
Generic Methods in Deductive Object Databases

Elisa Bertino

Dipartimento di Scienze

dell'Informazione

Universit�a di Milano

Via Comelico, 39 20133 Milano, Italy

bertino@hermes.mc.dsi.unimi.it

Giovanna Guerrini

Dipartimento di Informatica e

Scienze dell'Informazione

Universit�a di Genova

Viale Benedetto XV, 3 16132 Genova, Italy

guerrini@disi.unige.it

Danilo Montesi

�

Informatics Department

Rutherford Appleton Laboratory

Chilton, Didcot OX11 0QX, UK

danilo@inf.rl.ac.uk

Abstract

Deductive objects have been introduced in [3] to support declarative object speci�cation in the

database context taking advantage of the large body of results on Datalog-like language. However,

the rigidity of logical languages does not reect the exible programming style of object-oriented

systems. For instance the application of the same method to di�erent objects. In this paper

we propose an extension based on variable labels that allow to express generic methods through

rules. The semantics of this approach is still based on �xpoint computation.

Keywords: Object-oriented paradigm, state evolution, knowledge bases.

1 Introduction

The object-oriented paradigm has being widely applied in several areas of computer science, such

as programming languages, information systems, software engineering and user interfaces. In the

speci�c case of a distributed information system the distribution of data/rules requires to consider

the distribution of the database and thus the development of cooperative databases. Moreover,

for some complex application domains (like Computer Integrated Manufacturing applications), the

information system is inherently distributed. Many applications integrating and using data and

services of local database systems [4] are designed and needed. In all cases, the speci�cation of

a cooperating information system presents strong analogies with the speci�cation of composite

(database) systems. Information systems can be seen as a collection of \objects" each of them

incorporating some knowledge (like facts, rules, and constraints) and being a unit of design that

can be composed with other objects. In this paper we consider the above problem in the context

of deductive databases. The motivation for this choice is related to the formal model underlying

deductive databases, which provides a formal behavior and also a computational model. Note that

we will consider an extension called Obj-U-Datalog [3] considering deductive objects, that is objects

expressed through a logic language and which can change the state. The relevant characteristic of

U-Datalog is that updates are not executed as soon as they are evaluated, rather they are collected

in a set and executed altogether at the end of the refutation process, if this process succeeds and the

�

The work of D. Montesi has been partly supported by the ERCIM fellowship Information and Knowledge Systems.

set is ground and consistent (i.e. it does not contain complementary updates on the same fact). The

feature of Obj-U-Datalog is instead to group data and rules to form deductive objects. Such objects

interact through labeled atoms. The language we propose in this paper (called X-Obj-U-Datalog)

is based on the notion of deductive object. Each deductive object is an U-Datalog database. Each

object has a state (a set of facts) and a set of methods (rules) to manipulate the data. Methods may

also contain update atoms to modify the object state. Moreover the computational model of our

language is based on cooperation among objects through message passing. In Obj-U-Datalog such

cooperation was �xed once for all at program development time. In this paper, instead we propose

an approach to dynamic message passing where the label is a variable and can be instantiated at

execution time. Our approach greatly improves the exibility of deductive objects and is in the

main stream of object calculus, according to [8]. In our approach, methods expressed through

rules, cooperate with objects which are not �xed. They can change over time according to di�erent

instances for variable labels. We call them generic methods. Unfortunately, this dynamicity is paid

with more computation. Indeed, in X-Obj-U-Datalog, the evaluation of a transaction must consider

this new dynamic component which was not present in Obj-U-Datalog databases. The protptype

has bee implementated translating the X-Obj-U-Datalog database into and U- Datalog database

and by means of a bottom-up meta interpreter for U-Datalog [2]. The result of this paper is a rule

language of cooperating objects expressed as deductive databases preserving the nice computational

model of Datalog language. This allows the re-use of the already developed techniques for e�cient

query evaluation. Moreover, in databases an important issue is to ensure transactional behavior of

a set of updates, that is all of them are executed or none of them is performed. Thus any collection

of cooperating databases should ensure a transactional behavior. This is the second result of this

paper, that is the semantics of cooperating databases has a transactional behavior. In the remainder

of the paper we introduce the language and we show the exibility through an example. We assume

some previous knowledge of Datalog language [5].

2 X-Obj-U-Datalog

A deductive database EDB

i

[IDB expresses an object where the EDB part is the object state and

the IDB part expresses the methods to manipulate the state. The deductive capability comes from

the logical nature of the Datalog language. Rules are used to express simple methods which can

query and/or update the object. Other languages use rules as methods. The approach proposed by

Abiteboul et al. [1] does not consider state evolution. The approach proposed in [6] considers state

evolution and has a formal semantics, but uses active rules (e.g., production rules extended with

events) to express methods. An X-Obj-U-Datalog program consists of a set of object databases, each

object in the program consists of the object state and the methods, that is obj

j

= hEDB

j

; IDB

j

i.

obj

j

is the object identi�er which is de�ned over a �xed domain of constant object names OID.

The object state is a set of facts, that is a set of ground atoms. The object state is a time-varying

component, so in the following we may denote with EDB

i

j

the possible states of object obj

j

, i.e.

EDB

i

j

denotes the i-th state of object obj

j

.

De�nition 2.1 A set of methods is a set of rules of the form

H U

1

; : : : ; U

i

; B

i+1

; : : : ; B

w

;X

1

: B

w+1

; : : : ;X

p

: B

z

:

where H is an intensional atom, X

1

: B

w+1

; : : : ;X

p

: B

z

are labeled conditions, that is they refer to

speci�c objects. B

i+1

; : : : ; B

w

(as in Datalog) are unlabeled conditions, that is they refer to the object

itself where the rule is de�ned. U

1

; : : : ; U

i

is the update part. To ensure encapsulation the updates

refer to the object itself. The updates (U

1

; : : : ; U

i

) and conditions (B

i+1

; : : : ; B

w

;X

1

: B

w+1

; : : : ;X

p

:

B

z

) cannot be both empty. The variables X

1

; : : : ;X

p

ranges over OID and must appear as arguments

of an extensional predicate.

The intuitive meaning of a rule is: \if B

w+1

is true in the object to which X

1

is instantiated , : : :,

B

z

is true in the object to which X

p

is instantiated, B

i+1

; : : : ; B

w

are true in the object where the

rule is de�ned and the updates U

1

; : : : ; U

i

are consistent, then H is true". The notion of consistency

is given informally. Intuitively, the updates +p(X);�p(X), i.e. complementary updates, are not

consistent. The updates +p(Y);�p(X) could be consistent if the bindings for the variables were

for example X = tom; Y = bob. By contrast with the bindings X = tom; Y = tom, they are not

consistent. Cooperation among objects is supported using labeled atoms in rule bodies. If the

object obj

i

has a rule containing the labeled atom obj

j

: B

s

, this means that object obj

i

cooperates

with another object (the one to which variable X

J

is instantiated), calling the method B

s

. Note

that a method call can involve updates only as side e�ect. This ensures the encapsulation. Thus a

method call is a channel, where we have synchronous communication and parameter passing through

uni�cation. The use of labeled atoms in rules supports message passing among objects, thus we refer

to labeled atoms also as message atoms.

De�nition 2.2 An Obj-U-Datalog program consists of a �xed set of cooperating objects

O �DB = fobj

1

; obj

2

; : : : ; obj

s

g

where each obj

j

, 1 � j � s, consists of an extensional component EDB

j

, which is a set of ground

facts, called object state, and an intensional component IDB

j

, which is a set of methods, as in

De�nition 2.1.

A transaction has the form B

1

; : : : ; B

w

; obj

1

: B

w+1

; : : : ; obj

p

: B

z

: and cannot contain update

atoms. However its execution may indirectly generate updates, because of the invocation of rules

with update atoms in their bodies. We do not allow update atoms in transactions to provide

encapsulation, i.e., an object state can only be modi�ed through its methods. Note that a transaction

may contain two di�erent kinds of atoms: labeled ones and unlabeled ones. Unlabeled atoms stand

for the request for a refutation of the atom in any object constituting the database, while labeled

atoms are directed to a speci�c object. The values to these objects can be given at transaction time.

Note that the language does not support a strict encapsulation, in that it allows to directly access

the attribute values (through queries on extensional predicates). We only disallow the modi�cation

of object attributes from outside the object. A complex transaction T is a sequence of transactions

T

1

; : : : ;T

k

. It should be clear that a transaction provides di�erent roles: the role of a query, in that

it returns a set of bindings, an update role (even if indirectly, as seen) with a transactional behavior

(all the updates are executed or, in case of inconsistencies, none of them is performed).

Example 2.1 We assume a collection of cooperating rule based databases. Each of them can change

its state through updates. Consider a cooperating databases containing four objects obj

1

; obj

2

; obj

3

and obj

4

, where

obj

1

= name(computer science);n exams(18);good score(S) leq(S;25)

obj

2

= name(mathematics);n exams(15);good score(S) leq(S;27)

obj

3

= dept(obj

1

);year(3);

good(NEx;Avg) dept(X);year(Year);X : n exams(NE);

X : good score(Avg);obj

4

: ad(NEx;Year;NE);

chDept(NDept) �dept(Dept);+dept(NDept);dept(Dept):

obj

4

= contains a table of facts for the predicate ad.

This object does not have methods:

Since dept(obj

1

) is contained in obj

3

, the rule for the good predicate contains two message calls

to object obj

1

. Suppose now to execute the transaction obj

3

: chDept(obj

2

), then the rule for the

good predicate contains now two message calls to object obj

2

. In such a way, if the value for the

attribute department of object obj

3

is changed, the good predicate refers automatically to the data of

the new department. �

From the above example we can note that there are di�erent kinds of (synchronous) cooperation:

� obj

3

)

ad

obj

4

. This is a one way, one-to-one �xed cooperation on the channel ad.

� obj

3

)

good score;n exams

obj

1

. This is a one way, one-to-one dynamic cooperation on the chan-

nels good score; n exams. Indeed, after the execution of the transaction obj

3

: chDept(obj

2

)

this cooperation is substituted by obj

3

)

good score;n exams

obj

2

.

A labeled condition (X

j

: k(x)) represents a channel (k) between the rule of the database where

it is de�ned (obj

i

) and the label (X

j

) of the condition. The cooperation is provided through the

condition and the parameters are transmitted through uni�cation [7].

The semantics of an X-Obj-U-Datalog program is an extension of that introduced in [3]. Unfor-

tunately, the dymanicity induced by variable labels do not allow to apply straightforward e�cient

query evaluation methods. However, the approach to transform an X-Obj-U-Datalog database into

a U-Datalog one allow use to transform variable labels into special varible and the to apply e�cient

query evaluation strategies to the transformed database. On open interesting point is the application

of extended e�cient query evaluation strategies directly to X-Obj-U-Datalog.

References

[1] S. Abiteboul, G. Lausen, H. Upho�, and E. Waller. Methods and rules. In P. Buneman and

S. Jajodia, editors, Proc. of the ACM SIGMOD Int'l Conf. on Management of Data, pages

32{41, 1993.

[2] E. Bertino, B. Catania, G. Guerrini, M. Martelli and D. Montesi. A Bottom-up Interpreter

for database languages with Updates and Transactions. To appear Proc. Joint Conference on

Declarative Programming Gulp-Prode, Peniscola, 1994.

[3] E. Bertino, G. Guerrini, and D. Montesi. Deductive Object Databases. Proc. Eighth Euro-

pean Conference on Objects-Oriented Programming, Bologna, pages 213{235, Springer-Verlag,

Bologna, 1994.

[4] M. L. Brodie. The Promise of Distributed Computing and the Challenges of Legacy Systems.

In P. M. Gray and R. J. Lucas, editors, Proc. BNCOD 10, Lecture Notes in Computer Science,

vol. 618, pages 1{28. Springer-Verlag, Berlin, 1992.

[5] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag, Berlin,

1990.

[6] D. Montesi and R. Torlone. A Rewriting technique for implementing Active Object Sys-

tems. To appear Proc. International Symposium on Object-Oriented Methodologies and Systems

(ISOOMS), Palermo, 1994.

[7] F.G. McCabe. Logic and Objects. PhD thesis, University of London, November 1988.

[8] O. Nierstrasz. Towards an object calculus. In ECOOP '91 workshop on object-based concurrent

computing, Lecture Notes in Computer Science, vol. 612, pages 1{20. Springer- Verlag, Berlin,

1991.

