
 ; ;

1

2

, , ,

1

2

+

+

Abstract

f g

!

!

!

LDL

Cause Effect

1 Introduction

; ;

; ; ; ; ; ; ; ;

; ; ; ;

; ;

E. Bertino B. Catania G. Guerrini D. Montesi

Transaction Optimization in Rule Databases

bertino,catania,guerrini @disi.unige.it

cause effect

query update

update query

update update

query
query

B

1

B

n

H

B

1

B

n

INS

1

INS

k

DEL

k 1

DEL

t

H

INS

1

INS

k

DEL

k 1

DEL

t

B

1

B

n

H B

1

B

n

In the tradition of declarative rules (which we will follow)

the above rule is represented as

A �rst version of the language has been implemented as

part of a project at the University of Genova.

This paper proposes an approach to transaction op-

timization in rule databases. It is based on a new

technique to express updates in rule languages based

on a non-immediate update execution. This tech-

nique is used to statically characterize some prop-

erties of the rules and transactions. Those proper-

ties are used at run-time to detect and remove redun-

dant/complementary updates which are useless, hence

increasing the e�ciency of transaction execution.

queries updates

Dipartimento di Scienze dell'Informazione, Universit�a di Milano

Via Comelico, 39 20133 Milano, Italy

The use of rule-based languages in the context of data

and knowledge bases has been a primary focus on re-

search in the past decade in the area of deductive

database systems and in the current decade in the

area of active database systems. The motivation for

using rule-based languages in database systems are

twofold. On one side they are easy to learn and un-

derstand. They are also more user-friendly and higher

level than traditional programming and database lan-

guages. On the other side they extend the properties

of relational domain calculus into a rule-based lan-

guage, adding to relational-based languages inferential

and reactive features. Many advanced database sys-

tems [9, 10, 12, 14, 15, 16] are based on rule languages.

Moreover, current extensions to relational DBMS and

object-oriented DBMS also provide some rule capa-

bilities. Indeed, rules represent a powerful and sim-

ple language to relate two situations: the cause and

the e�ect. A rule can be seen as .

This rule should be read as follow: if there is a cause,

then do the e�ect. The causes and the e�ects can

vary over a broad spectrum. In the database area,

we are basically interested to query and update large

amounts of information, hence the main causes and

e�ects are and (where with updates

we mean deletions, insertions and modi�cations). In

the following table we provide a possible classi�cation

of rules w.r.t. which are the causes and the e�ects.

The �rst row denotes the pattern of active rules

(i.e. rules with side-e�ects). The second one denotes

a query depending from an action. The third row rep-

resents the most procedural type of rule. It denotes

an action depending from another action (triggers are

rules of this form). The last one is a classical deductive

rule, that is, As it can be seen from

the above table, updates are very often present in rules

(either as causes or as e�ects, or both). However, the

semantics of rules containing updates is di�cult to de-

�ne. Indeed, in most proposals of rule languages with

updates, the semantics of rules is dependent on the

evaluation order of the rules. Therefore, those lan-

guages are not fully declarative.

A recent proposal of a rule language [5] overcomes

the above problem . This language provides updates

in rules by providing at the same time a declarative

semantics. In this language a rule has the form

.

In the above rule . . . and . . .

represent conjunctions of insertions and dele-

tions respectively. They are also in conjunction with

deductive atoms Such rules allow an ex-

ecution model where insertions and deletions have a

non-immediate semantics, that is, they are not exe-

cuted as soon as they are evaluated. Rather the inser-

tions and deletions are collected and executed, if they

are consistent, only at the end of the evaluation of the

query. The above type of rule is an integration of the

second and last rows in the table. Indeed, such rules

may contain updates in the bodies as well as queries;

queries in the bodies are used to pass \parameters"

to the updates. The heads of such rules only contain

queries. Note that even if from a syntactical point

of view, our rule language may look similar to other

rule languages with updates in the bodies, like

0 0 0

LDL

AD

�

�

�

�

2 Rule language

1 1 1

1

1

1

1

1

1

1 1 1

1

1

i

k s t

t

s

k

t

k

s

k s t

i j
h

t

t

De�nition 2.1

De�nition 2.2

De�nition 2.3

CLP

EDB

EDB ; i ; ; n

IDB

H b ; ; b ; u ; ; u ; B ; ; B :

H B ; ;B

u ; ; u

b ; ; b

B ; ; B

b ; ; b

u ; ; u H

X bob;X tom

X Y; Y bob

p X ; p X

p Y ; p X

X tom; Y bob

X tom; Y tom p Y ; p X

b ; ; b ; u ; ; u ; B ; ; B

B s; u s b s

B ; ; B

B ; ;B

base rela-

tions rules

aborted

(Extensional database) An exten-

sional database, or , is a (possibly empty)

set of ground (i.e., without variables) facts.

(Intensional database) The

is a set of rules of the form

where is a deductive atom, (as in Data-

log) is the query part, is the update part and

is the binding part. The update and query

parts cannot be both empty.

(Transaction) A (or sim-

ple transaction) is a rule with no head of the form

where and are as in De�nition 2.2 and

cannot be empty.

[14] and DLP [13], with respect to these languages our

language has a fully declarative semantics which is in-

dependent from the evaluation order of atoms (both

query and update atoms) in the rules.

The main concern of this paper is related to the

e�cient execution of this kind of rules. In particular,

studying e�cient methods for transaction execution in

this context is an important issue. The semantics of

our language makes it possible, among other things, to

statically characterize some properties of rule sets and

of transactions. Such characterizations, introduced in

[4], give information about errors that may arise such

as aborts, inconsistencies and failures. From these

characterizations, related to a set of rules or to a trans-

action, it is possible to statically �nd information on

useless updates, generated during the execution of a

transaction and, therefore, to remove them. When er-

rors are prevented, and useless updates are removed,

transactions are executed more e�ciently. The aim of

this paper is to present the techniques used to perform

transaction optimization in rule databases and the ar-

chitecture of the optimizer. Note that in the previous

literature, as far as we know, there are no satisfactory

techniques for this kind of problem. In particular, a

general framework to optimize transaction has been

proposed in [2] for relational databases. In the con-

text of rule-based languages the presence of not fully

declarative semantics for updates has not allowed the

development of such kind of optimization. The opti-

mization we propose may be regarded as a \semantic

update optimization" and in this sense it is in some

way related to semantic query optimization [7].

The structure of the paper is the following. Section

2 introduces the rule language and sketches its seman-

tics. Section 3, which contains the original contribu-

tion of this paper, describes the optimization archi-

tecture and discusses the several optimization phases.

Due to space limitations, we introduce no formal no-

tion, but we only discuss our techniques and illustrate

them by an example. Section 4 presents some conclu-

sions and outlines future work.

A Datalog program [6] consists of a set of

(EDB) and a set (IDB). Many extensions

to Datalog have been proposed to express updates (see

[1] for a survey). In the following we summarize a new

approach based on non-immediate update semantics.

Update-Datalog (U-Datalog) is a rule language

which allows declarative speci�cation of updates in

program rules. The execution model of U-Datalog

consists of two phases, the marking phase and the

update phase. The �rst phase collects the updates

found during the evaluation process, without, how-

ever, executing them. During the update phase they

are executed altogether only if they are ground and

consistent. If the set is not consistent, or if it con-

tains non-ground updates, the transaction is

and no update in the set is performed. The notion of

consistency is an important one, in that it prevents a

set of updates containing both an insertion and a dele-

tion of the same fact to be executed. By contrast in

DLP and , updates are executed as soon as they

are evaluated, that is, they are executed as side e�ect

of the derivation process. We recall now some basic

notions on U-Datalog. It is de�ned by means of an in-

stance of constraint logic programming schema (CLP)

[11] called () [5]. In the following we will as-

sume the reader familiar with logic programming [3]

and with CLP.

Updates in U-Datalog are in rule bodies. In addi-

tion we consider also bindings in rule bodies which

are de�ned by means of a set of equations (this is

related to the fact that U-Datalog is an instance of

CLP). Updates to base predicates are expressed as a

set of special atoms pre�xed by + (insertions) or

(deletions). The predicates can be either extensional

or intensional. Our language allows only updates to

extensional predicates.

state

In the following we denote with = 1 . . . ,

the possible extensional databases.

inten-

sional database

.

. . .

. . .

. . .

The intuitive meaning of a rule is: \if . . .

is true, the bindings . . . and the updates

. . . are consistent, then is true". Note that

we do not consider update in rule heads. The notion of

consistency is given informally. Intuitively, the bind-

ings = = are not consistent, while the

bindings = = are consistent. Similarly, the

updates + () (), i.e. complementary updates,

are not consistent. The updates + () () could

be consistent if the related bindings were for example

= = . By contrast with the bindings

= = , + () () are not consistent.

transaction

.

. . .

Note that a transaction has a query component,

i.e. it provides a set of bindings. The condition that

. . . cannot be empty is due to the fact that the

update phase must always follow the marking phase.

Therefore, before updating a database, it must be

queried in order to compute the bindings for the vari-

(

e e

e

e

�

B B

0 0

B

B

1

1

+1

2

+1

+1 3

+1

+2

4

4

5

+2

+2

+1

+1

+1

n

i

i

i

i

i

i

i

i

i

i

j j j j

i

i

U

i i

U

i i

IDB

IDB i

i

i j j j i

De�nition 2.4

Example 2.1

Example 2.2

De�nition 2.5

De�nition 2.6

[

 �

[

�

[

[

�

�

�

NF

NF �

 �

 �

[fh i j 7�! h i g

[

� !

nf j � 2 g

[f j 2 g

[

S

�!

S

hf j h i 2 g

T

T T

DB IDB EDB

EDB

IDB

EDB q b

IDB p X q X ; q X :

r X t X ; p X :

s X t X :

T r X EDB IDB

X b

q b ; t b

EDB t b

EDB T s X

EDB IDB X b

EDB T

q X ; s X EDB IDB

X b q b

EDB t b ; q b

T q X ; p X

X b q b ; q b

T

T X a; q X ; s X

t a EDB

EDB

IDB

IDB p X q X ; q X :

r X t X ; q X ; q X :

s X t X :

Set T; IDB EDB b ; u T b ; u

T

T

IDB EDB

EDB

u

EDB

EDB ; u EDB p t p t u

p t p t u

Commit Abort

u

u

OSS

T

IDB

DB IDB EDB

T

OSS T b; u;G

T EDB

Oss

AbOss otherwise

Oss b b ; u Set T;DB ;

complex transaction

(U-Datalog) An

with updates (or database) con-

sists of the extensional database and of the in-

tensional database .

Consider and

The transaction evaluated in

computes the binding and collects the updates

. Informally the new extensional database

is the result of the application of these

updates to . The transaction evalu-

ated in computes the binding

and does not compute any update, thus the new exten-

sional database is still . The transaction

evaluated in computes

the binding and collects the update , thus

the new extensional database is .

The transaction computes the

binding , and collects the updates .

They are not consistent and therefore aborts. The

transaction fails, because

is not in , and so no update is performed.

The resulting EDB is .

Consider IDB of the Example 2.1. The

normal form is

Let be the current database

state and is the consistent set of ground updates.

Then the new database is computed by means

of the function as follows:

where is the set of possible database states and

is the set of possible updates.

all or nothing

observable property

the set of answers, the database state the result of

the transaction

(Semantics of a transaction) Let

be the database. The

of a transaction is denoted by the function

. If a transaction has the form ,

then

if OK

where

ables of the language. Following the tradition in the

examples we pre�x a transaction with the symbol `?'.

A is a sequence of transaction

; . . . ; .

U-Datalog program

=

= ()

= () () ()

() + () ()

() ()

=? ()

=

() + ()

= ()

=? ()

=

=

?+ () ()

= + ()

= () ()

=? + () ()

= + () ()

=? = () ()

()

The semantics of an U-Datalog program is given in

four steps. The �rst step models the extensional and

intensional components of the database as two sepa-

rate components. Indeed due to the evolving nature

of the EDB, the semantics of the database must be

given in a compositional way, that is, in terms of the

semantics of the IDB and EDB. The compositional se-

mantics is based on the notion of open programs. An

open program is a program in which information on a

speci�ed set of predicates is not de�ned. The inten-

sional database of Example 2.1 is an open program.

Indeed, the information concerning to the extensional

predicate symbols are not de�ned. This step of the

semantics is related to normal form for rules simi-

larly to the notion of linear normal form introduced in

[8]. We denote this normal form as (). For

non-recursive programs the normal form of a program

looks very much like its unfolding, i.e. in each rule in-

tensional atoms in the body are replaced by appropri-

ate conjunctions of extensional atoms, thus obtaining

rules with only extensional atoms in their body.

() = () () ()

() + () () ()

() ()

Due to space limitation we don't discuss here the

normal form for recursive programs [4].

The second step semantics considers a database (ex-

tensional plus intensional parts) as a single compo-

nent. Indeed, when querying a database (from a logi-

cal point of view) the distinction between extensional

and intensional predicates is not relevant any more.

This is the semantics of the marking phase. We note

that database systems use as default a set-oriented

semantics, that is, the query-answering process com-

putes a set of answers. Therefore

() =

~

~

denotes the set of pairs (bindings and updates) com-

puted as the consistent answers of the transaction

. Such answers can be computed in a top-down or

bottom-up style. This semantics does not include the

execution of the collected updates neither consider the

transactional behavior. In order to model these fea-

tures we de�ne the semantics of a transaction with

respect to a database . Before we de�ne

a function that performs the updates.

� : 2 2 2

�() = ((

~

) (

~

))

(

~

) + (

~

)

2 2

The third step provides the transactional behavior,

modeling the update phase; the hypothetical updates

computed by the marking phase are executed with a

transactional mechanism, i.e. an style.

As of a transaction we consider

and

itself, which can be o .

We consider the set of updates collected by the mark-

ing phase, to which the bindings have been applied.

The set � is obtained as the union of all the updates

gathered by the di�erent solutions, appropriately in-

stantiated. It can be a ground consistent set of up-

dates. If so, the result of the marking phase is a set

of bindings and a set of hypothetical updates. If the

collected updates are consistent and ground, the new

database state is computed and the transaction com-

mits. If � is not ground or it is inconsistent, the trans-

action aborts. Note that in such a way we model a

set-oriented transactional behavior. The set of all the

possible observable properties is . In the follow-

ing we de�ne the semantics of a transaction with

respect to the intensional database as a function

from extensional database to observable.

= semantics

() :

2

~

~

~

()() =

= ()

S

(

De�nition 2.7

Example 2.3

+1 +1

1 2

1 2

1 2

1 2

+2

+2 2 +1 +1

1

1

2 +1

1

+1

+1

+1

+1

3 Architecture of the transac-

tion optimizer

i i

i i

j

j j

j j

j

j

i

i

IDB

IDB i

i

i IDB i i

IDB i

i

IDB i

IDB i

i

i

i i

i

i

i

i

i

h; i

[

S �!

S

S

S

h; i

S

S

 �

 �

f g

[

f g f � g

f g f � g

f � g

n f g [f g f g

f g

[

f

g ; ;

f g �

C

EDB Commit EDB

EDB ; u AbOss ;EDB ;Abort

OK u

u b

u b

u

b

DB IDB

EDB T T

T T

T T OSS OSS

T T Oss

Oss

AbOss otherwise

Oss T Oss Oss

T Oss

T AbOss

;Oss : ; Abort OK

T Oss : Commit

T Oss : Commit

IDB

IDB p X q X ; q X :

r X q X ; q Y ; h X ; q Y :

s X t X :

EDB q b ; q a ; h b ; t c

r X s X r X

EDB IDB

< X b; Y a ; q b ; q a >

< X b ; q b ; q b >

EDB EDB ; q b ; q a

EDB q a q b q b ; h b ; t c :

r X

< X b ;EDB ;Commit >

s X EDB IDB

< X

c ; >

s X

< X c ;EDB ;Commit >

IDB

, , is computed by means

of and . The

condition expresses the fact that the set

is consistent, that is, there are no complemen-

tary ground updates. denotes the ground updates

obtained by substituting the variables in with the

ground terms associated with the variables in .

(Sequence) Let

be the database and be a transaction.

The semantics of is denoted by the function

.

if OK

where .

represents the observable of the

database after the transaction ,

and expresses the condi-

tion that and

.

Consider the following intensional

database :

Consider and the

transaction . The transaction is

evaluated in . The marking phase returns

the solution .

Note that the solution

is not returned by the marking phase because it is not

consistent. The update phase executes all updates gen-

erated by the marking phase, because they are ground

and consistent and therefore no abort condition arises.

The following extensional database is computed:

The execution of generates the observable prop-

erty . Now consider

the transaction , evaluated in .

The marking phase generates the solution

where denotes the empty set. No update is

generated and therefore no update is executed. The ob-

servable property returned by , and by the trans-

action, is .

characterization

�(�) =

� =

The four step semantics is related to complex trans-

actions i.e., sequences of transactions.

=

;

;

(;) :

(;)() =

= ()() =

()()

=

2

()() 3 =

()() 3 =

Therefore, according to the above de�nition, the

abort of a simple transaction in a sequence results

in the abort of the entire sequence. This semantics

induces an interesting equivalence between (complex)

transactions. This is very important because we can

transform a (complex) transaction into a semantically

equivalent one which is computationally less expen-

sive. Two transactions are semantically equivalent if

they are observationally equivalent.

= () () ()

() + () () () ()

() ()

= () () () ()

? (); ? () ? ()

= = + () ()

= + () ()

= �(+ () ()) =

(()) () = () () ()

? ()

=

? ()

=

? ()

=

In the framework of U-Datalog, which provides an ex-

ecution model in which update execution is decoupled

from the deduction process, optimization techniques

can be developed whose goal is to reduce the update

cost of transactions, i.e. to minimize the number of

generated updates. Our transaction optimizer aims

at transforming a transaction in an equivalent one,

which is more e�cient to execute with respect to the

performed updates. Note that the transactional equiv-

alence between the original transaction and the opti-

mized one must be preserved, that is the execution of

the optimized transaction must generate the same ob-

servable as the execution of the original transaction.

For this reason we do not consider only state invari-

ance, but also result and answer invariance for trans-

actions. State invariance ensures that the database

state obtained from the execution of the optimized

transaction is the same state that would be obtained if

the original transaction had been executed. Result in-

variance ensures that the original transaction and the

optimized one have the same transactional behavior

(commit/abort) while answer invariance ensures that

the set of answers provided by the execution of the

optimized transaction coincides with the one provided

by the original transaction.

The overall scheme of the optimization process is

shown in Figure 1. The optimization process can be

divided into eight steps. Steps 1 to 4 are analysis

steps. Steps 1 and 2 are a static analysis of the IDB,

and are independent both from the database state and

from the speci�c transaction. Therefore steps 1 and 2

are not executed for each transaction; rather they are

only executed when the IDB is de�ned. In Step 1 the

normal form is generated for the IDB.

In Step 2 from the normal form of the intensional

database we obtain some properties related to the

structure of the IDB, that hold for any EDB and trans-

action we consider. We refer to these properties as

a of the IDB, denoted as ().

The characterization identi�es which rules may cause

inconsistency, abort or failure conditions during the

marking phase of arbitrary transactions. Therefore,

the characterization of an intensional database pro-

vides information about intensional predicates that,

when invoked as part of the refutation process, may

give rise to error conditions.

Steps 3 and 4 perform a static analysis of the trans-

action; therefore these steps are executed for each

transaction which is submitted. Such analysis is �rst

developed independently from the database state (step

3) and then re�ned keeping into account information

on the EDB expressed in the form of state constraints.

A state constraint is a property related to the contents

of the database state. These properties lead to iden-

tify some relationships among extensional predicates.

normal
 form

 intensional
 database
characterization

 transaction
state independent
 characterization

 transaction
state dependent
characterization

 abort
detection

 simple
optimization

 complex
optimization

evaluation
(run time)

 STATIC
 IDB
ANALYSIS

 STATIC
TRASACTION
 ANALYSIS

OPTIMIZATIONIDB

NF(IDB)

NF(IDB)

T C(IDB)

C(T,IDB) SC

C(T,IDB,SC)

Yes No

Obs

SC

T’

T’’

IDB EDB

EDB
Ans
Res

1

2

3

4

5

6

7

8

state independent

state dependent

simple optimization

complex optimization

Figure 1: Steps in transaction optimization

The most important properties we are interested in

characterizing are disjointness of predicates, inclusion

relationship among predicates and emptiness of pred-

icates. In our approach state constraints are formally

represented as assertions among positive relational al-

gebra expressions.

In Step 3 from the characterization of the inten-

sional database the properties related to the trans-

action to be optimized are extracted. We specialize

the characterization of the IDB to obtain more ac-

curate information about the deduction of the con-

sidered transaction. The obtained characterization is

called characterization of the trans-

action because the obtained properties hold for any

database state. In Step 4 the state independent char-

acterization of the transaction is re�ned in a state de-

pendent one by taking into account state constraints.

The properties in the state dependent characterization

are related to the deduction of the transaction on the

considered IDB and an EDB satisfying the given set

of constraints. The re�ned characterization is called

one.

Steps 5 to 7 are the optimization steps, the �rst of

which is related to abort detection, the second is re-

lated to optimization considering separately the sim-

ple transactions in the sequence (and so referred to as

) and �nally the third is related to

the optimization of the global sequence (referred to as

). Step 5 is concerned with the

�rst optimization that can be performed on a trans-

action, i.e. the detection of aborts. Indeed, due to

information provided by the characterization, we can

statically determine whether the transaction aborts.

If so, the observable that would be obtained from the

execution of the transaction can be determined with-

out actually executing the transaction. If an abort

is detected the appropriate observable is returned to

the user, without executing subsequent steps in the

optimization.

Both complex and simple optimizations produce as

output an annotated transaction. An annotated trans-

action is a sequence of simple annotated transactions,

i.e. of simple transactions each one coupled with an

annotation set (a set of rule identi�ers and update

identi�ers). This set is used to specify that, in the

marking phase for the simple transaction, the rules

listed in the annotation set must not be used and,

analogously, the updates listed in the annotation set

must not be performed. In such a way each simple

transaction that constitutes the sequence is to be eval-

uated in an IDB modi�ed according to the annotation

set. Annotations are used to discard invariant and re-

dundant updates and to not consider rules that are

known to generate no solution for the given transac-

tion.

Simple optimization, performed as Step 6, has the

goal of detecting invariant updates and failures. In-

variant updates are those that, when applied to a

1

2

2

3

4

5

�

�

�

�

�

�

�

3.1 An illustrative example

invariance

with respect to a rule

invariance with

respect to an update

Intensional Predicate 1

Intensional Predicate 2

Intensional Predicate 3

Intensional Predicate 4

Intensional Predicate 5

Intensional Predicate 6

customer= order= quantity= supplier=

supplierCustomer= productName=

customer Name;Address; Balance

Name Address

Balance

order Number;Date;Name

Number Name

Date

quantity Number; Product;Quantity

Number Product

Quantity

supplier Name; Product; P rice

Name Product

Price

supplierCustomer Name; Product

Name

Product

productName Name; Product

Name

Product Product

IDB

p Customer; Supplier

supplier Supplier; Product; P rice ;

order Number;Date; Customer ;

quantity Number; Product;Quantity

productName

p Product

productName Name; Product ;

order N;Date;Name ;

quantity N; Product;Q

p Product

productName Name; Product ;

supplier Name; Product; P rice

a

p Name Product a; Price ;

supplier Name; Product; P rice

p Supplier; Product;NewPrice

supplier Supplier; Product;OldPrice ;

supplier Supplier; Product;NewPrice ;

supplier Supplier; Product;OldPrice

supplierCustomer

Houston

p Name Address Houston;

Balance ;

supplierClient Name; Product ;

customer Name;Address; Balance ;

supplier Name; Product; P rice

database state, do not modify it. An update adding

facts already in the database, or removing facts not

in the database, is invariant. Failure detection is the

process of determining which rules are useless in the

deduction of a given goal, in that such rules do not pro-

duce any solution. With respect to invariant updates

two invariance levels have been devised:

, if the marking phase for the

transaction by using such rule produces solutions that

do not alter the database state, and

, if the execution of such update

by the transaction does not alter the database state.

Annotations produced as output reect these di�er-

ent invariance levels. Moreover a simple transaction,

which is not the last in the complex transaction (recall

that, by the semantic de�nition, the answers depend

on the last goal in the sequence), that is known not

to abort and not to produce any database change (for

example because it fails) can be eliminated from the

transaction.

Step 7, i.e. complex optimization, has the goal

of detecting redundant updates in the context of the

sequence. Redundant updates are updates that are

either executed twice in a sequence or discarded by

complementary updates executed after them in the se-

quence. Complex optimization detects updates whose

execution would not a�ect the resulting observable,

and may introduce further annotation.

Conditions have been devised ensuring update in-

variance and determining redundant updates in the

context of a sequence, and algorithms have been devel-

oped for generating the appropriate annotated trans-

actions [4].

Step 8 is the evaluation process, in which the anno-

tated transaction produced as output of the optimiza-

tion is executed against the DB. This step, which is not

discussed in this paper due to space limitations, sim-

ply executes each simple transaction in the sequence

on the appropriate database state (the one resulting

from the execution of the previous goals of the se-

quence) and the appropriate IDB (taking into account

the annotation set for the considered simple transac-

tion). The choice of the evaluation technique to adopt

is not discussed in this paper.

In this section we illustrate with an example the op-

timization strategy, shown in Figure 1. The EDB

we consider contains the following extensional pred-

icates: 3, 3, 3, 3,

2 and 2, storing

the following information:

() de�nes for

each customer the , the and the

() de�nes for each or-

der , the of the customer and the

() de�nes

for each order , the related and

its

() de�nes for each

supplier the , a supplied by him

and its

() de�nes the

of a person who is both a customer and

a supplier of

() de�ning the

of a person who is either a customer or-

dering or a supplier supplying .

The we consider consists of the following in-

tensional predicates. The number near the rules and

the update atoms are used to identify them in the fol-

lowing.

The following rule deter-

mines all the suppliers of a given customer.

1 : ()

()

()

()

The following rules update

the extensional predicate by inserting

the name and the product either ordered by a cus-

tomer or supplied by a supplier.

2 : ()

1 : + ()

()

()

3 : ()

1 : + ()

()

The following rule retrieves

the name of suppliers, supplying product at price

100.

4 : () = = 100

()

The following rule modi�es

the price at which a given supplier supplies a certain

product. (Note that this rule contains two update

atoms).

5 : ()

1 : ()

2 : + ()

()

The following rule updates

the extensional predicate , insert-

ing the name of customers who are also suppliers, hav-

ing the balance equal to 10000 and living in .

6 : () =

= 10000

1 : + ()

()

()

The following rule re-

moves from the extensional database the facts about

6

7

7

1

2

4

4

4 4

7

1 4 5

2 4 6

3 4 7

1 2 3 4 5 6

1 7 2 2

3 5 4 1

5 6 6 3

1 1 1

2 2 2

3 3 4

4 5 5

6 6

4

4 1

4

�

�

NF

NF

h � i

�

h � i

h i

h i h i

h i

C

h � i h i h � i

h � i h i h � i

h � i h i h i

C

C

h i h i h i

h � i h i h i

h � i h i h � i

h i h � i h i

h � i h i

Intensional Predicate 7

EXAMPLE 1

STEP 1

STEP 2

Intensional Predicate 1

Intensional Predicate 2

Intensional Predicate 3

Intensional Predicate 4

Intensional Predicates 5 and 6

Intensional Predicate 7

STEP 3

supplierCustomer

p Balance ;

supplierCustomer Name; Product ;

customer Name;Address; Balance ;

supplier Name; Product; P rice

supplierCustomer

p Price ;

supplierCustomer Name; Product ;

supplier Name; Product; P rice

p Price ;

supplierCustomer Name; Product ;

supplier Name; Product; P rice ;

customer Name;Address; Balance

IDB

IDB IDB

IDB IDB

IDB

IDB

IDB

p ; ; CM CM

p t p t

p ; ; CM

p

:

p ; : ; : ; P I

p ; : ; : ; PA p ; : ; PA PI

PA

p ; : ; : ; PA

IDB

p ; ; CM ; p ; : ; : ; PI ; p ; ; CM ;

p ; ; CM ; p ; : ; : ; PI ; p ; ; CM ;

p ; ; CM ; p ; : ; PA ; p ; : ; : ; PA

T G G G G G G

G p ; G p Product ;

G p Name G p Customer; Supplier

G p G p Name

T IDB

IDB

T

IDB

T; IDB T

G ; ; PF ; G ; ; PF ; G ; : ; : ; PA ;

G ; ; CM G ; ; PF ; G ; ; PF

G ; ; CM ; G ; ; PF G ; ; CM ;

G ; ; PF G ; ; CM ; G ; ; PF

G ; ; CM ; G ; ; PF

G

G r

G

the predicate related to customers

having the balance equal to 10000.

7 : = 10000

1 : ()

()

()

The following rules update

the extensional predicate , remov-

ing facts related to suppliers supplying at least a prod-

uct at price 100 and inserting facts related to suppliers

supplying at least a product at price 200.

8 : = 100

1 : ()

()

9 : = 200

1 : + ()

()

()

We now show how the various steps in the optimiza-

tion (cf. Figure 1) are applied to the above IDB, by

presenting two examples.

The �rst step generates the normal form of the in-

tensional database. In this case, does not con-

tain any recursive clauses, and each rule has in its

body only atoms on extensional predicates. There-

fore, the normal form of coincides with ,

i.e. () = .

The second step generates a characterization of the

normal form of . We recall that a characteri-

zation of an intensional databases is a set of prop-

erties related to abort/commit, inconsistencies, suc-

cess/failures conditions. These conditions can be ob-

tained from (), independently from the con-

sidered transaction. In the following, we illustrate the

conditions generated for every single predicate of the

example .

This predicate does not

contain any update. Therefore, no abort can arise

when this predicate is evaluated. This information is

represented as: , where denotes com-

mit.

The update parts of the

rules de�ning this predicate do not contain comple-

mentary update atoms, i.e. + (

~

), (

~

). There-

fore, inconsistent solutions cannot arise. Moreover,

every update atom shares its variable with a query

atom. Therefore, non-ground updates cannot be gen-

erated by this predicate. This fact is represented as:

.

This predicate generates

the same conditions as those generated for predicates

1 and 2.

The update part of the

rule de�ning contains two complementary update

atoms. These updates might generate some inconsis-

tent solutions or some abort conditions. Moreover, the

update atom 5 2 contains a variable not bound by a

query or binding atom. This fact might lead to some

non-ground updates, i.e. to some abort conditions.

These facts can be represented as: (5 1 5 2) ,

(5 1 5 2) , 5 2 , where denotes

potential inconsistencies and denotes potential

abort.

These predicates

generate only a commit condition, as that in predicate

1.

This predicate is de�ned by

two rules, containing complementary updates. In this

case too, an abort condition for inconsistent updates

can be generated. This condition is represented as:

(8 1 9 1) .

Therefore at the end of Step 2 the obtained character-

ization () is the following:

(5 1 5 2)

(5 1 5 2)

5 2 (8 1 9 1)

where PF denotes potential failure. The above char-

acterization is then stored by the system and used as

the basis of optimization each time a transaction is

submitted.

Suppose that the following transaction is submitted:

= ; ; ; ; ; where

=? =? ()

=? (), =? (),

=? , =? ()

Upon submission of this transaction, the third step of

the execution strategy generates a state independent

characterization of the deduction of in . This

characterization is obtained from the characterization

of , by considering the characterization proper-

ties related to predicates used during the execution

of . Moreover, we add a property for every rule for

which () does not contain a success or failure

property. In this case the following state independent

characterization () is generated for :

8 9 (8 1 9 1)

, 2 3 ,

6 ,

1 , 7 ,

4

The above characterization states for example that

the execution of goal will not generate any abort

condition (i.e. will commit). However, rule ,

used during the execution of , may potentially fail

(i.e. may not generate any solution). Note that the

above characterization is generated without executing

the transaction.

00

1

1

;

;

;

;

0

00

00

00

STEP 4

STEP 5

EXAMPLE 2

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

1 2 3=100

1 2 3=200

1

1

1

1 1 1

2 2 2

3 3 4

4 5 5

6 6

1

1 2

4

4

4

1 1 1

2 2 2

3 3 4

4 5 5

6 6

4

1 2

2

2

2

2

1 2 3 5 6

2

4

3 5

3

5

3

5

3

1 2 3 5 6

4

\

6 ;

h i

h � i

C

h i h i h � i

h � i h i h i

h � i h i h � i

h i h � i h i

h � i h i

h � i

;

�

h i

h i

h i h i h i

h � i h i h i

h � i h i h � i

h i h � i h i

h � i h i

�

h i

h i

h i h i

SC

� SUPPLIER

� SUPPLIER CUSTOMER

�

G ; : ; : ; PA

G ; ;AB

G

T; IDB; SC

G ; ; PF ; G ; ; PF ; G ; ; AB

G ; ; CM ; G ; ; PF ; G ; ; PF

G ; ; CM ; G ; ; PF ; G ; ; CM

G ; ; PF ; G ; ; CM ; G ; ; PF

G ; ; CM ; G ; ; PF

T

G ; ;AB T

EDB

ORDER

SUPPLIER SUPPLIERCUSTOMER

G

G ; ; PF

G ; ; FL

G ; ; PF ; G ; ; PF ; G ; : ; : ; PA

G ; ; CM ; G ; ; PF ; G ; ; PF

G ; ; CM ; G ; ; PF ; G ; ; CM

G ; ; FL ; G ; ; CM ; G ; ; PF

G ; ; CM ; G ; ; PF

T

T no

G

T

SUPPLIER SUPPLIERCUSTOMER

:

G

G ;U : :

G

IDB

p Product supplier Name; Product; P rice

T G G ;U : G G G :

G

G

EDB

G G

G

supplierCustomer

Address Houston Balance

customer Name;Address; Balance

supplier Name; Product; P rice

G

supplierCustomer

Balance

customer Name;Address; Balance

supplier Name; Product; P rice

G

G

G

:

T G G ;U : G ;U : G G :

T

G

T

T

Now suppose that the following state constraint

holds on the current EDB:

� (())

� (()) =

where � represents the projection operator, rep-

resents the selection operator and represents the

natural join operator. An uppercase name denotes

the algebraic relation corresponding to an extensional

predicate. This state constraint states that at least a

supplier exists which supplies both a product at price

100 and a product at price 200. In this case, the po-

tential abort condition (8 1 9 1) becomes a

certain abort condition , In fact, because

of the state constraint, goal will surely generate

some inconsistent updates. The state dependent char-

acterization () is the following:

8 9 ,

2 3 ,

6 ,

1 7 ,

4

Note that the state dependent characterization has the

e�ect of determining for some potential error situa-

tions that they will arise for one given set of state

constraints.

Because the characterization of contains a certain

abort condition, , the outcome of would

be abort. Therefore, the transaction is not executed

at all, and an abort result is returned to the user, to-

gether with an empty set of answers and the database

state preceding the execution of the transaction.

This example illustrates the optimization of the trans-

action in Example 1 when di�erent state constraints

hold. Note that steps 1, 2 and 3 of the optimization

are the same as those of Example 1, and thus we omit

them.

Suppose that the following state constraints hold on

the current :

=

� () .

In this case, rule 1 cannot generate any solutions dur-

ing the execution of the goal . Therefore the po-

tential failure property 1 becomes a certain

failure property, i.e. 1 . The state dependent

characterization of T is the following:

8 9 (8 1 9 1) ,

2 3 ,

6 ,

1 7 ,

4

In this example, the characterization of does not

contain any certain abort conditions related to goals

in . Therefore, the abort detection step returns .

From the state dependent characterization and from

the set of state constraints, the simple optimization

step recognizes two possible optimizations. First of

all, as the goal uses only rule 1 during its execution

and rule 1 does not generate any solution, this goal can

be eliminated from . Secondly the state constraint

� () al-

lows to infer that the update atom 3 1 is invariant

w.r.t. the extensional database. Therefore this update

can be eliminated from the deduction of the goal .

We obtain the following annotated goal: : 3 1

The previous goal is executed as the goal on the in-

tensional database obtained from removing rule

3 and adding the rule

() ().

The simple optimization returns the following trans-

action:

= ; : 3 1 ; ; ;

Note that the goal has been annotated by discard-

ing the execution of the �rst update atom in rule 3.

Moreover, goal has been removed from the trans-

action since it will not generate any solutions and thus

will not modify the state.

The last optimization step applies a complex opti-

mization to the transaction obtained from the previ-

ous step. In this case, the optimizer recognizes that

goal and goal generate some redundant up-

dates. In fact generates updates on the predicate

depending on the atoms

= , = 10000,

(),

(),

whereas the goal generates updates on the predi-

cate depending on the atoms

= 10000,

(),

().

Therefore, the updates generated by are a subset

of that generated by . So, we can replace the goal

by an annotation on the update atom identi�ed by

6 1. We obtain the following optimized transaction:

= ; : 3 1 ; : 6 1 ; ;

With respect to the original transaction is more ef-

�cient in that: (i) it does not contain goal , and (ii)

updates atoms contained in rules 3 and 6 have been

identi�ed as redundant and thus will not be executed

during the execution of .

The last step of the execution strategy evaluates

2

3

: G :

G

4 Conclusions

References

Proc. Second Int'l Conf. on Database The-

ory Lecture Notes in Computer

Science

Journal of

the ACM

Handbook of Theoretical Com-

puter Science

Proc. Fourth Int'l Work. on Foundations

of Models and Languages for Data and Objects

Logic Program-

ming and Databases

ACM Transaction on Database Sys-

tems

Proc.

Nineth Int'l Conf. on Data Engineering

Advances in Databases and Ar-

ti�cial Intelligence

Proc. Seventeenth Int'l Conf. on Very Large Data

Bases

Proc. Fourteenth Annual ACM

Symp. on Principles of Programming Languages

SIGMOD Record

Foundation of Deductive Databases and

Logic Programming

A Logic Language for Data

and Knowledge Bases

Int'l Conf.

ACM on Management of Data

Proc. Int'l Conf. ACM on Management of Data

on the current database. We do not deal with this step

due to space limitations. The only remark to be done

is that the updates atoms contained in the annotations

of the goals in the transaction (i.e. 3 1 for and 6 1

for) will not be executed.

We have presented a rule-based language which pro-

vides updates within a declarative query language.

Due to the non-immediate update execution interest-

ing optimization on transactions can be performed.

The main ideas of the optimization, based on static

analysis of the database rules and transactions, are

presented together with the architecture of the opti-

mizer. An interesting problem which is still open and

is currently under investigation is related to mainte-

nance of state constraints. Indeed, state constraints

can be either generated from the database state or

updated due to database state changes depending on

a cost model. A prototype of the optimizer is now

under implementation.

[1] S. Abiteboul. Updates, a New Frontier. In

M. Gyssens, J.Paredaens, and D. Van Gucht, ed-

itors,

, volume 326 of

, pages 1{18. Springer-Verlag, Berlin,

1988.

[2] S. Abiteboul and V. Vianu. Equivalence and Op-

timization of Relational Transactions.

, 35(1):70{120, January 1988.

[3] K.R. Apt. Logic Programming. In J. Van

Leeuwen, editor,

, pages 493{571. Elsevier, Amster-

dam and The MIT Press, Cambridge, 1990. Vol-

ume B: Formal Models and Semantics.

[4] E. Bertino, B. Catania, G. Guerrini, and D. Mon-

tesi. A Characterization of Intensional Databases

in Constrained Datalog. Submitted for publica-

tion, 1993.

[5] E. Bertino, M. Martelli, and D. Montesi. Model-

ing Database Updates with Constraint Logic Pro-

gramming. In U. W. Lipeck and B. Thalheim,

editors,

,

pages 42{53, 1992.

[6] S. Ceri, G. Gottlob, and L. Tanca.

. Springer-Verlag, Berlin,

1990.

[7] U. S. Chakravarthy, J. Grant, and J. Minker.

Logic-Based Approach to Semantic Query Opti-

mization.

, 15(2):162{207, June 1990.

[8] J. Han, K. Zeng, and T. Lu. Normalization of Lin-

ear Recursions in Deductive Databases. In

, pages

559{567. IEEE Computer Society Press, 1993.

[9] E. N. Hanson and J. Widom. Rule Processing in

Active Database Systems. In L. Delcambre and

F. Petry, editors,

. JAI Press, 1992. To appear.

[10] R. Hull and D. Jacobs. Language Constructs

for Programming Active Databases. In G. M.

Lohman, A. Sernadas, and R. Camps, editors,

, pages 455{467, 1991.

[11] J. Ja�ar and J.-L. Lassez. Constraint Logic Pro-

gramming. In

,

pages 111{119. ACM, New York, USA, 1987.

[12] J. Kiernan, C. De Maindreville, and E. Simon.

The Design and Implementation of an Extendible

Deductive Database System. ,

18(3):68{77, September 1989.

[13] S. Manchanda and D. S. Warren. A Logic-based

Language for Database Updates. In J. Minker,

editor,

, pages 363{394. Morgan-

Kaufmann, 1987.

[14] S. Naqvi and S. Tsur.

. Computer Science Press,

1989.

[15] R.Ramakrishan et al. The coral database system.

In P. Buneman and S. Jajodia, editors,

, pages 544{546,

1993.

[16] J. Widomand S. J. Finkelstein. Set-Oriented Pro-

duction Rule in Relational Databases Systems.

In H. Garcia-Molina and H.V. Jagadish, editors,

,

pages 259{270, 1990.

