
Handling Semi-Structured Data through an

Extended Object-Oriented Data Model

Giovanna Guerrini Isabella Merlo Marco Mesiti

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a degli Studi di Genova

Via Dodecaneso 35 - I16146 Genova, Italy

fguerrini,merloisa,mesitig@disi.unige.it

Abstract In traditional database applications the structure of data is

pre-de�ned, and data are entered into the database specifying the schema

element (relation or class, depending on the paradigm) they belong to.

New emerging database applications, expecially those related to the Web,

are characterized by data that have an irregular, heterogeneous, partial

structure that quickly evolves. In this paper we adapt an object-oriented

data model to this kind of data, by providing it with more
exible type

system and by weakening the conditions for membership of an object to

a class. An approach to classify objects, created without specifying the

class they belong to, in the most appropriate class of the schema, is also

proposed.

1 Introduction

In the last few years, there has been in the database community a growing

interest in the management of semi-structured data [1]. Semi-structured data are

data whose structure is not regular, is heterogeneous, is partial, has not a �xed

format and quickly evolves. Moreover, the distinction between the data described

by the structure and the structure itself is blurred. Those characteristics are

typical of data available on the Web [3], of data coming from heterogeneous

information sources [18], and so on. The lack of a �xed a-priori schema and of

information on the data structures makes it di�cult handling semi-structured

data through conventional database technology.

The research community has proposed two main approaches to model semi-

structured data [5,9]. The �rst one is a more traditional approach and consists

of adapting existing data models to deal with semi-structured data. In particu-

lar, extensions to the object-oriented data model have been proposed with less

restrictive type systems [8,20]. The second approach, by contrast, does not have

any notion of type and schema to avoid any restriction on the structure of the

data to be stored in the database. The basic idea of this approach [2,7] is to

use a labeled graph to store structural information together with data they refer

to. An advantage of the �rst approach over the second one is the existence of

a structure containing information on the type of data separated from the data

themselves. This is important for e�ciently querying data and for developing

adequate storage structures and indexing techniques.

In this paper we consider an extended object-oriented data model, well-suited

for representing semi-structured data. This data model includes some new types

ensuring a highly
exible type system. In particular, its modeling power is com-

parable to that of the best known data models for semi-structured data, such

as [8,20], in that it captures all the kinds of data heterogeneity that can be rep-

resented in those models. It enriches a traditional object-oriented type system

with a spring type, allowing to express that the domain of an attribute is not

speci�ed, and with union types, allowing one to model attributes that can take

values from di�erent domains.

The idea of handling semi-structured data in an existing a-priori database

schema could seem too restrictive. Thus, in our approach, we introduce the

notion ofweak membership that represents a compromise between the
exibility

of semi-structured data and the rigidity of object-oriented schemas. In our model,

a semi-structured object is an object that has been created without specifying the

class it belongs to and whose structure may not exactly match any of the classes

in the database schema. In the context of semi-structured data, the assumption

that for each object there is a type exactly describing it is indeed too strong.

Thus, in our model we do not make such assumption and we rely on a notion

of weak membership. Such notion is weaker than the classical notion of class

membership, since we only require the components

1

in the object state be a

subset of the components of the structural type of the class,

2

rather than requiring

the components of the object state be exactly all and only those appearing in

the structural type of the class, as in traditional object-oriented data models.

According to our notion of weak membership, an object can be a weak mem-

ber of no class, of just one class or of several classes, even not related by in-

heritance hierarchies. To determine the most appropriate class for an object,

among the ones of which the object is a weak member, we use two measures:

the conformity degree, measuring the similarity degree between the type of the

semi-structured object and the structural type of the class, and the heterogeneity

degree of the class, measuring how much the extension of the class is heteroge-

neous.

The remainder of the paper is organized as follows. In Section 2 we present the

basic concepts of the extended data model. In Section 3 we introduce the notion

of weak membership, whereas in Section 4 we discuss the proposed classi�cation

approach. Finally, in Section 5 we conclude by discussing some directions of

ongoing and future work.

1

A component of a record value or of a record type is one of the slots composing it.

2

The structural type of a class is the record type containing the attributes of the class

and their respective domains.

2 Data Model

Our data model [15] is de�ned as the extension to the object-oriented data

model presented in [11] (denoted in the following as the basic object-oriented

data model) and is based on a type system which consists of three kinds of

types: value types, object types, and the spring type. Value types are classical

types such as basic value types (integer, bool, real, etc.) and structured types

(built by means of record, set and list constructors). The reference data

model adds to this set of types the union type, that we will discuss in more

details below. Object types are types corresponding to classes (class names).

Finally, the spring type is a new type, not present in the basic object-oriented

data model, allowing one to specify that an attribute does not have any speci�c

domain. Because of the relevance of this type in handling semi-structured data,

we will also discuss it in more details below. It is important to remark that the

reference data model, as the basic object-oriented data model, supports all the

common features of object-oriented data models such as object identity, user-

de�ned operations, classes, inheritance.

In the remainder of this section we �rst discuss the new types added to

the basic data model and then we introduce the notions of class and object as

supported by the model. Moreover, we discuss subtyping and inheritance rules.

2.1 Union Types

A union type consists of a set of types belonging to the basic type system each

one associated with a distinct label. Let T

1

; : : : ; T

n

be value types of the basic

object-oriented data model or object types and a

1

; : : : ; a

n

be distinct labels, then

the type union-of(a

1

: T

1

; : : : ; a

n

: T

n

) is a union type. Legal values for a union

type are pairs l : v, where l is the label of a union type component, and v is a

legal value for the type associated with l.

As a consequence of the introduction of union types, record types are modi�ed

to allow one to omit the label associated with a component whose type is a union

type. In this way, in order to access that component, one only needs to use the

label appearing in the union type de�nition.

Example 1. Let Abstract be a class name representing fundamental features of

paper abstracts. Let record-of (title:string, union-of(keyword: list-of

(string), abstract:Abstract)) be a record type. Let X be a variable of this

type. In order to access the abstract component, we only write X:abstract. 3

To avoid ambiguities in accessing a component of a record type, we impose that

the labels of record type components and the labels of union type components

be all distinct. That is, we disallow record types such as record-of(keyword:

string, union-of(keyword: list-of(string),abstract:Abstract)).

A legal value, for a record type, has the form (a

1

:v

1

; : : : ; a

n

:v

n

), where a

i

is the label of a record type component or the label of a union type compo-

nent appearing in the record type de�nition, and v

i

is a legal value for the

type associated with a

i

in the corresponding record type de�nition. For ex-

ample, let i

a

be the identi�er of an object belonging to the class Abstract,

then both (title :`Querying Semi- Structured Data'; keyword :[`query', `semi-

structured data']) and (title :`Modelling and Querying:::', abstract:i

a

) are

legal values for the type of the previous example.

2.2 Spring Type

The spring type is the common supertype of value types and object types.

The introduction of this type allows us to manage data without knowing their

actual type. Each legal value of each type of the model is a legal value for the

spring type. Note that our notion of spring type is di�erent from the notion of

Object type, supported by some systems like GemStone [4]. The �rst di�erence

is that in our model we have both value types and object types, whereas those

systems only support object types. The spring type in our model is not an

object type and is not a value type, rather it is a common supertype of all (value

and object) types of the model. Another relevant di�erence is that in our model

the spring type cannot be directly instantiated, that is, no objects or values can

be proper instances of the spring type. In other systems, by contrast, objects

can be proper instances of the Object type.

2.3 Classes and Objects

Our model supports a quite standard notion of class, with some di�erences aris-

ing from the introduction of union and spring types. Each class has a structural

type, which is a record type describing the state of the class instances, formally

de�ned as follows.

De�nition 1. (Structural type of a class). Given a class c, de�ned as

class c fa

1

: T

1

; : : : ; a

m

: T

m

;

union-of(a

1

1

: T

1

1

; : : : ; a

p

1

: T

p

1

); : : : ; union-of(a

1

n

: T

1

n

; : : : ; a

p

n

: T

p

n

) g

the record type record-of(a

1

: T

1

; : : : ; a

m

: T

m

; T

m+1

; : : : ; T

m+n

), where, for k =

1; : : : ; n: T

m+k

= union-of(a

1

k

: T

1

k

; : : : ; a

p

k

: T

p

k

), is the structural type of class

c, denoted by stype(c). 2

Note that, as speci�ed in the de�nition above, the class contains some �xed

attributes (a

1

; : : : ; a

m

), and some other components for which one out of some

possible alternatives, speci�ed through a union type, can be chosen (components

m+ 1 to m + n).

The notion of object supported by the model, formalized by the following

de�nition, is also quite standard.

De�nition 2. (Object). An object is a triple o = (i; v; c) where i is an object

identi�er, v is a record value (the object state) and c is the most speci�c class to

which o belongs. 2

Finally, the following de�nition states the conditions for an object to be an

instance of a class.

De�nition 3. (Instance). An object o is an instance of a class c if o:v is a legal

value for stype(c). 2

De�nition 3 above requires that the following conditions hold:

(1) for each component a : v of the object state, a component a : T exists in

stype(c) such that v is a legal value for T or a component union-of(a

1

:

T

1

; : : : ; a

p

: T

p

) exists such that a : v is a legal value for that component,

that is, 9 i; 1 � i � p, such that a = a

i

, and v is a legal value for T

i

;

(2) for each component a : T in stype(c), a component a : v exists in the object

state such that v is a legal value for T , and for each component union-

of(a

1

: T

1

; : : : ; a

p

: T

p

) in stype(c) a component a : v exists in the object

state such that a : v is a legal value for that component, that is, 9 i; 1 � i � p,

such that a = a

i

and v is a legal value for T

i

.

Condition (1) above requires that each component in the object state corre-

sponds either to an attribute of the class (and in this case the component value

must be a legal value for the attribute domain) or to one of the components of

a union type in the structural type of the class (and in this case the component

value must be a legal value for the union type component domain). Condition

(2) above, by contrast, requires that the object state contains a component for

each attribute of the class and a component for each union type in the structural

type of the class (corresponding to one of the components of the union type).

The following is an example of classes and objects in our model.

Example 2. Suppose we wish to model information about articles that we have

gathered from the Web. In this case articles may have some common features,

whereas other features may be typical of particular ones. Suppose we want to

model the title, the author name, the abstract, the date in which the article

is published and the test. The name may be a string, or a record with two

components, author �rst name (a-name) and surname (a-sname), and the text

may contain anything (for example, images, tables, or simple strings). Let Date

be a class of the database schema and i

d

be the identi�er of an object instance

of class Date. Let i

a

and i

0

a

be two object identi�ers of class Abstract. We may

de�ne a class Article whose structural type is:

record-of(union-of(authorS:string, authorR:record-of(a-name:

string, a-sname:string)), title:string,

abstract:Abstract, published:Date, text:spring).

The following objects are instances of class article: o

1

= (i

1

; v

1

; Article),

where v

1

is (authorS:`Buneman', title:`Semi-Structured Data', abstract:i

a

,

published:i

d

, text:`The topic...'), and o

2

= (i

2

; v

2

; Article), where the value

v

2

is (authorR:(a-name:`Serge', a-sname:`Abiteboul'), title: `Querying...', ab-

stract: i

0

a

, published:i

d

, text:record-of(...)). Even if their states are legal

values for the structural type of Article, they have di�erent structures. 3

2.4 Subtyping and Inheritance

The notion of subtyping has been extended to manage union types and the

spring type. In the following de�nition the ISA hierarchy denotes the inheri-

tance relationship among classes established by the user. The ISA relationship

is denoted as a function that for each class in the schema returns the set of its

direct superclasses. The function ISA

�

denotes the transitive closure of the ISA

relationship.

The subtype relationship, denoted by �

T

, is de�ned as follows. Note that the

subtype relationship for basic types is the identity.

De�nition 4. (Subtypes). Given T

1

; T

2

types of the reference model, T

2

is sub-

type of T

1

(denoted as T

2

�

T

T

1

) if and only if one of the following conditions

holds:

1. T

1

= spring;

2. T

1

= T

2

;

3. T

1

2 ISA

�

(T

2

);

4. T

2

= set-of(T

0

2

), T

1

= set-of(T

0

1

) and T

0

2

�

T

T

0

1

;

5. T

2

= list-of(T

0

2

), T

1

= list-of(T

0

1

) and T

0

2

�

T

T

0

1

;

6. T

2

= record-of(a

1

: T

00

1

; : : : ; a

m

: T

00

m

; T

00

m+1

; : : : ; T

00

m+n

), T

1

= record-of(a

1

:

T

0

1

; : : : ; a

m

: T

0

m

; T

0

m+1

; : : : ; T

0

m+n

) and for each i, 1 � i � m+n, T

00

i

�

T

T

0

i

;

7. T

2

= union-of(a

1

: T

00

1

; : : : ; a

m

: T

00

m

), T

1

= union-of(a

1

: T

0

1

; : : : ; a

m

:

T

0

m

; a

m+1

: T

0

m+1

; : : : ; a

m+n

: T

0

m+n

) and for each i, 1 � i � m, T

00

i

�

T

T

0

i

;

8. T

2

= record-of(a

00

: T

00

), T

1

= union-of(a

1

: T

0

1

; : : : ; a

n

: T

0

n

), and j (1 �

j � n) exists s.t. a

00

= a

j

and T

00

�

T

T

0

j

. 2

Note that in the reference model there exists a unique root type, the spring

type. That type is the supertype of all types in the model and ensures that given

two types their common supertype surely exists.

3 Weak Membership

In order to achieve the
exibility needed to handle semi-structured data, we

weaken the notion of instance of traditional object-oriented data models in the

notion of weak membership, only requiring condition (1), stated after De�nition

3. Thus, the structural type of a class may have more components than those

appearing in the object state. In such a case, we need some exception-handling

mechanism to manage accesses to components not present in the classi�ed object.

In order to formally de�ne the notion of weak membership and to de�ne

a method to check whether an object is a weak member of a class, we extend

a well-known theoretical notion, the simulation relation [16]. First, we provide

an abstract representation of the structural type of a class, the class structural

expression, and an abstract representation of the object state, the object value

expression. Then, to verify whether the object is a weak member of the class,

we check whether a particular simulation exists between those two expressions.

Intuitively, the class structural expression is a tree labeled with symbols rep-

resenting the attributes of the class and their types, whereas the object value

expression is a tree labeled with symbols representing the attributes of the ob-

ject and their values. In the remainder of this section, we �rst present the formal

de�nitions concerning class and object expressions (Subsection 3.1) and then the

weak membership notion is formally de�ned (Subsection 3.2).

3.1 Class and Object Expressions

In the following the set PRED denotes a set of predicates where each predi-

cate represents the set of legal values for basic value types and object types. A

predicate p 2 PRED applied to a value v holds if and only if v belongs to the

set of instances associated with the type p, where the type p may be a basic

value type or an object type. Moreover, given the set AN of attribute names,

LT denotes the set of tree labels, that is LT = fLIST, REC, SET, UNION,

SPRINGg [AN [PRED. The following de�nition states the notion of class

structural expression.

(a) (b)

REC

REC

string

REC

UNION

stringstring

SPRING

authorS

’Suciu’ authorS authorR

a-sname a-name

title

string

textabstract

Abstract

published

abstract

ia

Date

Figure1. (a) Object value expression, (b) class structural expression and their simu-

lation relation

De�nition 5. (Class structural expression). Given a class c, the class structural

expression of c (denoted by "

t

(c)) is a tree (V

t

; E

t

; '

t

), labeled on LT , where V

t

is a set of vertices, E

t

� V

t

� V

t

is a set of edges and, '

t

: E

t

! LT is the edge

labeling function. 2

Figure 1(b) shows the class structural expression associated with class Article

of Example 2. Note that string, Date, and Abstract symbols are predicates

which represent the set of legal values for the corresponding types.

In the following de�nition, stating the notion of object value expression, LV

denotes the set of labels of object value expressions, that is, LV = fLIST, REC,

SET, UNION, NULLg [AN [V, where V denotes the set of legal values for

basic value types and object identi�ers.

De�nition 6. (Object value expression). Given an object o, the object value

expression of o (denoted by "

v

(o)) is a tree (V

v

; E

v

; '

v

), labeled on LV , where

V

v

is a set of vertices, E

v

� V

v

� V

v

is a set of edges and, '

v

: E

v

! LV is the

edge labeling function. 2

Figure 1(a) shows the object value expression associated with a semi-struc-

tured object whose state is (authorS:`Suciu', abstract:i

a

). According to our

shallow approach, we have not generated the object value expression associated

with the state of the object identi�ed by i

a

.

3.2 Simulation Relation

Before de�ning the relation between the class structural expression and the ob-

ject value expression we introduce a mapping between labels in set LV and labels

in set LT , that is used to identify a set of cases to be managed in the same way.

De�nition 7. (Relation�

L

). A relation �

L

holds between a label l

v

2 LV and a

label l

t

2 LT (denoted by l

v

�

L

l

t

), if and only if one of the following conditions

holds: (1) l

v

= NULL and l

t

6= SPRING; (2) l

v

; l

t

2 fLIST, REC, SET,

UNIONg [AN and l

v

= l

t

; (3) l

t

2 PRED and l

t

holds on l

v

. 2

We are now able, using relation �

L

, to introduce our de�nition of simulation,

which is a variation of the classical notion [6]. In the de�nition root(A) denotes

the root of tree A and u

l

�! u

0

denotes an edge (u; u

0

) such that '((u; u

0

)) = l.

lt

1

lv

1 2

2u

u’ u’

u

(a)

lv

lv

UNION

2

1

1 2

2

u’’

u’

uu

u’

(b)

lv SPRING

1

1 2

2

u

u’

u

u’

(c)

Figure2. Visual representation of relation among vertices of item (2) of De�nition 8

De�nition 8. (Simulation). A binary relation R from the vertices of A

v

=

(V

v

; E

v

; '

v

) labeled on LV to the vertices of A

t

= (V

t

; E

t

; '

t

) labeled on LT ,

is a simulation if and only if the following conditions hold:

1. root(A

v

) R root(A

t

);

2. if u

1

R u

2

, then 8u

1

l

v

�! u

0

1

in E

v

, 9 u

2

l

t

�! u

0

2

in E

t

, such that one and

only one of the following conditions holds:

(a) l

v

�

L

l

t

and u

0

1

R u

0

2

,

(b) l

t

= UNION , 9u

0

2

l

0

t

�! u

00

2

in E

t

such that l

v

= l

0

t

and u

0

1

R u

00

2

,

(c) l

t

= SPRING. 2

In Figure 1 the dashed lines represent the simulation between the object

value expression associated with the semi-structured object, whose state has

been introduced previously, and the structural expression associated with the

structural type of class Article of Example 2. A visual representation of relation

among vertices of item (2) of De�nition 8 is shown in Figure 2. The dashed lines

identify the relation that must hold between the vertices of the two trees. Note

that, as you can see in Figure 2(c), we do not require the relation to hold between

vertices u

0

1

and u

0

2

.

For determining weak membership, we do not consider every simulation. For

example, consider the object value expression associated with the object state

(a: 5, b:`rose') and the class structural expression associated with the structural

type record-of(union-of(a:integer, b:string)). According to De�nition 8

a simulation exists between them. The simulation in this example, however, does

not capture our notion of the set of legal values for the record type. The idea of

the union type is, instead, that of choosing one out of some possible alternatives.

Thus, in the de�nition of weak membership, we leave out this kind of simulations,

as formally stated by the following de�nition.

De�nition 9. (Weak membership). An object o is a weak member of a class

c if a simulation R exists between the object value expression associated with o

("

v

(o)) and the class structural expression associated with c ("

t

(c)), such that

8u

2

UNION

�! u

0

2

labeled edge of "

t

(c) at most one pair (u; u

0

) 2 R exists such that

u

0

2 f�u j (u

0

2

; �u) is an edge of "

t

(c)g. 2

4 Automatic Classi�cation Approach

In the management of semi-structured objects we want to emphasize the role

of the class as a repository that contains objects whose states have the same

type,

3

rather than as a template for creating objects. In this context, we allow

applications to create objects without specifying the class they belong to. Then,

it is the system that automatically classi�es those objects in an appropriate class.

The de�nition of weak membership, presented in the previous section, does not

allow one to identify only one class to which the object belongs. In this section

we propose an approach to establish the most appropriate class the object can

be classi�ed in. If no class exists of which the object is a weak member, we insert

it into a repository of unclassi�ed objects. As the schema evolves the repository

is periodically examined, trying to classify objects contained in it.

In the remainder of this section we propose two measures to select the most

appropriate class where we can classify a given object, among those of which the

object is a weak member. We also outline an algorithm using those measures to

automatically classify semi-structured objects.

3

Note that, in our model, this condition does not mean that all objects instances of

a class have the same structure (cfr. Example 2).

4.1 Conformity Degree

With the �rst measure, referred to as conformity degree, we determine how much

the type of the semi-structured object is close to the structural type of a given

class, that is, how many components the class has in addition to those of the

object. In case an object is a weak member of more than one class, we select the

classes that have the minimal number of additional components with respect to

the components in the object state. To formally de�ne the conformity degree, we

introduce an additional data structure, referred to as object structural expression,

representing the actual type of the object. This data structure, intuitively, is a

subtree of the tree associated with the structural type of a class of which the

object is a weak member. It is associated with a legal type of our type system

and allows the actual type of the object to be compared with the structural

type of the class, since the object structural expression is built starting from

the class structural expression. To generate this structure we start from the

existing simulation between the object value expression and the class structural

expression and extract the vertices of the class structural expression that appear

in the second component of the simulation. Then, we add to this set of vertices

other vertices to handle two particular cases: the presence of null values in the

object state and the presence of spring types in the structural type of the

class. The edges and the labeling function of this tree are created accordingly.

For further details on the formal de�nition of the object structural expression,

that will be denoted by "(o; c), we refer the reader to [15]. Figure 3(a) shows the

object structural expression associated with the object value expression shown in

Figure 1(a). As we can see, this object structural expression represents the type

record-of(authorS:string, abstract:Abstract). The value associated with

the object value expression shown in Figure 1(a) is a legal value for that type.

Moreover, to formally de�ne the conformity degree, we must take into account

that when there is a union type in the structural type de�nition of a class, only

one of its components may appear in the object state. Thus, we consider the real

paths of a class structural expression. Real paths are paths that do not contain

any edge labeled by UNION followed by an edge labeled by l (l 2 AN) where

l is an attribute not appearing in the object state. Figure 3(b) shows the tree

only containing the real paths of the class structural expression shown in Figure

1(b). The following de�nition formalizes the notion of conformity degree.

De�nition 10. (Conformity degree). Let o be a semi-structured object and c be

a class such that o is a weak member of c. We de�ne the conformity degree of o

with respect to c (denoted by C

�

(o; c)), as the ratio of the number of paths of the

object structural expression and the number of real paths of the class structural

expression. Formally:

C

�

(o; c) =

card(path("(o; c)))

card(real-path("

t

(c)))

2

authorS

string Abstract

abstract

REC

(a)

SPRING

REC

string
string

authorS
abstract

Abstract

title
date

published

text

(b)

Figure3. (a) Object structural expression, and (b) the part of class Article structural

expression containing only the union components that appear in the object state

In the previous example, the number of paths of the object structural expres-

sion is 2, the number of real paths of the class structural expression is 5, thus

the conformity degree is 0.4.

The conformity degree is always a number between 0 (low conformity) and

1 (high conformity). If a semi-structured object is an instance of a class, the

conformity degree is 1 and if a semi-structured object is a weak member of a

class and the conformity degree is 1, then the object is an instance of the class.

4.2 Heterogeneity Degree

With the second measure, referred to as heterogeneity degree, we want to check

how much the extension of a class is heterogeneous. By using the heterogeneity

degree, we can insert a given object in the class with the most homogeneous

extension. The advantage of having classes with a homogeneous extension is that

more e�cient query execution strategies and storage organizations are possible.

In Section 2 we have seen that, because of the presence of union and spring

types in the type system, several structures may correspond to the same type.

This fact a�ects the heterogeneity of the extensions of classes in which union

types and spring types are used. We have evaluated that the presence of an

union type in the class de�nition generates an heterogeneity degree equal to

the number of types present in the union type. By contrast, the presence of

a spring type generates an heterogeneity degree equal to the number of all

value and object types of the schema (denoted by VT and CI, respectively).

The heterogeneity degree of a record type is the product of the heterogeneity

degree of its components, while the heterogeneity degree of a set type (list type)

is the heterogeneity degree of its component type. The heterogeneity degree of

other types (belonging to the basic type system) is 1 since they do not generate

heterogeneous extensions. The following de�nition states how the heterogeneity

degree of a class is computed.

De�nition 11. (Heterogeneity degree). Let T = stype(c) be the structural type

of class c, then the heterogeneity degree associated with c is the value returned

by the following function applied to T .

H

�

(T) =

8

>

>

>

<

>

>

>

:

1 if T is a basic value type or object type

n if T = union-of(a

1

: T

1

; : : : ; a

n

: T

n

)

card(VT) + card(CI) if T = spring

Q

m+n

i=1

H

�

(T

i

) if T = record-of(a

1

: T

1

; ::; a

m

: T

m

; T

m+1

; ::; T

m+n

)

H

�

(T

0

) if T = list-of(T

0

) or T = set-of(T

0

)

2

4.3 Classi�cation Algorithm

In our classi�cation approach we look for a class such that: the semi-structured

object is a weak member of the class with the highest conformity degree; the

class has the lowest heterogeneity degree. The classi�cation algorithm takes as

input a semi-structured object and executes the following steps:

1. The set of classes of which the object is a weak member is computed; such

set is denoted as WMS. If WMS = ; then the object cannot be classi�ed

and it is simply inserted in the repository of unclassi�ed objects.

2. The set of classes WMS

C-max

is extracted from the set WMS by choosing

the classes with respect to which the object has the highest conformity de-

gree. If this set is a singleton, the most appropriate class has been found and

the object is inserted in the class extension. Otherwise,

3. The set of classes WMS

H-min

is extracted from the set WMS

C-max

by

choosing the classes with the lowest heterogeneity degree. If this set is a sin-

gleton, the most appropriate class has been found and the object is inserted

in the class extension. Otherwise, an arbitrary class is selected in which the

object is inserted.

In the previous algorithm, we �nd out the set of classes having the high-

est conformity degree (step 2) from the classes of which the object is a weak

member(step 1). We use the conformity degree as the mainmeasure in the clas-

si�cation approach because it allows one to identify the classes with the smallest

number of attributes not present in the object state. At this point we try to

minimize the heterogeneity degree (step 3).

5 Conclusions and Future Work

In this paper we have discussed how semi-structured data can be handled through

an object-oriented data model, in particular we have discussed extensions to

an object-oriented data model to make it better-suited to manage this kind of

data. First, the type system has been extended to provide it with the
exibility

required by semi-structured data; then, the notion of membership to a class has

been weakened to allow the model to handle objects that do not completely

adhere to the structure of any class; �nally, an approach has been considered for

classifying objects in the most appropriate class of the schema. In our opinion,

this approach is a good balance between the
exibility of semi-structured data

and the rigidity of a �xed, a-priori de�ned, object-oriented schema.

It is important to remark that the problem of automatically classifying infor-

mation has also been investigated in other areas, such as that of terminological

languages [19]. However, semi-structured data have features requiring the de-

velopment of speci�c classi�cation techniques. In the context of semi-structured

data the problem of automatic typing has been addressed in [17], that investi-

gate how to extract structure from raw data. They however do not exploit any

a-priori knowledge on the schema. This knowledge, that we assume in our ap-

proach, often occurs in practice, for instance when integrating semi-structured

data, discovered on the Web, with data having a known structure or when the

semi-structured data have associated some kind of structural information (for

example the Document Type De�nition associated with an XML page [14]).

The proposed approach is currently being implemented, and could be ex-

tended along a number of directions, some of which we discuss in the following.

Extensions to the Model. A �rst extension that could be considered is that of

classifying an object in more than one class, rather than always forcing the

selection of a single class. This could be useful when there are several classes of

which the object is a weak member, with the same values for the conformity and

the heterogeneity degrees. Moreover, our current notion of weak membership

is based on the fact that the object state contains less components than those

of the class. Such notion can be extended to the case of objects whose state

contains additional components with respect to those speci�ed in the class, in

the same spirit of the O

2

exceptional instances [10]. In this way we can achieve

a more accurate classi�cation method. Another possible extension could be that

of allowing components to be dynamically added, or deleted, to the state of

objects in the database. This could require a re-classi�cation of the object, that

is, a migration of the object in a more appropriate class.

Schema Adaptation. We would like to consider the possibility that the schema

evolves, as a consequence of object classi�cation. A �rst form of evolution is

concerned with the generalization of attribute domains. Whenever an object

could be classi�ed in a class, if we only consider attribute names appearing in its

state, but for some of its components the value does not belong to the attribute

domain in the class, then the attribute domain in the class could be generalized

to include that value as a legal value, so that the object can be classi�ed in

the class. For example, if an object whose state contains a component a:`john'

conforms to a class c except for the domain of a in c that is integer, then

the object is classi�ed in c whose domain for a becomes union-of(integer,

string). In this case we use a more traditional de�nition of union types in

which no labels are associated with types. Note that, however, this may lead to

some problems in recognizing the actual type of a value.

A more radical form of evolution should be that of periodically restructuring

the schema, adapting it to the actual data stored in the database. That is, if more

than a given percent of the objects classi�ed in a given class do not have a value

for a given attribute, the attribute is removed from the class (and the objects

providing a value for it are treated as exceptional instances). Conversely, if more

than a given percent of the objects classi�ed in a given class have an additional

attribute, a subclass is added to the schema containing this additional attribute.

Moreover, when a class has less than a given percent of proper instances, it is

removed from the schema and its objects re-classi�ed.

Extraction Tool. In [12,21] some techniques to extract structural information

from documents are presented. These approaches are very \problem oriented"

and it is very di�cult to generalize them for any kind of documents. The big

problem is the absence of a general format to represent documents that allows one

to associate a semantic meaning to some parts of the documents. We think that

the use of the Document Type De�nition of XML may help to solve this problem.

Our idea is to use data mining techniques [13] to split a set of documents in

subsets having a quite similar structure using the structural information present

in the document. In particular, two approaches are possible. The �rst one is

to de�ne \prototype documents" to which the documents are compared. If a

document is similar to a prototype document, using some measure to evaluate the

similarity, then it is classi�ed in the extension of the prototype document. The

latter is to use decision trees with rules that specify conditions on the attribute

types. In this way a path in the decision tree may represent a particular type to

which a set of objects may belongs to.

Query Language. A query language for the presented data model is being de�ned.

This language provides the basic features of Web query languages.

The applicability of the classi�cation approach to Web search engines, to

perform content-based queries, will also be investigated. The idea is to de�ne,

starting from the query, the value to be searched on the Web, to associate a

structural expression with HTML pages (seen as objects), and then to verify

whether a simulation exists between the tree associated with the query and the

tree associated with the object. If the simulation exists then the HTML page

is a possible answer for the query. If structural information, such as a schema

de�nition and a classi�cation of objects into classes, are available, they can also

be exploited to reduce the cost of evaluating the query, by �rst looking for a

simulation between the tree associated with the query and the tree associated

with the class.

Acknowledgments We wish to thank Elisa Bertino, who supervised our work

on semi-structured data management, providing us several useful suggestions.

We also wish to acknowledge the �nancial support for the work reported in this

paper by the Italian MURST under the Interdata Project.

References

1. S. Abiteboul. Querying Semi-Structured Data. In F. Afrati and P. Kolaitis, editors,

Database Theory - ICDT'97, pages 1{18, 1997.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query

Language for Semistructured Data. Journal of Digital Libraries, 1(1):68{88, 1996.

3. S. Abiteboul and V. Vianu. Queries and Computation on the Web. In F. Afrati

and P. Kolaitis, editors, Database Theory - ICDT'97, pages 262{275, 1997.

4. R. Breitl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams,

and M. Williams. The GemStone Data Management System. In W. Kim and F. H.

Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, pages

283{308. Addison-Wesley, 1989.

5. P. Buneman. Semistructured Data. In Proc. of 6th ACM SIGACT-SIGMOD-

SIGART Symposium on PODS, pages 117{121, 1997. Tutorial.

6. P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding Structure to Un-

structured Data. In F. Afrati and P. Kolaitis, editors, Database Theory - ICDT'97,

pages 336{350, 1997.

7. P. Buneman, S. Davidson, D. Suciu, and G. Hillebrand. A Query Language and

Optimization Techniques for Unstructured Data. In Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 505{516, 1996.

8. V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Doc-

uments to Novel Query Facilities. In Proc. of the ACM SIGMOD Int'l Conf. on

Management of Data, pages 313{324, 1994.

9. S. Cluet. Modeling and Querying Semi-Structured Data. In M. T. Pazienza, editor,

Information Extraction. LNAI 1299, pages 192{213, 1997.

10. O. Deux et al. The Story of o

2

. IEEE Transactions on Knowledge and Data

Engineering, 2(1):91{108, 1990.

11. G. Guerrini, E. Bertino, and R. Bal. A Formal De�nition of the Chimera Object-

Oriented Data Model. Journal of Intelligent Information Systems, 11(1):5{40,

1998.

12. J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting

Semistructured Information from the Web, 1997. Available via anonymous ftp at

ftp://db.stanford.edu/pub/paper/extract.ps.

13. M. Heikki. Methods and Problems in Data Mining. In F. Afrati and P. Kolaitis,

editors, Database Theory - ICDT'97, pages 41{55, 1997.

14. S. Holzner. XML Complete. McGraw-Hill, 1998.

15. M. Mesiti. An Object-Oriented Data Model for Semi-Structured Data. Master's

thesis, University of Genova { Department of Computer Science (DISI), April 1998.

In Italian.

16. R. Milner. An Algebraic De�nition of Simulation between Programs. In Proc. of

the 2nd IJCAI, pages 481{489, London, UK, 1971.

17. S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistruc-

tured Data. In L. M. Haas and A. Tiwary, editors, Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 295{306, 1998.

18. Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across

Heterogeneous Information Sources. In Proc. of the 11th Int'l Conf. on Data En-

gineering, pages 251{260, 1995.

19. C. Peltason, A. Schmiedel, C. Kindermann, and J. Quantz. The BACK System

Revisited. Technical Report KIT - Report 75, Technische Universitat Berlin, 1989.

20. F. Rabitti. The Multos Document Model, volume Human Factors in Information

Technology of 6, chapter 3, pages 17{52. North-Holland, 1990.

21. D. Smith and M. Lopez. Information Extraction for Semi-Structured Documents.

In ACM, editor, Proc. of 6th ACM SIGACT-SIGMOD-SIGART Symposium on

PODS, pages 117{121, Tucson, Arizona, May 1997.

