
Extending the ODMG Object Model with Composite Objects

Elisa Bertino

Dipartimento di Scienze dell'Informazione

Universit�a di Milano

Via Comelico, 39/41 20135 Milano, Italy

+39 02 55006 227

bertino@dsi.unimi.it

Giovanna Guerrini

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

Via Dodecaneso, 35 16146 Genova, Italy

+39 010 353 6635

guerrini@disi.unige.it

ABSTRACT

In this paper we extend the ODMG object data model

with composite objects. A composite object is an object

built by aggregating other component objects. Exclus-

iveness and dependency constraints, as well as referen-

tial integrity, can be associated with composition rela-

tionships among objects. Our composite object model is

developed in the framework of the ODMG object data-

base standard data model, but can be used in both

object-oriented and object-relational database systems.

In the paper, we propose a language for de�ning com-

posite objects and we de�ne the semantics of update

operations on composite objects.

Keywords

Object-oriented database systems, composite objects,

integrity constraints, data models.

INTRODUCTION

Object-oriented DBMS (OODBMS) and object-re-

lational DBMS (ORDBMS) are establishing themselves

as the new generation DBMS. Object database systems

overcome the limitations of relational systems with re-

spect to several emerging data-intensive applications be-

cause of their ability to directly represent complex ob-

jects and to store in the database not only data but also

the operations that can be performed on the data.

All the data models supported by object DBMS share

a number of basic concepts, such as the concepts of ob-

ject, class, and inheritance, which are often collectively

referred to as core data model. That core model, al-

though quite rich, does not capture integrity constraints

and semantic relationships which are important in many

applications. In particular, an important semantic rela-

tionship is the composition relationship. In an object-

oriented data model, an object, called composite object,

can be de�ned by aggregating other objects, called com-

ponent objects [19]. The relationship relating a compos-

ite object with its components is called aggregation or

part-of relationship. The fact that an object is de�ned as

an aggregate of other objects raises a number of require-

ments. A �rst relevant constraint is related to referential

integrity. Referential integrity ensures that whenever

the value of an attribute of an object is another object,

the referenced object exists. Violations to referential

integrity must be detected upon any attempt to delete

a referenced object. Violations to referential integrity

can be repaired by forbidding the deletion, by setting to

null the value of the attribute containing the reference

or by cascade deleting also the object containing the ref-

erence. In addition to referential integrity, two other

important constraints are related to composite objects,

namely exclusiveness and dependency. An exclusiveness

constraint speci�es that an object must be component

of only one composite object (possibly, with respect to

a certain class or through a certain attribute). A de-

pendency constraint speci�es whether the existence of

the component object is independent from the existence

of the composite objects containing it, that is, whether

the deletion of a composite object implies the deletion of

its components. In addition of being relevant from the

semantic point of view, the notion of composite object

as a logical entity is useful in enhancing performance

because a composite object can be considered a locking,

authorization and clustering unit.

In this paper we de�ne a composite object model, sup-

porting also referential integrity. A lot of work has been

carried on composite objects and part-whole relation-

ships, in the data modeling [3, 14, 15], knowledge rep-

resentation [23, 24, 25] and software engineering [12, 20]

areas. There is obviously a trade-o� between the com-

plexity of the model and the e�ciency and simplicity of

its realization. We restrict ourselves to composite ob-

ject models typical of OODBMS. The model we propose

uni�es composite object models typical of OODBMS

and referential integrity as supported in SQL. In par-

ticular, composite object models like the Orion one [19]

do not include referential integrity constraints. There-

fore, an object may be removed even if it is a compon-

ent of a composite object. Referential integrity through

the notion of external keys is supported in relational

DBMS [8]. However, the notion of composite objects

is not supported by SQL nor by the object extensions

of SQL [11, 17, 22]; therefore, exclusiveness and exist-

ence constraints are not supported by these data models.

Our goal is to de�ne a composite object model support-

ing: (i) referential integrity with the same repair actions

supported by SQL; (ii) exclusiveness constraints and ex-

istence constraints in a more general form than those

de�ned in Orion [19].

We cast the de�nition of our composite object model

in the framework of the ODMG object database stand-

ard data model [9]. However, we believe that our model,

being quite general, can be used in both OODBMS and

ORDBMS. The ODMG data model, which we describe

in the following section, supports two kinds of properties

of objects: attributes and relationships. Relationships

are declared between two object types and induce a pair

of traversal paths between the two types. In this paper,

we extend the ODMG data model with a special kind of

relationship, the part-of relationship, modeling compos-

ite object references. Note that the part-of relationship

is listed among the features that will have to be ad-

dressed by the ODMG standard. Therefore, we believe

that our proposal addresses an issue still open in the

ODMG standard.

In particular, in this paper we propose a language,

as extension of the ODMG object de�nition language

(ODL), for de�ning composite objects. The language

supports the de�nition of two kinds of relationships

between objects, composite and weak relationships.

Composite relationships have exclusiveness and depend-

ence constraints. Exclusiveness is expressed by specify-

ing a set of classes with respect to which exclusiveness

is enforced. Moreover, for each relationship, the beha-

vior to be observed upon violations of referential integ-

rity can be speci�ed. We then analyze update opera-

tions; in particular, the delete operation must be care-

fully handled. The dependence semantics of a composite

reference as well as the the cascade option for referen-

tial integrity propagate the deletion of an object to other

objects, while the restrict option for referential integrity

prevents the deletion of referred objects. These di�er-

ent options may, thus, raise con
icts. In our work, we

have developed strategies for solving ambiguities when

con
icts arise. The basic idea behind con
ict resolution

is to adopt a conservative approach, that is, we prefer

not deleting an object, which is no longer useful, rather

than deleting a useful object. We remark that those con-

icts depend on the dynamic con�guration of the object

aggregation graph, and thus they cannot be detected at

the schema level. At the schema level, we could impose

some su�cient conditions to prevent con
icts, but these

conditions would be too restrictive. We exemplify and

analyze those con
icts, and formally de�ne a semantics

of update operations.

The remainder of this paper is organized as follows.

We �rst introduce some preliminary notions, then we

present the language for de�ning composite objects and

discuss the semantics of update operations on compos-

ite objects. Finally, we conclude the paper by discussing

some implementation issues and pointing out some pos-

sible extensions.

PRELIMINARIES

In this section we introduce some preliminary notions

that will be useful in the subsequent development of the

paper. In particular, we introduce the notions of com-

posite object and referential integrity, the basic concepts

of the ODMG data model and all the notations that will

be used in the following.

Composite Objects and Referential Integrity

Composite objects have been introduced in the Orion

data model [18, 19]. In that model, two types of refer-

ences - weak and composite - are de�ned between ob-

jects. A weak reference is a usual reference between

objects on which no additional semantics is superim-

posed. An object o has a reference to an object o

0

if this

reference is the value of an attribute of o. A composite

reference is a reference on which the part-of relationship

is superimposed. A composite reference can, in turn, be

exclusive or shared. In the former case, the referred ob-

ject must belong to a single composite object, whereas in

the latter case it can belong to several composite objects.

The semantics of a composite reference is then re�ned

by introducing the distinction between dependent and

independent composite references. In the former case,

the existence of the objet referred to is dependent upon

the existence of the object to which it belongs, whereas

in the latter case, it is independent. The deletion of a

composite object results in the deletion only of the com-

ponent objects which are dependent for their existence.

The objects whose existence is independent are not de-

leted. Obviously, because the dependence/independence

is orthogonal with respect to the exclusiveness/shared

status, four possible types of composite references are

obtained. In case of shared dependent composite refer-

ences, an object can be dependent upon several objects;

this means that the deletion of a composite object res-

ults in the deletion of a shared component object only if

all the other references to the object have been removed.

That model has been extended in [5] by introducing

two new forms of exclusiveness for composite references:

exclusiveness with respect to a class, meaning that two

instances of the same class cannot share a component,

whereas instances of other classes can refer that com-

ponent; exclusiveness with respect to a class hierarchy,

meaning that two members

1

of the same class cannot

share a component.

Referential integrity de�nes a relationship among se-

mantically identical attributes in di�erent entities. In

an object-oriented data model this means that for any

object o containing a reference to an object o

0

, the re-

ferred object, i.e. o

0

, must exist. In some OODBMS,

such as GemStone [7] and O

2

[13], referential integrity is

automatically ensured, in that those systems do not sup-

port explicit object deletion, rather they use a garbage

collection mechanism to determine which objects can be

removed not being referred any longer by any other ob-

ject. In systems with an explicit delete operation, if a

referred object is deleted, the problem of dangling point-

ers may arise.

Referential integrity is not a peculiar constraint of

object-oriented data models, rather it is present in all

data models. The concept of referential integrity, is in-

cluded in the SQL2 standard [8] which was accepted by

ANSI and ISO in 1992. In SQL2 various options for ref-

erential integrity can be speci�ed. Referential integrity

in the relational data model is an integrity constraint

between a set of attributes (called foreign key) of a re-

lation C (called child) and a set of attributes that is

the primary key of a relation P (called parent). Integ-

rity constraint violations are caused by update opera-

tions on the parent and child relations. According to

the SQL2 standard, insert and update operations on the

child relation are forbidden (backed out) if these would

result in database states violating referential integrity.

For deletions and updates of tuples in the parent rela-

tion, by contrast, in SQL2 di�erent repairing actions

can be speci�ed. This is accomplished through clauses

1

We say that an object is an instance of a class C if C is

the most speci�c class, in the class hierarchy, to which the object

belong. An object is a member of a class C if it is an instance of

C or of a subclass of C.

ON UPDATE and ON DELETE in the de�nition of the

parent relation, stating how to handle modi�cations that

may violate referential integrity. For each of the clauses

above, di�erent repairing actions can be speci�ed:

� CASCADE: in case of update, the new values in

the key are propagated to the referencing children,

whereas in case of deletion the referencing children

are also deleted;

� SET NULL: the foreign key attributes in the refer-

encing tuples of the child relation are set to null;

� SET DEFAULT: the foreign key attributes in the ref-

erencing tuples of the child relation are set to a

given default value;

� NO ACTION: no action is taken; referential integ-

rity remains violated and if no other operation is

executed to correct the mismatch of the correspond-

ing tuples, the complete work of the transaction is

backed out.

There is another important referential action not intro-

duced in the SQL2 standard, but supported by most of

the relational DBMS: RESTRICT. The semantics of this

referential action is to forbid any change (update or de-

lete) of a parent tuple as long as there are referencing

child tuples. Although this action is not in the SQL2

standard, we include it in our discussion.

A problem with referential integrity constraints, as

speci�ed in SQL2, results from the possibility of in-

terference when performing multiple referential actions

on a tuple. That is, a straightforward implementa-

tion may lead to a non-determinism in the result of a

user operation. The SQL2 standard prevents such non-

determinism through the speci�cation of a complex test

carried out during the execution of referential actions.

A detailed discussion of this approach can be found in

the work by Markowitz [21].

ODMG Object Database Standard Data Model

This section focuses on the features of the object model

of the ODMG standard that are relevant to this paper.

The basic modeling primitives are the object and the lit-

eral. Each object has a unique identi�er. A literal has

no identi�er. The state of an object is de�ned by the

values it carries for a set of properties. These proper-

ties can be attributes of the object itself or relationships

between the object and one or more other objects. Typ-

ically the values of an object properties can change over

time. The behavior of an object is speci�ed by the set of

operations that can be executed on or by the object. Ob-

jects and literals can be categorized according to their

types. All elements of a given type have a common range

of states (i.e., the same set of properties) and common

behavior (i.e., the same set of de�ned operations). A

Symbol Meaning

OBJ the set of all objects

P(S) the powerset of set S

C

1

�

ISA

C

2

class C

1

is a subclass of class C

2

[[C]] the set of objects members of class C

[[C]]

+

the set of objects instances of class C

[[S]]

+

the set of objects instances of classes in the set S

ref(o) the set of objects participating in some relationships with o

comp(o) the set of objects participating in some composite relationships with o

(the set of o components)

in paths(o) the set of traversal paths leading to object o

r(o) the object participating in relationship r with object o

r

�1

the inverse traversal path of traversal path r

o

r

�! o

0

there is a traversal path r from object o to object o

0

composite(r) whether or not relationship r is composite

exclusive(r) the set of classes w.r.t. which relationship r is exclusive

in rel(r) whether or not relationship r is exclusive in r

dependent(r) whether or not relationship r is dependent

delete(r) behavior to be taken upon deletion of an object from which traversal path r originates

Set

d

(o) the set of objects to be deleted as a consequence of the deletion of o

Table 1: Notation and terminology

database stores objects, enabling them to be shared by

multiple users and applications. A database is based

on a schema, de�ned according to an object de�nition

language (ODL), and contains instances of the types

de�ned by its schema.

A type de�nes a set of properties (attributes and rela-

tionships) constituting the state of instances of the type.

An attribute models a property of all instances of a type.

A relationship is de�ned between two types, each of

which must have instances that can be referenced by

object identi�ers. Only binary relationships, i.e., rela-

tionships between two types, are supported. A binary

relationship may be one-to-one, one-to-many, or many-

to-many, depending on how many instances of each type

participate in the relationship. For example marriage is

a one-to-one relationship between two instances of type

Person. A woman can have a one-to-many mother of re-

lationship with many children. Teachers and students

typically participate in many-to-many relationships.

A relationship is implicitly de�ned by declaring tra-

versal paths that enable applications to use the logical

connections between the objects participating in the re-

lationship. Traversal paths can be declared in pairs,

one for each direction of traversal of the binary relation-

ship. For example, a professor teaches courses and a

course is taught by a professor. The teaches traversal

path would be de�ned in the declaration for the Professor

type. The is taught by traversal path would be de�ned

in the declaration for the Course type. The fact that both

these traversal paths apply to the same relationship is

indicated by an inverse clause in both the traversal path

declarations. For example:

class Professor f ...

relationship Set<Course> teaches

inverse Course::is taught by;

... g

class Course f ...

relationship Professor is taught by

inverse Professor::teaches;

... g

However, the speci�cation of an inverse traversal path is

not mandatory; in such a case, the relationship can be

traversed in a single direction. The relationship de�ned

by the teaches and the is taught by traversal paths is a

one-to-many relationship between Professor and Course

objects. The cardinality is shown in the traversal path

declarations. A Professor instance is associated with a

set of Course instances via the teaches traversal path.

A Course instance is associated with a single Professor

instance via the taught by traversal path.

The OODBMS is responsible for maintaining the ref-

erential integrity of relationships. This means that if

an object that participates in a relationship is deleted,

then any traversal path to that object must also be de-

leted. For example if a particular Course instance is de-

leted, then not only is the reference from this object to

a Professor instance via the is taught by traversal path

deleted, but also all references in Professor objects to

the Course instance via the teaches traversal path must

be deleted. Referential integrity ensures that applic-

ations cannot dereference traversal paths that lead to

non-existing objects.

Notations

Table 1 illustrates the symbols most frequently used in

this paper. For each symbol, the table reports a brief

explanation of its meaning.

A LANGUAGE FOR SPECIFYING COMPOSITE OB-

JECTS

For the sake of simplicity in the presentation we re-

strict ourselves to consider single-valued, that is, one-

to-one relationships. The extension to multi-valued

(that is, one-to-many and many-to-many) relationships

is straightforward.

In what follows we extend ODMG relationships to

support the composite semantics for relationships. The

actions to execute upon referential integrity violations

can be speci�ed for composite as well as for weak rela-

tionships. As we have discussed in the previous section,

ODMG already supports a form of referential integrity,

by deleting a relationship upon deletion of the parti-

cipating objects. We extend that model by allowing a

user to declare di�erent behaviors, corresponding to the

SQL CASCADE and RESTRICT options. Therefore, we

can prevent the deletion of an object participating to a

relationship and we can propagate the deletion of an ob-

ject to the object which participates in the relationship

with the deleted object. We can thus model mandatory

relationships, that cannot be modeled by ODMG.

We extend the ODL syntax for specifying relationships

as speci�ed in Figure 1, according to a BNF-like style.

In the grammar of Figure 1:

� the keyword composite speci�es the relationship to

be a composite relationship;

� the keyword exclusive introduces the set of classes

with respect to which the relationship is exclusive;

if the option in rel is speci�ed, then the exclusiveness

is intended with respect to the relationship itself;

� the keyword dependent speci�es that, upon the dele-

tion of the composite object, the component objects

are also deleted, unless they participate in some

other composite relationship;

� the keyword delete speci�es the actions to be per-

formed on the composite object upon the deletion

of one of its components; this clause can be present

also for weak references.

<rel dcl> :: = [<compl decl>]

relationship <class id> <rel id>

[inverse < inv trav path >]

[delete < del opt >]

<compl decl> ::= composite [dependent]

[exclusive <excl target>]

<excl target> ::= [in rel] < target classes >

< target classes > ::= all j f <t class> g

<t class> ::= <class id> j hierarchy(<class id>) j

<t class>, <t class>

<del opt> ::= cascade j restrict

<inv trav path> ::= <class id> :: <rel id>

Figure 1: ODL extension for specifying composite rela-

tionships

We remark that it is not mandatory to specify an in-

verse relationship. If an inverse relationship is not spe-

ci�ed the relationship is unidirectional, that is, it can be

traversed in a single direction. If an inverse relation-

ship is speci�ed, certain coherence conditions must be

veri�ed by a relationship and its inverse relationship.

In what follows we discuss in detail the various clauses

in the relationship de�nition.

Composite clause

If the keyword composite appears in a relationship de�ni-

tion, the relationship is quali�ed as a composite relation-

ship. The semantic meaning of a consists-of relationship

is thus imposed on the relationship. If the keyword is

missing, the relationship is weak, that is, no special se-

mantics is superimposed on it. Keywords exclusive and

dependent can appear only in composite relationships.

Note that the keyword compositemust appear in the de-

claration of the traversal path associated with the com-

posite object, and not in the traversal path associated

with the component object.

Exclusive clause

The exclusive clause introduces:

� the option in rel, specifying that exclusiveness is re-

stricted to the relationship itself;

� a set of classes, corresponding to the < tar-

get classes > non-terminal of the grammar, with

respect to which the relationship is exclusive; in

particular:

{ the keyword all speci�es the relationship to be

exclusive with respect to all the classes in the

database;

{ the notation C, where C is a class identi�er,

speci�es the relationship to be exclusive with

respect to the instances of class C, that is, the

relationship is exclusive with respect to class

C;

{ the notation hierarchy(C), where C is a class

identi�er, speci�es the relationship to be ex-

clusive with respect to the members of class

C, that is, the relationship is exclusive with

respect to the class hierarchy rooted at C.

The keyword all has been introduced to denote the set

of all classes without the need of explicitly enumerating

them. This option is useful in case of addition of new

classes to the database.

If the clause is omitted, no exclusiveness semantics is

associated with the relationship (that is, it is shared). A

composite relationship can then be associated with a set

S of classes. The relationship is thus exclusive with re-

spect to all instances of classes in S. Set S is the empty

set ; for relationships for which no exclusive clause is

speci�ed; it is the entire set of classes of the database for

relationships for which exclusive all has been speci�ed.

Finally, S is de�ned as

S

n

i=1

C

i

[

S

m

j=1

S

C

�

�

ISA

C

0

j

C

�

if the exclusive clause of the relationship de�nition

contains fC

1

; : : : ;C

n

; hierarchy(C

0

1

); : : : ; hierarchy(C

0

m

)g

with m;n � 0.

The following de�nition formalizes the notion of ex-

clusiveness with respect to a set of classes S.

De�nition 1 (Exclusivity). Let r be a relationship spe-

ci�ed in class C to be composite exclusive with respect to

a set of classes S. The following conditions must hold:

� 8o 2 [[C]] 9/ o

0

2 [[S]]

+

; o 6= o

0

; such that r(o) 2

comp(o

0

);

� if C 2 S, moreover, 8o 2 [[C]] 9/ r

0

composite

relationship of class C, r

0

6= r, such that r(o) =

r

0

(o):

2

The �rst condition ensures that the object associated

with o by r does not participate in any composite re-

lationship with any other object instance of classes in

S, while the second one ensures that that object is not

associated with o in any other composite relationship.

The following de�nition formalizes the notion of ex-

clusiveness in a relationship with respect to a set of

classes S.

De�nition 2 (Exclusivity in a Relationship). Let r be

a relationship speci�ed in class C to be composite exclus-

ive in r with respect to a set of classes S. The following

condition must hold:

8o 2 [[C]] 9/ o

0

2 [[S]]

+

; o 6= o

0

; such that

r(o) = r(o

0

).

2

Obviously, for the above notion to be meaningful, each

class in S must participate to an r relationship.

Intuitively, exclusiveness with respect to a set of

classes S states that two objects instances of classes in

S cannot share a component, while exclusiveness in a

relationship with respect to a set of classes S states that

two objects instances of classes in S cannot be in the

speci�ed relationship with the same component. We re-

mark that an exclusive relationship r is also exclusive in

r, since r(o

0

) 2 comp(o

0

). Thus, exclusivity is a stronger

notion than exclusivity in a relationship.

Dependent Clause

The dependent clause speci�es that the deletion of the

composite object must be propagated to the component

objects. This automatic propagation is useful because it

saves the application from having to explicitly delete all

the component objects.

Consider a relationship r, speci�ed in a class C to

be composite dependent. Consider moreover an object

o 2 [[C]] , such that r(o) = o

0

. Because the relationship

is dependent, upon the deletion of o, o

0

is also deleted,

if it does not participate in other relationships. The

deletion of o

0

, may in turn cause the deletion of other

objects, if o

0

has some components. If the relationship is

not dependent (that is, no dependent clause is speci�ed),

then the deletion of o does not impact o

0

.

Delete Clause

The delete clause speci�es how the deletion of an object

a�ects other objects eventually in relationships with this

object. Consider a relationship r, speci�ed in a class

C. Consider moreover an object o 2 [[C]] , such that

r(o) = o

0

. Then, the deletion of o

0

has di�erent results

depending on the value of the delete clause of r:

� if this clause contains the keyword cascade the de-

letion of o

0

implies the deletion of o;

� if this clause contains the keyword restrict o

0

cannot

be deleted;

� if this clause is omitted the deletion of o

0

only results

in the deletion of the traversal paths r and r

�1

as

in the current semantics of ODMG

2

.

2

Note that traversal paths r and r

�1

are obviously deleted also

in the cascade case.

Examples

In what follows we present two examples to illustrate

the notions introduced above.

Example 1 Consider the following class de�nitions.

class Team f

attribute string name;

attribute short score;

composite exclusive fhierarchy(Team)g

relationship Player goalkeeper

delete restrict;

...

composite exclusive fhierarchy(Team)g

relationship Player forward;

composite exclusive fhierarchy(Team)g

relationship Coach coach

inverse Coach::trains

delete restrict;

composite dependent

relationship Sponsor sponsor; g

class Coach f

attribute string name;

relationship Team trains

inverse Team::coach; g

A team consists of a number of players, playing in dif-

ferent roles, and a coach. In particular, each team has a

goalkeeper and may have a forward. Both relationships

goalkeeper and forward are composite, and exclusive with

respect to the class hierarchy rooted at class Team. This

models the fact that a player cannot play in two di�erent

teams, nor can play two di�erent roles in the same team.

This also means that two subclasses of class Team, say

classes First Class Team and Second Class Team, cannot

share a player. A player cannot be deleted as long as he

is the goalkeeper of some team and a coach cannot be de-

leted as long as he trains a team. This models the fact

that both goalkeeper and coach relationships are mandat-

ory. A team consists moreover of a sponsor. Sponsors

are dependent for existence on the existence of the team

they sponsor. Finally, note that only relationship coach

has an explicit inverse relationship trains. �

Example 2 Consider the following class de�nitions.

class Project f

attribute string name;

attribute short budget;

composite exclusive in rel fhierarchy(Project)g

relationship Manager leader

inverse Manager::leads

delete cascade;

composite dependent

relationship Employee sta� member

inverse Employee::works in; g

class Employee f

attribute string name;

attribute short salary;

relationship Project works in

inverse Project::sta� member; g

class Manager extends Employee f

relationship Project leads

inverse Project::leader; g

A project is characterized by a leader and a sta� mem-

ber. The same manager cannot lead two di�erent pro-

jects, however, a manager (which is also an employee)

can be the leader and the sta� member of a project (or

of di�erent projects), because of the in rel option in the

exclusiveness declaration for relationship leader. The

deletion of a project does not impact the existence of its

leader; by contrast, upon deletion of a manager the pro-

ject he eventually leads is in turn deleted. By contrast,

an employee can be a sta� member of several projects.

The deletion of a project also results in the deletion of

its sta� member, if the member is not the sta� mem-

ber, or the leader, of other projects. If an employee is

deleted, �nally, the project he works for is not a�ected.

�

Correctness of Composite Relationships De�nitions

It is important to note that given a traversal path de-

claration in a class, an inverse traversal path can be

speci�ed in the other class participating in the relation-

ship. Therefore, some constraints must be imposed to

ensure the coherence between a traversal path declar-

ation and the declaration of the inverse traversal path.

In particular, we choose to state that a relationship is

composite in the declaration of the traversal path from

the composite object to the component. Thus, if r is de-

clared composite, r

�1

must not be declared composite.

Moreover, because a composite traversal path declara-

tion speci�es both the actions to perform upon the dele-

tion of the composite object as well as upon the deletion

of the component, no delete clause can be speci�ed for

the inverse of a composite traversal path.

Finally, we remark that specifying a dependent clause

in a composite traversal path is di�erent from specify-

ing delete cascade in the de�nition of the inverse traversal

path. The speci�cation of the dependent clause requires

the deletion of the component object upon deletion of

the composite object, unless the component object is

referred by some other object. By contrast, the delete

cascade implies the deletion of the component object in-

dependently from other references to it (unless if they

are through relationships with delete restrict, as we will

discuss in detail in the following section).

SEMANTICS

In this section we consider the semantics of update oper-

ations on composite objects. We �rst consider creation

and modi�cation, and then deletion.

Creation and Modi�cation

The creation of a new object may cause the violation

of composite exclusive relationships already in the data-

base. The creation is thus allowed if for any composite

relationship in which the object participates, exclusive-

ness is not violated. Moreover, the creation may violate

referential integrity if the object speci�ed as value for

a relationship does not exist in the database. If any of

these constraints is violated, the creation is disallowed,

that is, it is backed out. The following rule states the

conditions upon which creation is allowed.

Rule 1 (Creation Rule). The creation of object o is

allowed provided that:

� Referential Integrity: for each object o

0

2

ref(o), o

0

2 OBJ must hold, that is, each object

referenced by o must exist;

� Exclusiveness: for each object o

0

2 comp(o), for

each r 2 in paths(o

0

) such that composite(r) =

true

{ if in rel(r) = false, then for each r

0

2

in paths(o

0

) such that composite(r

0

) = true,

r

0�1

(o

0

) 62 [[exclusive(r)]]

+

must hold;

{ if in rel(r) = true, then fo

�

j r(o

�

) = o

0

^o

�

2

[[exclusive(r)]]

+

g = fog must hold.

2

The modi�cation of an object can be dealt with as the

creation of a new object. We recall that the OID of an

object cannot be modi�ed and that the modi�cation of

an object cannot result in object deletion. Therefore,

the only constraints potentially violated by a modi�c-

ation are those related to exclusiveness and referential

integrity. If those constraints are violated, the modi�c-

ation is simply disallowed (backed out).

Deletion

In this section we deal with object deletion. As we will

see, object deletion must be carefully handled in pres-

ence of composite objects, because semantic ambiguities

due to the di�erent options may arise. In formulating

the strategies for solving those ambiguities we follow the

basic idea of preserving the information contained in

the database from non explicitly requested deletion, and

thus, in ambiguous cases, we have chosen not to delete

an object.

o

2

-

r

0

restrict

o

1

-

r

cascade

o

Figure 2: Objects and relationships of Example 3

r

3

r

2

restrict

r

cascade

r

1

cascade

oo

0

o

2

o

1

cascade

�

�

�

�

�

�

�

�

�

�

�:

�

�

�

�

�

�

�

�

�

�

�:

--

Figure 3: Objects and relationships of Example 4

Let us �rst show, by means of examples, why dele-

tion may result in ambiguities, and then present the se-

mantics we have de�ned to capture the desired behavior.

Example 3 Consider the objects and the relationships

in Figure 2. When object o is deleted, delete(r) = cas-

cade requires the deletion of o

1

. By contrast, delete(r

0

)

= restrict states that o

1

cannot be deleted. Thus, an am-

biguity arises. We adopt a conservative approach and

thus we choose not to delete object o

1

. Thus, the restrict

option of r

0

prevails on the cascade option of r. �

Example 4 Consider the objects and the relationships

in Figure 3. When object o is deleted, two di�erent pos-

sible �nal states can be obtained depending on the order

in which traversal paths leading to o are considered.

� If r

3

is considered �rst, o

2

is deleted, since

delete(r

3

) = cascade (note that, as a consequence,

the traversal path from o

2

to o

0

is also removed).

Then, r is considered and o

0

and o

1

are also deleted,

because delete(r) = delete(r

1

) = cascade. Thus, all

the four objects are deleted.

� If r is considered �rst, o

0

is not deleted because it

participates in a relationship (r

2

) with delete(r

2

)

= restrict. Then, r

3

is considered and o

2

is deleted

because delete(r

3

) = cascade. This deletion does

not cause the deletion of any other object. Thus,

the deletion of o only causes the deletion of o

2

.

Note that the �nal state which more closely re
ects the

intuitive semantics is the �rst one, because the object

preventing the deletion of o

0

, namely o

2

, is in turn de-

leted as a consequence of the deletion of o. �

A similar situation may arise because of dependent

declarations, as shown by the following example.

Example 5 Consider the objects and the relationships

in Figure 4. When object o is deleted, two di�erent

possible �nal states can be obtained depending on the

order in which traversal paths originating from o are

considered.

Q

Q

Q

Q

Qs

�

�

�

�3

r

2

dependent

r

1

o

00

-

o

0

r

dependent

o

Figure 4: Objects and relationships of Example 5

� If r

1

is considered �rst, o

00

is deleted, because

dependent(r

1

) = true and no other traversal path

leading to o

00

exists (note that, as a consequence,

the traversal path from o

00

to o

0

is also removed).

Then, r is considered and o

0

is also deleted, be-

cause dependent(r) = true and no more traversal

paths leading to o

0

exist. Thus, all three objects are

deleted.

� If r is considered �rst, o

0

is not deleted because it

participates in relationship r

2

. Then, r

1

is con-

sidered and o

00

is deleted. Thus, the deletion of o

only causes the deletion of o

00

.

Note that the �nal state which more closely re
ects the

intuitive semantics is the �rst one, because the object

to which o

0

belongs as a component (i.e. o

00

) is in turn

deleted as a consequence of the deletion of o. �

It is thus important to establish a well-founded se-

mantics for delete operations on composite objects. Such

semantics is de�ned in what follows. We start from the

idea that, given an object o, we want to determine the

set, denoted as Set

d

, of the objects that have to be de-

leted as a consequence of the deletion of o. Obviously,

before determining Set

d

, it must be veri�ed whether ob-

ject o itself can be deleted, that is, whether no traversal

path r leading to o

3

exists, such that delete(r) = restrict.

The set Set

d

initially contains only the object to be

deleted, that is, Set

d

= fog. Other objects are then

inserted into this set, because of dependent declarations

or delete declarations, according to what follows.

� dependent declarations:

Each object o

0

participating in some composite re-

lationships with an object o in Set

d

such that all the

traversal paths leading to o

0

originate from objects

in Set

d

or from object o

0

itself, and at least one of

these paths has a dependent declaration, is added

to Set

d

. Formally,

8o 2 Set

d

if 9 r such that r(o) =

o

0

, dependent(r) = true, in paths(o

0

) =

fr

1

; : : : ; r

n

g and 8i; i = 1; : : : ; n,

r

�1

i

(o

0

) 2 Set

d

or r

�1

i

(o

0

) = o

0

, then Set

d

= Set

d

[fo

0

g.

3

This means that an object o

0

exists such that r(o

0

) = o.

� delete declarations:

Each object o

0

participating in some composite re-

lationships with an object o in Set

d

through a tra-

versal path r with delete(r) = cascade and such that

for all other traversal paths r

0

leading to o

0

either

delete(r

0

) 6= restrict or r

0

originates from some ob-

ject in Set

d

or from object o

0

itself, is added to Set

d

.

Formally,

8o 2 Set

d

if 9 r such that r(o

0

) =

o, delete(r) = cascade, in paths(o

0

) =

fr

1

; : : : ; r

n

g and 8i; i = 1; : : : ; n, either

delete(r

i

) 6= restrict, or r

�1

i

(o

0

) 2 Set

d

or

r

�1

i

(o

0

) = o

0

, then Set

d

= Set

d

[fo

0

g.

Now we introduce two operators formalizing the above

concepts.

De�nition 3 (`

d

). Let o, o

0

2 OBJ be two objects. o

0

is said to be deleted for dependence from o, denoted as

o `

d

o

0

, if r(o) = o

0

, dependent(r) = true and for any

other relationship r

0

such that o

0

= r

0

(o

�

) either o

�

= o

0

or o

�

2 Set

d

. 2

De�nition 4 (`

c

). Let o, o

0

2 OBJ be two objects.

o

0

is said to be deleted for referential integrity from o,

denoted as o `

c

o

0

, if r(o

0

) = o, delete(r) = cascade and

for any other relationship r

0

such that o

0

= r

0

(o

�

) and

delete(r

0

) = restrict either o

�

= o

0

or o

�

2 Set

d

. 2

We now introduce an operator which is the union of

`

d

and `

c

.

De�nition 5 (DEL). Operator DEL : P(OBJ) !

P(OBJ) denotes the operator which returns the objects

to be deleted (either for dependence or for referential

integrity) from a given set of objects. Given a set of

objects O � P(OBJ)

DEL(O) = O [fo

0

j 9 o 2 O o `

d

o

0

g

[fo

0

j 9 o 2 O o `

c

o

0

g.

2

We are now able to formally specify the semantics of

the delete operation, relying on the notion of �xpoint.

According to [6], given a poset (A;�), where A is a set

and � is a partial order on A, and given a monotonic

transformation T on the complete poset (A;�), T has

a least �xpoint. In our context, (A;�) is (P(OBJ)

o

,

�), where P(OBJ)

o

is the set of all possible sets of

objects containing object o

4

, \�" is set inclusion on

P(OBJ)

o

and the monotonic transformation T is DEL.

(P(OBJ)

o

, �) is a complete poset since for each subset

O of P(OBJ)

o

both the least upper bound (lub(O)) and

4

P(OBJ)

o

consists of the sets of objects O belonging to

P(OBJ) such that o 2 O.

the greatest lower bound (glb(O)) exist. Finally, DEL is

a monotonic operator on (P(OBJ)

o

, �). Indeed, for

each I; J 2 P(OBJ)

o

, I � J , DEL(I) � DEL(J), be-

cause the DEL operator applied to set J (where J con-

tains all the objects in I and eventually some other ob-

jects) returns all the objects in DEL(I) and eventually

some more objects that can be deleted starting from J .

Thus, the monotonic operator DEL has a least �xpoint,

denoted as lfp(DEL) = Set

d

. An element O 2 P(OBJ)

o

is said a �xpoint of DEL if DEL(O) = O.

De�nition 6 Let o 2 OBJ be an object, the e�ect of

the deletion of o in a composite object model is the set

Set

d

2 P(OBJ)

o

such that Set

d

= lfp(DEL). 2

The following example shows how the de�ned se-

mantics correctly handles the \ambiguous" situation of

Example 4.

Example 6 Referring to objects and relationships of

Example 4, the various iterations of the �xpoint com-

putation lead to the following sets:

Set

d

= fog

Set

d

= fo,o

2

g for o `

c

o

2

Set

d

= fo,o

2

,o

0

g for o `

c

o

0

Set

d

= fo,o

2

,o

0

,o

1

g for o

0

`

c

o

1

The set fo,o

2

,o

0

,o

1

g is the e�ect of the deletion of o, be-

cause DEL(fo,o

2

,o

0

,o

1

g) = fo,o

2

,o

0

,o

1

g. In the �xpoint

computation, note that at the second iteration, o

0

has

not been inserted in Set

d

because of an incoming tra-

versal path to it with delete restrict (i.e. r

2

), whereas

in the third iteration o

0

is inserted because the origin of

that traversal path (i.e. o

2

) belongs to Set

d

. �

The following example illustrates the semantics of de-

letion in a more complex example.

Example 7 Consider the objects and the relationships

in Figure 5. Suppose that object o is deleted. The vari-

ous iterations of the �xpoint computation lead to the

following sets:

Set

d

= fog

Set

d

= fo,o

1

g for o `

c

o

1

Set

d

= fo,o

1

,o

2

,o

3

g for o

1

`

c

o

3

and o

1

`

d

o

2

Set

d

= fo,o

1

,o

2

,o

3

,o

6

g for o

3

`

c

o

6

The set fo,o

1

,o

2

,o

3

,o

6

g is the e�ect of the deletion of o,

because DEL(fo,o

1

,o

2

,o

3

,o

6

g) = fo,o

1

,o

2

,o

3

,o

6

g.

This correctly models the semantics speci�ed for the

relationships. Indeed:

� object o can be deleted, because there is no traversal

path with delete restrict leading to it;

� as a consequence of the deletion of object o, object

o

1

is deleted, because of a traversal path with delete

cascade leading to o, and because no traversal path

with delete restrict leads to o

1

;

o

4

o

7

o

1

o

o

2

o

3

o

6

o

8

- - -

�

�

�/
S

S

So

�

�

�

�

��

H

H

H

H

Hj

?

�

�

�

�

�

�	

6

cascade

restrict

dependent

cascade

cascade

dependent

restrict

cascade

restrict

Figure 5: Objects and relationships of Example 7

� as a consequence of the deletion of object o

1

, objects

o

3

and o

7

(due to a traversal path with delete cas-

cade leading to o

1

) and object o

2

(due to a compos-

ite dependent traversal path coming from o

1

) could

be deleted;

{ o

2

is deleted, because there are no more tra-

versal paths leading to it;

{ o

3

is deleted, because there are no incoming

traversal paths with delete restrict;

{ o

7

is not deleted, because there is an incoming

traversal path (from o

4

) with delete restrict;

� the deletion of o

2

does not cause the deletion of

any other object, whereas the deletion of o

3

could

cause the deletion of o

6

(due to a traversal path

with delete cascade leading to o

3

) and of o

4

(due to

a composite dependent traversal path coming from

o

3

);

{ o

6

is deleted, because there are no incoming

traversal paths with delete restrict;

{ o

4

is not deleted, because there is a traversal

path leading to it (from object o

8

);

� the deletion of o

6

does not cause the deletion of any

other object.

�

CONCLUSIONS

In this paper we have proposed a composite object

model. The proposed model supports both exclusive-

ness (with various degrees of granularity) and depend-

ency speci�cations, as well as the declaration of the be-

havior to be taken upon violations of referential integ-

rity. Though, for the sake of simplicity, in the paper we

have only dealt with single-valued (that is, one-to-one)

relationships, the model also covers multi-valued (that

is, one-to-many and many-to-many) relationships. Fur-

thermore, the model can be easily extended to associate

composite declarations and referential integrity speci�c-

ations with attributes.

We remark that our model expresses an important

class of constraints related to the aggregation relation-

ship among objects, in a declarative way. If such a spe-

ci�c handling of such a category of constraints were not

provided, these constraints would have to be enforced by

inserting repairing code in methods. An ad-hoc support

for such important class of constraints seems, however,

more adequate.

In the paper we have presented a language for specify-

ing composite objects and have revised the semantics of

update operations to take into account those constraints.

However, though composite objects are useful from a

semantic point of view, composite object handling must

not decrease too much the performance of the system.

Our composite object model has been implemented in

the Ode active OODBMS [1, 2]. Our approach relies on

the use of a classical facility of DBMS to maintain data

integrity, namely triggers [10]. In particular, we have de-

veloped a tool, automatically generating, from compos-

ite object speci�cations, a set of triggers enforcing the

associated constraints. The use of triggers for support-

ing referential integrity has been investigated by Baralis

et al. [4] whoc have shown how triggers can be derived

for maintaining SQL referential integrity. However, they

have not addressed how to solve the non-determinism

that may arise from con
icting restrict and cascade op-

tions. In our tool, by contrast, problems related to non-

determinism are solved according to the well-de�ned se-

mantics we have described in the paper. This semantics

could also be adopted in the relational context. Our

tool, moreover, also appropriately handles exclusiveness

and dependency constraints.

Some preliminary evaluations have been performed on

the prototype implementation, to verify the practicab-

ility of our approach. While the results in terms of

the general utility of the tool from a semantic model-

ling point of view and of ease of use are encouraging,

it is more di�cult to evaluate the prototype from the

performance point of view, mainly because the Ode im-

plementation itself, and in particular its trigger support,

are not optimized.

We thus plan to implement the proposed model on

some commercial OODBMS without active capabilities.

In particular, we would like to investigate the possibility

of exploiting appropriate access structure to e�ciently

support operations on composite objects. This means

that operations on composite objects can be implemen-

ted by appropriately traversing the object aggregation

graph. In such traversals, ad-hoc access techniques can

be exploited, possibly adapted from those proposed in

the relational context by H�arder and Reinert [16]. Such

an approach still needs further investigation.

REFERENCES

[1] R. Agrawal and N. Gehani. ODE (Object Database

and Environment): The Language and the Data

Model. In Proc. of the ACM SIGMOD Int'l Conf.

on Management of Data, pages 36{45, 1989.

[2] R. Arlein, J. Gava, N. Gehani, and D. Lieuwen.

Ode 4.1 User Manual. AT&T Bell Laboratories,

Murray Hill, New Jersey, 1995.

[3] A. Artale, E. Franconi, N. Guarino, and L. Pazzi.

Part-whole Relations in Object-Centered Systems:

An Overview. Data and Knowledge Engineering,

20(3):347{383, 1996.

[4] E. Baralis, S. Ceri, and S. Paraboschi. Declarative

Speci�cation of Constraint Maintenance. In P. Lou-

copoulos, editor, Proc. Thirteenth Int'l Conf. on

the Entity-Relationship Approach, number 881 in

Lecture Notes in Computer Science, pages 205{222,

1994.

[5] E. Bertino and S. Jajodia. Modeling Multilevel

Entities using Single-Level Objects. In S. Tsur,

S. Ceri, and K. Tanaka, editors, Proc. Third Int'l

Conf. on Deductive and Object-Oriented Databases,

number 760 in Lecture Notes in Computer Science,

pages 415{428, 1993.

[6] G. Birkho�. Lattice Theory. American Mathemat-

ical Society Colloquium Publications, 25, 1973.

[7] R. Breitl, D. Maier, A. Otis, J. Penney,

B. Schuchardt, J. Stein, E. H. Williams, and

M. Williams. The GemStone Data Management

System. In W. Kim and F. H. Lochovsky, editors,

Object-Oriented Concepts, Databasases, and Ap-

plications, pages 283{308. Addison-Wesley, 1989.

[8] S.J. Cannan and G.A.M. Otten. SQL - The Stand-

ard Handbook. McGraw-Hill, 1992.

[9] R. Cattel. The Object Database Standard: ODMG-

93. Morgan-Kaufmann, 1996.

[10] S. Ceri and J. Widom. Active Database Systems

- Triggers and Rules for Advanced Database Pro-

cessing. Morgan-Kaufmann, 1996.

[11] D. Chamberlin. Using the New DB2 - IBM's

Object-Relational Database System. Morgan-

Kaufmann, 1996.

[12] F. Civello. Roles for Composite Objects in Object-

Oriented Analysis and Design. In Proc. Eighth Int'l

Conf. on Object-Oriented Programming: Systems,

Languages, and Applications, pages 376{385, 1993.

[13] O. Deux et al. The Story of o

2

. IEEE Transactions

on Knowledge and Data Engineering, 2(1):91{108,

1990.

[14] M. Halper, J. Geller, Y. Perl, and W. Klas. In-

tegrating a Part Relationship into an Open OODB

System using Metaclasses. In N.R. Adam, B.K.

Bhargava, and Y. Yesha, editors, Proc. of the Third

Int'l Conf. on Information and Knowledge Man-

agement, pages 10{17, 1994.

[15] E. Hanson. Rule Condition Testing and Action Ex-

ecution in Ariel. In Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 49{58,

1992.

[16] T. Harder and J. Reinert. Access Path Support

for Referential Integrity in SQL2. VLDB Journal,

5:196{214, 1996.

[17] Illustra Information Technologies, Oakland, Cali-

fornia. Illustra User's Guide. Release 2.1.

[18] W. Kim, J. Banerjee, H.T. Chou, J.F. Garza, and

D. Woelk. Composite object support in a Object-

Oriented Database System. In N. Meyrowitz, ed-

itor, Proc. Second Int'l Conf. on Object-Oriented

Programming: Systems, Languages, and Applica-

tions, pages 118{125, 1987.

[19] W. Kim, E. Bertino, and J. Garza. Composite Ob-

jects Revisited. In J. Cli�ord, B. Lindsay, and

D. Maier, editors, Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 337{

347, 1989.

[20] M. Kolp and A. Pirotte. An Aggregation Model and

its C++ Implementation. In M.E. Orlowska and

R. Zicari, editors, Proc. of the Fourth Int'l Conf. on

Object-Oriented Information Systems Engineering,

number 685 in Lecture Notes in Computer Science,

pages 352{373, 1993.

[21] V.M. Markowitz. Safe Referential Structures in

Relational Databases. In G. M. Lohman, A. Ser-

nadas, and R. Camps, editors, Proc. Seventeenth

Int'l Conf. on Very Large Data Bases, pages 123{

132, 1991.

[22] J. Melton and A.R. Simon. Understanding the New

SQL: a Complete Guide. Morgan-Kaufmann, 1993.

[23] R. Motschnig-Pitrik. The Semantics of Parts

versus Aggregates in Data/Knowledge Modelling.

In C. Rolland, F. Bodart, and C. Cauvet, editors,

Proc. of the Fifth Int'l Conf. on Advanced Inform-

ation Systems, pages 211{224, 1997.

[24] C. Peltason, A. Schmiedel, C. Kindermann, and

J. Quantz. The BACK System Revisited. Technical

Report KIT - Report 75, Technische Universitat

Berlin, 1989.

[25] M. E. Winston, R. Cha�n, and D. Herrmann. A

Taxonomy of Part-whole Relations. Cognitive Sci-

ence: a Multidisciplinary Journal of Arti�cial In-

telligence, Linguistics, Neuroscience, Philosophy,

Psychology, 11(4):417{442, 1987.

