
A Formal Model of Views for Object-Oriented Database

Systems

Giovanna Guerrini*

Dipartimento di Informatica e Scienze dell'Informazione, Universit�a degli Studi di Genova, Via Dodecaneso, 35 - 16146

Genova, Italy. E-mail: guerrini@disi.unige.it

Elisa Bertino, Barbara Catania

Dipartimento di Scienze dell'Informazione, Universit�a degli Studi di Milano, Via Comelico 39/41 - 20135 Milano, Italy.

E-mail: bertino/catania@dsi.unimi.it

Jesus Garcia-Molina

y

Departamento de Informatica y Sistemas, Universidad de Murcia, Campus de Espinardo - 30071 Espinardo, Murcia,

Spain. E-mail: jmolina@fcu.um.es

The de�nition of a view mechanism is an important issue

for object-oriented database systems, in order to provide

a number of features that are crucial for the development

of advanced applications. Due to the complexity of the

data model, the object-oriented paradigm introduces new

problems in the de�nition of a view mechanism. Several

approaches have been de�ned, each de�ning a particular

view mechanism tailored to a set of functionalities that the

view mechanism should support. In particular, views can be

used as shorthand in queries, can support the de�nition of

external schemas, can be used for content-dependent au-

thorization, and, �nally, can support some form of schema

evolution. In this paper, we formally introduce a view

model for object-oriented databases. Our view model is

comparable to existing view models for what concerns the

supported features; however, our model is the only one

for which a formal de�nition is given. This formal de�ni-

tion of object-oriented view mechanisms is useful both for

understanding what views are and as a basis for further in-

vestigations on view properties. The paper introduces the

model, discussing all the supported features both from a

theoretical and practical point of view. A comparison of

our model with other models is also presented.

1. Introduction

The object-oriented paradigm has been recognized

as a sound basis for a new generation of database sys-
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tems. Indeed, its ability to model complex objects,

together with its modularity and extensibility proper-

ties, overcomes most of the problems arising in the use

of the simple relational model [10]. A general agree-

ment exists on the fact that object-oriented database

features should meet as much as possible functionalit-

ies of the relational database systems [5, 7, 25]. Over

the last years, a considerable research e�ort has been

devoted to explore how the paradigm shift from the re-

lational data model to an object-oriented model a�ects

notions such as query languages, authorization, index-

ing, schema evolution and concurrency control.

An important relational functionality is represented

by views. In the relational model, a view is a virtual

(i.e. not physically stored) relation, de�ned by a query

on one or more stored relations. As relational languages

are closed (i.e. the result of a query expressed in a re-

lational language is a relation), the relation returned

by such a query represents the view content. Thus, re-

lational views can be used in (almost) any context in

which a relation may appear. Moreover, authorizations

may be granted and revoked on views as on ordinary re-

lations. At the same time, views can be used to de�ne

external schemas, in that virtual relations are gener-

ated by combining base relations. Views are an integral

component of the ANSI three-level schema architecture

standard that has driven the construction and use of

relational database systems. Such a schema architec-

ture consists of the storage schema describing the stor-

age structures for a database, the conceptual schema

describing the logical model of the database, and the
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external schema describing the derived views of the con-

ceptual schema for particular users or group of users.

The de�nition of a view mechanism has been recog-

nized to be a fundamental aspect also for the practical

development of object-oriented applications. In this

new context, views should be still used as shorthand in

queries, should support the integration of heterogeneous

databases, should be the basis for content-dependent

authorization and, �nally, should support the simula-

tion of schema changes. Indeed, as it has been recog-

nized by several researchers [8, 11, 34], views allow to

dynamically modify a database schema yet retaining its

older versions, a very important capability for advanced

applications [24]. Moreover, a foundation for external

schemas will complete the development of a three-level

schema architecture for object-oriented database sys-

tems, comparable to that for relational database sys-

tems.

Unfortunately, the de�nition of an object-oriented

view mechanism does not come for free from the rela-

tional approach. The main problems in the de�nition of

an object-oriented view mechanism can be summarized

as follows:

1. The object-oriented model is far more complex

than the relational one. Whereas a relational

schema consists of a set of independent relations, an

object-oriented schema is a class hierarchy, where

classes are connected by inheritance relationships.

A view model should provide an answer to the ques-

tion: How are views integrated in the existing class

hierarchy?

2. Objects have an identity. A view, at the data level,

should be a class. But what are view instances?

Are they values, or existing objects, or newly gener-

ated objects? Note that this problem does not arise

in the relational model, where no strong identity

concept, such as the object identi�er, is modeled.

Several approaches have been proposed to model

views in object-oriented database systems [1, 8, 36, 39,

42] (see [30] for a survey). They address the previous

issues according to di�erent approaches. In general, be-

sides being based upon di�erent data models and ex-

ploiting di�erent query languages to express view pop-

ulations, the proposals di�er for: the set of functional-

ities supported by the view mechanism (shorthand in

queries, external schema de�nition, schema evolution,

authorization, etc.); the approach with respect to the

placement of views in the schema; the properties as-

signed to views objects (i.e., whether or not persist-

ent object identi�ers are provided); the update oper-

ations allowed on views. An optimal solution to the

view mechanism does not exists. Rather, some good

solutions can be de�ned for each class of chosen func-

tionalities. Thus, a view mechanism de�ned to support

schema evolution may be di�erent from a view mechan-

ism de�ned for only using views as shorthand in queries.

The aim of this paper is the formal de�nition of a

view mechanism in the context of the Chimera data

model [21]. Though the view mechanism has been pro-

posed for a particular object-oriented data model, the

basic concepts of our view mechanism can be applied

to other data models as well such as O

2

[19], GemStone

[12], as well as to the ODMG standard [15]. The choice

of Chimera as reference data model is mainly due to the

facts that (i) a formal speci�cation for Chimera exists;

(ii) the model is at the same time deductive, active and

object-oriented. This allows to investigate new insights

in the context of object-oriented view mechanisms, such

as the use of logical languages as a basis for de�ning

views. Note that another interesting topic is related to

the use of other Chimera capabilities, such as logical in-

tegrity constraints and triggers, in view de�nition. This

topic is however left to further research.

Our view mechanism is comparable to (or includes)

existing ones [1, 8, 36, 39, 42] for what concerns the

supported features; however, our model is the only one

for which a formal de�nition is given. Because of the

similarity of features, our de�nition can be adapted to

other object-oriented view mechanisms and, thus, has

value beyond the particular view mechanism we pro-

pose. Following [8], we agree with the requirement

that a view mechanism must support schema evolution.

Moreover, we believe that a view mechanism should al-

low the de�nition of external schemas, as a basis for

developing object-oriented applications. That requires

that a view, at class level, must be usable in any con-

text in which a class may appear. The main features of

our approach thus strictly depend on those choices

1

. In

particular:

�

In de�ning a view, the user can choose among

object-preserving views, object-generating views or

set-tuple views, depending on whether the view is

populated with objects extracted from an existing

class, or the view must be instantiated with new

objects, or the view instances do not require per-

sistent object identi�ers. Set-tuple views allow to

support relations in the object data model, thus

meeting the requirements of relational object mod-

els such as UniSQL [26] or Matisse [2].

�

Following [8], we do not integrate views in the class

inheritance hierarchy. Rather, views are organ-

ized in a separate hierarchy: they are related by a

view inheritance relationship which is analogous to

the inheritance relationship on classes. Moreover,

the schema is extended with a new relationship,

called view derivation relationship, connecting a

view with the classes from which it is derived. The

view derivation hierarchy is orthogonal to the class

inheritance hierarchy.

�

Two view levels are devised: views and schema

views. Views are virtual classes and can be used in
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any context in which classes can be used; schema

views provide the capability of restructuring a

schema so that it meets the need of speci�c ap-

plications. A schema view is a virtual schema, that

is, a schema which consists of views rather than of

classes.

Thus, our model basically extends the view model

presented in [8] with object-preserving views, the view

inheritance relationship and the concept of schema

view. Moreover, we analyze in depth our approach to

the placement of views in schemas, based on the view

derivation relationship.

The contribution of this work is, besides de�ning a

view model for Chimera, the development of a formal

framework within which the main issues concerning the

de�nition of a view model are systematically organ-

ized and formally described. In our opinion, a formal

de�nition for a view model is a useful contribution. It

is crucial in clearly and unambiguously specifying the

features of the view mechanism and it is a founda-

tion based on which properties about views (e.g., up-

date propagation, view maintenance) can be formally

stated and, possibly, better investigated. In particular,

based on this model, we have formally de�ned: sev-

eral notions of consistency for view instances and data-

bases; well-formedness conditions for view inheritance

hierarchies; the notion of view schema closure with re-

spect to aggregation and inheritance hierarchies. To our

knowledge, the above notions have never been formally

de�ned.

This paper is organized as follows. Section 2 briey

describes the Chimera language, introducing the Chi-

mera concepts relevant to our view model. In Section

3, our design choices are discussed and compared with

the most relevant approaches presented in the literat-

ure. The view de�nition language is described in Sec-

tion 4. Sections 5 and 6 present the formal speci�cation

of the view model proposed for Chimera; in particular,

Section 5 introduces views while Section 6 is devoted to

schema views. Finally, Section 7 presents some conclu-

sions and outlines future work.

2. Chimera

Chimera integrates an object-oriented data model,

a declarative query language based on deductive rules

and an active rule language for reactive processing

2

. In

what follows, we �rst introduce the basic notions of the

data model, then present its deductive query language.

2.1. Chimera object-oriented data model

Chimera provides all concepts commonly ascribed

to object-oriented data models. It is worth noting the

following features:

�

Like other object-oriented data models (e.g.

O

2

[19]), Chimera provides both the notions of

values and types and the notions of objects and

classes. Values are instances of types and are ma-

nipulated by primitive operators. Values can be

primitive or complex. Each class is associated with

a type describing the structure of the class in-

stances. Moreover, in order to type variables that

have to be instantiated with objects instances of a

given class, class names are allowed as types.

�

Object attributes can be derived, that is, de�ned

by deductive rules.

�

The implementation of methods may be speci�ed

by an update rule, that is, a rule containing a

sequence of update primitives whose execution is

constrained by a declarative formula, or may be

external, implemented in some programming lan-

guage.

�

Multiple inheritance and multiple class instanti-

ation are supported. Thus, an object can belong

to several classes, even classes not related in the

inheritance hierarchy.

�

Classes are objects. Therefore a class de�nition can

include class attributes, methods and constraints

that collectively apply to the class.

�

Each class has both intensional and extensional

nature.

In the remainder of this section, we recall the aspects

of the Chimera data model relevant to this work. A

complete formal de�nition of the model can be found

in [21].

The set of Chimera types T (that are collection of

values) is de�ned as the union of value types (VT ) and

object types (OT ). Object types are class names and

their instances are object identi�ers. Value types can be

either basic domains (integers, reals, booleans, charac-

ters, strings) or structured types built by applying the

set, list or record constructors to value or object types.

Object types are class names. A Chimera class de�n-

ition consists of two components: the signature, spe-

cifying all the information that the user must know for

using the class, and the implementation, providing an

implementation for the signature. The signature con-

sists of a number of clauses, including the name of the

superclasses and the speci�cation of the class features:

instance and class attributes, instance and class opera-

tions, instance and class constraints, and triggers. The

signature also speci�es for each attribute whether the

attribute is derived or not. The implementation of a

class must specify an implementation for all derived at-

tributes, operations, constraints, at instance as well as

at class level, and triggers that are speci�ed in the sig-

nature.

A Chimera class signature is characterized by a struc-

tural and a behavioral component, specifying the signa-

ture of attributes and methods for objects instances of

that class. In addition, a constraint component contains
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the signature of the constraints on class instances. Be-

ing class attributes supported in Chimera, a class is also

characterized by a time-varying state, whose structure

is speci�ed in the corresponding metaclass. Finally, a

class is characterized by an extent and a proper extent,

denoting the set of all the oids of members of the class

and the oids of instances of the class, respectively. We

recall that, according to the usual terminology, an ob-

ject is an instance of a class if that class is the most

speci�c one, in the inheritance hierarchy, to which the

object belongs. Whenever an object o is an instance of

a class c then o is also a member of all the superclasses

of c.

In addition to a signature, classes have an imple-

mentation. In a Chimera class implementation, derived

attributes and constraints are implemented by means

of deductive rules specifying the computation of values,

and the implementation of an operation is an expression

of the form

3

op name : condition! op code

where op name is the operation name applied to a list of

parameters, condition is a Chimera formula, specifying

a declarative control upon operation execution, while

op code is a sequence of update primitives (object cre-

ation and deletion, object migration from one class to

another and state changes). Side-e�ect free operations

can be expressed in Chimera by rules consisting only of

a condition without op code part. They can be useful

to compute derived data.

Given a type T 2 T , its extension [[T ]] is de�ned as

the set of legal values for that type. The extension of

types, like classes, with an explicit time-varying extent,

is that extent. In particular, for an object type c, [[ c ]]

is the set of oids of members of class c. Starting from

the extensions of prede�ned basic types, which are pos-

tulated, the extensions of other value types are de�ned

in a quite straightforward way [21].

A Chimera object is characterized by an immutable

identi�er and a state. The set of classes to which the

object belongs as an instance is associated with each

object. Each object is required to be instance of one

class.

Chimera provides multiple inheritance and multiple

class instantiation. Inheritance relationships among

classes are described by an ISA hierarchy established by

the user. This ISA hierarchy represents which classes

are subclasses of (inherit from) other classes. A set of

conditions must be satis�ed by two classes related by

the ISA relationship. These conditions are related to

the fact that each subclass must contain all attributes,

operations, constraints (both on the class as well on

the instance level) of all its superclasses. Apart from

the inherited concepts, additional features can be in-

troduced in a subclass. Inherited concepts may be re-

de�ned (overwritten) in a subclass de�nition under a

number of restrictions. Indeed, in Chimera the rede�n-

ition of the signature of an attribute is possible by spe-

cializing the domain of the attribute. The rede�nition

of the signature of an operation must verify the covari-

ance rule for result parameters and the contravariance

rule for the input ones. Therefore, result parameter

domains may be specialized, whereas input parameter

domains may be generalized, in the subclass signature

of the operation. The implementation of an attribute or

an operation may be rede�ned as well, introducing a dif-

ferent implementation of the respective concept, which

\overrides" the inherited de�nition. The rede�nition

of derived and extensional attributes is not allowed if

a derived attribute becomes extensional or vice-versa.

Constraint rede�nition is not currently allowed in Chi-

mera. We also require that the extent of a subclass is a

subset of the extent of all its superclasses.

While the rede�nition of operations does not hinder

the type safety of the language, the rede�nition of at-

tributes must be considered carefully [21]. The cov-

ariant rede�nition of attributes (the domain of an at-

tribute may be specialized in subclasses) reects what

is usually needed when creating a taxonomy of classes;

indeed, when specializing a class the designer usually

needs to add new attributes or to specialize existing

ones. The problems arising when attributes are re-

de�ned in a covariant way along the inheritance hier-

archy have been �rst recognized by Cardelli [14]. The

approach adopted in Chimera is to consider the domains

of attributes as integrity constraints, thus checked run-

time, rather than dealing with them as type constraints,

to be checked statically. Thus, whenever a value is as-

signed to an object attribute we dynamically check that

the value is appropriate for the domain.

At the intensional level (schema level) the ordering

on classes imposed by the ISA hierarchy is said to be

well-de�ned (int-well-de�ned [21]) if each subclass con-

tains all the features of the superclasses, possibly re-

de�ned as sketched previously. At the extensional level

(instance level), the ordering on classes imposed by the

ISA hierarchy is said to be well-de�ned (ext-well-de�ned

[21]) if it is consistent with the set inclusion relationship

on class extents.

A Chimera base schema is a set of classes, related

by inheritance and aggregation relationships, modeling

the structural and behavioral aspects of the problem

domain. A base schema is the database initial schema

de�ned by the system administrator, on which the ob-

ject database is created. An object database is a con-

sistent set of objects, coupled with two functions, one,

referred to as oid assignment, handles class extents,

that is, maps objects to classes, while the other one

assigns values to class attributes. For an object data-

base to be consistent, each object must belong to a class

de�ned in the schema, each object state must contain
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a legal value for each attribute of each class the ob-

ject belongs to, and must meet each constraint in such

classes; �nally, the ISA ordering is required to be ext-

well-de�ned. Given a base schema, S, the term base

object database will denote an object database that is

instance of S; the objects in that database will be re-

ferred to as base objects.

2.2. Chimera formulas and rules

In this subsection we introduce Chimera rules, which

are a mean to express declarative conditions on a data-

base. Besides being used to specify the implementation

of di�erent class features, Chimera rules are used to

express queries. First, we consider the set of Chimera

terms, which is inductively de�ned as follows:

�

variables are terms;

�

values (basic and complex ones), excepts oids

4

, are

terms;

�

path expressions (built making use of the dot nota-

tion) are terms; path expressions may contain at-

tribute accesses and method invocations, provided

that the invoked method is side-e�ect free

5

.

In addition, a number of terms obtained using classical

prede�ned operators for integers, reals, lists and sets

are considered.

Chimera atomic formulas are built by applying a pre-

dicate symbol to a list of parameter terms. As stated

by the following de�nition, we consider three kinds of

atomic formulas

6

.

De�nition 1 (Atomic Formulas) [21]. Chimera

atomic formulas are de�ned as follows:

�

if t

1

; t

2

are terms and op 2 f<;>;�;�;=;==

;==

d

g

7

is a prede�ned predicate, then t

1

opt

2

is

a comparison formula;

�

if t

1

; t

2

are terms, or if t

1

is a term and t

2

2 CI is a

class name, then t

1

int

2

is a membership formula;

�

if t is a term and c is a class (or type) name, then

c(t) is a class formula. 2

Complex formulas (or simply formulas) are obtained

from atomic formulas and negated atomic formulas by

means of conjunctions. All variables are assumed to be

implicitly quanti�ed as in Datalog [16].

De�nition 2 (Formulas) [21]. Formulas are in-

ductively de�ned as follows:

�

all atomic formulas are formulas;

�

if F is an atomic comparison or membership

formula

8

, then :F is a (complex) formula;

�

if F

1

and F

2

are formulas, then F

1

^ F

2

is a (com-

plex) formula. 2

De�nition 3 (Rules) [21]. A Chimera rule is an ex-

pression of the form

Head Body

where Head is an atomic formula and Body is an ar-

bitrary formula, such that each variable in Head occurs

in Body and Body contains exactly one class formula

for every variable appearing in the rule. 2

The interested reader can �nd additional details on

Chimera rules and their semantics in [21].

3. Dimensions in view design

In this section, we discuss the main dimensions in

the design of a view mechanism. For each dimension, we

contrast our choice with the ones made by most relevant

view models in the literature.

Besides choosing a reference data model and a query

language, the main design choices concern:

�

how views are inserted in the database schema;

�

whether views are only populated with base ob-

jects (object-preserving views), or it is possible to

populate a view by creating new objects (object-

generating views).

The choices to be taken with respect to those dimen-

sions are strongly inuenced by the functionalities to be

supported by the view mechanism. In what follows, we

�rst present the goals of the proposed model, and ana-

lyze their implications on the view mechanism. Next,

we analyze the two main dimensions, showing how the

chosen objectives a�ect our choices. Subsection 3.4 con-

cludes the discussion by summarizing in Table 1 the

comparison among our model and other view models

proposed in the literature.

3.1. View functionalities

Whereas relational views have been used for external

schema de�nition, data protection (content-based au-

thorizations) and shorthand for queries, object-oriented

views can be exploited also for other kinds of functional-

ity, such as supporting schema evolution and integrating

heterogeneous databases. The use of views for integ-

rating heterogeneous database schemas has been con-

sidered in [22, 27]: a view de�nition integrates semantic-

ally equivalent classes belonging to di�erent schemas.

The use of views to simulate schema evolution, allowing

the users to experiment with schema changes without

a�ecting other users, was �rst proposed in [8]. Views

can support the implementation of a schema versioning

mechanism, such that any object stored in the data-

base can be accessed and modi�ed from any schema

version including a view of the object class. Recently,

other view models have considered that use of views

[11, 27, 34]. The properties of a view mechanism de-

termines which schema modi�cations can be simulated.

For instance, the models presented in [11, 34] allow to
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simulate the addition of a new attribute to a class be-

cause they consider views which can include non-derived

additional attributes. However, the view model intro-

duced in [27] supports a very limited number of changes

because it does not support neither the generation of

persistent identi�ers for view instances nor views aug-

menting class de�nitions. Views allow the de�nition

of external schemas with the meaning proposed by the

ANSI three-level architecture: each external schema

consists of a set of views and base classes specifying how

a user perceives the database. Some of the proposed

object-oriented view models [29, 42, 39] have considered

external schemas. In those models view de�nitions are

part of a schema view.

The design of our view model has been inuenced by

two main objectives: (i) it must be su�ciently powerful

for supporting all the kinds of schema changes included

in well-known taxonomies [6, 32], and (ii) it must sup-

port the de�nition of external schemas whose proper-

ties are identical to those of a base schema, so that it is

possible to develop object-oriented applications on an

external schema. The second goal implies that classes

and views must have the same nature. In order to sat-

isfy these requirements we have introduced the concept

of schema view. A schema view encapsulates a set of

related view de�nitions, with a well-de�ned purpose,

such as to de�ne an external schema or to perform some

schema changes. The database administrator initially

de�nes a base schema on which the object database is

created. A schema view can be derived from either the

base schema or from another schema view.

3.2. View placement

A relational schema consists of a set of relations,

while an object-oriented schema consists of a class hier-

archy, being classes connected by inheritance relation-

ships. Therefore, an object-oriented view model must

deal with the problem of inserting views in the class

hierarchy. We refer to this problem as view placement

problem. Three kinds of solutions have been proposed

to solve it:

1. Views are automatically positioned in the class

hierarchy by an integration algorithm

[1, 37, 39].

2. The user explicitly speci�es the position of the view

in the class hierarchy [23].

3. The view and class hierarchies are kept separated,

that is, a class can inherit only from classes and

a view can inherit only from views. By contrast,

a view derivation relationship relates a base class

and a view; the semantic of this relationship is \the

view is derived from the base class" [8].

Bearing in mind that views must behave like classes,

the integration of views and classes in a unique schema

may appear the most appropriate solution. However,

solution 1 above has two problems: �rst, the problem

of integrating a view in an existing schema is in general

undecidable [7, 39]; second, the hierarchy may become

very large because of many intermediate classes that are

not semantically meaningful. With the second solution

the mix of classes and views in the same hierarchy may

cause confusion in the user. Moreover, checks must be

made by the system to ensure that the speci�ed posi-

tion is coherent with the de�nition of the view. Note,

moreover, that when one wants to support the mingling

of classes and views in a single inheritance hierarchy the

placement of a view in the inheritance hierarchy must

be made by considering the two aspects of a view de�n-

ition: the signature (list of attributes and methods,

along with their domains) and the extent of the view

(the set of instances that will be materialized when the

query part of the view is evaluated). It may happen

that the type of a view is a supertype of the type of the

class from which it is derived but its extent is a subset

of the extent of that class. Consider as an example a

view extracting (that is, selecting) some objects from

a class and projecting out some of their attributes. In

a well-formed inheritance hierarchy, subtyping and set

containment between class extents go together, since

the extent of a class is de�ned as a subset of the ex-

tent of its superclass(es). Finally, note that none of the

models taking the approach of inserting views in the

class hierarchy supports object-generating views

9

.

Therefore, we think that the more adequate ap-

proach is the separation of classes and views in di�erent

hierarchies, extending the object-oriented schema with

the view derivation relationship, because it leads to a

schema easier to understand. A view can be derived

from other views, but in any case it will always be con-

nected to base classes. With respect to the view deriv-

ation relationship, the term root class always refers to

classes or views from which a view is derived. Let v

be a view derived from the root class c, then the view

derivation relationship denotes that v is a view of c, or,

equivalently, that c is a root class of v.

In order to satisfy the above mentioned goals, it is

also necessary to introduce a view inheritance relation-

ship, similar to the class inheritance relationship exist-

ing in the base schema. The inheritance relationship

is orthogonal to the view derivation relationship. The

view inheritance relationship organizes views in an ISA

hierarchy similar to the class hierarchy. An important

di�erence between class and view inheritance is the fact

that unlike a class, a view is not explicitly populated;

rather its population is derived from the population of

its root classes by the view query. Thus, to ensure that

the instances of a view are a subset of the instances of

its superviews, we impose two restrictions: (i) a view

v

1

can be declared subview of a view v

2

if and only

if the root class of v

1

is a direct or indirect subclass
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of the root class of v

2

, and (ii) the query of a view

must be stronger than the view queries of its super-

views. This topic is dealt with in Subsection 5.3. Like

the second solution, the user is responsible for the de-

clarations of inheritance relationship, but the system

must ensure that the placement of a view does not vi-

olate the semantics of a well-formed view inheritance

hierarchy. Recently, two view models have been pro-

posed which also solve the view placement problem by

combining the view derivation and view inheritance re-

lationships: the extension presented in [42, 41] to the

view model described in [1] for the O

2

system, and the

view mechanism for the UniSQL system [27].

3.3. Object-generating vs object-preserving

views

If views are to be used as classes, it is essential

that their instances are objects, that is, that they are

provided with persistent identi�ers. In most situations

there is indeed the need of referencing view instances.

Two distinct kinds of views can however be identi�ed:

�

object-preserving views: they are views that only

extract objects from existing classes; the instances

of these views can be identi�ed by the identi�ers of

the extracted base objects.

�

object-generating views: they are views creating

new objects; the instances of these views must be

identi�ed by newly generated object identi�ers.

Most of the approaches [31, 43, 40, 38] only consider

object-preserving views. Thus, views only provide dif-

ferent views of existing objects. This approach is par-

ticularly useful for supporting objects with multiple in-

terfaces and context-dependent behavior. In this sense,

object-preserving views are similar to roles [3, 20, 35].

However, this kind of views is not powerful enough for

supporting all kinds of database reorganization. In [33]

a model is described whose views are object-preserving,

but with the capability of including new non-derived

attributes from existing data. By contrast, object-

generating views are proposed in [8] for supporting

schema evolution, so that the evaluation of a query al-

ways returns new objects. Object-generating views are

also considered in [23], where a query can include an oid

function: a partial function indicating that the query re-

turns a set of objects whose identi�ers are generated by

applying the function on the object identi�ers assigned

to its argument variables.

The approach proposed in [1] supports object-

preserving views as well as value-generating views.

Thus, two kinds of views are considered: virtual classes,

populated by objects selected from already existing

classes, and imaginary classes, populated by tuples

for which new oids are generated. Virtual classes

are de�ned by specialization or generalization of base

classes, while imaginary classes are declared by queries

that return sets of values. In this approach, an imagin-

ary class C is populated by a query that returns a set

of tuples. To each tuple t an oid denoted as C(t) is as-

signed, using a function associated with the class that

is applied to the tuple. Thus, in this approach quer-

ies create relations rather than creating sets of objects.

Therefore, queries cannot be used to de�ne views, since

it is necessary to convert tuples into objects outside the

query language. This object \creation" is performed at

each view evaluation, thus the problem arises of assign-

ing the same oid to the same tuple at each evaluation.

In our model, we consider both object-preserving and

object-generating views. Thus, when the view query

evaluation involves the creation of view instances in or-

der to populate the view class (e.g. a join operation),

new oids are generated. By contrast, when views are

populated by extracting existing objects from a class,

possibly, modifying their structure and behavior, (e.g.

a selection or projection operation) the view instances

preserve the identi�ers of base objects, instead of gen-

erating new objects. The support of object-preserving

views requires that an object instance of a base class

can also be an instance of all those views whose query is

satis�ed by the object. Thus, the use of the same iden-

ti�er for denoting an object which is instance of both a

class and a view implies that references to this object

can only be solved by taking into account the context of

the reference. However, this is already the case in Chi-

mera, because the language supports objects belonging

to multiple most speci�c classes [9]. We will elaborate

further on the problem of solving object references in

Subsection 6.3.

Together with views generating objects, we also allow

a user to specify that the instances of a view are not ob-

jects, and thus are not provided with persistent identi-

�ers. Therefore persistent identi�ers are generated only

when needed, that is, only when the view must be used

as a class. Views whose instances are values rather than

objects (which we refer to as set-tuple views) are use-

ful to include relations in the object data model , thus

providing a form of downward compatibility with re-

spect to the relational model. However, views, whose

instances are not provided with persistent identi�ers,

can only be used as shorthand in queries and cannot

have additional attributes. As a default, we assume

the view query returns a set of persistent objects, so

that the view has an extension de�ned as the set of the

oids of objects that belong to the view (both for object-

generating and object-preserving views). Whereas the

user needs to specify whether a view generates persist-

ent identi�ers or not, the system will be able to check

whether a view preserves or generates objects, by ana-

lyzing the view query, as we will see later in Section

4.
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3.4. Discussion

Table 1 compares the most relevant proposals for

object-oriented view mechanisms, by taking into ac-

count the dimensions dealt with throughout the section.

The table shows that our view model aims at supporting

both external schemas and schema evolution. Moreover,

we choose to support both object-preserving and object-

generating views. As far as the view placement prob-

lem is concerned, in our approach we separate the class

and the view hierarchies. A view is linked to its root

classes by a view derivation relationship which is or-

thogonal to the inheritance relationship among classes.

Views are moreover related by an inheritance relation-

ship that results in a ISA hierarchy, just as classes. A

schema view is a set of related view de�nitions for a

well-de�ned purpose (e.g. de�ne an external schema,

de�ne a schema change, de�ne an authorization unit);

a view must be part of a schema view.

Finally, we have considered whether the model allows

a view to add new non-derived attributes. A view may

indeed hide, modify and add features to those of the

classes (or views) it is derived from. All models allow

to hide features, as well as to add new methods and to

change the implementation of methods. The addition

of non-derived attributes has only been considered in

some models supporting schema evolution. This prop-

erty, obviously, increases the number of possible schema

changes, but on the other hand it makes the implement-

ation more di�cult. Our model has this augmentation

capability, thus view instances can have an additional

storage for new attributes. Of course, other actions

(e.g. hide attributes, hide/add/modify methods) are

also possible.

4. Chimera view de�nition language

In this section we describe the view de�nition lan-

guage proposed for Chimera, designed according to the

basic choices we have discussed in Section 3. In our

model, a view is de�ned as a query on one or more base

classes whose result is a new class, as a natural adapta-

tion of relational views. A view is identi�ed by a name,

which is the proposed identi�er for the view. A view

de�nition is thus similar to a class de�nition (name, list

of attributes, list of methods, list of constraints) except

that it includes a query on one or more base classes de-

termining the view population. A view can be used just

like a class. For example, the domain of an attribute,

parameter or variable of a view can be another view.

Throughout the paper, we use as a running ex-

ample the base schema presented in Figure 1. The

classes of the FacultyLibrary schema only contain in-

stance attributes, the other features are excluded for

the sake of simplicity. The symbol `*' denotes that

loanMember
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loanDate

devolutionDate

LoanPublication

title

year

editorial

month

volumen

periodicity

Journal Book

Author

Inheritance 

Aggregation

Member

Student Professor

name

code

faculty

course

department

category

address

number

city

Address

street

memberLoans*

name

profession

writtenBooks*

address

authors*

isbn

week-end

onLoan

vatCode

vatCode

FIG. 1. FacultyLibrary example schema.

Publication

title

year

editorial

month

volumen

periodicity

JournalBook

number

city

Address

street

Author

name

profession

writtenBooks*

address

title

year

editorial

Magazine VBook

VPublication

Class Inheritance

 Aggregation

View Derivation

View Inheritance

authors*

isbn

week-end

authors*

isbn

month

manager

vatCode

onLoan

Bibliography Schema

FIG. 2. Schema including views derived from the

FacultyLibrary schema.

an instance attribute is multi-valued. Figure 2 shows

a schema view named Bibliography derived from the

FacultyLibrary base schema of our running example.

This schema view illustrates how view derivation and

view inheritance relationships can be used when views

are derived from a given schema, in order to create a

new schema. The Bibliography schema contains the

views Vpublication, Magazine and Vbook which have

been derived from the classes Publication, Journal

and Book, respectively. In this example, the root classes

are base classes because the view schema is derived

from the base schema. The view Magazine has an ad-

ditional attribute, manager, and hides the attributes

periodicity and volumen; the view Vbook has no addi-

tional attributes and hides week-end and onLoan, while

the view Vpublication imports all the attributes from
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TABLE 1. Comparison of the Chimera view model with other OO view models

[8] [27] [36] [39] [42] Our model

data model general UniSQL MultiView COCOON O

2

Chimera

query object-oriented deductive

language predicate calculus Object SQL Object algebra Object algebra O

2

rules

external schemas NO NO YES NO YES YES

schema evolution YES L.F. L.F. L.F. L.F. YES

view integration separate view separate view views inserted in views inserted in separate view separate view

problem hierarchy hierarchy class hierarchy class hierarchy

a

hierarchy hierarchy

object-preserving/ no persistent

object-generating generating identi�ers preserving preserving both

b

both

augment class

de�nition YES NO YES NO NO YES

Legenda: L.F. limited form

a

For operator individuals, it is speci�ed how the view is inserted in the class hierarchy, but the classi�cation of the views resulting of

composite queries is not addressed.

b

Actually, a query may return a set of tuples that are converted to new objects outside the query language.

VIEW SIGNATURE ViewName

FROM RootClasses

IMPORTED-FEATURES

ATTRIBUTES ListOfImpAttrib

OPERATIONS ListOfImpOper

CONSTRAINTS ListOfImpCons

C-ATTRIBUTES ListOfImpCattrib

C-OPERATIONS ListOfImpCoper

C-CONSTRAINTS ListOfImpCconst

ADDITIONAL-FEATURES

ATTRIBUTES ListOfAddAttrib

OPERATIONS ListOfAddOper

CONSTRAINTS ListOfAddConst

C-ATTRIBUTES ListOfAddCattrib

C-OPERATIONS ListOfAddCOper

C-CONSTRAINTS ListOfAddCconst

VIEW-QUERY SetOfDeductiveRules

SUPERVIEWS ListOfViews

OID bool

FIG. 3. View speci�cation statement

the class Publication and does not add new attrib-

utes. For the remaining features, we suppose that the

views import all features from their root classes and

do not augment class de�nitions. The views Magazine

and Vbook have been declared subviews of the view

Vpublication. Note that the view Vpublication is

the identity view

10

of the class Publication, being in-

tended to have a hierarchy of publications in the schema

view. As remarked in [39], schema views must sat-

isfy some consistency constraints concerning the schema

closure. For instance, because the domain of the attrib-

ute authors* is the class Author, the closure of the

schema view Bibliography must contain the identity

views of classes Author and Address. The closure of

schema views will be discussed in Subsection 6.1.

As for Chimera classes, we can distinguish two com-

ponents in a view de�nition: speci�cation and imple-

mentation. They are dealt with in the following subsec-

tions.

4.1. View speci�cation

The format of a view de�nition statement is shown in

Figure 3. The clauses of the view de�nition statement

in Figure 3 have the following meaning:

�

ViewName denotes the view name and must be dis-

tinct from the names of all existing views and

classes.

�

The FROM clause lists the root classes (which can

be either classes or views) from which the view is

derived.

�

The IMPORTED-FEATURESand ADDITIONAL-FEATURES

clauses specify the view features, distinguishing

between imported and additional ones. They are

discussed in detail in Subsection 4.1.2..

�

The VIEW-QUERY clause speci�es the population of

the view, by means of a set of Chimera deductive

rules. It is discussed in detail in Subsection 4.1.1..

�

The SUPERVIEWS clause declares the superviews of

the view which is being de�ned, in a similar way as

for classes. In Subsection 5.3 we will further discuss

the meaning of this relationship.

�

The OID clause contains a boolean value, indicating

whether persistent object identi�ers are provided

for view instances. The default value is true. The

false value is used for views whose instances are

not provided with persistent identi�ers, being thus

values rather than objects (set-tuple views).
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Some view de�nition statements are presented in Ex-

amples 1 and 2. They use the FacultyLibrary schema

of Figure 1.

Example 1. Suppose we wish to consider a class rep-

resenting magazines whose periodicity is weekly. We

can derive the Magazine view from the Journal class,

populated with all the objects from Journal class such

that periodicity = `weekly'. The view has an addi-

tional attribute representing the magazine editor while

the volumen and periodicity attributes are hidden.

The VPublication view is declared as a superview of

the view Magazine.

VIEW SIGNATURE Magazine

FROM Journal

IMPORTED-FEATURES

ATTRIBUTES -volumen, -periodicity

ADDITIONAL-FEATURES

ATTRIBUTES manager: string

OPERATIONS changeManager(in NewMan:string)

VIEW-QUERY Magazine(X) Journal(X),

X.periodicity = `weekly'

SUPERVIEWS VPublication

OID true

�

Example 2. Suppose we wish to de�ne a class con-

taining all professors which are authors of some book

published by the University Editorial and available

in the library. We can de�ne the view ProfAuthor as a

view-query expressing an explicit join among the classes

Professor and Author, through the vatCode attribute

included in the two classes.

VIEW SIGNATURE ProfAuthor

FROM Author, Professor

IMPORTED-FEATURES

ATTRIBUTES name of Author,

vatCode of Author,

bookTitles: set-of(string) derived,

city: author.address.city

ADDITIONAL-FEATURES

OPERATIONS changecity(in City: string)

VIEW-QUERY ProfAuthor(X) Author(Y),

Professor(Z), Book(W),

Y.vatCode = Z.vatCode,

W in Y.writtenBooks,

W.editorial = `University Editorial'

OID true

�

4.1.1. View query Whereas most view models ex-

press the view query by an object algebra or calculus, we

use Chimera deductive rules. The VIEW-QUERY clause

contains one or more Chimera deductive rules specify-

ing the view population. The head of these rules is a

class formula on the name of the view whose population

is being de�ned and the body is an arbitrary formula on

instances of the root classes. We remark that only side-

e�ect free methods are allowed in queries. From now

on, the view-query term will denote the collection of

rules that de�ne the view population. The view-query

de�nes the extension of the view, while the structure

of each instance belonging to this extension is based on

imported and additional attributes.

Example 3. The following query de�nes the pop-

ulation of a view CsStudent derived from the class

Student of the schema FacultyLibrary, retrieving the

students whose faculty is Computer Science and that

have borrowed at least a book.

CsStudent(X) Student(X), Book(Z),

X.faculty = `Computer Science',

Z in X.memberLoans

�

If the variable of the class formula in the head of

the rule appears in (a class formula of) the rule body,

then the view is an object-preserving view (examples

of object-preserving views are the views of Example 1

and of Example 3), otherwise the view is an object-

generating view (an example of object-generating view

is the view of Example 2).

For object-preserving views, if the class formula in

the rule body which contains the variable in the head

of the rule is on the root class c, then the view instances

are objects extracted from c. Thus, all the members of

c that satisfy the body of the rule are instances of the

view. For example, instances of the CsStudent view of

Example 3 are objects belonging to class Student. By

contrast, the query of an object-generating view returns

a set of base object tuples. For each tuple in this set a

new object is generated and added to the view exten-

sion, and the correspondence between the new object

identi�er and the base object identi�er is stored in a

persistent table, named Derived By. It is sometimes

useful, in the de�nition of the implementation for de-

rived imported attributes, to explicitly refer to the base

objects a certain view object has been derived from. We

thus extend the syntax of Chimera deductive rules with

a special atomic formula built using the ternary predic-

ate derived-by, whose �rst argument is the identi�er

of a view instance, second argument is a class identi�er

and third argument is an object identi�er. The third

argument is bound to the base object, instance of the

speci�ed class, from which the speci�ed view object has

been derived. This predicate is simply a mean to refer

to the Derived By table from the body of a deductive

rule.

If the instances of a view are newly generated objects,

the view-query of such a view contains a variable in the

head which is not contained in any atomic formula in

the body. In such cases, we may think that an atomic

formula next-oid(X) is automatically added to the rule
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body, being X the variable appearing as argument of the

class formula in the rule head, denoting the newly gen-

erated object. In Example 2 the body of the view-query

will include next-oid(X), being the rule head the class

formula ProfAuthor(X). The meaning of atomic formu-

las built with the next-oid predicate is the following:

1. a new object identi�er must be generated for each

successful evaluation of the formula in the rule

body;

2. the generated identi�er must be added to the view

extension;

3. for each new generated oid, an entry containing

the generated oid and the oids of base objects from

which it has been derived, must be stored in the

Derived By table.

Note that a view-query may consist of several de-

ductive rules. Thus, our view language is able to ex-

press views de�ned by queries on a union of classes us-

ing alternative predicates [8], as shown by the following

example. The example also shows that it is possible to

de�ne an object-preserving view by extracting objects

from two or more root classes.

Example 4. The following query retrieves all the

members that have borrowed at least one book, such that,

if they are student, their faculty is Computer Science

and if they are professors, their category is full time.

LoanMembers(X) Student(X), Book(Z),

Z in X.memberLoans,

X.faculty = `Computer Science'

LoanMembers(X) Professor(X), Book(Z),

Z in X.memberLoans,

X.category = `full time'

�

Finally, we remark that at the time being we do not

consider recursive views. A view v can be de�ned in

terms of another view v

0

provided that v

0

is not de�ned,

directly or indirectly, in terms of v. Thus, each view can

be ultimately seen as de�ned in terms of base classes.

4.1.2. Imported and additional features Besides

specifying the root classes and the query de�ning the

view, the view signature also speci�es information on

view features. We distinguish between imported and ad-

ditional view features: imported features are obtained

from one of the root classes, while additional features

are explicitly de�ned for the view. When considering at-

tributes, however, a view can have some attributes not

belonging to the signature of any root class, but whose

value can be derived (that is, computed) starting from

the values of some attributes in the root classes. We

consider this kind of attribute as imported rather than

as additional, to remark that for additional attributes

new storage space must be allocated and a value must

be provided for each view object, since all additional

attributes have a null value upon view materialization.

In the IMPORTED-FEATURES clause of the view de�n-

ition statement, ListOfImpOper, ListOfImp-Const,

ListOfImpCattrib,ListOfCoper and ListOfImpCconst

denote the lists of features imported from root classes.

In the case of imported attributes, ListOfImpAttrib

speci�es which attributes among the ones of the base

objects retrieved by the query are part of the view in-

stances. For each clause the associated list contains one

or more items specifying which features are imported.

There are di�erent options to specify the imported fea-

tures: listing the features to be imported, specifying

that all the features (of a root class) are imported, spe-

cifying that a feature is hidden, or specifying that a

feature is renamed in the view. The option of specify-

ing which features (of a given root classes) are hidden is

useful when the number of imported features is greater

than the number of hidden ones; another important (se-

mantic) advantage of allowing the speci�cation of hid-

den features rather than requiring the speci�cation of

imported ones, is that the view may change if the root

class changes, e.g. if new attributes are added to the

root class they are added to the view in the former case,

whereas they are not added in the latter. In the case of

imported attributes, there are two additional formats

for introducing derived attributes not corresponding to

any attribute of the root classes, but whose value can be

computed from attributes in the root classes by means

of Chimera deductive rules. Those attributes are part of

the state of the instances of the view but do not belong

to the state of any base object the view object is derived

by. A �rst option is to indicate that a view attribute is

derived; its implementation must be given in the view

implementation (see Example 5 below). The derived

imported attribute bookTitles in the view of Example

2 could be implemented by the following deductive rule:

X in self.bookTitles Author(Y), Book(W),

derived-by(self, Author, Y),

W.editorial = `University Editorial',

Y in W.authors

The above option supports the rede�nition of the do-

main of an attribute imported from a root class. It may

be useful for restricting the domain of an attribute to a

subtype of the current attribute type, or for changing it

to a view derived from the class which is the attribute

domain.

A second option is to specify that a view attribute

corresponds to a nested attribute of one of the root

classes of the considered view. Example 2 shows the

speci�cation of a view called ProfAuthor where the im-

ported attribute city is de�ned through the path ex-

pression Author.address.city. This expression spe-

ci�es that the view ProfAuthor has an attribute named

city whose value, for each object o belonging to the
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view, is the value of address.city in the base object

from root class Author by which o is derived

11

.

The various formats for importing features in view

speci�cation are speci�ed in Appendix A.

In the ADDITIONAL-FEATURES clause of the view

de�nition statement, ListOfAddAttrib, ListOf-

AddOper, ListOfAddConst, ListOfAddCattrib, List-

OfAddCoper and ListOfAddCconst denote lists of ad-

ditional features speci�cations, one list of signatures for

each kind of feature. A feature signature is expressed

exactly like in class signatures.

4.2. View implementation

The view implementation is exactly like a class imple-

mentation, including the set of Chimera deductive rules

that specify the implementation of the imported and

additional derived attributes, methods and constraints.

The de�nition of a view implementation has the format

presented in Figure 4.

Example 5. The implementation of the view Prof-

Author of Example 2 may be speci�ed by the following

statement.

VIEW IMPLEMENTATION ProfAuthor

ATTRIBUTES

X in self.bookTitles Author(Y), Book(W),

derived-by(self, Author, Y),

W.editorial = `University Editorial',

Y in W.authors

OPERATIONS

changecity(City) :

! modify(ProfAuthor:city;Self;City)

�

We remark that the view implementation is ex-

pressed by making use of Chimera deductive rules, as

de�ned in Section 2, extended as follows:

�

the rules specifying the view population may con-

tain a variable in the head that do not appear

in any atomic formulas in the bodies; this is the

format for specifying object-generating views and

it is handled, as seen in Subsection 4.1.1., by in-

serting in the rule body a special atomic formula

on the next-oid predicate;

�

the rules specifying the implementation for derived

attributes may contain, in their body, atomic for-

mulas on the ternary predicate derived-by, which

allows to refer to the base object(s) from which the

view object at hand has been derived.

VIEW IMPLEMENTATION ViewName

ATTRIBUTES derived attribute implementation

OPERATIONS operation implementation

CONSTRAINTS constraint implementation

C-ATTRIBUTES derived c-attribute implementation

C-OPERATIONS c-operation implementation

C-CONSTRAINTS c-constraint implementation

FIG. 4. View implementation statement

5. Formal de�nition of the Chimera view

model

In this section, the view model proposed for Chimera

is formally de�ned. First of all, we de�ne the notion of

view and we discuss what view instances are. Then, a

subview relationship is de�ned, showing how views can

be part of view hierarchies like classes are part of class

hierarchies.

In the following, let OI denote a set of object identi-

�ers and CI denote a set of class identi�ers. Moreover,

we consider a set of type names T N , a set of attribute

names AN , a set of method names MN and a set of

constraint predicate symbols PN . Finally, V denotes

the set of Chimera values, de�ned starting from basic

values and object identi�ers and applying the set, list

and record constructors [21]. From now on, we make

use of the dot notation to refer to the components of a

tuple: t:c denotes the component of the tuple t named

c.

5.1. Views

As for classes, we consider two components in a

view: signature and implementation, which derive from

the speci�cation and implementation components in the

view de�nition statement, respectively.

5.1.1. View signature In the following, let VI de-

note a set of view identi�ers, and CVI denote the set of

class and view identi�ers, thus, CVI = VI [ CI. Fur-

thermore, in order to de�ne how the signature of a view

is obtained from the view de�nition statement, given a

view de�nition V , we de�ne the following structures:

�

iStruct(V ): it is obtained from the lists

listOfImpAttrib and listOfImpCattrib. It con-

tains the information on attributes and c-attributes

imported from the root classes. It is a record

value with two sets named inst (including instance

attributes) and class (including class attributes),

whose items are triples

(a name; a dom;a st)

where

{ a name 2 AN is the attribute name
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{ a dom 2 T is the attribute domain

{ a st 2 fext; derg is the attribute type, that is,

whether it is extensional or derived.

�

iBeh(V ): it is obtained from the lists listOfImpOper

and listOfImpCoper. It contains the information

on methods and c-methods imported from the root

classes. It is a record value with two sets named

inst (including instance methods) and class (in-

cluding class methods), whose items are pairs

(op name; op sign)

where

{ op name 2 MN is the method name

{ op sign is the signature of the method, ex-

pressed as

T

1

� : : :� T

k

! T

with T

1

; : : : ; T

k

and T types in T , represent-

ing, respectively, domains of input and output

parameters of the method.

�

iConst(V ): it is obtained from the lists listOfImp-

Const and listOfImpCconst. It contains the in-

formation on constraints and c-constraints impor-

ted from the root classes. It is a record value

with two sets named inst (including instance con-

straints) and class (including class constraints),

whose items are pairs

(con name; con sign)

where

{ con name 2 PN is the constraint name

{ con sign is the signature of the constraint, ex-

pressed as

T

1

� : : :� T

k

with T

1

; : : : ; T

k

types in T , representing do-

mains of the output parameters of the con-

straint.

�

aStruct(V ): it is obtained from the lists

listOfAddAttrib and listOfAddCattrib. It is ex-

actly like iStruct, but it contains information on

additional attributes instead of on imported ones.

�

aBeh(V ): it is obtained from the lists listOfAddOper

and listOfAddCoper. It is exactly like iBeh, but

it contains information on additional methods in-

stead of on imported ones.

�

aConst(V ): it is obtained from the lists

listOfAddCconst and listOfAddCconst. It is ex-

actly like iConst, but it contains information on

additional constraints instead of on imported ones.

Table A1 in Appendix A speci�es how the introduced

structures are obtained from the corresponding �elds in

the view speci�cation statement.

De�nition 4 (View Signature). Given a view spe-

ci�cation V , the corresponding view signature is a tuple

V C = (id; struct; beh; constr; state;mc; q)

generated as follows:

�

id 2 VI is the view identi�er speci�ed in the view

de�nition;

�

struct = aStruct(V ):inst [ iStruct(V ):inst;

�

beh = aBeh(V ):inst [ iBeh(V ):inst;

�

constr = aConst(V ):inst [ iConst(V ):inst;

�

state is a record value, containing the values

for the view attributes which are obtained from

aStruct(V ):class [ iStruct(V ):class; two addi-

tional �elds belong to the record, extent and

proper extent;

�

mc is the identi�er of a virtual metaclass corres-

ponding to the view. This identi�er can be any

name not used as name of other class or metaclass.

The metaclass is derived as follows:

{ struct = aStruct:class(V )[ iStruct:class(V )

[ f(proper extent; set-of(id); extensional);

(extent; set-of(id); extensional)g;

{ beh = aBeh:class(V ) [ iBeh:class(V ),

{ constr = aConst:class(V )[ iConst:class(V );

�

q is the view-query, that is, a set of deductive rules

specifying the view population; this set is exactly

the one speci�ed in the VIEW-QUERY clause of the

view de�nition statement. 2

The attributes extent and proper extent in the view

state denote respectively the set of all the oids of objects

members of the view and the oids of objects instances

of the view. Therefore the proper extent �eld of the

view state contains the set of objects belonging to the

view and not belonging to any of its subview in the view

inheritance hierarchy.

Example 6. Referring to the view ProfAuthor spe-

ci�ed in Example 2, the corresponding view signature is

as follows. Let f (name, string, ext), (vatcode, integer,

ext) g be included in the struct component of the class

identi�ed by Author. Let E and PE denote two sets of

(view) object identi�ers such that PE � E. Then:

V C:id = ProfAuthor

V C:struct = f (name; string; ext); (vatcode; integer; ext);

(bookTitles; set-of(string); der);

(city; string; der)g

V C:beh = f(changecity; string ! ProfAuthor)g

V C:constr = ;

V C:state = (extent : E; proper extent : PE)

V C:mc = MProfAuthor

V C:q = ProfAuthor(X) Author(Y), Professor(Z),

Book(W), Y.vatCode = Z.vatCode,

W in Y.writtenBooks,

W.editorial = `University Editorial'

�

The identi�er of a view V C denotes the object type

corresponding to V C. Such object type is the type of

the identi�ers of the objects instances of the view. A
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value type is moreover implicitly associated with each

view, representing the type of values that constitute the

state of the view instances. If the struct component of

a view V C is the set f(a

1

; T

1

; at

1

); : : : ; (a

n

; T

n

; at

n

)g,

each object instance of V C must have as state a value

of (record) type record-of(a

1

: T

1

; : : : ; a

n

: T

n

). This

type, which describes the structure of the objects in-

stances of the view, is the structural type of the view,

and it is denoted by stype(v), being v 2 VI the view

identi�er of V C (V C:id = v). Two components can be

distinguished in the state of a view instance: an addi-

tional component and an imported component. There-

fore, given the view structural type stype(v) = record-

of(a

1

: T

1

; : : : ; a

n

: T

n

), it is possible to partition this

record type in two record types:

�

stype imp(v) = record-of(a

1

: T

1

; : : : ; a

k

: T

k

),

and

�

stype add(v) = record-of(a

k+1

: T

k+1

; : : : ; a

n

:

T

n

), for a k � n

where we assume that iStruct(V ):inst = f(a

1

; T

1

; at

1

);

. . . , (a

k

; T

k

; at

k

)g and aStruct(V ):inst = f(a

k+1

; T

k+1

;

at

k+1

); . . . , (a

n

; T

n

; at

n

)g. Therefore, stype add(v) de-

notes the additional structural type while stype imp(v)

denotes the imported structural type. We distinguish

these two components in the structural component of

a view, because the additional component is related to

additional attributes that must be stored for view in-

stances, whereas the imported component is related to

attributes imported from root classes. The values of the

imported component are, therefore, retrieved (or com-

puted) starting from values already stored in the data-

base. The system does not allocate space for imported

attributes, while it does for additional ones.

The set of the classes

12

from which a view is de-

rived can be represented as a function defined on :

VI ! 2

CVI

. This function returns the elements of the

RootClasses list in the FROM clause of the view de�n-

ition statement. For example, referring to Example

2, defined on(ProfAuthor) = fProfessor; Authorg.

Note that, since views can be de�ned in terms of other

views, the function defined on returns a set containing

base classes as well as views. It is however possible to

determine the base classes on which a view is de�ned, by

recursively applying function defined on. For that pur-

pose the function defined on

�

: VI ! 2

CI

, de�ned as

follows, can be used: defined on

�

(v) = defined on(v)

if defined on(v) � CI, whereas defined on

�

(v) =

fc

1

; : : : ; c

k

g[ defined on

�

(v

1

)[: : :[ defined on

�

(v

h

) if

defined on(v) = fc

1

; : : : ; c

k

; v

1

; : : : ; v

h

g; fc

1

; : : : ; c

k

g �

CI and fv

1

; : : : ; v

h

g � VI.

We represent through a boolean function oid : VI !

Bool whether or not the view instances are provided

with persistent identi�ers, according to the boolean

value speci�ed in the OID clause of the view de�n-

ition statement. Moreover, we represent through a

boolean function new oid : VI ! Bool whether the

view is object-generating or object-preserving. That is,

new oid(v) = true for object-generating views, while it

is false for object-preserving ones.

5.1.2. View implementation A view implementa-

tion consists of three sets of rules:

1. a set of deductive rules specifying the implementa-

tions of the view derived attributes; an implement-

ation must be provided for

�

each additional derived attribute; in this case

the implementation is speci�ed in the imple-

mentation part of the view de�nition;

�

each imported attribute declared as derived

in the signature part of the view de�nition; in

this case the implementation is speci�ed in the

implementation part of the view de�nition;

�

each imported attribute which is derived in

the root class from which it is taken; in this

case the implementation is the same as the one

in the (implicitly or explicitly) referred class;

�

each imported attribute declared as a : c:a

1

: � � � :a

n

in the signature part of the view de�nition; in

this case the implementation consists of

a. the rule

self:a = X  c(Y ); Y = self;

X = Y:a

1

: � � � :a

n

if new oid(v) = false;

b. the rule

self:a = X  c(Y ); derived by(self; c; Y );

X = Y:a

1

: � � � :a

n

if new oid(v) = true;

2. a set of deductive rules specifying the constraints

on the view population; this set consists of the rules

speci�ed in the view class implementation for addi-

tional constraints and the rules in the intended root

class implementation for imported constraints;

3. a set of update rules specifying the implementation

of the view operations; this set consists of the rules

speci�ed in the view class implementation for addi-

tional operations and the rules in the intended root

class implementation for imported operations.

De�nition 5 (View Implementation). Given a

Chimera view signature

V C = (id; struct; beh; constr; state;mc)

an implementation for V C consists of a set of deductive

rules, specifying

�

an attribute implementation for each derived at-

tribute in struct;

�

a constraint implementation for each constraint in

constr;

�

an operation implementation for each operation in

beh. 2
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Example 7. The implementation of the view of Ex-

ample 6 consists of the following rules.

X in self.bookTitles Author(Y), Book(W),

derived-by(self, Author, Y),

W.editorial = `University Editorial',

Y in W.authors

self:city= X Author(Y),

derived-by(self, Author, Y),

Y.address.city = X

changecity(City) :

! modify(ProfAuthor:city;Self;City).

�

5.2. View instances

In our approach, the evaluation of a view de�ni-

tion results in a view whose instances have a structure

de�ned by function stype introduced above. Thus, a

view is a class and, if the value speci�ed in the OID

clause of the view de�nition statement is true, its in-

stances are objects referred through immutable identi-

�ers. The extent of a view may consist of objects ex-

tracted from an existing class or view (for the views

v such that new oid(v) = false), or it may consist

of newly generated objects (for the views v such that

new oid(v) = true). In the �rst case, the extracted ob-

ject is, obviously, an instance of the class from which

it has been extracted and it is also an instance of the

view. Thus, the object belongs to multiple most spe-

ci�c classes. We have addressed the problem of objects

belonging to multiple most speci�c classes in [9] where

only base classes are considered. Here, we extend that

approach by considering also views. Thus, an object

may belong to several most speci�c classes and to a set

of views derived from them. The notion of object can

be formalized as follows.

De�nition 6 (Object). An object is a tuple

o = (i; v; V S)

where:

�

i 2 OI is the identi�er of o;

�

v 2 V is a value, called state of o;

�

V S � CVI is the set of most speci�c classes and

views to which o belongs. 2

For object-generating views, a new persistent oid is

generated for each view instance, in the same way as

base object identi�ers are generated upon object cre-

ation. The objects generated by the view evaluation

have only a virtual nature (though part of their state,

that is, the values for additional attributes, is stored)

and are referred to as view objects. They are objects

according to De�nition 6, though they do not belong to

any base class. We may thus partition the set OI of ob-

ject identi�ers in two sets: BOI , the set of base object

identi�ers; and VOI, the set of view object identi�ers,

that is, the set of identi�ers corresponding to view ob-

jects, generated upon view materialization. An object

o has an identi�er belonging to VOI if it has only a

virtual nature, that is, if it is not an instance of any

base classes.

De�nition 7 (View Object). A view object is an

object o de�ned according to De�nition 6 such that

�

o:i 2 VOI, and

�

o:V S � VI. 2

We remark that o:i 2 VOI ) o:V S � VI , that

is, a view object belongs only to views. By contrast,

o:i 2 BOI ) 9c 2 o:V S such that c 2 CI, that is, a

base object belongs to at least one base class.

The function derived by : VOI ! 2

BOI

, for each

view object identi�er i 2 VOI , returns the set of iden-

ti�ers of base objects from which the view object iden-

ti�ed by i has been derived. This function is de�ned

by recursively replacing each view object identi�er i

with the set of identi�ers appearing in the columns of

the Derived By table row, whose �rst column con-

tains i. This process ends when the set contains only

base object identi�ers. If, given a view identi�er v,

defined on

�

(v) = fc

1

; : : : ; c

n

g then, for each view ob-

ject identi�er i such that i 2 [[ v ]] , derived by(i) =

fi

1

; : : : ; i

n

g and for each j; 1 � j � n, a class c

k

exists,

1 � k � n, such that i

j

2 [[ c

k

]] .

5.2.1. Object state The state of an object belong-

ing to several most speci�c classes (and views), should

be a record value having as �elds the union of all the

attributes in those classes. However, the sets of attrib-

utes in the object most speci�c classes and views may

be non-disjoint. To handle this situation we introduce

the notion of source of an attribute. If an attribute

belongs to the intersection of the attribute sets of two

classes and it has in both classes the same source, then

the attribute is semantically unique, and thus the ob-

ject must have a unique value for this attribute. If, by

contrast, the attribute has di�erent sources, then the

two attributes in the two classes (views) have accident-

ally the same name, but represent di�erent information,

that must be kept in separate ways. Thus, the object

may have two di�erent values for the two attributes (a

renaming policy is applied).

We now specify the notion of source of an attribute.

For base classes

13

, the source of an attribute a in a

class c is the most general superclass of c in which the

attribute a is de�ned. Thus, it is the class from which

c has inherited attribute a. Two base classes have a

common attribute with the same source if they inherit
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it from a common superclass. For views, the source of

an attribute can be:

�

either the view itself, if the attribute is neither in-

herited nor included (with the meaning speci�ed

below) from any root class;

�

the source of the attribute in the most general su-

perview from which the view has inherited the at-

tribute, for inherited attributes;

�

the source of the attribute in the root class from

which the view has taken the attribute, for included

attributes.

In the second case, the most general superview from

which the view has inherited the attribute is determined

as for base classes [9]. In order to better explain the

third case, consider the di�erent formats for imported

attributes presented in Appendix A. In cases a) and c)

an attribute is included from a root class in the view,

and the source is the class from which the attribute is

taken (either the one explicitly speci�ed or the only one

containing that attribute). By contrast, in cases d), e)

and f) the attribute is not actually included from the

root class, and then its source is the view itself.

Let ] be an operation de�ned as follows:

A(c

1

) ]A(c

2

) =fa j a 2 A(c

1

) [ A(c

2

)

^a =2 A(c

1

) \A(c

2

)g[

fa j a 2 A(c

1

) \A(c

2

)

^source(a; c

1

) = source(a; c

2

)g[

fc

1

-a j a 2 A(c

1

) \A(c

2

)

^source(a; c

1

) 6= source(a; c

2

)g[

fc

2

-a j a 2 A(c

1

) \A(c

2

)

^source(a; c

1

) 6= source(a; c

2

)g

where, given a class or view c 2 CVI, A(c) denotes the

set of attributes of that class and source(a; c) denotes

the source of an attribute a in a class c.

Let dom(a; c), for a 2 A(c), denote the domain of

attribute a in class c. Then, the state of an object (that

is, o:v) is characterized by the set of its most speci�c

classes and views (that is, o:V S) as follows.

De�nition 8 [9]. Let o be an object, such that o:v =

record-of(a

1

: v

1

; : : : ; a

n

: v

n

). Then:

�

U

c2o:V S

A(c) = fa

1

; : : : ; a

n

g

�

8i; 1 � i � n; v

i

2

T

c2o:V S

[[ dom(a

i

; c) ]] . 2

A function value : OI � CVI ! V is de�ned that,

given an object o and a class (or view) c, if o is a mem-

ber of c (that is, if o:i 2 [[ c ]] ), returns the state of

object o seen as an instance of class c. That func-

tion only returns the �elds of the state value proper

of the structural component of c. Let o = (i; v; V S)

be an object and v be the record value record-of(a

1

:

v

1

; : : : ; a

n

: v

n

). Then value(i; c) is determined as fol-

lows, for j = 1 : : :n:

�

if a

j

2 A(c) then a

j

: v

j

is a �eld of value(i; c), and

�

if a

j

= c-a

0

j

and a

0

j

2 A(c), then a

0

j

: v

j

is a �eld of

value(i; c).

If an object o = (i; v; V S) is a member of a class c,

then value(i; c) is uniquely determined and it is a legal

value for the type stype(c). This function is applied

whenever we want to see an object as a view instance.

Since Chimera is a strongly typed database language,

each object reference is assigned a single context in each

expression. Thus, for each object reference we are able

to determine (starting from the types declared for vari-

ables and using schema information) the class or view

the referenced object must be seen an instance of. Note

that this allows us to model notions such as context

dependent access restriction and context dependent be-

havior, typical of data models including roles.

We remark that we have denoted as state the collec-

tion of all the attribute values of an object. Not all these

values are stored, since some of them can be computed.

In particular, derived attributes are not stored.

Example 8. Consider view ProfAuthor, speci�ed

in Example 2, whose signature is given in Example 6.

Then:

(i

1

; record-of(name : `JohnSmith

0

; vatcode : 6432957;

city : `NewY ork

0

bookTitles : set-of(`Object-Oriented Databases')),

f ProfAuthor g )

with i

1

2 VOI, is an example of object instance of the

(object-generating) view ProfAuthor.

Consider now view Magazine, speci�ed in Example 1,

whose signature V C is such that

V C:id = Magazine

V C:struct = f (title; string; ext); (year; integer; ext);

(editorial; string; ext); (month;string; ext);

(manager; string; ext)g.

Then:

(i

2

; record-of(title : `InternationalJournal

0

; year : 1995;

editorial : `ACM

0

;month : `April

0

;

manager : `AlanFord

0

; volume : 17;

periodicity : `weekly

0

);

f Magazine, Journal g )

with i

2

2 BOI , is an example of an object instance of the

object-preserving view Magazine, and of the class Journal,

whose signature C is such that C:id = Journal and

C:struct = f (title; string; ext); (year; integer; ext);

(editorial; string; ext); (month;string; ext);

(volume; integer; ext);

(periodicity; string; ext) g.

Moreover,

value(i

2

; Magazine) =

record-of(title : `InternationalJournal

0

;

year : 1995;

editorial : `ACM

0

;

month : `April

0

;

manager : `AlanFord

0

);

value(i

2

; Journal) =

record-of(title : `InternationalJournal

0

;
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year : 1995;

editorial : `ACM

0

;

month : `April

0

,

volume : 17;

periodicity : `weekly

0

)

value(i

2

; Publication) = value(i

2

; VPublication) =

record-of( title : `InternationalJournal

0

;

year : 1995;

editorial : `ACM

0

).

�

5.2.2. Object consistency Each view object must be

a consistent instance of all the views to which it belongs,

exactly as each object must be a consistent instance of

all the classes and the views to which it belongs. The

following de�nitions formalize the notions of consistency

we consider.

De�nition 9 (Structural Consistency). An ob-

ject o = (i; v; V S) is a structurally consistent instance

of a class (or view) c 2 CVI if v contains

14

a legal

(record) value for the type stype(c). 2

De�nition 10 (Constraint Consistency). An ob-

ject o = (i; v; V S) is a constraint consistent instance of

a class (or view) c 2 CVI , if o falsi�es

15

all the bod-

ies of rules implementing the constraints in the constr

component of C, where C:id is c. 2

De�nition 11 (View-query Consistency). An ob-

ject o = (i; v; V S) is a view-query consistent instance of

a view c 2 VI if for a rule H  B in the view-query of

c, o meets B. 2

De�nition 12 (Consistency). An object o =

(i; v; V S) is a consistent instance of a base class c 2 CI

if o is both a structural and constraint consistent in-

stance of c.

An object o = (i; v; V S) is a consistent instance of

a view c 2 VI if o, besides being both a structural and

constraint consistent instance of c, is also a view-query

consistent instance of c. 2

A �nite set of objects OBJ is consistent if the set is

closed under the depend on relation, that is, for each

object in the set all the objects referred by it must

belong to the set, and the property of oid-uniqueness

must be ensured. The following de�nition formalizes

these concepts. Given an object o, ref(o) denotes the

set of identi�ers in OI appearing in o:v, and, given a

set of objects OBJ, I(OBJ) denotes the set fi j o =

(i; v; V S); o 2 OBJg.

De�nition 13 (Consistent Set of Objects). A (�-

nite) set of objects OBJ is consistent i� all the following

conditions hold:

1. oid-uniqueness

8o

1

; o

2

2 OBJ, if o

1

:i = o

2

:i, then o

1

:v = o

2

:v and

o

1

:V S = o

2

:V S.

2. referential integrity

8o 2 OBJ , ref(o) � I(OBJ). 2

A �nite set of objects OBJ containing also view ob-

jects is closed under the derived by relation if the base

objects from which a view object in OBJ is derived be-

long to OBJ , too, as stated by the following de�nition.

De�nition 14 (Closed Set of Objects). A (�-

nite) set of objects OBJ is consistent i� 8o 2 OBJ

such that o:i 2 VOI , derived by(o:i) � I(OBJ). 2

5.3. Subview relationships

An object-oriented view mechanism should keep the

basic concepts of the object-oriented paradigm, so that

a view can be used in any context where a class is. Fol-

lowing this guideline, inheritance relationships among

views are supported in our model. Views are organized

in a view hierarchy exactly as classes are organized in a

class hierarchy. The view hierarchy is thus modeled by

an ISA relationship, representing which views are sub-

views of other views, and must be established by the

user.

The information of a view hierarchy can be expressed

by two functions V ISA : VI ! 2

VI

and V ISA

�

: VI !

2

VI

, such that given a view v, V ISA(v) denotes the set

of direct superviews of v and V ISA

�

(v) denotes the set

of all the superviews of v, similarly to the ISA and

ISA

�

functions which describe the class hierarchy. An

ordering �

V ISA

on views is de�ned, by simply stating

that v

1

�

V ISA

v

2

i� v

2

2 V ISA

�

(v

1

), exactly as the

ordering �

ISA

is de�ned in [21].

However, a certain number of conditions on the well-

formedness of the view inheritance hierarchy must be

imposed. Those conditions concern the following as-

pects:

�

subtyping among the structural types: a view must

have all the attributes of its superviews; attribute

domains may be specialized, the implementation

for a derived attribute may be rede�ned and new

attributes can be added;

�

behavior specialization: a view must have all the

operations of its superviews; method signatures

can be rede�ned, by applying the covariance rule

for method results and the contravariance rule for

method parameters, the method implementations

may be rede�ned and new operations may be ad-

ded;

�

constraint inheritance: on a view all the constraints

of its superviews must hold; constraint rede�nition

is not currently supported in Chimera;

�

extent inclusion: the extent of a view class is a

subset of the extents of all its superviews.

Those conditions are formalized as follows.
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De�nition 15 (Int-well-de�ned Subview). A sub-

view relationship V ISA is int-well-de�ned, if, for any

v

1

and v

2

such that v

2

�

V ISA

v

1

, being V

1

=

(v

1

; struct

1

; beh

1

; constr

1

; state

1

;mc

1

; q

1

), and V

2

=

(v

2

; struct

2

; beh

2

; constr

2

; state

2

;mc

2

; q

2

), all the fol-

lowing conditions hold:

�

struct

1

= f(a

0

1

; T

0

1

; at

0

1

); : : : ; (a

0

k

1

; T

0

k

1

; at

0

k

1

)g, struct

2

=

f(a

00

1

; T

00

1

; at

00

1

); : : : ; (a

00

k

2

; T

00

k

2

; at

00

k

2

)g

and for each i = 1 : : : k

1

(a

00

j

; T

00

j

; at

00

j

) exists, 1 �

j � k

2

, such that

{ a

0

i

= a

00

j

{ T

00

j

is a subtype of T

0

i

{ at

0

i

= at

00

j

16

�

beh

1

= f(m

0

1

; s

0

1

); : : : ; (m

0

h

1

; s

0

h

1

)g, beh

2

=

f(m

00

1

; s

00

1

); : : : ; (m

00

h

2

; s

00

h

2

)g

and for each i = 1 : : : h

1

(m

00

j

; s

00

j

) exists, 1 � j � h

2

,

such that

{ m

0

i

=m

00

j

{ if s

00

j

= T

00

j

1

� : : :� T

00

j

n

! T

00

j

, then s

0

i

= T

0

i

1

�

: : :�T

0

i

n

! T

0

i

and T

00

j

is subtype of T

0

i

, while

for each r = 1; : : : ; n T

0

i

r

is a subtype of T

00

j

r

�

constr

1

= f(con

0

1

; s

0

1

); : : : ; (con

0

h

1

; s

0

h

1

)g, constr

2

=

f(con

00

1

; s

00

1

); : : : ; (con

00

h

2

; s

00

h

2

)g

and for each i = 1 : : : h

1

(con

00

j

; s

00

j

) exists, 1 � j �

h

2

, such that

{ con

0

i

= con

00

j

{ s

0

i

= s

00

j

.

The same re�nement conditions must hold for class fea-

tures as well, that is, they must be satis�ed by mc

2

and

mc

1

. 2

The de�nition above only concerns the structure and

behavior of views, and it does not consider the exten-

sional components of views, thus no conditions are im-

posed on view-queries. Let us now turn to the exten-

sional level.

De�nition 16 (Ext-well-de�ned Subview). A sub-

view relationship V ISA is ext-well-de�ned, if, for any

v

1

and v

2

such that v

1

�

V ISA

v

2

, [[ v

1

]] � [[ v

2

]]

17

. 2

While the conditions for int-well-de�nedness of a

hierarchy are conditions on the schema level, and thus

can be checked at view de�nition time, the condition

for ext-well-de�nedness is a state-dependent (time vary-

ing) condition, that can only be checked at run-time.

However, since the instances of a view are computed

starting from the view root classes and the view-query,

we impose a number of conditions on view root classes

and query. Such conditions ensure that if the ISA hier-

archy on base classes is ext-well-de�ned, the same prop-

erty holds for the VISA hierarchy upon view material-

ization.

The conditions we impose on view queries in sub-

classes are syntactic conditions, and they are quite re-

strictive. Actually, we should impose that the view-

query of a view is subsumed by the view-queries of its

superviews. However, the problem of query subsump-

tion is undecidable in general, and, even for such query

languages for which it is decidable, it has a very high

complexity test [13]. For our (recursion-free) query lan-

guage, query subsumption is decidable, though intract-

able because of negation and disjunction [13].

We thus impose the syntactical restriction that the

view-query of the subview is stronger than the view-

query of the superview, as formalized by the following

de�nition. This syntactical condition ensures that the

view query of the subview is subsumed by the view-

query of the superview. The condition requires that:

(i) the root classes of the subview are the same or sub-

classes of the root classes of the superview; (ii) for each

rule r

1

in the view query of the subview there must be

a corresponding rule r

2

in the view-query of the super-

view such that the body of r

1

can be obtained from the

body of r

2

by adding some atoms and by replacing some

class formulas with class formulas on subclasses.

De�nition 17 (View-query Strengthening). A

subview relationship V ISA is view-query strengthening,

if, for any v

1

and v

2

such that v

1

�

V ISA

v

2

, being

V

1

= (v

1

; struct

1

; beh

1

; constr

1

; state

1

;mc

1

; q

1

), and

V

2

= (v

2

; struct

2

; beh

2

; constr

2

; state

2

;mc

2

; q

2

), both

the following conditions hold:

�

if defined on(v

1

) = fc

1

; : : : ; c

n

g, then defined on(v

2

)

= fc

0

1

; : : : ; c

0

n

g and 8i; 1 � i � n, either c

i

; c

0

i

2 CI

and c

i

�

ISA

c

0

i

or c

i

; c

0

i

2 VI and c

i

�

V ISA

c

0

i

;

�

if q

2

consists of the rules H

0

1

 B

0

1

: : :H

0

n

 B

0

n

,

then q

1

consists the rules

H

1

 B

1

: : :H

m

 B

m

, and

{ m � n,

{ 8j; 1 � j �m, 9i; 1 � i � n, such that

� B

j

= c

1

j

(X

1

); : : : ; c

p

j

(X

p

); B

�

j

,

� B

0

i

= c

1

i

(X

1

); : : : ; c

p

i

(X

p

); B

0�

i

,

� B

�

j

= B

0�

i

;

~

B where

~

B is any conjunc-

tion of atomic formulas,

� 8k; 1 � k � p, either c

k

j

; c

k

i

2 CI

and c

k

j

�

ISA

c

k

i

or c

k

j

; c

k

i

2 VI and

c

k

j

�

V ISA

c

k

i

. 2

If a subview relationship is view-query strengthen-

ing and the corresponding subclass relationship is ext-

well-de�ned, then the subview relationship is ext-well-

de�ned.

We remark that, according to the de�nition of view-

query strengthening, if a subview relationship V ISA is

view-query strengthening, then, for any v

1

and v

2

such

that v

1

�

V ISA

v

2

, new oid(v

1

) = new oid(v

2

).

Example 9. Consider the view Magazine de�ned in

Example 1 and the view VPublication de�ned as iden-

tity view of the class Publication, both belonging to

the Bibliography schema of Figure 2. Let V C

1

:id =

Magazine, V C

2

:id = VPublication,
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V C

1

:struct = f (title, string, ext), (year, integer, ext),

(editorial, string, ext), (month, string, ext)

(manager, string, ext) g.

V C

2

:struct = f (title, string, ext), (year, integer, ext),

(editorial, string, ext) g.

The int-well-de�nedness of the V ISA relationship stating

that Magazine�

V ISA

VPublication holds, because:

�

the condition on the struct components is veri�ed,

since V C

2

:struct � V C

1

:struct;

�

the condition on the beh components follows from the

int-well-de�nedness of the ISA relationship stating

that Journal �

ISA

Publication, since V C

2

:beh =

C

2

:beh, being C

2

:id = Publication and V C

1

:beh =

C

1

:beh [ fchangeManager : string ! Magazineg,

being C

1

:id = Journal;

�

the condition on the constr components immediately

follows from the int-well-de�nedness of the ISA re-

lationship stating that Journal �

ISA

Publication,

since V C

2

:constr = C

2

:constr, being C

2

:id =

Publication and V C

1

:constr = C

1

:constr, being

C

1

:id = Journal.

The ext-well-de�nedness of the V ISA relationship stating

that Magazine �

V ISA

VPublication follows from its view-

query strengthening, since:

�

defined on(Magazine) = fJournalg;

defined on(VPublication) = fPublicationg

and Journal�

ISA

Publication;

�

the view-query of VPublication, since VPublication

is an identity view, is

VPublication(X) Publication(X)

the view-query of Magazine is

Magazine(X) Journal(X);

X:periodicity= `weekly

0

and Journal�

ISA

Publication.

�

The generation of view object identi�ers must be

carefully handled when views are related by inherit-

ance hierarchies. Recall that for a view v such that

new oid(v) = true, new object identi�ers are generated

for each object satisfying the view-query of v. The gen-

eration of these new oids is exactly like the generation

of base object identi�ers upon object creation. Thus,

when views are related by a subview relationship, v is

a view such that new oid(v) = true and V ISA(v) = ;,

the new oids for v are incrementally generated. For the

views v

0

such that new oid(v

0

) = true and V ISA(v

0

) =

fv

1

; : : : ; v

n

g; n > 0, the objects instances of the view

are by contrast extracted from the extents of the su-

perviews, rather than being generated upon view ma-

terialization. We thus ensure that if the view-query is

stronger than the view-queries of its superviews, the

extent of the view is a subset of the extents of its su-

perviews. Note that, if we had generated new oids for

each view v such as new oid(v) = true, without tak-

ing into account the VISA relationships among views,

the view-query strengthening of the VISA relationship

would not have ensured the ext-well-de�nedness of the

hierarchy. Thus, for object-generating views, new oids

are generated upon view materialization for the views

that are roots of the VISA hierarchy (which are mater-

ialized �rst), while for views having at least a super-

view the extent is determined by extracting from the

superview extents those objects meeting the condition

in the subview query. This process is sound though

in Chimera multiple inheritance is supported, since the

constraint is imposed that for multiple inheritance a

common ancestor must exist.

View identi�ers can be used as types for Chimera

expressions. Thus, the notion of Chimera type proposed

in [21] is modi�ed to include also view class identi�ers.

The set of Chimera types T then consists of the value

types in VT and the object types in OT , that is, of

class and view identi�ers. The set of Chimera object

types (that is, of types whose values are used to identify

objects) is thus de�ned as the union of class and view

identi�ers, that is, OT = CVI .

The notion of type extension is easily extended to

types that are view identi�ers (that is, for v 2 VI)

since views, like classes, have an explicit extent, thus

[[ v ]] = V:struct:extent, where V:id = v. The subtype

relationship �

T

can be simply adapted to a set T of

types containing also view identi�ers in VI, by stating

that:

�

if v

1

; v

2

2 VI and v

1

2 V ISA

�

(v

2

) then v

2

�

T

v

1

that is, v

2

is a subtype of v

1

(as stated for object

types in CI [21]);

�

view class identi�ers in VI are not related by the

subtype relationship with other types.

Since we consider only int-well-de�ned subview rela-

tionships, this is a sound de�nition of subtyping.

6. Schema views and database views

In this section, we \put things together", discuss-

ing the notions of schema views and database views.

Moreover, we address some issues related to the use of

views.

6.1. Schema views

The de�nition of schema view or subschema often

corresponds to the concept of external schema given in

the ANSI three-level schema architecture. In our ap-

proach, schema views are also intended to encapsulate

base schema evolutions, as a mean to prevent that a

schema update a�ects the base schema. Thus schema

views can be useful to de�ne external schemas as well

as to create new schema versions.
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The notion of schema view is similar to that of

base schema, except that it consists of views instead of

classes. A schema view consists of a collection of views

connected by aggregation and view inheritance relation-

ships. All views in a schema view are derived from

the same schema. The schema, from which a schema

view is derived, is called root schema. A root schema

can be either a base schema or another schema view.

Frequently, the de�nition of a schema view requires to

include some base classes. We propose the notion of

identity view to satisfy this requirement, still having the

schema view consisting only of views. Given a class c,

its identity view is a view v having c as root class, such

that c and v are equivalent, both at the extensional and

at the intensional level.

The following de�nition formalizes the notion of

schema view. Let SVI denote a set of schema view

identi�ers.

De�nition 18 (Schema View). A schema view

having as root schema a schema S

18

is de�ned as a

tuple

(id; V T; V Cl; V MCl; V ISA)

where

�

id 2 SVI is the schema view identi�er;

�

V T � VT = BV T [NV T , is the set of value types

included in the schema view, being BV T the set of

value types imported from the root schema S and

NV T the set of value types de�ned in the schema

view;

�

V Cl is a �nite set of de�nitional components of

views

19

;

�

V MCl � MC is a �nite set of view metaclasses

corresponding to the views in V Cl;

�

V ISA : V Cl! 2

V Cl

is a total function on V Cl for

which the following conditions hold:

a) V ISA is a DAG;

b) V ISA is int-well-de�ned;

c) V ISA is view-query strengthening.

All view and view metaclass names are distinct and for

each view the corresponding view metaclass must exist.

2

The following example is an example of schema view.

Example 10. Figure 2 shows a schema view

named Bibliography, directly derived from the base

schema. The Bibliography schema view contains

the views VPublication, Magazine and VBook. The

VPublication view has been imported as an identity

view, whereas Magazine and VBook views are derived

from Journal and Book classes, respectively, and they

are declared as subviews of the Vpublication view. The

importation of Publication as identity view allows to

de�ne a virtual hierarchy of publications. �

6.1.1. Closure of schema views A schema view is

a collection of views, grouped together to form a sub-

schema, or to model a schema evolution. One is not

completely free in choosing which views to include in

a schema view. In particular, if a view is included in

the schema view, also the domain of each attribute as

well as the components of the signature of each opera-

tion of the view must belong to the schema view. Thus,

including a view into the schema view may require the

inclusion of other views. In the following, we formalize

these notions, which are referred to as closure property

of a schema view.

In what follows, the term entity refers to an attribute,

c-attribute, parameter of an operation or parameter of a

c-operation of a class or view. We introduce a client of

relationship among classes and views in CVI . A class

(or view) c

1

is said to be client of a class (or view) c

2

, if

some entity of c

1

has as domain the class (or view) c

2

.

Since a user (e.g., an application program) must receive

a schema view consisting of a complete and coherent set

of views, it is clear that a schema view must be closed

under the client of relation. Given a view v included in

a schema view, the closure property involves:

1. for each entity of v, whose domain is a class, the

corresponding identity view must belong to the

schema view and it is the new domain of the entity;

2. for each entity of v, whose domain is a view, this

view must belong to the schema view.

A closed schema view contains all the views refer-

enced directly or indirectly by the schema view de�ni-

tion. Since we have chosen to model a schema view as

a collection of views, if the domain of an entity of v is

a class of the base schema, the corresponding identity

view is introduced in the schema view, thus \virtualiz-

ing" the class without modifying it.

We remark two important aspects related to our

de�nition of schema view closure. First, since Chimera

does not require the existence of a common superclass

of all the classes of the system, the closure property

does not involve the inclusion of all the superviews of

the views belonging to the schema. Second, the clos-

ure of a schema does not require the inclusion of all the

subviews of the views belonging to the schema. Thus, a

schema view is closed with respect to aggregation hier-

archies, while it is not closed with respect to inherit-

ance hierarchies. Indeed, the schema closure must con-

tain the essential views for a schema to be consistent.

In some contexts, it seems reasonable that a schema

view includes a view and it does not include some of its

subviews (so that some of the subviews are hidden in

the schema view). As a consequence of this choice, the

database view (that is, the database seen through the

schema view) may contain objects whose most speci�c

classes and views do not belong to the schema view.

Such objects are seen through the schema view as in-

stances of the most speci�c view to which the object
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belongs, among the ones included in the schema view.

Note that this will require a careful propagation of up-

dates, since an attribute could result in having di�erent

domains depending on through which schema view it is

accessed. Possible solutions are: to consider the attrib-

ute as a di�erent attribute (for example, pre�xing its

name with the schema name) and thus allocating dif-

ferent storage space; to handle the propagation through

triggers which specialize the value assigned to the at-

tribute to the required domain. The most conservat-

ive solution to avoid those problems is to constrain a

schema to contain also the subclasses of the classes in

the schema, for those subclasses that re�ne the domain

of some included attribute. Since those problems are

related to update propagation, we do not elaborate on

them further in this paper.

To formalize the closure property of a schema view,

a function id view is introduced. It applies to a schema

view and returns the schema view modi�ed by substi-

tuting each class identi�er belonging to CI and appear-

ing as domain of an entity in the schema, with the iden-

ti�er of the corresponding identity view, which belongs

to VI. Thus, given a schema view SV , id view(SV ) de-

notes a corresponding schema view having only views

or value types as entity domains. Furthermore, given a

view v, belonging to a schema view SV , let dom(v) de-

note the set of value types and views which are domains

of the entities of v in id view(SV ). This set can be par-

titioned in vdom(v), only containing view identi�ers,

obtained as dom(v)\VI , and tdom(v), only containing

value types, obtained as dom(v) \ VT .

De�nition 19 (Schema View Closure). A schema

view SV is said to be closed if both the following condi-

tions are satis�ed:

1. 8v 2 SV:V Cl, vdom(v) � SV:V Cl

2. 8v 2 SV:V Cl, tdom(v) � SV:V T . 2

We remark that, given a schema view SV , it is de-

cidable whether SV is closed.

The following example illustrates the closure prop-

erty of a schema view.

Example 11. Consider again the Bibliography

schema view of Figure 2. Since the view Vbook con-

tains an attribute named authors whose domain is class

Author, the domain of this attribute must be replaced by

the identity view IdAuthor of the Author class, and

this identity view must be included in the schema. This

inclusion is propagated to the Address class because

there is an address attribute in the Author class whose

domain is Address, so that the identity view IdAddress

is also included. The closure of the schema is depicted

in Figure 5. The derivation links between IdAuthor

and Author, and between IdAddress and Address, are

not depicted in the �gure, to point out that these views

Publication

title

year

editorial

month

volumen

periodicity

JournalBook

title

year

editorial

Magazine VBook

VPublication

Class Inheritance

 Aggregation

View Derivation

View Inheritance

authors*

week-end

authors*

isbn

month

manager

onLoan

isbn

Address

Author

name

profession

writtenBooks*

address

vatCode

street

number

city

name

profession

writtenBooks*

address

vatCode

street

number

city

IdAuthor

IdAddress

Bibliography Schema

FIG. 5. Closure of the Bibliography view schema.

are added to the schema view to obtain a closed schema

view. �

6.1.2. Global database schema Now, by using the

notion of schema views, we give a formal de�nition of

global database schema. A global database schema con-

sists of a base schema together with a set of schema

views. The schema derivation and view derivation rela-

tionships are part of the global database schema, too.

De�nition 20 (Global Database Schema).

A global database schema is a tuple

(bs; SV S; defined on

s

; defined on),

where:

�

bs is a base schema identi�er,

�

SV S = fsv

1

; : : : ; sv

n

g; n � 0, is a set of schema

view identi�ers,

�

defined on

s

: SVI ! SVI [ fbsg is a total func-

tion, that given a schema view returns its root

schema,

�

defined on : VI ! 2

CVI

is the function introduced

in Subsection 5.1, that represents the view deriva-

tion relationship.

The schema must satisfy the following conditions:

1. each schema in SV S must be closed according to

De�nition 19;

2. for each sv

i

; sv

j

2 SV S, if defined on

s

(sv

j

) = sv

i

,

then 8v 2 SV

j

:V Cl; defined on(v) � SV

i

:V Cl, be-

ing sv

i

= SV

i

:id and sv

j

= SV

j

:id. 2

Note that the view derivation relationship may con-

nect view and classes belonging to di�erent schemas,
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thus it is part of the global database schema rather

than of an individual schema view.

Example 12. Referring to our running example,

the global database schema consists of the Faculty-

Library base schema and the Bibliography schema

view, with the following relationships:

�

defined on

s

(Bibliography) = FacultyLibrary;

�

defined on(VPublication) = Publication

defined on(Magazine) = Journal

defined on(VBook) = Book

defined on(IdAuthor) = Author

defined on(IdAddress) = Address. �

6.2. Object database

In our approach, we consider a single database which

is associated with the global schema, and which is

shared by all the existing schemas. The database con-

tains all the instances created from classes and views be-

longing to the global schema. Thus, the database con-

sists of objects de�ned according to De�nition 6, that

can be, as a particular case, view objects as in De�nition

7. An object o = (i; v; V S) can be accessed from any

schema including a view or class of which o is member.

We remark that this view or class does not necessary

belong to the set V S, since V S only contains the classes

and views of which o is an instance. Suppose that an

object o can be accessed through the schema view SV ,

the function value, de�ned in Subsection 5.2.1., is then

used to provide the di�erent aspects under which the

object can be seen. Therefore, each schema view in the

global schema has associated a view database. Now, we

reformulate the de�nition of database, before giving a

de�nition of view database.

Given a global database GS, let CI

GS

denote the set

of identi�ers of classes belonging to the global database

schema, which are those included in the base schema,

that is

CI

GS

= fc j c 2 CI; c = C:id;C 2

S:V Cl; S:id = GS:bsg.

Let moreover VI

GS

denote the set of identi�ers of views

belonging to the global database schema, which are

those included in any schema view, that is

VI

GS

=

S

sv

i

2GS:SV S

VI

i

where each VI

i

is obtained as

VI

i

= fv j v 2 VI; v = V C:id;V C 2

SV

i

:V Cl; SV

i

:id = sv

i

g.

Finally, CVI

GS

= CI

GS

[ VI

GS

.

De�nition 21 (Object Database). Let GS be a

global database schema de�ned according to De�nition

20, a database over GS is a tuple

(OT; �; cval)

where

�

OT = OB [ OV , is a consistent set of objects ac-

cording to De�nition 13, being

{ OB a set of base objects;

{ OV a set of view objects;

�

� is a pair of functions

�

OC

: CI

GS

! 2

BOI

, oid assignment for base

classes,

�

OV

: VI

GS

! 2

VOI

, oid assignment for

views,

which handle class extents;

�

cval is a total function cval : CVI

GS

! V,

such that 8c 2 CVI

GS

cval(c) is a legal value for

stype(C:mc), being C:id = c, that is, the function

cval assigns values to the class attributes of C. 2

For an object database to be consistent, we require

that it satis�es a number of conditions, as stated by

the following de�nition. These conditions are mainly

related to the proper assignment of objects to classes

and views.

De�nition 22 (Consistent Object Database). Let

GS be a global database schema de�ned according to

De�nition 20, a consistent object database over GS is

a tuple

(OT; �; cval)

de�ned according to De�nition 21 such that:

(i) 8o 2 OT; o is a consistent instance of each class

and view in o:V S, that is o:v holds all the values

for the attributes of classes in o:V S, thus satisfying

conditions stated in De�nition 8;

(ii) the ISA component of GS is ext-well-de�ned;

(iii) the VISA components of GS are ext-well-de�ned;

(iv) 8c 2 CVI

GS

, c = C:id,

cval(C):extent = �(c) and

cval(C):proper extent = �(c)n

S

c

0

s.t.c2ISA(c

0

)

�(c

0

)

20

;

(v) 8o 2 OT; 8c 2 CVI

GS

, c = C:id, o:i 2

cval(C):proper extent i� c 2 o:V S;

(vi) 8o 2 OT; o:V S � CVI

GS

and

{ 8o 2 OB; o:V S � CVI

GS

and 9c 2 o:V S such

that c 2 CI

GS

, while

{ 8o 2 OV; o:V S � VI

GS

;

(vii) 8v 2 VI

GS

, if next oid(v) = false and

defined on(v) = fc

1

; : : : ; c

n

g, then �(v) �

S

i=1;::: ;n

�(c

i

);

(viii) 8o 2 OV , 9v 2 VI

GS

such that v 2 o:V S and

next oid(v) = true;

(ix) 8o 2 OT , 8v 2 o:V S \ VI

GS

, oid(v) = true;

(x) 8v 2 VI

GS

such that oid(v) = false, �(v) = ;;

(xi) 8c

1

; c

2

2 CVI

GS
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{ if c

1

; c

2

2 CI

GS

�(c

1

)\�(c

2

) 6= ; ) 9c

3

2 CI

GS

such

that c

1

�

ISA

c

3

; c

2

�

ISA

c

3

;

{ if c

1

; c

2

2 VI

GS

and new oid(c

1

) =

new oid(c

2

) = true

�(c

1

)\�(c

2

) 6= ; ) 9c

3

2 VI

GS

such

that c

1

�

V ISA

c

3

; c

2

�

V ISA

c

3

;

{ if c

1

; c

2

2 VI

GS

and new oid(c

1

) =

new oid(c

2

) = false

�(c

1

) \ �(c

2

) 6= ; ) (9c

3

2 VI

GS

such that c

1

�

V ISA

c

3

; c

2

�

V ISA

c

3

)_

_ (9c

4

2 VI

GS

such that c

4

2

defined on

�

(c

1

)^c

4

2 defined on

�

(c

2

)));

{ if c

1

; c

2

2 VI

GS

and new oid(c

1

) = true while

new oid(c

2

) = false

�(c

1

) \ �(c

2

) 6= ; ) c

2

2

defined on

�

(c

1

);

{ if c

1

2 VI

GS

, c

2

2 CI

GS

�(c

1

) \ �(c

2

) 6= ; ) c

2

2

defined on

�

(c

1

) ^ new oid(c

1

) =

false.

2

In the de�nition above, condition (vi) requires that

each base object is instance of at least one base class

whereas each view object only belongs to views. Condi-

tion (vii) ensures that the extent of an object-preserving

view is contained in the union of the extents of its root

classes (we recall that an object-preserving view could

select objects from di�erent classes), while condition

(viii) imposes that the views to which a view object

belongs are object-generating views. Finally, condition

(xi) states the conditions under which two classes or

views may have non disjoint extents: they can be either

both base classes or both object-generating views with

a common ancestor in the inheritance hierarchy; they

can be both object-preserving views with a common

ancestor in the inheritance hierarchy or a common root

class; or they can �nally be a base class and an object-

preserving view such that the view is derived from the

base class.

De�nition 23 (Global Database). Let GS be a

global database schema, then a global database on GS

is a tuple exactly like in De�nition 21, of the form

(OT; �; cval) such that OT is closed under the view de-

rivation relationship according to De�nition 14. 2

Each schema views speci�es a di�erent view of the

global database, as stated by the following de�nition.

De�nition 24 (Database View). Let SV be a

schema view on a consistent object database ODB, then

a database view is a tuple exactly like in De�nition 21,

of the form (OT

SV

; �

SV

; cval

SV

) satisfying the follow-

ing further conditions:

(i) I(OT

SV

) � I(ODB:OT )

21

is such that

{ 8o 2 OT

SV

, 9v 2 VI

SV

such that o:i 2 �(c);

{ 8o 2 OT

SV

, let o

0

2 ODB:OT be the object

such that o:i = o

0

:i; then

� o:v contains

22

o

0

:v, and

� o:V S = o

0

:V S \ CVI

SV

[ ms(fv j

v 2 VI

SV

;9v

0

2 o:V S; v

0

62

VI

SV

; v

0

�

V ISA

vg

where, given a set of views V S,

ms(V S) denotes the set

fv j v 2 VI; 6 9v

0

2 VI such that

v

0

<

V ISA

vg

23

;

(ii) �

SV

is the restriction of the function in ODB:� to

views in VI

SV

;

(iii) cval

SV

is the restriction of the function in

ODB:cval to views in VI

SV

. 2

6.3. Object references and contexts

Another important aspect concerning views is how

object references are solved, since \di�erent" objects

can be identi�ed by the same object identi�er. Indeed,

di�erent views of the same object are allowed, depend-

ing on the context in which the object is considered.

In our approach, the class (or view) the referenced

object must be seen an instance of, is chosen among

the ones belonging to the current schema view, taking

into account the context of the object reference. The

context of an object reference is simply determined by

the static type of the object in the expression containing

the object reference. Indeed, each object reference in

each Chimera expression is assigned a single static type

[9]. Thus, it is possible in each expression to derive a

unique context for each expression denoting an object

(object reference). The context of an object reference

can be derived from the types declared for the variables

in the expression and from schema information.

As far as attribute access is concerned, an attribute

access e:a is solved by simply returning value(o; t

s

(e)):a

where value is the function de�ned in Section 5, t

s

(e) is

the static type of the object reference e in the considered

expression and o is the object to which reference e is

instantiated. Note that, for the expression containing

the reference to be a legal expression, t

s

(e) must be

a view identi�er belonging to the schema view of the

user that has written the expression and that attribute

a must belong to the structure of t

s

(e) in this schema

view.

Method dispatching may however become more com-

plicated when several method implementations are ap-

plicable to a method invocation. In general, the im-

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 23



plementation speci�ed in the most speci�c class of the

invocation receiver is executed, as it is the one thatmost

closely matches the invocation. However, when objects

belong to classes and views not related by an inheritance

relationship, the choice of the method implementation

that \most closely matches" the invocation is not ob-

vious. We have addressed the problem of dispatching

for objects belonging to multiple most speci�c classes

in [9]

24

. The approach is based on the idea that each

object has in each context a preferred class, among its

most speci�c ones. This approach can be easily adap-

ted to our framework. Each method invocation is dis-

patched choosing the implementation in the preferred

class in the current context. This approach supports

a context-dependent behavior, as the same method in-

vocation may be dispatched di�erently, and thus may

return di�erent results and perform di�erent updates,

depending on the context where the method is invoked.

This approach is based on a total ordering on views,

de�ned consistently with the inheritance ordering, in

such a way that a method invocation is dispatched by

executing:

�

the method in the view which is the static type of

the object reference, if this view is among the most

speci�c ones to which the object belongs;

�

the minimum with respect to the considered total

ordering, of a set of views that verify the following

conditions:

{ they are subviews of the static type of the ob-

ject reference (this ensures that no run-time

type errors occur),

{ they belong to the current schema view,

otherwise;

�

the method in the root class of the view which is

the static type of the object reference, if the two

cases above are not able to dispatch the method

(resolution in the root schema).

Note that while the static type of the object reference

certainly belongs to the user schema (otherwise the ex-

pression containing the reference would not be correct),

this may not be true for any subview/subclass of this

type. Thus, we remark that, though we store a single

object database, the objects stored in the database be-

have di�erently depending on through which schema

view they are accessed. The behavior does not only de-

pend from the static type of the object reference, but

also from the schema view in which the object reference

is contained.

7. Conclusions and future work

In this paper we propose a formal model of views for

object-oriented databases. The proposed view mechan-

ism is as powerful as existing view mechanisms and can

be easily adapted to any object-oriented data model.

An important aspect of our view mechanism is that dif-

ferent views of a single object database are provided,

through di�erent schema views. A schema view is a

coherent set of views. The schema view through which

an object database is accessed also inuences the object

behavior, thus providing a context-dependent behavior.

Schema views also support a mechanism of schema ver-

sions, such that a single database is shared by all the

schemas.

The model we propose in this paper is the �rst, as far

as we know, formal model for views in object-oriented

databases. It can be used as a starting point for in-

vestigating several interesting issues related to object-

oriented views. As an example, update propagation

is being investigated on this model. The view up-

date problem has been widely investigated in the rela-

tional context. As noted in [40], the existence of object

identi�ers makes easier updating object-oriented views

than relational views, because it is possible to estab-

lish a mapping among a view instance and its base

object(s). In analyzing object-oriented view updates,

it is necessary to distinguish between updating object-

preserving views and object-generating views. To our

knowledge, all the proposed approaches [4, 40] have only

considered object-preserving views. View updates are

quite straightforward when a view model only includes

object-preserving views, because they are automatic-

ally propagated to the base objects: both the view in-

stance and its base object have the same object identi-

�er. The model described in [33] also uses an algebra

with object-preserving operators, but view updates are

more complex because view instances can have addi-

tional storage and the data model does not support mul-

tiple class instantiation. Since Chimera supports mul-

tiple class instantiation, the approach to view update

presented in [40] is applicable to the object-preserving

views considered in our view model. In the case of

object-generating views, the Derived By table can

be employed for holding the correspondence between

each generated view instance and the base objects from

which it is derived. Through this table, the update

operations (e.g. insert, delete, modify) can be propag-

ated to the base objects. We believe that the frame-

work presented in [27] for view updates is appropriate

to set up our proposal for updating object-generating

views in Chimera. Moreover, object-oriented data mod-

els o�er the possibility of specifying in methods how

to propagate ambiguous updates, such as deletions on

views de�ned as joins, which are forbidden in the rela-

tional context.

A topic which is strictly related to update propaga-

tion concerns integrity constraints. The presence of in-

tegrity constraints introduces new issues in the design of

a view mechanism. Indeed, a view de�nition is a�ected

by the constraints of its root classes. If it seems coherent

that a view modi�es (hides, adds or rede�nes) behavior

or structure of the base classes from which is derived,
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it is not so obvious which modi�cations are possible on

constraints. It is clear that hiding constraints should be

allowed in a view mechanism supporting schema evolu-

tion, because, for example, hiding an instance attribute

implies hiding the constraints that use this attribute.

However, the ability to hide constraints can raise prob-

lems in update propagation. Problems may arise if one

creates an instance of a view not satisfying a constraint

which holds on the root class but which is hidden in the

view. Since the instance cannot be inserted in the root

class, the update cannot be propagated.

Another interesting topic of future work concerns ap-

proaches for view materialization in Chimera. In most

view models the extension of a view is not stored, but

rather view objects are derived from the view query

upon demand. However, materialization approaches

for object-oriented views have been recently proposed.

In [11], the model described in [1] is used to simulate

schema changes. A materialization approach for the

MultiView model [33] is presented in [28], providing the

necessary update operations to enforce the consistency

of the materialized views. If multiple class instanti-

ation is supported, as in the case of Chimera, the ma-

terialization of object-preserving views has important

advantages with respect to the relational views. The

storage overhead decreases because the materialization

does not involve storage duplication, but only marking

that the base objects satisfying the view query are also

instances of the view (a reference to the view identi�er

can be added in the object). Of course, if a view has ad-

ditional attributes it is necessary to allocate storage for

them. The cost of maintaining the view instances con-

sistent upon changes to base objects also decreases. By

contrast, materializing object-generating views presents

problems similar to those of relational view materializ-

ation.

The use of triggers for handling views is an inter-

esting possibility, as suggested in [18] for the relational

context. If views are materialized (that is, stored in the

database) rules can monitor dynamic changes to base

data and modify relevant views. If, by contrast, vir-

tual views are supported, rules can dynamically detect

queries on virtual views and transform them into quer-

ies on base data, by composing the user query with the

query de�ning the view. Finally, rules can propagate

view updates to base data.

As far as schema evolution is concerned, in our opin-

ion there are two fundamental approaches to support

schema evolution: modifying base classes, or de�ning a

view that realizes the update (thus, simulating it). Ob-

viously, each approach has some advantages over the

other; thus, we think that both should be supported

and the user should be free to choose the most ad-

equate for the schema update to be performed. If the

�rst approach is taken, modi�cations must be propag-

ated from the modi�ed class to the views derived from

it; we are currently investigating how this propagation

can be performed. Concerning the second approach, we

are investigating how the taxonomy of object-oriented

schema changes proposed in [6, 44] can be extended to

Chimera, and how the proposed view mechanism can be

exploited to support all the possible changes. Finally,

other interesting topics of future work include the ex-

tension of the model by taking into account all the Chi-

mera capabilities, that is, logical integrity constraints

and triggers. Recursive view de�nitions may also be

considered.
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Notes

1. We relate and compare in detail the features of our model

with features of other view models in Section 3.

2. A Chimera is a monster of the Greek mythology with a li-

on's head, a goat's body and a serpent's tail; each of them

represents one of the three components of the language.

3. Actually, in Chimera the operation implementation may be

de�ned in an external programming language, but we do not

consider this case because it heavily depends on the external

language which is used. Thus, we consider here only imple-

mentations expressed in the Chimera language itself.

4. We do not allow oids to be explicitlymanipulatedby the user,

thus oids cannot appear in Chimera formulas.

5. Only side-e�ect free methods can be employed in queries.

6. Chimera formulas also include event and constraint formulas,

but those kinds of formulas are not relevant for query and

view de�nitions.

7. = denotes identity, == shallow value equality and ==

d

deep

value equality.

8. Class formulas cannot be negated.

9. An exception is represented by [1] but, as we will see, that

model does not support truly object-generating views in that

a query returns a set of tuples, that are converted to new

objects outside the query language.

10. As we will see in Section 6, given a class c, its identity view is a

view v having c as root class, such that c and v are equivalent,

both at the extensional and at the intensional level.

11. Any attribute expressed with a path expression can be as

well declared as derived and its implementation speci�ed by

Chimera deductive rules. Path expressions are therefore a

shorthand of deductive rules specifying a navigation through

an aggregation hierarchy. For example the declaration city:

Author.address.city could be expressed by the declaration

city: string derived, being its implementation expressed

by the following deductive rule:

self:city= X Author(Y), Y.address.city = X

derived-by(self, Author, Y)
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12. We refer with the term root classes to the views and classes

a certain view has been de�ned on. Thus, we sometimes

improperly denote as classes a set of classes and views.

Whenever confusionmay arise, we adopt the term base classes

to distinguish classes from views.

13. The notion of source of an attribute for base classes only is

formally de�ned in [9].

14. We say that a record value record-of(a

1

: v

1

; : : : ; a

n

: v

n

)

contains a record value record-of(a

0

1

: v

0

1

; : : : ; a

0

m

: v

0

m

) if

m � n and, 9f : f1; : : : ;mg ! f1; : : : ; ng total injective

function, such that 8i;1 � i � n, a

0

i

= a

f(i)

and v

0

i

= v

f(i)

.

15. We recall that Chimera constraints are expressed in denial

form, that is they specify the inconsistent states as in [17].

16. The type of an attributemay not be changed from extensional

to derived nor vice-versa.

17. Equivalently, if V

1

:state:extent � V

2

:state:extent, being

V

1

:id = v

1

and V

2

:id = v

2

.

18. S may be either a base schema or a schema view.

19. The de�nitional component of a view V C = (id; struct; beh;

constr; state;mc; q) is (id; struct; beh; constr;mc; q), that is,

its state-independent components.

20. For views the V ISA function must be considered instead of

the ISA function.

21. Recall that given a set of objects OBJ , I(OBJ) denotes the

set of identi�ers of objects in OBJ .

22. The notion of containment between record value types has

been speci�ed in Subsection 5.2.2..

23. <

V ISA

denotes the non-reexive relation obtained from

the order �

V ISA

as follows: v

1

<

V ISA

v

2

if and only if

v

1

�

V ISA

v

2

and v

1

6= v

2

.

24. Actually, in [9] we have considered only base classes, but con-

sidering views does not introduce new problems with respect

to dispatching.
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Appendix

1.1. Formats for importing features in view

speci�cation

In the IMPORTED-FEATURES clause of the view de�n-

ition statement, ListOfImpOper, ListOfImpConst,

ListOfImpCattrib,ListOfCoper and ListOfImpCconst

denote the lists of features imported from root classes.

For each feature, the associated list contains one or

more items whose format can be one of the following:

a) pName [of className], indicating that the feature

named pName is imported from the root class named

className. The speci�cation of the class name is

optional, except if the view is derived from sev-

eral root classes having a feature of the same kind

named pname.

b) - pname [of className], indicating that the fea-

ture named pname is hidden

1

. As in the previous

case, it is mandatory to specify the class name if

name conicts arise.

c) all [of ListofClassNames], indicating that the

view imports all the features of the class (or classes)

speci�ed. If no class is speci�ed, the view imports

all the features of all its root classes.

d) name1 [of className] as name2, indicating that

the feature named name1 is renamed as name2 in

the view. As in the �rst case, it is mandatory to

specify the class name if name conicts arise.

e) attName: typeName derived, indicating that a

view attribute named attName is derived, with do-

main type typeName. Its implementation must be

given in the view implementation.

f) attName : className:a

1

: � � � :a

n

, specifying that the

view attribute attName corresponds to the nes-

ted attribute a

1

: � � � :a

n

of the class className.

className is one of the root classes of the con-

sidered view. The expression className:a

1

: � � � :a

n

is very similar to commonly used path expressions

2

.

Thus, for 1 � i � n�1, a

i

must be an object valued

attribute, while a

n

can be either an object valued

or a value attribute.

Formats e) and f) are allowed only for attributes.

Table A1 shows the correspondence between those

formats and the corresponding items in the view signa-

ture.

THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 27



TABLE A1. Correspondence between clauses of the view

de�nition statement and components of view signature

1. for each item a

i

ofclassc

i

in ListOfImpAttrib the

item (a

i

; T

i

; at

i

) is added to iStruct(V ):inst if the

item (a

i

; T

i

; at

i

) 2 C

i

:struct, being C

i

:id = c

i

(that

is, if C

i

is the class identi�ed by c

i

);

2. for each item a

i

in ListOfImpAttrib the item

(a

i

; T

i

; at

i

) is added to iStruct(V ):inst if the item

(a

i

; T

i

; at

i

) 2 C

i

:struct, being C

i

the only

(1)

class

among the ones identi�ed by an element of the

RootClasses list in the FROM clause of V , containing in

its struct component an item whose �rst component

is a

i

;

3. for each item a

i

ofclassc

i

asa

j

in ListOfImpAttrib

the item (a

j

; T

i

; at

i

) is added to iStruct(V ):inst if the

item (a

i

; T

i

; at

i

) 2 C

i

:struct, being C

i

:id = c

i

;

4. for each item a

i

asa

j

in ListOfImpAttrib the item

(a

j

; T

i

; at

i

) is added to iStruct(V ):inst if the item

(a

i

; T

i

; at

i

) 2 C

i

:struct, being C

i

as in (2);

5. if ListOfImpAttrib contains the keyword all,

then iStruct(V ):inst =

S

i=1;::: ;n

C

i

:struct, being

fC

1

; : : : ; C

n

g the classes identi�ed by the elements of

the RootClasses list in the FROM clause of V ;

6. if ListOfImpAttrib contains the keyword all of

c

1

; : : : ; c

n

, then iStruct(V ):inst =

S

i=1;::: ;n

C

i

:struct,

being C

i

:id = c

i

, for each i; 1 � i � n;

7. for each item �a

i

ofclassc

i

in ListOfImpAttrib the

item (a

i

; T

i

; at

i

) is removed from iStruct(V ):inst if

the item (a

i

; T

i

; at

i

) 2 C

i

:struct, being C

i

:id = c

i

(2)

;

8. for each item �a

i

in ListOfImpAttrib the item

(a

i

; T

i

; at

i

) is added to iStruct(V ):inst if the item

(a

i

; T

i

; at

i

) 2 C

i

:struct, being C

i

as in (2);

9. for each item a

i

= c

i

:a

1

: � � � :a

n

in ListOfImpAttrib

the item (a

i

; T

i

; derived) is added to iStruct(V ):inst

if T

i

is the type of c

i

:a

1

: � � � :a

n

(3)

;

10. for each item a

i

: T

i

derived in ListOfImpAttrib the

item (a

i

; T

i

; derived) is added to iStruct(V ):inst

(4)

.

(1)

If more than one root class of V contains an attribute whose

name is a

i

, then the speci�cation of the class from which the

attribute must be taken is mandatory.

(2)

We assume that the keyword all implicitly added to the clause

has been already considered by applying items 5 and 6.

(3)

The type of c

i

:a

1

� � � :a

n

is obtained by making use of the fol-

lowing rule

e : cc 2 OT (a;T; at) 2 C:structc= C:id

e:a : T

starting from the base

c : c

c 2 OT :

(4)

In the case of derived attributes (for example, items (9) and

(10)), the deductive rules specifying the attribute implement-

ation must be present in the view implementation.
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