference to

another object, and thus to express aggregation (part-of) relationships among

objects, in that the value of an object attribute may be the identi�er of another

object.

In a conventional logic program, all facts and rules appearing in the program

can be used in a deduction step. By contrast, in an Obj

inh

-Datalog database,

there exist several sets of rules and facts collected in di�erent objects. Therefore,

at each step only the facts and rules of a speci�c object can be used. As a

consequence, a goal must be addressed to a speci�c object, and the refutation is

executed by using only facts and rules belonging to that object, until a rule is

found containing a labeled atom in its body. When such a labeled atom is found,

the refutation process \moves" to the object speci�ed by the OID labeling this

atom.

An object is modeled as a set of facts and rules, where the facts represent

the attribute values of an object and the rules represent the methods. Methods

are used to compute derived attributes or to perform operations that modify the

object state. Rules may contain both action atoms and deduction atoms in their

bodies. Action atoms represent the basic mechanism supporting object state

evolutions. Moreover, rule bodies may contain (deductive) atoms labeled with
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OIDs. The meaning of a labeled atom is to require the refutation of the atom by

using the facts and rules of the object, whose OID labels the atom. Therefore,

labeled atoms are the basic mechanism supporting message exchanges among

objects. The object to which the message is sent can be �xed at program de�ni-

tion time (in which case the label is a (constant) OID) or can vary depending on

the value of some object properties (in which case the label is an object-denoting

variable).

The notion of object is formalized by the following de�nitions. We consider

a many-sorted signature � = f�

o

; �

v

g, only containing constant symbols. �

o

is the set of object identi�ers, that is, the values used to denote objects, while

�

v

is the set of constant value symbols. The sets �

o

and �

v

are disjoint. We

moreover consider a set of predicate symbols � partitioned, as in Datalog, in

extensional predicate symbols �

e

, and intensional predicate symbols �

i

. Both

�

e

and �

i

are families of predicate symbols �

e=i

= f�

e=i

w

g

w2S

�

, where S

�

denotes the set of all possible strings of sorts, S = fo; vg (object identi�ers and

values). We denote with �

w

the set of predicate symbols �

e

w

[�

i

w

. A family of

disjoint sets of variable symbols for each sort V = fV

o

; V

v

g is considered. Terms

in Term = fTerm

o

; T erm

v

g are de�ned as usual for each sort of our language:

a term is either a constant or a variable.

De�nition 1. (Deduction Atom). A deduction atom is de�ned as the application

of a predicate symbol to terms of the appropriate sorts, that is, if p 2 �

w

,

n = length(w) and 8i; i = 1 : : :n; t

i

2 Term

o

if w:i = o while t

i

2 Term

v

if

w:i = v, then p(t

1

; : : : ; t

n

) is a deduction atom, also denoted as p(

~

t). 2

Deduction atoms are partitioned in extensional deduction atoms, those built on

predicates in �

e

, and intensional deduction atoms, those built on predicates in

�

i

.

Update operations are expressed in our language (as in U-Datalog [MBM97]

and in LDL [NT89]), by action atoms in rule bodies.

De�nition 2. (Action Atom). An action atom is an extensional deduction atom

pre�xed by + (denoting insertion) or � (denoting deletion), that is, if p(t

1

; : : : ; t

n

)

is an extensional deduction atom, then +p(t

1

; : : : ; t

n

) and �p(t

1

; : : : ; t

n

) are ac-

tion atoms. 2

Cooperation among objects in the database is supported in our language by

labeled atoms. A labeled atom represents a request of evaluating the deduction

atom in the object denoted by the label. Two di�erent kinds of labeled atoms are

provided. C-labeled atoms model a �xed cooperation among objects, while V-

labeled ones model a cooperation depending on the value to which the variable in

the label is bound. Thus, let p 2 �

w

; a 2 �

v

; obj

4

2 �

o

and O 2 V

o

, then obj

4

:

p(a) is a c-labeled atom (which represents the atom p(a) in the context of the

-�xed- object obj

4

), whereas O : p(a) is a v-labeled atom. Given a substitution

#, assigning a value to O, O : p(a) represents the atom p(a) in the context of

the object O#.
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De�nition 3. (C-labeled Atom). Let obj

h

2 �

o

be an object identi�er and

p(t

1

; : : : ; t

n

) be a deduction atom, then obj

h

: p(t

1

; : : : ; t

n

) is a c-labeled atom. 2

De�nition 4. (V-labeled Atom). Let X 2 V

o

be a variable denoting an object

identi�er and p(t

1

; : : : ; t

n

) be a deduction atom, then X : p(t

1

; : : : ; t

n

) is a v-

labeled atom. 2

Having introduced all kinds of atoms that can be used in our language, we are

now able to introduce the notion of rule.

De�nition 5. (Rule). A rule has the form

H  U;B;B

c

; B

v

where:

{ H is an intensional deduction atom;

{ U = U

1

; : : : ; U

i

is a vector of action atoms, constituting the update part of

the rule;

{ B = B

1

; : : : ; B

w

is a vector of deduction atoms, constituting the unlabeled

part of the condition, that is, of atoms referring the object where the rule is

de�ned;

{ B

c

= obj

1

: B

0

1

; : : : ; obj

z

: B

0

z

is a vector of c-labeled atoms, that is, of atoms

referring speci�c objects;

{ B

v

= X

1

: B

00

1

; : : : ; X

r

: B

00

r

is a vector of v-labeled atoms, that is, atoms not

referring speci�c objects;

{ X

1

; : : : ; X

r

must appear as arguments of a deduction atom in B

1

; : : : ; B

w

.

The update part (U) and the condition part (B;B

c

; B

v

) cannot be both empty.

H is referred to as head of the rule, while U;B;B

c

; B

v

constitute the body of the

rule. For a rule to be safe [CGT90] all the variables in H and all the variables

in U

1

must appear in the condition part of the rule (B;B

c

; B

v

). 2

We remark that the \," symbol in the rule bodies denotes logical conjunction,

thus the order of atoms is irrelevant.

Example 2. The following is an example of Obj

inh

-Datalog rule.

k(X;Y ) �t(Z);+t(N); t(Z); p(X); obj

1

: r(Y;N);X : k(Y ) 3

An object obj

j

, where obj

j

2 �

o

is the object identi�er, consists of an object

state and a set of methods. The object state EDB

j

is a set of facts, that is, a set

of ground extensional deduction atoms. The object state is a time-varying com-

ponent, thus in the following we denote with EDB

i

j

the possible states of object

obj

j

, i.e. EDB

i

j

denotes the i-th state of object obj

j

. Methods are expressed by

rules.

1

This ensures that only ground updates are applied to the database.
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De�nition 6. (Object). An object obj

j

= hEDB

j

; IDB

j

i consists of an iden-

ti�er obj

j

in �

o

, of an extensional component EDB

j

, which is a set of ground

extensional deduction atoms, called object state, and an intensional component

IDB

j

, which is a set of rules as in De�nition 5, expressing methods. 2

Referring to De�nition 5, we notice that action atoms cannot be labeled. Indeed,

to ensure encapsulation, the updates can only refer to the object itself. Note that,

as quite usual in the database �eld, we do not encapsulate object attributes with

respect to queries. That is, the value of an object attribute can be queried from

outside the object. Otherwise, forcing strict encapsulation, a number of trivial

methods only returning attribute values should be written to be used in queries.

2.2 Inheritance

In this section we describe the capabilities of our language for structuring infor-

mation through specialization. An Obj

inh

-Datalog database consists of a set of

objects that, besides cooperating through labeled atoms, may also inherit pred-

icate de�nitions from each other. Whenever an object obj

j

specializes another

object obj

i

, the features of obj

i

are inherited by obj

j

; obj

j

may in turn add more

features, or rede�ne some of the inherited features. The rede�nition of an inher-

ited feature means that obj

j

contains a feature with the same name and di�erent

de�nition of a feature in obj

i

. The rede�nition is a form of conict between the

two objects. In Obj

inh

-Datalog, according to the object-oriented paradigm, we

solve this type of conict by giving precedence to the most speci�c information;

therefore, the de�nition of a feature given in an object always takes the prece-

dence over a de�nition of the same feature given in any of the objects the given

object inherits from. This type of approach is called overriding. The specializa-

tion relationship among objects impacts not only the object structures, but also

the behavior speci�ed by the objects. Given objects obj

i

and obj

j

, such that obj

j

inherits from obj

i

, obj

j

must contain all the methods of obj

i

, but it can change

their implementations. For each method, obj

j

can keep obj

i

implementation, can

totally change it, or can slightly modify it. Consider a predicate p de�ned by

one or more rules in obj

i

, the following modeling cases may arise:

1. simple inheritance

obj

j

does not de�ne predicate p; therefore, obj

j

inherits p from obj

i

;

2. overriding

obj

j

rede�nes predicate p, thus overriding the de�nition of p provided by

obj

i

;

3. extension

obj

j

extends the de�nition of p provided by obj

i

, so that p in obj

j

is de�ned

by a set of clauses which is the union among the clauses for p in obj

i

and

the clauses for p in obj

j

;

4. re�nement

obj

j

re�nes the de�nition of p provided by obj

i

; p results therefore to be

de�ned in obj

j

by a clause whose body is the conjunction of the bodies of

clauses for p in obj

i

and in obj

j

, with the heads properly uni�ed.
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Note that object obj

j

may provide additional predicates with respect to obj

i

ones by de�ning predicates which are not de�ned in obj

i

.

The above modeling possibilities o�er a broad spectrum of reusing modalities

to designers. In addition to single inheritance and overriding, that are usual in the

object-oriented context, indeed, we support extension and re�nement which o�er

novel and useful opportunities to re�ne object behavior. Both correspond to the

idea of behavioral subtyping [LW90], which can be achieved in object-oriented

programming languages by exploiting super calls or the inner mechanism. In

particular, extension allows to handle additional cases speci�c to the inheriting

object through the addition of clauses, whereas re�nement allows to specialize

the behavior by adding some conditions or actions. Note that, in some way,

extension can be thought as a sort of contravariant behavior suptyping whereas

re�nement can be thought as a sort of covariant behavior subtyping

2

.

The following example motivates the usefulness of the modeling possibilities

above.

Example 3. Consider two objects obj

person

and obj

student

, such that obj

student

inherits from obj

person

. The following are examples corresponding to each of the

modeling cases above.

1. Simple inheritance: The rule de�ning a method to evaluate the age of a

person, given his birth date, is the same for obj

person

and obj

student

.

2. Overriding: The predicate young of obj

person

, returning True if the person

is considered young, most likely will be rede�ned in obj

student

. Indeed, the

criteria for determining when a person is young is probably di�erent from

the criteria used for student.

3. Extension: Consider a predicate intelligent of obj

person

, returning True if

the IQ of the person is greater than a given limit. Suppose that obj

student

contains the score that a student receives on a given test. Moreover, suppose

that a student is considered intelligent if either: (i) his IQ is greater than

the given limit (the same for obj

person

); or (ii) his score in the test is greater

than a given limit. The predicate intelligent in obj

student

then results in

being de�ned by two di�erent rules.

4. Re�nement: Consider a predicate that assigns a null value to all the facts

in an object. The predicate null in obj

student

will likely re�ne the predicate

null de�ned in obj

person

, since the former should contain update atoms for

all facts added in obj

student

. 3

We remark that our goal is to support the above modeling possibilities on a

per-rule rather than on a per-predicate basis, thus achieving a broader set of

modeling options. Indeed, an object may retain a clause of a predicate de�nition

from an object it inherits from, yet hiding or re�ning other clauses of that pred-

icate de�nition. To support those modeling possibilities, a mechanism is needed

2

Note that we do not address the issue of covariant-contravariant method (signature)

re�nement in the paper, since we do not consider typed variables nor signature

de�nitions for our methods.
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to refer speci�c rules in an object. Labeled rules are then introduced. A labeled

rule has the form

l

x

: head

a

 BODY

a

where l

x

2 L with L denumerable set of labels. All labels in a given object must

be distinct. L(obj

i

) denotes the set of labels in object obj

i

.

The meaning of labeled rules can be explained as follows. Consider objects

obj

i

and obj

j

, such that obj

j

inherits from obj

i

, and suppose that l

x

2 L(obj

i

),

l

y

2 L(obj

j

); then given the labeled rules

l

x

: head

a

 BODY

a

rule of obj

i

l

y

: head

b

 BODY

b

rule of obj

j

consider the following cases:

{ l

x

= l

y

Then, rule head

b

 BODY

b

of obj

j

overrides rule head

a

 BODY

a

of obj

i

;

the latter is hidden in obj

j

. It is not possible to hide a predicate without

rede�ning it. Therefore, if l

x

= l

y

, head

a

= head

b

, that is, the heads of

the two clauses must be the same. Thus, a rule de�ning a predicate p in an

object obj may only hide a rule de�ning the same predicate p in the object

from which obj inherits.

{ l

x

6= l

y

Then, obj

j

inherits rule head

a

 BODY

a

from obj

i

. Therefore, both the

rule head

a

 BODY

a

and the rule head

b

 BODY

b

can be exploited to

evaluate a goal in obj

j

.

Therefore, by labeling a rule with the label of a rule of the parent object

overriding (modeling case 2 above) is realized, whereas by using a di�erent label

extension (modeling case 3 above) is realized.

Example 4. Given the following rules in object obj

i

l

1

: p(X) q(X)

l

2

: k(X) r(X)

if object obj

j

inherits from obj

i

and its IDB contains the rules

l

1

: p(X) r(X)

l

3

: k(X) q(X)

then the rule for predicate p is overridden, whereas the de�nition of predicate k

is extended. The resulting set of rules available in obj

j

is

l

1

: p(X) r(X)

l

2

: k(X) r(X)

l

3

: k(X) q(X) 3
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Moreover, to express re�nement (modeling case 4 above), a syntactic mechanism

is needed that allows to specify that a rule is a re�nement of a rule in the parent

object. Rule bodies are thus extended to contain a special kind of atom (which we

call inh-atom) of the form l

x

: super. Referring to the objects and rules above, if

BODY

b

contains the inh-atom l

x

: super, then obj

j

results in containing a single

rule of the form

(p(~u))# (BODY

a

; BODY

b

)#

where # = mgu(

~

t; ~u), where head

a

= p(

~

t), and head

b

= p(~u)

3

. If head

a

and

head

b

cannot be uni�ed, then p is de�ned in obj

j

only by rule head

b

 BODY

b

.

Example 5. Referring to the rules of object obj

i

of Example 4 above, a re�nement

of the rule labeled by l

2

can be accomplished by an object obj

k

, inheriting from

obj

i

, by the following rule:

l

4

: k(X) q(X); l

2

: super

In such a way, the resulting rule in obj

k

will be

l

4

: k(X) q(X); r(X)

which is a re�nement of the original rule. 3

Labeled rules thus allow one to represent all modeling cases previously illus-

trated. Consider objects obj

i

and obj

j

, such that obj

j

inherits from obj

i

, and

a predicate p de�ned in obj

i

, and let us show how the di�erent options can be

realized.

1. Simple inheritance: It is su�cient that obj

j

does not contain any clause

de�ning p.

2. Overriding: For each rule de�ning p in obj

i

, having label l

x

, there must exist

a rule de�ning p in obj

j

whose label is equal to l

x

.

3. Extension: All rules de�ning p in obj

j

must have labels di�erent from all the

labels associated with the rules de�ning p in obj

i

.

4. Re�nement: In obj

j

all rules de�ning p must contain the inh-atom l

x

: super,

where l

x

is the label associated with the rule de�ning p in obj

i

and whose

body must be put in conjunction with the bodies of the rules in obj

j

.

Note that through the mechanism above we can re�ne only some of the rules

de�ning a predicate p, or all the rules de�ning it, depending on the intended

behavior we want to associate with the inheriting object. Note that, moreover,

when a rule labeled by l

x

is re�ned in an inheriting object rule through an inh-

atom l

x

: super in a rule labeled by l

y

, it is also inherited by the object. To

prevent this inheritance, the object must contain another rule labeled by l

x

(for

instance, it can simply be l

y

= l

x

).

3

We impose no condition on rule heads for re�nement. That is, we do not require

that head

b

is at least as instantiated as head

a

. Note indeed that head re�nement is

not particularly meaningful in a context like ours where function symbols are not

supported.
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Finally, we remark that semantically meaningful labels can be exploited to

make evident which kind of behavior is being speci�ed for a given rule. For

instance, labels of rules introducing new predicates may have a new pre�x, labels

of rules extending an inherited predicate may have an ext pre�x, and so on.

The following de�nitions formalize the notion of labeled rule.

De�nition 7. (Inh-Atom). An inh-atom has the form l

x

: super with l

x

2 L. 2

We remark that super is a special 0-ary predicate symbol, which cannot appear

in any other kind of atoms of our language.

De�nition 8. (Labeled Rule). A labeled rule is a rule as in De�nition 5, labeled

by a label l 2 L; that is, a labeled rule has the form l : r where r is de�ned as

in De�nition 5 extended to contain in its body, in addition to deduction, action,

and labeled atoms, inh-atoms as in De�nition 7. 2

By using labeled rules we are able to specify what is inherited, what is hid-

den, and what is re�ned with the clause granularity, instead of the predicate

granularity. Thus, a partial overriding of a predicate is allowed.

An Obj

inh

-Datalog database consists of a set of objects related by an inher-

itance hierarchy. The intensional component of each object is a set of labeled

rules. Extensional facts, by contrast, are not labeled, so that only simple inher-

itance and overriding are supported on facts.

De�nition 9. (Database). An Obj

inh

-Datalog database is a pair

O-DB = hfobj

1

; obj

2

; : : : ; obj

s

g;�i

where:

{ fobj

1

; obj

2

; : : : ; obj

s

g is a set of objects according to De�nition 6 such that

the intensional component IDB

j

of each obj

j

, 1 � j � s, is a set of labeled

rules, as in De�nition 8, whose labels are all distinct;

{ �� �

o

� �

o

is a relation on objects representing the inheritance hierarchy.

Since we consider only single inheritance, the inheritance relationship � is

a tree, that is, if objects obj

i

; obj

j

; obj

k

(1 � i; j; k � s) exist such that

obj

j

� obj

i

and obj

j

� obj

k

, then either obj

i

� obj

k

or obj

k

� obj

i

. 2

Given obj

i

; obj

j

2 �

o

, obj

j

� obj

i

denotes that object obj

j

inherits from objec-

t obj

i

. Moreover, � denotes the partial order obtained from the non-reexive

relation �, that is, obj

j

� obj

i

denotes the relation obj

j

� obj

i

_ obj

i

= obj

j

.

Note that we restrict ourself to single inheritance, to avoid name conicts

that will introduce unnecessary complications in the de�nition of the language,

without bringing in any relevant issue with respect to the main focus of the paper.

The approach can however be extended to multiple inheritance, by adopting one

of the existing approaches to handle name conicts, such as superclass ordering

or explicit quali�cation.

Example 6. hfobj

1

; obj

2

; obj

3

g;�i is an example of Obj

inh

-Datalog database,

with obj

3

� obj

1

and



Inheritance in a Deductive Object Database Language with Updates 11

EDB

1

= q(a) r(b) s(obj

2

)

IDB

1

= l

1

: p(X) �q(X); q(X)

l

2

: k(X;Y ) s(X); r(Y );X : h(Y )

l

3

: t(X) r(X)

l

5

:mr(X) �r(X); r(X)

EDB

2

= h(b)

EDB

3

= f(b) q(b)

IDB

3

= l

1

: p(X) �q(X); f(X)

l

4

: t(X) f(X)

l

6

:mf(X) �f(X); f(X)

l

2

: k(X;Y ) l

2

: super; f(Y )

Referring to the inheritance relationship between obj

1

and obj

3

, we point out

that predicate p is overridden, predicate k is re�ned, predicate t is extended,

predicate mr is simply inherited, while predicate mf is an additional one. For

what concerns the extensional component, obj

3

simply inherits facts r(b) and

s(obj

2

) from obj

1

, whereas it overrides fact q(a) by providing a local de�nition

for predicate q (that is, fact q(b)). 3

Note that our inheritance mechanisms based on rule labeling o�er a number of

alternatives with respect to rede�nition of predicates (e.g. partial overriding, rule

addition, rule re�nement). Such alternatives could not be supported at the rule

level if labeled rules were not provided. Our mechanism obviously requires that

rule labels are visible in subclasses, thus requiring that predicate de�nitions not

be encapsulated with respect to subclasses. However, note that some solutions

can be devised to the problem of encapsulation. Our language could easily be

extended to support both labeled and un-labeled rules, with a traditional over-

riding model on a per-predicate basis for some predicates. In such a way, when

de�ning a class, the user can decide whether to encapsulate a predicate de�ni-

tion with respect to subclasses (by not labeling the rules de�ning it) or to let its

de�nition be visible to subclasses, in which di�erent choices can be adopted for

inherited rules.

We also point out that overriding of extensional facts is supported in our

model. However, since extensional facts are not labeled, on the extensional side

overriding works on a per-predicate basis. This means that is not possible to

inherit a fact on a predicate and to override another fact on the same predicate.

We took this decision since requiring fact labeling seems an unnecessary burden

for the user, given that the sophisticated mechanisms provided for rules (useful

for code reuse) does not seem very useful at the data level.

We �nally remark that we do not consider here the issue of dynamically

creating and deleting objects from the database, which thus consists of a �xed set

of cooperating objects. This possibility can obviously be added to the language,

but the deletion of objects from which other objects inherit must be handled

carefully (as in all prototype-based languages).
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2.3 Queries

An important requirement of our language is to model both queries typical

of deductive databases, as well as queries typical of object-oriented databases.

In deductive databases, a query (goal) has usually the form ?p

1

(

~

t

1

); : : : ; p

n

(

~

t

n

)

(n � 1) where each p

i

(

~

t

i

) (1 � i � n) is a deductive atom. The meaning of

such query is to �nd all substitutions for the variables in the query so that

the conjunction of predicates p

1

(

~

t

1

); : : : ; p

n

(

~

t

n

) has the truth value True. On

the other hand, in object-oriented databases, queries are usually addressed to a

speci�c object, in form of messages. To support all above querying modalities,

two di�erent types of queries are de�ned:

1. Conjunction of deduction atoms: The meaning of this type of query is to �nd

all solutions satisfying the query, independently from the objects where the

deduction atoms, appearing in the query, are de�ned.

2. Conjunction of object-labeled deduction atoms: The meaning of this type of

query is to �nd all solutions satisfying the query starting from the objects

whose OIDs appear in the query. Note, however, that an object may need

to send messages to other objects in order to answer the query.

Note that, whenever a query of the �rst type is issued, the objects on which

the query applies may not be related by inheritance relationships. We refer to

Obj

inh

-Datalog queries as transactions to emphasize that, since update methods

can be invoked, they do not only return sets of bindings but they can also modify

the database state. However, updates are not de�ned in the query but only in

the object methods (expressed by rules).

De�nition 10. (Transaction). A transaction has the form

? B;B

c

where

{ B = B

1

; : : : ; B

w

is a vector of deduction atoms, that is, they refer to any

object of the object database,

{ B

c

= obj

1

: B

0

1

; : : : ; obj

z

: B

0

z

is a vector of c-labeled atoms, that is, they

refer to speci�c objects,

and B and B

c

cannot be both empty. 2

Note that no updates are explicitly stated in the transaction because each object

uses its own methods (rules) to manipulate the object state.

Example 7. Examples of transactions are T

1

= obj

3

: k(X;Y ); obj

1

: t(Y ) and

T

2

= p(X). 3
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3 Semantics

The semantics of Obj

inh

-Datalog language is given in two steps. The �rst step is

called marking phase and the second one update phase. The �rst step is similar

to the query-answer since it computes the bindings for the query and collects

the updates. Updates are not executed in this phase. They are executed, if there

are not complementary updates, in the second phase altogether, modeling the

expected transactional behavior.

3.1 Marking Phase Semantics

In this section we model the behavior of a transaction execution. We formal-

ize the rules for evaluating a call taking into account the di�erent options for

behavior inheritance we support.

A transaction may contain two kinds of atoms: labeled and unlabeled ones.

The labeled atoms must be refuted in the object whose identi�er labels the atom,

while for unlabeled atoms a refutation is searched for in any object in the object

database.

The behavior of a predicate call in an object depends on the labels of the

rules de�ning the predicate in that object as well as on the inheritance hierarchy.

In case of overriding, the notion of most speci�c behavior is applied, that is, each

object inherits a predicate from the closest ancestor in the hierarchy that contains

a de�nition for that predicate. By contrast, in the case of extension, an object

may inherit the union of the de�nition of a predicate in all its ancestors in the

hierarchy. In case of re�nement, �nally, the rule obtained by combining the rule

in the most speci�c object with the referred rules in its ancestors is exploited.

The combination of those mechanisms results in the following rule for eval-

uating a call. Consider a transaction T = p(

~

t) to be evaluated in an object

obj

i

belonging to a database hfobj

1

; : : : ; obj

s

g;�i. The evaluation of T proceeds

according to the criteria outlined below:

1. if p 2 �

e

is an extensional atom:

(a) if p is locally de�ned in obj

i

, then the de�nition in obj

i

is used;

(b) the de�nition in the closest ancestor of obj

i

that de�nes p is used, oth-

erwise;

2. if p 2 �

i

is an intensional atom:

(a) if p is locally de�ned in obj

i

, then the de�nition in obj

i

is used; moreover,

if p is also de�ned in an ancestor obj

j

of obj

i

, and the labels of the rules

for p in obj

i

and in obj

j

are di�erent, then the p de�nition of obj

j

is used

as well;

(b) if p is not locally de�ned in obj

i

, then the de�nition in the closest ancestor

of obj

i

that de�nes p is used;

(c) if p is locally de�ned in obj

i

(or de�ned in an ancestor obj

j

of obj

i

,

and not overridden), and its de�nition is a re�nement (that is, is a rule

containing inh-atoms), then the re�ned de�nition for p is used.
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Labeled atoms are evaluated by simply changing the evaluation context to

the object denoted by the label. Action atoms are evaluated by simply adding

the action to the appropriate update set.

The operational semantics of Obj

inh

-Datalog is given below. For any database

O-DB = hfobj

1

; : : : ; obj

s

g;�i and transaction T , we denote by O-DB `

#;S

T the fact that there is a derivation sequence of T in O-DB with answer #

and collecting a tuple of update sets S. We reserve the symbol � to denote the

empty (identity) answer, whereas ##

0

denotes the composition of substitutions

# and #

0

. Moreover, let S and S

0

be s-tuples of update sets, S [ S

0

denotes the

componentwise union of update sets, that is, (S [ S

0

) # i = S # i [ S

0

# i,

for all i, 1 � i � s. A set of updates fu

1

; : : : ; u

n

g is consistent if it does not

contain complementary updates (i.e. +p(a) and �p(a)). A tuple of update sets

S is consistent if all its component update sets are consistent, that is, if for all

i, 1 � i � s, in S # i there are no complementary updates.

The derivation relation is de�ned by rules of the form

Assumptions

Conclusion

Conditions

asserting the Conclusion whenever the Assumptions and Conditions hold. O-

DB `

#;S

T is a �nite successful derivation of T in O-DB that computes # and

collects S. A successful derivation is computed as a sequence of derivation steps.

Each derivation step is performed according to the rules in Fig. 1.

The index i denotes the current context, that is, the object of the database

in which the computation is being carried on. It is not present in the �rst rule,

and in the Conclusion of rules 2 and 3, modeling the fact that a query is issued

against the whole database, and the selection of the evaluation context depends

on the query.

Rule 1 models the semantics of queries, which are conjunctions of two sub-

queries, in terms of the semantics of the subqueries. Rules 2 and 3 model queries

which are deduction atoms and object-labeled deduction atoms, respectively,

according to the meaning introduced in Section 2.3. For object-labeled deduc-

tion atoms in queries the evaluation context is set to the object labeling the

atom (Rule 3), while for unlabeled deduction atoms a refutation is looked for

in any object of the database (Rule 2). Rule 4 models the semantics of action

atoms (the atom is simply added/removed to the set of updates related to the

current object). Rule 5 handles the empty conjunction, that is, an empty rule

body. Rules 6 and 7 handle c-labeled atoms and v-labeled atoms, respectively,

modeling the change of evaluation context. Rule 8 handles extensional atoms:

conditions (a) and (b) are related to the two possibilities for evaluating exten-

sional atoms in presence of inheritance hierarchies: the fact is locally de�ned in

the current object or it is simply inherited from a most speci�c ancestor of its.

Rule 9 handles intensional atoms:

{ Condition (a) refers to the case of a predicate which is de�ned locally to the

current object (either a new predicate de�nition, or overriding) and to the

case of predicate extension; it states that all the local rules and each rule
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(1)

hfobj

1

; : : : ; obj

s

g;�i `

#;S

T

1

hfobj

1

; : : : ; obj

s

g;�i `

#

0

;S

0
T

2

#

hfobj

1

; : : : ; obj

s

g;�i `

##

0

;S[S

0
T

1

; T

2

CONS

(2)

i; hfobj

1

; : : : ; obj

s

g;�i `

#;S

p(

~

t)

hfobj

1

; : : : ; obj

s

g;�i `

#;S

p(

~

t)

1 � i � s

(3)

i; hfobj

1

; : : : ; obj

s

g;�i `

#;S

p(

~

t)

hfobj

1

; : : : ; obj

s

g;�i `

#;S

obj

i

: p(

~

t)

(4)

i; hfobj

1

; : : : ; obj

s

g;�i `

�;S

�p(

~

t)

S # i = f�p(

~

t)g, S # k = ;;8k = 1 : : : s; k 6= i

(5)

i; hfobj

1

; : : : ; obj

s

g;�i `

�;;

2

(6)

j; hfobj

1

; : : : ; obj

s

g;�i `

#;S

p(

~

t)

i; hfobj

1

; : : : ; obj

s

g;�i `

#;S

obj

j

: p(

~

t)

(7)

i; hfobj

1

; : : : ; obj

s

g;�i `

#;S

T j; hfobj

1

; : : : ; obj

s

g;�i `

#

0

;S

0
p(

~

t)#

i; hfobj

1

; : : : ; obj

s

g;�i `

##

0

;S[S

0
T;X : p(

~

t)

COND

7

(8)

i; hfobj

1

; : : : ; obj

s

g;�i `

#;;

p(

~

t)

p 2 �

e

if one of the following conditions holds:

(a) p(~s) 2 obj

i

, mgu(~s;

~

t) = #;

(b) p(~s) 2 obj

j

, i 6= j, mgu(~s;

~

t) = #, obj

i

� obj

j

and 8obj

k

such that obj

i

�

obj

k

� obj

j

6 9 in obj

k

an extensional fact which uni�es with p(

~

t).

(9)

i; hfobj

1

; : : : ; obj

s

g;�i `

�;S

T#

i; hfobj

1

; : : : ; obj

s

g;�i `

�#;S

p(

~

t)

p 2 �

i

if one of the following conditions holds:

(a) l

x

: p(~s)  T 2 obj

j

, mgu(~s;

~

t) = #, obj

i

� obj

j

, T does not contain inh-

atoms, and 8obj

k

such that obj

i

� obj

k

� obj

j

and l

y

: p(~u) T

0

2 obj

k

,

l

x

6= l

y

;

(b) l

x

: p(~s) T 2 obj

j

, i 6= j, mgu(~s;

~

t) = #, T does not contain inh-atoms,

obj

i

� obj

j

and 8obj

k

such that obj

i

� obj

k

� obj

j

6 9r in obj

k

whose head

uni�es with p(

~

t);

(c) l

x

: p(~s)  T

0

2 obj

j

, l

y

: super 2 T

0

, T

0

n l

y

: super = T

00

, l

y

: p(~u)  

T

000

2 obj

k

, (8obj

p

such that obj

i

� obj

p

� obj

j

and l

y

: p( ~w) T

0

2 obj

p

,

l

x

6= l

y

), obj

j

� obj

k

and not exists obj

h

such that obj

j

� obj

h

and

obj

h

� obj

k

, and mgu(~s; ~u) = #

�

, mgu(~s#

�

;

~

t) = #, T = T

00

#

�

; T

000

#

�

.

(10)

i; hfobj

1

; : : : ; obj

s

g;�i `

#;S

A

1

i; hfobj

1

; : : : ; obj

s

g;�i `

#

0

;S

0
A

2

#

i; hfobj

1

; : : : ; obj

s

g;�i `

##

0

;S[S

0
A

1

; A

2

CONS

With: � 2 f+;�g, CONS is S##

0

[S

0

##

0

consistent, COND

7

is obj

j

= X#^CONS.

Fig. 1. Rules de�ning the derivation relation
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for predicate p in ancestors of object obj

i

whose label does not appear in a

more speci�c ancestor of obj

i

, or in obj

i

itself, can be used in the refutation.

{ Condition (b) handles simple inheritance, that is, it considers the case in

which the current object does not provide a de�nition for the predicate in

the goal. In this case, the de�nition for that predicate in the most speci�c

ancestor obj

j

of the current object is employed.

{ Condition (c) models re�nement. It considers a rule which is applicable for

refutation (as the ones in the cases above) and solves the inh-atoms in it.

This means looking for the rule labeled by l

y

(where l

y

is the label of the

inh-atom l

y

: super) in the most speci�c object obj

k

from which the object

obj

j

(containing the rule we are solving) inherits, and then substituting the

inh-atom with the body T

000

of that rule, properly instantiated.

Finally, Rule 10, which is similar to Rule 1, handles conjunctions in rule bodies.

The operational semantics of an Obj

inh

-Datalog database O-DB is de�ned as

the set of ground atoms, for which an Obj

inh

-Datalog proof exists. These ground

atoms are constrained by the set of ground updates their deduction collects, that

is, S#. The semantics of an Obj

inh

-Datalog database consists of atoms of the

form H  

�

U , where H is a ground atom (either intensional or extensional) and

�

U are updates. The presence of the atom H  

�

U in the semantics means that

H is true and that its evaluation causes the execution of the updates

�

U .

De�nition 11. (Operational Semantics). The operational semantics of an Obj

inh

-

Datalog database O-DB is de�ned as the set

O(O-DB) = fA 

�

U j O-DB `

#;S

T;A = T#;

�

U =

�

U

1

[ : : :[

�

U

s

,

each

�

U

i

, 1 � i � s, is the conjunction of obj

i

: u

i

j

#;

for u

i

j

2 S # ig

2

Example 8. Referring to the Obj

inh

-Datalog database O-DB of Example 6 and

to transactions T

1

and T

2

of Example 7, the following holds:

{ O-DB `

#

1

;;

T

1

with #

1

= fX=obj

2

; Y=bg;

{ O-DB `

#

2

;S

2

T

2

with #

2

= fX=ag, S

2

= hf�q(X)g; ;; ;i

and

O-DB `

#

0

2

;S

0

2

T

2

with #

0

2

= fX=bg, S

2

= h;; ;; f�q(X)gi.

The Obj

inh

-Datalog proofs for those transactions are shown in Fig. 2 and Fig.

3, respectively. 3

3.2 Update Phase Semantics

As we have said, in the marking phase updates are collected and their con-

sistency is checked but they are not executed. The most common approach to

introduce updates in declarative rules is that updates (very often de�ned in rules
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(8b) (8a)

3; O-DB `

�;;

r(b) 3; O-DB `

�;;

f(b)

(10)(8b)

3; O-DB `

#

00

1

;;

s(X) 3; O-DB `

�;;

r(b); f(b)

(8a) (10)

2; O-DB `

#

0

1

;;

h(Y ) 3; O-DB `

#

00

1

;;

s(X); r(b); f(b)

(7) (8a)

3; O-DB `

#

1

;;

s(X); r(Y );X : h(Y ); f(Y ) 1; O-DB `

�;;

r(b)

(9c) (9a)

1; O-DB `

�;;

t(b)3; O-DB `

#

1

;;

k(X;Y )

(3)(3)

O-DB `

�;;

obj

1

: t(b)O-DB `

#

1

;;

obj

3

: k(X;Y )

(1)

O-DB `

#

1

;;

obj

3

: k(X;Y ); obj

1

: t(Y )

#

0

1

= fY=bg #

00

1

= fX=obj

2

g #

1

= #

0

1

#

00

1

= fY=b; X=obj

2

g

Fig. 2. Obj

inh

-Datalog proof for transaction T

1

of Example 7
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(8a)(4)

1; O-DB `

#

2

;;

q(X)1; O-DB `

�;S

2

�q(X)

(10)

1; O-DB `

#

2

;S

2

�q(X); q(X)

(9a)

1; O-DB `

#

2

;S

2

p(X)

(2)

O-DB `

#

2

;S

2

p(X)

(8a)(4)

3; O-DB `

#

0

2

;;

f(X)3; O-DB `

�;S

0

2

�q(X)

(10)

3; O-DB `

#

0

2

;S

0

2

�q(X); f(X)

(9a)

3; O-DB `

#

0

2

;S

0

2

p(X)

(2)

O-DB `

#

0

2

;S

0

2

p(X)

#

2

= fX=ag S

2

= hf�q(X)g; ;; ;i #

0

2

= fX=bg S

0

2

= h;; ;; f�q(X)gi

Fig. 3. Obj

inh

-Datalog proof for transaction T

2

of Example 7
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bodies) are executed as soon as they are evaluated [MW87]. Under this assump-

tion the evaluation of a rule is performed in a sequence of states and thus the

declarativeness of the query part is lost. Under the marking and update phas-

es, the �rst phase is declarative and preserve this property for the query part

while accommodating update speci�cation that are executed altogether in the

update phase. This allows one to express within this semantics the transactional

behavior where all or none of the updates must be executed. At logical level,

this semantics avoids to undo updates that form a transaction. Indeed, updates

collected with the marking phase must be executed in the update phase and it

is not possible that some of them will be undone due to the checking in former

phase. Let us now see the update phase semantics.

First of all we de�ne the semantics of a query T with respect to an Obj

inh

-

Datalog database O-DB. First we note that database systems use a default

set-oriented semantics, that is, the query-answering process computes a set of

answers. We denote with Set(T;O�DB) the set of pairs (bindings and updates)

computed as answers to the transaction T .

Set(T;O-DB) = fh#; ûi j O-DB `

#;S

T; û = S#g

We now de�ne a function which takes a set of ground updates, the current

extensional components of the objects constituting the database and returns the

new extensional components.

De�nition 12. Let EDB

i

1

1

; : : : ; EDB

i

s

s

be the current extensional components

of the objects constituting the database and u

1

; : : : ; u

s

be a s-tuple of consistent

sets of ground updates. Then the new databases EDB

i

1

+1

1

; : : : ; EDB

i

s

+1

s

are

computed by means of the function � : EC � U ! EC as follows:

�(hEDB

i

1

1

; : : : ; EDB

i

s

s

i; hu

1

; : : : ; u

s

i) = hEDB

i

1

+1

1

; : : : ; EDB

i

s

+1

s

i

where each EDB

i

j

+1

j

, with j = 1 : : : s, is computed from EDB

i

j

j

and u

j

as

(EDB

i

j

j

n fp(

~

t) j �p(

~

t) 2 u

j

g) [ fp(

~

t

0

) j +p(

~

t

0

) 2 u

j

g

where EC denotes all possible s-tuples of extensional components (i.e. of sets of

facts) and U denotes all possible s-tuples of updates sets. 2

The update phase semantics models as observable property of a transaction the

set of answers, the object states and the result of the transaction itself. It is

called Oss = hAns; State;Resi where Ans is the set of answers, State is an

s-uple constituted by the extensional components of objects in the database

and Res is the transactional result, that is, either Commit or Abort. The set of

possible observables Oss is OSS.

De�nition 13. Let O-DB

i4

be an Obj

inh

-Datalog database, with EDB

i

the tu-

ple of current object states and O�IDB the tuple of method sets of objects. The

semantics of a transaction is denoted by function S

O�IDB

(T ) : EC ! OSS.

S

O�IDB

(T )(EDB

i

) =

8

<

:

Oss

i+1

if OK

h;; EDB

i

; Aborti otherwise(inconsistency)

4

Here we denote with O-DB

i

the Obj

inh

-Datalog database to emphasize that we

consider object states EDB

i

at time i.
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where Oss

i+1

= hf#

j

j h#

j

; û

j

i 2 Set(T;O-DB

i

)g; EDB

i+1

; Commiti, EDB

i+1

is computed by means of �(EDB

i

; �u). The condition OK expresses the fact that

all the components of the tuple of sets �u =

S

j

û

j

are consistent, that is, there

are no complementary ground updates on the same object. 2

Note that, according to the above de�nition, in Obj

inh

-Datalog the abort of a

transaction may be caused by a transaction that generates an update set with

complementary updates on the same atom in the same object (both the insertion

and the deletion of the atom). In this case the resulting object state would depend

on the execution order of updates, so we disallow this situation by aborting the

transaction. In such a way we ensure that the de�ned semantics is deterministic.

Example 9. Referring to the object database of Example 6, and to transaction

T

2

of Example 7, whose answers have been computed in Example 8

�(hEDB

1

; EDB

2

; EDB

3

i; hf�q(a)g; ;; f�q(b)gi) = hEDB

0

1

; EDB

2

; EDB

0

3

i

with

{ EDB

0

1

= fr(b); s(obj

2

)g and

{ EDB

0

3

= ff(b)g.

Moreover,

S

IDB

(EDB; T

2

); hffX=ag; fX=bgg; EDB

0

; Commiti: 3

Note that the update phase semantics speci�ed in [MBM97] for U-Datalog han-

dles transactions composed from atomic transactions, as the ones we support,

through the sequence (\;") operator. That semantics can trivially be extended to

Obj

inh

-Datalog, by taking into account that tuples of object states and tuples of

update sets must be considered rather than a single database state and a single

update set.

4 Obj

inh

-Datalog Interpreter

A prototype implementation of the Obj

inh

- Datalog language has been devel-

oped at the University of Genova, using KBMS1, a knowledge base manage-

ment system developed in HP laboratories at Bristol [MCH

+

90]. The language

of KBMS1, kbProlog, is an extension of Prolog with modularization facilities,

declarative update operations and persistence support. The implementation of

the language has been realized in two steps: (i) development of a translator from

Obj

inh

-Datalog to U-Datalog; (ii) development of a bottom-up interpreter for

U-Datalog. The bottom-up interpreter for U-Datalog handles updates with a

non-immediate semantics and provides the transactional behavior. The use of a

bottom-up evaluation strategy ensures termination. The choice of implementing

Obj

inh

-Datalog via a translation in U-Datalog is due to the fact that the def-

inition and implementation of Obj

inh

-Datalog is part of a project which aims
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at developing an enhanced database language, equipped with an e�cient imple-

mentation. Several optimization techniques for U-Datalog have been developed

[BC96] that will lead to an optimized U-Datalog interpreter and therefore to an

optimized Obj

inh

-Datalog interpreter.

An alternative implementationmight realize a \direct" interpreter for Obj

inh

-

Datalog, adapting one of the several evaluation techniques developed for deduc-

tive databases to object deductive databases (so taking into account message

passing, object state evolution and method inheritance). This is a possible issue

for future investigation. Our prototype is based on the following steps: (i) an

Obj

inh

-Datalog program OP is translated into an Obj-U-Datalog [BGM95] pro-

gram OP

0

, that is, inheritance relationships are eliminated and each object is

extended so that it explicitly contains its structural and behavioral information

(thus, attening the inheritance hierarchy); (ii) the Obj-U-Datalog programOP

0

is translated into a U-Datalog program UP ; (iii) each Obj

inh

-Datalog query OQ

is �rst of all translated in a U-Datalog query UQ, and then executed against the

program UP using the U-Datalog interpreter. In what follows, we describe each

step.

Step 1: Flattening the inheritance hierarchy This step makes explicit

the set of facts and rules available for refutation in each object of the object

database. Consider an object obj

j

whose direct parent object is object obj

i

.

{ EDB

f

j

is obtained from EDB

j

as follows

EDB

f

j

= EDB

j

[ f p(~c) j p 2 �

e

; ~c tuple of constants in �; p(~c) 2 EDB

f

i

;

EDB

j

does not contain any fact on predicate p g

{ IDB

f

j

is obtained from IDB

j

as follows

� IDB

f

j

contains all the rules of IDB

j

, whose bodies are modi�ed by

solving the inh-atoms in rule bodies;

an inh-atom l

x

: super is solved by replacing it with the body of the rule

labeled by l

x

in the parent object obj

i

, after having properly uni�ed the

rule heads and applied the obtained mgu to the rule body

5

;

� IDB

f

j

contains all rules of IDB

f

i

whose labels do not appear in L(obj

j

).

The attening process described above is recursively applied starting from the

objects roots of the inheritance hierarchy (that is, the objects obj

j

such that

9/ obj

i

obj

j

� obj

i

), and visiting the inheritance tree in a top-down style till the

leaves of the tree are reached.

At the end of the attening process, the Obj

inh

-Datalog rules are transformed

in Obj-U-Datalog rules by omitting the rule labels.

5

If the rule heads cannot be uni�ed, the inh-atom is simply removed from the IDB

f

j

rule body.
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Step 2: Translation of facts and rules The translation from Obj-U-Datalog

to U-Datalog is simple. For each object obj

i

2 O-DB, for each predicate p of

arity n de�ned in obj

i

we have a corresponding predicate p of arity n+1 de�ned

in U-Datalog DB. The argument added to each predicate refers to the object

in which the predicate is de�ned. The extensional component of an object obj

i

,

i.e. EDB

i

, is translated as follows. For each fact in EDB

i

, p(~a), with ~a tuple

of constants, we have a fact p(obj

i

; ~a) in DB. The extensional database of the

U-Datalog program consists of the union of the translation of the extensional

components of each object.

The intensional rules are translated as follows. Consider the rule, de�ned in

object obj

i

,

p(

~

X) B

1

(

~

Y

1

); : : : ; B

k

(

~

Y

k

); obj

1

: B

k+1

(

~

Y

k+1

); : : : ; obj

n

: B

k+n

(

~

Y

k+n

);

X

1

: B

k+n+1

(

~

Y

k+n+1

); : : : ; X

p

: B

k+n+p

(

~

Y

k+n+p

):

This rule is translated in the following U-Datalog rule:

p(obj

i

;

~

X) B

1

(obj

i

;

~

Y

1

); : : : ; B

k

(obj

i

;

~

Y

k

); B

k+1

(obj

1

;

~

Y

k+1

); : : : ;

B

k+n

(obj

n

;

~

Y

k+n

); B

k+n+1

(X

1

;

~

Y

k+n+1

); : : : ; B

k+n+p

(X

p

;

~

Y

k+n+p

):

The intensional database of the U-Datalog program consists of the union of the

translations of all the rules of the intensional component of each object.

Step 3: Translation of transactions A transaction is translated in the con-

junction of the translation of (eventually labeled) atoms that constitute it. A

labeled atom obj

i

: p(

~

X) is translated in a U-Datalog atom p(obj

i

;

~

X). An un-

labeled atom p(

~

X) in a transaction, that -as we have seen- is interpreted as a

transaction directed to the whole database, is translated in p(O;

~

X), where O

is a new variable. Note that in this way we obtain in the solution not only the

instances of p(

~

X) satis�ed by the database, but also the objects in which such

instances were found.

Example 10. The U-Datalog program resulting from the translation of the object

database of Example 6 is the following.

EDB = q(obj

1

; a) r(obj

1

; b) s(obj

1

; obj

2

) h(obj

2

; b)

f(obj

3

; b) q(obj

3

b) r(obj

3

; b) s(obj

3

; obj

2

)

IDB = p(obj

1

;X) �q(obj

1

;X); q(obj

1

;X)

k(obj

1

;X; Y ) s(obj

1

;X); r(obj

1

; Y ); h(X;Y )

t(obj

1

;X) r(obj

1

;X)

mr(obj

1

;X) �r(obj

1

;X); r(obj

1

;X)

p(obj

3

;X) �q(obj

3

;X); f(obj

3

;X)

k(obj

3

;X; Y ) s(obj

3

;X); r(obj

3

; Y ); h(X;Y ); f(obj

3

; Y )

t(obj

3

;X) q(obj

3

;X)

t(obj

3

;X) f(obj

3

;X)

mr(obj

3

;X) �r(obj

3

;X); r(obj

3

;X)

mf(obj

3

;X) �f(obj

3

; X); f(obj

3

;X)
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Moreover, the transactions of Example 7 are translated as follows:

{ T

1

= k(obj

3

; X; Y ); t(obj

1

; Y );

{ T

2

= p(O;X). 3

5 Related Work

Several research proposals attempt to combine object-orientation, databases,

and logical languages. There are di�erent orthogonal dimensions along which

the approaches to the integration of the deductive and object paradigms may be

classi�ed. A survey of those proposals can be found in [BGM95].

Most of the approaches do not consider state evolution of deductive objects.

More precisely, the characterization of objects as logic theories, coming from

object-oriented extensions of logic programming, does not account for any no-

tion of state. McCabe suggests that the change of state for an instance can be

simulated by creating new instances [McC88]. Other proposals simulate state

changes by using assert and retract but this approach lacks any logical founda-

tion. In [CW88] intensional variables are introduced to keep trace of state changes

without side e�ects. In other proposals, multi-headed clauses are used for sim-

ilar purposes. However, the notion of updating object state does not �t well in

object-oriented extensions of logic programming. In addition, also approaches

developed in the database �eld, like e.g. [Fre94,GLR90,LO91], do not consider s-

tate evolution. Many of the approaches [AK89,GLR90,CCCR

+

89], moreover, do

not consider the behavioral component of objects, that is, methods. We think

that this is an important issue because it overcomes the dichotomy between data

and operations of the relational model.

Few proposals moreover, deal with behavioral inheritance and overriding.

In addition to [ALUW93,LO91,McC88], these topics have been addressed in

[BJ95,DT95,JL95]. All these proposals extend F-logic [KL90] (or F-logic varia-

tions) with behavioral inheritance. In F-logic, indeed, only structural inheritance

is directly captured. For behavioral inheritance, the non-monotonic aspects in-

troduced by the combination of overriding and dynamic binding are modeled

only indirectly by means of an iterated �xpoint construction. Moreover, in F-

logic, only ground data expressions, that is, values resulting from the application

of a method, and not method implementations, can be inherited along the in-

heritance hierarchy.

In GuLog [DT95] overriding and conicts arising from multiple inheritance

are investigated, in a model similar to F-logic. In GuLog, however, the schema

and instance levels are separated. In ORLog [JL95] overriding and withdrawal

of properties are supported. Withdrawal is used to prevent the inheritance of

some properties in subclasses. It can thus result in non-monotonic inheritance

of signatures. A reasonable use of that mechanism is for preference speci�ca-

tion for conict resolution in case of multiple inheritance. In [BJ95] Bugliesi and

Jamil also deal with the behavioral aspects of deductive object languages. Their

language, moreover, also allows dynamic subclassing, that is, the de�nition of
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inheritance relationships through rules on schemas (which are not allowed in Gu-

Log and ORLog). Dynamic subclassing raises non-monotonicity problems and

leads to the introduction of a notion of i-strati�cation to guarantee the existence

of a unique stable model. All these proposals, however, despite of their di�er-

ences, deal with overriding on a per-predicate basis and do not consider any form

of state evolution

6

.

A �ner granularity of rule composition is o�ered by languages supporting

embedded implication [BGM96,Fre92,Mil89]. Embedded implication allows one

to realize also some of the other features of our language (such as message passing

and conservative inheritance), but does not account for all of them (for instance,

overriding). We remark, moreover, that our way of supporting such features is

very closely related to the basic modeling notions of the object paradigm. This

makes it easier to develop rule sets and to reuse them.

6 Conclusions

Wehave proposed an approach to express inheritance in deductive object databas-

es. Deductive object databases are based on deductive objects that can change

state. Cooperation among objects is de�ned by inheritance and message pass-

ing. Several types of inheritance have been investigated and a formal operational

semantics for the language is given. This semantics models objects with the gran-

ularity of theory, updates, methods, message passing, and inheritance as well as

transactional behavior. Finally, a prototype has been implemented and a sketch

of the interpreter for Obj

inh

-Datalog is provided.

Our main direction of future work concerns the investigation of the applica-

bility of the proposed approach to other deductive object languages with updates

(such as Transaction F-Logic) and to other declarative object models that allows

to specify dynamic aspects.
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