
ELISA BERTINO, GIOVANNA GUERRINI AND LUCA

RUSCA

OBJECT EVOLUTION IN OBJECT DATABASES

ABSTRACT: Application environments that object-oriented database management

systems support are characterized by a highly evolving nature. Two di�erent forms of

evolution can be distinguished for object-oriented databases: evolution of schema and

evolution of instances. This paper deals with evolution of instances in the context of

the Chimera object-oriented deductive data model. In particular, problems related to

object migration, dynamic object classi�cation and multiple class direct membership

are discussed.

1 INTRODUCTION

There are many aspects related to evolution in object-oriented databases.

Not all of them have been investigated in su�cient depth. Generally

speaking, one can distinguish between evolution of schemas - for ex-

ample, modifying a class de�nition - and of instances - for example, the

migration of an instance from one class to another. In the latter kind

of evolution, an instance modi�es its own structure while maintaining

the same identity. In this paper we discuss instance evolution in the

context of the Chimera object-oriented data model [11, 18]. However,

though developed with reference to the Chimera data model, the discus-

sion is applicable to any object-oriented database system. Chimera

1

is

an object-oriented, deductive, active data model developed as part of

ESPRIT Project Idea P6333. Chimera provides all concepts commonly

ascribed to object-oriented data models, such as: object identity, com-

plex objects and user-de�ned operations, classes, inheritance; it provides

capabilities for de�ning deductive rules, that can be used to de�ne views

and integrity constraints, to formulate queries, to specify methods to

compute derived information; it supports a powerful language for de�n-

ing triggers.

The object-oriented model introduces di�erent kinds of evolution for

objects. In addition to modi�cations to the values of an object's attrib-

utes (state evolution), other kinds of evolution are possible, by which

individual objects can modify their own structure and behavior, while

1

A Chimera is a monster of Greekmythologywith a lion's head, a goat's body, and

a serpent's tail; each of them represents one of the three components of the language.



2 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

maintaining their own identity constant. Whereas state evolution �nds

its relational counterpart in modi�cations to the values of the attributes

of a tuple, other kinds of evolution exist which are speci�c to object sys-

tems. In particular, the structure and/or behavior of an object can be

modi�ed because of:

� migrations of the object to di�erent classes;

� dynamic addition of classes, even not related by inheritance, to the

object, thus leading to multiple class direct membership

2

;

� specialization of the object, leading to exceptional instances.

It should be noted that the migration of an object to a new class is

di�erent from adding a new class to the object. In the �rst case, the

class to which the instance belonged is lost, whereas in the second case

it is not. In the latter of these two options, an object must be able to be

a direct member of several classes at the same time. The specialization

of an object allows an object to have additional features (attributes and

methods) in addition to those of the classes it belongs to. The specialized

object is also called an exceptional instance.

These kinds of evolution are not as yet supported by many systems,

as they introduce problems for both implementation and consistency.

Chimera supports both object migration and dynamic addition of classes,

leading to multiple class direct membership. By contrast, Chimera does

not support exceptional instances, which is a peculiarity of the O

2

object-

oriented database system [14].

Moreover, Chimera supports derived (or predicative) classes. That is,

classes whose extents are not explicitly manipulated; rather those classes

are implicitly populated in that a population predicate is associated with

the class specifying su�cient and necessary conditions for an object to

belong to the extent of the class. In models supporting derived classes,

it is di�cult to ensure that an object belongs to a unique most speci�c

class, because it depends on the population predicates being disjoint. In

such a situation, when a new object is inserted in the database, the object

may be classi�ed as instance of several most speci�c classes and the user

may even not realize this fact. Note that also modi�cations to the values

2

An object belonging to a class C is a direct member of C if it does not belong to

any subclass of C. An object is a member of a class C if it is a direct member of C

or is a direct member of some subclass of C.



OBJECT EVOLUTION IN OBJECT DATABASES 3

of an object's attributes may result in the addition of one or more classes

to the object or in the removal of the object from the extent of one or

more classes.

Another important aspect concerning instance evolution is that when

an object is able to migrate to di�erent classes, or to dynamically acquire

and loose classes, appropriate constraints must be imposed to ensure

that correct evolutions are de�ned. Semantically meaningful migrations

depend from the application domain. One option is to specify special

integrity constraints [36]. Such constraints include:

� specifying a class as essential

a class C is essential if an object which is a member of C cannot

at a subsequent point in time migrate to another class and stop

belonging to the set of members of C. This means that migrations

of an object which is a member of C are con�ned to the inheritance

hierarchy having C as root. Note that an object can have several

essential classes, if the model has multiple inheritance.

� specifying a class as exclusive

a class is exclusive if an object that belongs to this class as a direct

member cannot belong at the same time to other classes. This

constraint can be re�ned by introducing the notion of exclusiveness

of one class with respect to another.

The fact that a class is essential does not imply it is exclusive. An

essential class C can be added to an object O, even if the object already

has essential classes. The only constraint is that O cannot later loose

class C. Conversely, an object can loose an exclusive class.

In this paper we elaborate on all the aspects concerning object evol-

ution in Chimera, presenting also a survey of instance evolution capab-

ilities provided by other systems and discussing relevant open research

issues. The paper is organized as follows. The remainder of this sec-

tion introduces an example that will be used to illustrate the various

kinds of object evolution throughout the paper. Section 2 discusses the

main issues related to object migration, whereas Section 3 deals with

implicit object migration, that is, with state-based dynamic object clas-

si�cation and derived classes. Section 4 is devoted to multiple class

direct membership, while Section 5 presents some additional examples.

Finally, Section 6 surveys the forms of instance evolution supported in

other object-oriented systems, and Section 7 concludes the paper.



4 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

1.1 An Example

Figure 1 illustrates a portion of a database schema handling data related

to teams in a national football championship. The graphic representation

is similar to that used in [7]. Each class is represented by a rectangle,

divided in a number of slots, representing the attributes and the methods

of the class. Attribute names are in plain text, while method names are

in italics. With each rectangle a name is moreover associated (bold),

representing the name of the class. Two kinds of arc are used: plain arcs

represent aggregation relationships between classes, whereas bold arcs

represent inheritance relationships. Thus, a plain arc from an attribute

a of a class C to a class C

0

denotes that C

0

is the domain of attribute a

in class C. By contrast, a bold arc from class C to class C

0

denotes that

C is a subclass of (that is, inherits from) C

0

.

A team is characterized by a name, which identi�es the team, and by

a division, in which the team plays (teams are organized according to a

certain number of divisions, e.g. from �rst division to �fth division, each

corresponding to a di�erent championship). A group can moreover be

associated with a team. Indeed, divisions can be organized in di�erent

groups. In general the �rst division consists of a single group, whereas

lower divisions are organized around di�erent groups (e.g. corresponding

to di�erent regional areas of the country). For each team its current score

is recorded.

Teams are partitioned in professional and non-professional teams. For

each professional team, the capital and the �scal registration number are

recorded, whereas for non-professional teams it is recorded whether or

not the team has an associated under-20 team (it is supposed that each

professional team has one). A subclass First Position Team of the

Team class is also de�ned in the schema. This subclass contains the teams

that are leading their championship (e.g. their group or their division).

With each �rst position team, the number of matches from which it is

leading the championship is associated.

Finally, the schema includes class Professional Player. Each pro-

fessional player is characterized by a name, a role (e.g., goalkeeper, de-

fender, mild�elder, forward) and a salary. Moreover, a professional player

plays in a professional team, thus class Professional Player has an at-

tribute Plays in with domain Professional Team.



OBJECT EVOLUTION IN OBJECT DATABASES 5

Team

Name

Score

Group

Division

First Position
Team

Match_nbr

Professional
Team

Capital

#Registr

Non-professional
Team

Under 20

Professional
Player

Name

Role

Salary

Plays_in

Figure 1. Database schema of our Teams example

2 OBJECT MIGRATION

In this section, we �rst discuss issues and approaches to support object

migration (Subsection 2.1) and then we focus on the approach adopted

in the Chimera data model (Subsection 2.2).

2.1 Issues and Approaches to Object Migration

Migration allows an object to become a direct member of a class which

is di�erent from the class from which the object has been created. Mi-

gration represents an important functionality for object evolution. In

particular, migration allows an object to modify its features, attributes

and methods, while retaining its identity.

Referring to our Teams example, the change of the status of a team

fromnon-professional to professional is a meaningful evolution. However,

despite such a change, teams maintain their identity, and their time-

invariant properties, such as the name. In particular, if we restrict

the teams playing in divisions one, two, and three to be professional

teams, and teams in lower divisions to be non-professional teams, then,

at the end of the championship, the teams which are promoted from the

fourth to the third division become professional teams, whereas the teams



6 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

that move from the third to the fourth division become non-professional

teams.

This kind of evolution is not supported by many systems, because

of implementation and consistency problems. Consistency problems, in

particular, arise when an object O, which is a member of a class C, is

referred by an object O

0

as the value of an attribute A, whose domain

is C; in such case, the migration of O to a superclass of C violates the

integrity constraint established by specifying the domain for A. In other

words, object O

0

, after the migration of O, will have as value for attribute

A an object which is not a member (neither direct nor indirect) of the

class domain of A. Referring to our Teams example, the migration of a

professional team to the Team class causes that team to no longer be a

legal value for attribute Plays in of a professional player. The situation

is similar to the one where the explicit deletion of a referred object is

requested. Migration upward in the class hierarchy, indeed, can be seen

as a \partial deletion" of the object. Because of those problems, in

systems supporting migration, objects are restricted to migrate only into

subclasses of the class to which they belong. Here, objects, in a sense,

also keep the previous class to which they belonged, since they remain

members of this class, despite becoming direct members of a new class.

Before discussing possible solutions for the consistency problems caused

by migrations, let us recall that in object-oriented database systems there

are two basic deletion policies. Under the �rst one, referred to as expli-

cit deletion view, an object deletion statement is made available at user

level

3

. By using such a command, object deletions are explicitly reques-

ted by users. Under the second policy, referred to as garbage collection

view, users can only delete references from an object to another one.

An object is then deleted (by the system) when it is no longer referred

by any other object. In object systems with explicit deletion, there is

the problem of dangling pointers, due to objects containing references

to deleted objects. That problem is similar to the referential integrity

problem arising in any data model with an explicit deletion operation.

Several options to solve that problem are available in SQL [9] and have

been revisited in an object-oriented context [5], ranging from forbidding

the deletion of the referred object, to propagating (that is, cascading) the

deletion to the referencing object, and to setting the reference to null. To

avoid dangling references, Zdonik [36] proposes to keep a tombstone ob-

3

Here and in what follows, the term user should be intended in the broader meaning

of an actual user or an application.



OBJECT EVOLUTION IN OBJECT DATABASES 7

ject in place of the deleted object. This solution overcomes the problem

of dangling references, since each reference is either to the original object,

or to its tombstone object. A main problem of this solution is that each

method and query following references from an object to other ones must

handle the case in which the referred objects have been deleted. Method

code becomes more complicated, because very simple expressions, like

the one denoting the value of an object attribute, must handle the ex-

ceptions generated by the fact that the object no longer exists (and its

tombstone is found, instead).

The problem of upward migrations is similar. If an object O migrates

from a class C to a class C

0

, with C subclass of C

0

, an object can exist

with a reference to O as an object of class C. There are two di�erent

approaches to the migration of an object:

� Global Type Modi�cation

The class modi�cation is performed directly on the object and

causes a change in the object state, namely, the deletion of spe-

ci�c attributes de�ned in the classes from which the object has

migrated. If there are other objects referring to object O as a

member of C, they must be noti�ed that O is no longer a member

of C.

The problem is similar to that of deletion discussed above and

a similar approach can be used. A tombstone can for example

be placed in the object to denote that this object used to be a

member of class C, but that now the attributes related to C have

been deleted. Whenever a method, or a query, tries to access the

object's attributes speci�c to C, it must be prepared to receive a

message (exception) denoting that those attributes are no longer

available.

� Local Type Modi�cation

Under this approach, the migration operation does not modify the

state of the object, rather it creates another view of the object.

More speci�cally, upward migration does not delete the information

related to the class from which the object migrates. Rather, it

creates another view of the object. This view has as type the class

to which the object has migrated. Thus, two di�erent references to

the object exist, with di�erent types; the reference corresponding

to the current object is the most general.



8 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

In a similar way, when dealing with downward migration, the at-

tributes speci�c to the class to which the object has migrated are

not added to the object state. Rather, a new view of the object is

created. This view, having as type the lower class, has the addi-

tional attributes of the lower class, and shares the state with the

original object. Under this approach, the portions of the object

state that are no longer referred can be garbage collected.

2.2 Object Migration in Chimera

Object migration in Chimera can be explicit, through the invocation of

migration commands by users, or implicit. Implicit migration arises be-

cause Chimera supports predicate classes. A predicate class is a class

whose extent is implicitly speci�ed by some predicates, called population

predicates. All instances of a class C that verify the population predic-

ate of some subclass of C are automatically migrated to this subclass.

Because population predicates state conditions against object attribute

values, changes to these values trigger automatic migrations. We discuss

explicit migrations in the remainder of this subsection, whereas implicit

migration is discussed in the following sections.

Chimera provides two operations, supporting upward and downward

migrations, respectively. If an existing object in a given class is to be

inserted into a more speci�c subclass or, inversely, moved back to a more

general superclass, the OID of the object does not change. Only those

attributes that exclusively belong to the more speci�c class have to be

added or removed from the object state. As an example, referring to our

Teams database, when a team becomes the �rst in its championship, it

is specialized to class First Position Team, and a value for attribute

Match nbr must be provided. By contrast, when the team looses its

leadership and it is generalized back to the Team class, the value for

attribute Match nbr is removed from the state of the object.

Specialization of an object to a subclass is performed by the specialize

operation, which takes as input parameters two class names, C

1

and C

2

,

an object identi�er O and a record term T . The result of the operation

is to insert object O, initially belonging to class C

1

, into class C

2

as

well. Moreover, the state of O is extended by concatenating its old state

(containing values for those attributes that are now inherited) with T ,

where T speci�es values for those attributes that are speci�c to C

2

. Note

that O remains a member of C

1

due to the subclass relationship between



OBJECT EVOLUTION IN OBJECT DATABASES 9

C

1

and C

2

.

The inverse process is performed by the generalize operation, which

takes only three parameters: two class namesC

1

and C

2

, and an identi�er

O. The result of the operation is to remove object O from class C

1

, and

to make it a direct member of the superclass C

2

of C

1

, which O used

to be a member of. Therefore, all attributes speci�c to C

1

are dropped.

Thus, Chimera supports global type modi�cations. Referential integrity

is enforced in Chimera as follows: whenever an object O is deleted from

class C

4

, the OID of the deleted object is dropped from all attribute

values which refer to O in other objects O

0

; therefore:

� if C is the type of an atomic attribute of O

0

(either de�ned indi-

vidually or a record component), its value is set to null;

� if C is the type of the element of an attribute of O

0

built by means

of set or list constructors, then O is deleted from the set or list;

this may result in producing an empty set or list.

Referring to our Teams example, the change of status from non-profes-

sional to professional team is performed by the following operations.

First, the non-professional team is generalized to class Team (loosing

attribute Under 20) through a generalize command, then the team is

specialized to class Professional Team (specifying a value for attributes

Capital and #Registr) through a specialize command.

Chimera supports multiple inheritance. However the constraint is

imposed that for multiple inheritance a common ancestor must exist.

Therefore a class C can be de�ned as a subclass of classes C

1

and C

2

only if a class C

0

exists from which both C

1

and C

2

inherit from. In

Chimera the existence of a common root of the entire class hierarchy is

not imposed. Rather the hierarchy is partitioned into multiple strongly

connected components. Each strongly connected component is charac-

terized by a single node without incoming edges: this node is called root

of the strongly connected component. Thus, a class can inherit from

multiple classes only if the classes belong to the same strongly connec-

ted component, that is, if they have a common ancestor. Therefore, we

may think of the set of all classes as partitioned in m distinct hierarchies

H

1

; : : : ;H

m

, corresponding to the m strongly connected components of

the class hierarchy. In Chimera, moreover, an object cannot migrate over

di�erent hierarchies. This is reected by the fact that the only migration

4

Note that \deleted from class C" also means \generalized to a superclass of C".



10 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

primitives supported are generalization to a superclass and specialization

to a subclass. Thus, in Chimera, the root of the hierarchy to which the

object belong is an essential type, with the meaning discussed earlier

(see Section 1).

3 OBJECT CLASSIFICATION AND PREDICATE CLASSES

A predicate (or derived) class has all the properties of a usual class, in-

cluding a name, a set of superclasses, a set of attributes and a set of

methods. In addition, a predicate class has a population predicate. A

predicate class represents the subset of the members of its superclass(es)

that also satisfy the predicate. Whenever an object is a member of the

superclasses of the predicate class, and the population predicate evaluates

to true on the object, the object is automatically considered a member

of the predicate class. An object member of a predicate class has all the

attributes and methods of this class. If the object state later changes

and the population predicate no longer evaluates to true, the object is

excluded from the predicate class. The population predicate can test

the value or the state of an object, thus supporting a form of implicit

classi�cation based on attribute values in addition to explicit classi�ca-

tion based on types supported by traditional classes. Predicate classes

support indeed a form of automatic, dynamic classi�cation of objects,

based on their run-time value, state, or other user-de�ned properties.

In traditional object-oriented models various kinds of static type-based

classi�cations of objects using classes and inheritance are supported; by

contrast, the specialization of an object depending on the value of one of

its attributes is not allowed.

Referring to our Teams example, class First Position Team can be

expressed as a derived class. Its population predicate requires, for an

object to be member of First Position Team, that the object belongs

to the Team class, and that its score is greater than (or equal to) that of

each other team in the same championship (that is, in the same group

and division). Thus, an object migration between classes Team and First

Position Team is induced by a simple modi�cation to attribute Score

of an object (not necessarily the one that migrates). Moreover, if we

consider that any team playing in division one, two or three must be a

professional team, whereas each team playing in a lower division must be

a non-professional team, then also classes Non-professional Team and



OBJECT EVOLUTION IN OBJECT DATABASES 11

Professional Team can be de�ned as derived classes, whose population

predicates depend on the value of the Division attribute.

In models supporting predicate classes, it is di�cult to ensure that an

object is a direct member of a unique class, since it depends on popu-

lation predicates being disjoint. Thus, derived classes lead to the need

of supporting a form of multiple class direct membership. The following

section discusses how multiple class direct membership is supported in

Chimera.

Predicate classes are also the base of views in object-oriented data

models. View mechanisms for object-oriented databases based on de-

rived classes are presented in [22, 26, 27, 29, 30]. In [29] multiple class

direct membership is simulated by surrogate objects, that is, each view

instance has a special attribute whose value is the identi�er of its base

object. In [26] the simulation is based on the object-slicing approach:

the storage structure of a class (or view) object is dispersed through a

hierarchy of implementation objects linked to a conceptual object which

is a dictionary storing associations of implementation object identi�ers

and their respective classes.

A form of predicate classes is supported by object-oriented languages

with classi�cation facilities [35]. In those languages two kinds of class-

like constructs are introduced: primitive concepts, used for explicit clas-

si�cation of objects, and de�ned concepts, used for implicit property-

based classi�cation. An object is member of a primitive concept only

when explicitly stated, whereas an object is member of a de�ned concept

whenever its attributes satisfy certain restrictions. Only a few kinds of

restrictions are allowed, such as checking for an attribute being an in-

stance of a particular class, being within an integer range, or being an

element of some �xed set. In return, the system automatically computes

subsumption relationships among concepts (i.e., when a concept \inher-

its" from another). An object in Yelland's system may be a member of

several independently de�ned concepts. The system creates internal com-

bination subclasses, and uses a single combination subclass to record that

an object is a member of several independent concepts simultaneously.

When methods are associated with predicate classes, method dispatch-

ing depends not only on the dynamic type of an argument, but also on its

dynamic value or state. Among languages supporting predicate classes,

Cecil [12] is the only one for which a dispatching mechanism has been

developed. Cecil is based on multiple-dispatching. In Cecil, methods

are de�ned by specifying a name, the formal parameters and an imple-



12 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

mentation. Each formal parameter can, optionally, be associated with an

argument specializer obj

i

, specifying that the method is de�ned only if

the actual parameters (that is, the message arguments) are descendants

of object obj

i

5

. For non-speci�ed formal parameters (that is, without

argument specializer), any value is legal as actual parameter. Argument

specializers are the mean for associating the (multi-)method with special-

ized objects.

In Cecil methods are dispatched as follows. First, methods applic-

able to the message, that is, methods with the same name and number

of arguments of the message, and whose argument specializers are an-

cestors of corresponding actual parameters, are determined. Applicable

methods are then ordered by their speci�city: a method m

1

is more spe-

ci�c than a method m

2

if any argument specializer of m

1

is a descendant

of the corresponding argument specializer of m

2

and at least one of the

argument specializers of m

1

is a proper descendant of (that is, di�erent

from) the corresponding argument specializer of m

2

. If a unique most

speci�c applicable method does not exist, an \ambiguous message" error

is generated and the message is not dispatched. Cecil does not make use

of any ordering on objects or on arguments to solve ambiguities in an

automatic way.

Another aspect that must be carefully handled in a system supporting

derived classes is type checking. Predicate classes require a new kind of

type checking taking into account that the interface exported by an object

depends on the current state of the object, as shown by the following

example. Referring to the Teams example, consider a variable X declared

of type First Position Team. If the value of X.Score of the object

referenced by X is modi�ed, the object may not any longer verify the

predicate of class First Position Team. As a consequence, variable X

would reference an object which not consistent with the type of X. To

avoid such problem, di�erent solutions can be adopted. Two of them,

namely

� disallowing a variable to be declared with a type corresponding to

a derived class;

� disallowing updates on the attributes appearing in the population

predicate

5

Cecil does not support the notion of class, thus inheritance relationships are

speci�ed at the object level.



OBJECT EVOLUTION IN OBJECT DATABASES 13

are conservative solutions. If the population predicate can only be falsi-

�ed by updates on the object on which it is evaluated

6

that solutions can

be re�ned by allowing a variable to be declared with a type corresponding

to a derived class but disallowing updates on the attributes appearing

in the population predicate to be applied to that variable. Such an ap-

proach prevents, by static checks, a variable of type T from referencing

at run-time an object which is not an instance of the class corresponding

to T . This approach emphasizes the type checking view.

An alternative solution is to regard population constraints as other

constraints and thus to check them run-time. This approach does not

ensure that a variable of type T , with T corresponding to a derived class,

always references a member of the class corresponding to T . Rather a

check is performed at run-time to detect whether the variable references

an object that meets the population constraint. If not, an error is raised.

This approach requires some type checking at run-time and thus it is

potentially less e�cient.

Note however, that the two above solutions are not mutually exclusive.

They can be combined to obtain a good compromise between semantic

richness and e�ciency. For example, a variable can be allowed to be

declared of a type corresponding to a derived class, and updates on the

attributes appearing in the population predicate can also be applied to

that variable, but run-time checks for that variable (and only for that

one) must be performed. More sophisticated solutions, based on ow

analysis of application code [13], can also be investigated.

In Cecil, the relationships among predicate classes are speci�ed expli-

citly by the programmer through inheritance declarations and disjoint

and cover declarations. These declarations are used in type checking.

In Cecil, if two predicate classes might both be acquired by an object,

either one must be known to be more speci�c than the other, or they

must have disjoint method names. In other words, the checker needs

to know: when one predicate class implies another, when two predicate

classes are mutually exclusive, and when a group of predicate classes is

exhaustive. Since in Cecil population predicates can contain arbitrary

user-de�ned code, the system is not able to infer implication, mutual

exclusion and exhaustiveness by examining the population predicates as-

sociated with the various predicate classes. Consequently, it must rely on

explicit user declarations to determine the relationships among predic-

6

This is not always true, e.g. if the population predicate makes use of aggregate

operators.



14 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

ate classes. The system dynamically veri�es that these declarations are

correct. To state that one population predicate implies another, the isa

declaration is used. Mutual exclusion among a group of classes can be

declared through the disjoint speci�cation. This speci�cation has the

e�ect of stating that the predicate classes will never have simultaneous

commonmembers, that is, at most one of their population predicates will

evaluate to true at any given time. Finally, the cover declaration asserts

that a group of predicate classes exhaustively covers the possible states

of some other class.

4 MULTIPLE CLASS DIRECT MEMBERSHIP

As we have seen in the previous section, when state-based dynamic ob-

ject classi�cation is supported, an object can be classi�ed into di�erent

classes, even not related by the inheritance hierarchy. Thus, a modi�ca-

tion of an object attribute may result in the dynamic addition of classes

to the object, leading to multiple class direct membership. Referring to

our Teams example, members of class Team can be classi�ed along or-

thogonal dimensions, such as Non-professional, Professional, First

Position Team. According to the intuitive semantics, a team can be

both a professional team and a �rst position team at the same time. Thus,

the object representing this team is classi�ed both in class Professional

Team and in class First Position Team and it does not have a unique

most speci�c class, rather it has a set of most speci�c classes.

Although the above situation can be easily represented in a model with

multiple inheritance by de�ning a subclass (say First Position Profes-

sional Team) of all the involved classes, this solution may lead to a lot

of arti�cial subclasses, sometimes referred to as intersection classes [28].

Referring to the hierarchy above, the meaningful subclasses of the Team

class are shown in Figure 2. Thus, this approach can lead to a combin-

atorial explosion of sparsely populated classes, whose sole purpose is to

allow an instance to have multiple most speci�c classes, without adding

new state or behavior. Another problem with the multiple inheritance ap-

proach is that it only provides a single behavioral context for an object

[25]. Name conicts among features in the superclasses are solved once

for ever in the subclass de�nition (for example by imposing an order on

superclasses, or with an explicit quali�cation mechanism) and the selec-

ted feature is the only one always considered whatever the context of the



OBJECT EVOLUTION IN OBJECT DATABASES 15

Team

First Position
Team

Professional
Team

Non-professional
Team

First Position
Non-professional

Team

First Position
Professional

Team

Figure 2. Class hierarchy of our Teams example, enriched with some

meaningful subclasses

object reference is. Thus, reducing multiple class direct membership to

multiple inheritance, as proposed by Stein [31] and Chambers [12], does

not account for any context dependence nor for object dependent class

ordering.

If multiple class direct membership is supported, two classes C

1

and

C

2

, with a common superclass C, may have a non-empty intersection

even when neither C

1

is a subclass of C

2

, nor C

2

is a subclass of C

1

.

However, when objects belong to several most speci�c classes, conicts

among di�erent de�nitions may arise. Indeed, if an object has several

most speci�c classes, the object takes the union of the features of all

the classes to which it belongs. Such conicts resemble conicts due to

multiple inheritance. However, conicts due to multiple inheritance can

be detected at compile time whereas objects may become and cease to be

an instance of a class at run time, thus the situation is more complicate

for multiple class direct membership.

Referring to our Teams database, a team can be at the same time both

a professional team and a �rst position team. The team behaves di�er-

ently according to the di�erent contexts from which it is accessed, e.g.

if the context from which the team object is accessed is Professional

Team, the attribute Match Nbr of the object is not visible.

Some restrictions are imposed on multiple class direct membership in

Chimera. An object can belong to several most speci�c classes only if

the classes belong to the same strongly connected component, that is, if



16 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

they have a common ancestor. The sets of OIDs in di�erent strongly

connected components are therefore disjoint. A class in a hierarchy H

i

is

therefore exclusive with respect to all classes in hierarchy H

j

, with i 6= j.

In the following subsections we discuss how name conicts can be

solved for models supporting multiple class direct membership, and how

semantic constraints can be expressed to impose that two classes have

no common instances.

4.1 Name Conicts for Multiple Class Direct Membership

In this section we address the problem of name conicts due to multiple

class direct membership. This topic has been dealt with in [4], while an

extensive discussion on dispatching can be found in [6].

An approach to solve conicts is to impose that each object, though

having several most speci�c classes, has a single preferred class. The

binding between an object and its preferred class can be either �xed or

context-dependent. A �xed binding only depends on the set of most spe-

ci�c classes of the object

7

. By contrast, a context-dependent binding also

depends on the expression in which the object reference is contained. In

a �xed preferred class approach, the preferred class can be determined by

imposing a total ordering on classes, or by allowing each object to specify

an ordering on the classes to which it belongs

8

, or �nally by specifying a

reference class for each feature in the instance (with an explicit quali�ca-

tion mechanism). Context-dependent preferred class approach leads to a

more more exible language and models both context-dependent access

restrictions and context-speci�c behavior.

In our approach, the context-dependent preferred class is determined

by the static type of the object in the expression containing the object

reference. Each object reference in each Chimera expression is assigned

a single static type. The notion of context of an object reference can

be characterized in terms of static types. We analyze conicts arising

in attribute accesses and method invocations. As far as attribute access

is concerned, we can disambiguate each access by taking into account

only the context of the object reference. By contrast, when considering

7

A �xed binding does not mean that the binding is immutable for the object

lifetime, because an object may acquire and loose classes dynamically.

8

A reasonable ordering could be the one determined by the acquisition order of

classes, in such a way that the most recently acquired behavior prevails (as in Fibon-

acci [3]).



OBJECT EVOLUTION IN OBJECT DATABASES 17

method dispatching, if we want to ensure a notion of most speci�c beha-

vior, the context alone is not enough to properly dispatch the method.

Thus, we propose and compare two di�erent dispatching approaches: the

�rst approach ensures context-dependent behavior, the other one ensures

behavior identity.

Consider �rst the structural component of objects. For an object with

multiple most speci�c classes, the state of the object, that is, the attrib-

utes of the object, and the proper domains for these attributes, must be

determined. Roughly speaking, the state of an object belonging to sev-

eral most speci�c classes is the union of all the attributes de�ned in these

classes. However, the sets of attributes in those classes may not be dis-

joint. Thus, name conicts may arise. To handle conicts, we introduce

the notion of source of an attribute. Intuitively, if an attribute belongs

to the intersection of the attribute sets of two classes and it has in both

classes the same source, that is, it is inherited by a common superclass,

then the attribute is semantically unique, and thus the object must have a

unique value for this attribute. If, by contrast, the attribute has di�erent

sources, the two attributes in the two classes have accidentally the same

name, but represent di�erent information, that must be kept separated.

Thus, the object may have two di�erent values for the two attributes (a

renaming policy is applied).

Consider now the behavioral component of objects, that is, its meth-

ods. Each class in a type hierarchy may de�ne a di�erent implementation

for the same method. For each method invocation on an object, an im-

plementation must be chosen among the most speci�c ones. Note that

di�erent implementations may return di�erent results or may perform

di�erent updates on data. According to one of the basic principles of

object-orientation, when, because of subtype polymorphism [10], several

method implementations are applicable to a method invocation, the im-

plementation speci�ed in the most speci�c class of the invocation receiver

is executed, as it is the one that most closely matches the invocation.

Thus, the most specialized behavior prevails, according to the classical

late binding mechanism. However, in a model where an object is not

characterized by a single most speci�c class, the choice of the method

implementation that \most closely matches" the invocation is not obvi-

ous.

There are two di�erent approaches to determine the implementation

which most closely matches the invocation, among di�erent implementa-

tions in di�erent most speci�c classes of the object. The �rst approach,



18 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

which we call preferred class approach, is based on the idea that each

object has in each context a preferred class, among its most speci�c

ones. Thus, each method invocation is dispatched choosing the imple-

mentation in the preferred class in the current context. This approach

supports a context-dependent behavior, as the same method invocation

may be dispatched di�erently, and thus may return di�erent results and

perform di�erent updates, depending on the context where the method

is invoked. The second approach, which we call argument speci�city

approach, does not determine the preferred class of an object to dispatch

a method invocation, rather it makes use of the other actual arguments

of the method call, thus considering the method as a multi-method [16].

In the following subsections we illustrate and compare these two ap-

proaches.

Preferred Class Dispatching Approach

According to this approach, a method invocation is dispatched by taking

into account the context-dependent preferred class of the receiver object.

As we have seen, in each Chimera expression, each object reference has

a single static type. However static typing alone is not enough to select

a preferred class for each object in each expression for method dispatch-

ing. Indeed, the static type of the object may not belong to the set of

most speci�c classes of the object. Referring to our Teams example, con-

sider an expression where an object reference has the static type Team;

if at run-time the reference denotes an object belonging to both the class

Professional Team and the class First Position Team, the context of

the object reference does not help in choosing the preferred class.

In those cases, we must use a total order on classes. This order can be

determined by the de�nition order of classes, eventually overridden by

before/after clauses in class de�nitions. Alternatively, we may consider

for each object a total order on its most speci�c classes, as the one

determined by the acquisition order, in such a way that the most recently

acquired class precedes the others in the order. We remark that such a

total order, that may be considered too arbitrary and unpredictable by

the user, is taken into account only when the context does not uniquely

determine a preferred class for the object. The only alternative in these

cases, apart from using that order, would be to simply not dispatch the

message, because it is ambiguous.

The preferred class approach is based on both static and dynamic



OBJECT EVOLUTION IN OBJECT DATABASES 19

information. The static information consists of the static type of the

expression, whereas the dynamic information consists of the set of the

most speci�c classes of the object (such classes, in fact, can only be

determined at run-time). The total order on classes can be �xed and

thus known statically or can, by contrast, be object-dependent and thus

known only at run-time.

The preferred class dispatching approach can be stated as follows.

Let o

1

:m(o

2

; : : : ; o

n

) be a method invocation. The method

invocation is dispatched as follows:

method m in class C is executed if C is the minimum, under

the considered total order on classes

9

, of the set of classes

containing a de�nition for method m that are subclasses of

the static type of object o

1

.

The preferred class dispatching approach models context-dependent

behavior. In particular, a given method invocation with a �xed set of

parameters may produce di�erent results (both in terms of results and

data updates), though executed on the same database state, depending on

the context of the receiver object reference in the expression containing

the invocation.

Under the preferred class approach, any type correct method invoca-

tion can be dispatched. Moreover, when the preferred class dispatching

strategy is used with a contravariant rede�nition rule for method argu-

ments, type correctness is ensured [6].

Argument Speci�city Dispatching Approach

The second approach we consider does not take into account the preferred

class of an object, rather it tries to determine the method implementation

that most closely matches the invocation by taking into account the types

of (all) the actual parameters of the invocation (in addition to the type

of the receiver object). This approach is similar to multiple dispatching

or multi-method approaches where the selection of the method to execute

depends on the types of all the actual arguments of the invocation. In the

preferred class approach only the type of the receiver object determines

9

Note that the total order must be consistent with the subtype ordering on classes,

thus, if C is a minimum with respect to the total order, a most speci�c behavior for

object o

1

is certainly exhibited.



20 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

the method to execute and the other arguments only provide the actual

values for the method arguments. However, they play no role in method

selection. By contrast, in this approach, the method selection is based

on the types of all arguments, the receiver as well as the other ones.

This approach can be regarded as fully dynamic, as opposed to the

other, which is only partially dynamic. Indeed, in this approach dispatch-

ing is based only on run-time information, that is, the types of the actual

parameters of the invocation. Moreover, whereas the previous approach

models context-dependent behavior, the argument speci�city approach

ensures a notion of behavior identity. In particular, it ensures that a

given method invocation, with a �xed set of actual parameters executed

on a given database state, returns the same results and produces the

same database state, regardless of the expression in which the method

invocation is contained. Finally, note that we use multiple dispatching

only for choosing an implementation among the ones in sibling classes,

and never for choosing an implementation among the ones in a path in

a given inheritance hierarchy. Chimera methods, indeed, are not really

multi-methods [16] in that they are associated with classes. Thus, the

\privileged receiver", though it is not the only one involved in dispatch-

ing, has higher priority with respect to other arguments, in that only

the implementations in classes that are most speci�c for the receiver are

considered as \candidates" for dispatching. Thus, the dispatching we

propose here is not purely multiple in that we maintain a form of \priv-

ilege" for the receiver of the method: other arguments are taken into

account only to choose among sibling implementations, in the di�erent

most speci�c classes of the receiver object.

To de�ne the argument speci�city dispatching rule a notion of method

speci�city, that is, an order on methods must be used. This order is based

on the argument speci�city (considered in the order from left to right

10

),

and, when all the arguments are not comparable under the subtype re-

lationship, on the total order of classes where the methods are de�ned.

Such an order is exploited in choosing the method to be executed, among

the applicable ones.

The following rule formalizes the argument speci�city dispatchingmeth-

od.

Let o

1

:m(o

2

; : : : ; o

n

) be a method invocation, the method in-

vocation is dispatched as follows:

10

Note that this order corresponds to argument order precedence proposed in [2].



OBJECT EVOLUTION IN OBJECT DATABASES 21

method m in class C is executed if it is the minimum, with

respect to the method speci�city order, in the set of methods

applicable for the invocation.

The argument speci�city approach ensures behavioral identity of a

method invocation. According to this dispatching rule, the class to which

a given message is dispatched does not depend on the context of the mes-

sage receiver in the expression containing the invocation. Under the argu-

ment speci�city approach, moreover, any type correct method invocation

can be dispatched. The argument speci�city approach, however, does not

ensure type correctness [6].

4.2 Semantic Constraints for Multiple Class Direct Member-

ship

In our model, an object can belong to several most speci�c classes.

However, there are some classes that should not reasonably have com-

mon members, that is, no object must be member of those classes at

the same time. For example, it is not reasonable (according to the usual

interpretation) that an object be both a person and a car. In Chimera

such kinds of constraints are modeled by partitioning the set of objects

into di�erent hierarchies, with disjoint extensions. Thus, an object can

be a member of two most speci�c classes only if the classes belong to the

same hierarchy, that is, if they have some \similarities". For example,

persons and cars should be modeled by classes in di�erent hierarchies.

Thus, the semantic constraint that an object cannot be an instance of

two classes that \have nothing in common"can be modeled by hierarchies

with disjoint extents. However, this approach is not su�cient to express

all semantic constraints on multiple direct membership. Indeed, it might

be reasonable that in the same hierarchy two classes exist that have

no semantically meaningful common instances. As an example, classes

Non-professional Team and Professional Team of our example are

both subclasses of Team, and thus belong to the same hierarchy, but they

should not have common instances.

These exclusivity constraints (e.g., class Non-professional Team is

exclusive with respect to class Professional Team) can be expressed

in Chimera as untargeted constraints, that is, as constraints that are

not associated with any speci�c class

11

. Suppose that an exclusivity

11

Conceptually, they could also been expressed as constraints targeted to the class



22 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

constraint between classes C

1

and C

2

must be expressed. Let C

i

be the

root of the hierarchy to which both C

1

and C

2

belong (ifC

1

and C

2

belong

to di�erent hierarchies the extents are automatically disjoint). Then,

the exclusivity constraint can be expressed by the following Chimera

untargeted constraint (in denial form):

not excl(X) C

i

(X); X in C

1

; X in C

2

.

Referring to the Teams database schema, an exclusivity constraint

between classes Non-professional Team and Professional Team is ex-

pressed by the following rule:

improper team(X) Team(X), X in Non-professional Team,

X in Professional Team.

Thus, any database state such that the extent of class Non-professional

Team and the extent of class Professional Team are not disjoint, would

violate the constraint. If the constraint is violated, the violation is repor-

ted to the user (together with the OID of the violating object, bound to

variable X) and the user can decide how to solve it (e.g., by aborting the

transaction, by deleting the object, and so on). These exclusivity con-

straints, like other Chimera constraints, can also be expressed as triggers

[11], containing not only the condition that should not be violated but

also the repairing action.

5 ADDITIONAL EXAMPLES

In this section we present few additional examples involving some form

of object evolution.

5.1 Polygons, Squares, and Rectangles

Consider the database schema in Figure 3. Class Polygon has as an

attribute Vertices, containing the points (pairs of real numbers) rep-

resenting its vertices. Moreover, it has three methods, one for adding a

vertex, one for displaying the polygon, and the last one for computing its

root of the hierarchy to which the two classes belong. However, the system would not

be extensible, in that all the exclusivity constraints on the classes should be known

at the time the root is de�ned.



OBJECT EVOLUTION IN OBJECT DATABASES 23

Polygon

Vertices

Add_Vertex

Draw

Area

Rectangle

Length

Width

Horizontal_
Scale

Square

...

Figure 3. Database schema of our Polygons example

area. Subclass Rectangle of Polygon is a derived subclass. Its popula-

tion predicate requires that the polygon has four vertices and that both

the X and Y coordinates of the vertices are pairwise equal. The class has

two derived attributes length and width (computed from the coordinates

of the vertices) and a method horizontal scale, which multiplies the

width of the rectangle for a given factor (which is a method argument)

and appropriately updates the vertices. Moreover, the class rede�nes

methods draw and area of Polygon. Subclass Square of Rectangle is

also a derived subclass. Its population predicate requires that the length

and the width of the rectangle are equal. No matter which new attributes

and methods the class it introduces, it rede�nes methods draw and area

of Rectangle.

When a polygon is inserted in the database, it can be classi�ed as a

rectangle or as a square, depending on its geometric properties. If, for

example, the polygon is a rectangle, a subsequent execution of method

add vertex causes the generalization of the object to class Polygon, since

a polygon with �ve vertices is no longer a rectangle. Attributes length and

width are discarded. By contrast, the execution of method add vertex



24 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

Person

Marry

Wedding_date

Divorce

...

WidowedDivorcedMarriedSingle

Spouse Div_date Wid_date

Marry Marry

Become_Wid

Figure 4. Database schema of our Marital Status example

on a right-angled triangle may cause the specialization of the triangle

to class Rectangle, and the addition of attributes length and width.

Similarly, the execution of method horizontal scale on a rectangle

may cause its specialization to class Square, whereas the execution of

method horizontal scale on a Square may cause its generalization to

class Rectangle.

5.2 Marital Status

Consider the hierarchy in Figure 4, representing the partitioning of per-

sons with respect to their marital status. Class Person has four di�erent,

disjoint, subclasses: Single, Married, Divorced, Widowed. For married

persons the spouse and the wedding date are recorded, while for divorced

and widowed persons the date in which they gain that status is kept. Ob-

viously, a person can change its marital status during his/her life, thus

object migration from a class to another is possible. Not all the migra-

tions, however, are meaningful. Indeed, once married, a person can never

return to the single marital status. Semantically meaningful migrations

are those corresponding to methods attached to classes in the schema.

Thus, the need of expressing dynamic constraints on object migrations

may arise. Note that by using the constraints proposed in [36] we could

only state that Person is an essential class, but no other restriction could

be imposed. To express these kinds of restrictions, dynamic constraints

on object migrations, like those discussed by Su in [32] and by Wieringa



OBJECT EVOLUTION IN OBJECT DATABASES 25

Type

Solid_Temp

Material

Description

Fusion_Temp

Evap_Temp

Toxic
Material

Non-toxic
Material

Highly Toxic 
Material

Location

Produces *

Factory

Name

Temperature

Quantity

Waste

Material

Inhabitants

Distance

Area

Position

Safe
Area

Dangerous
Area

Critical 
Area

Figure 5. Database schema of our Pollution Control example

et al. in [34], should be employed.

5.3 Pollution Control

Consider the hierarchy in Figure 5, representing informationabout factor-

ies and their wastes, to control the safety with respect to pollution in

certain areas. In particular, for each factory its location is recorded, as

well as the set of wastes it produces. Wastes are materials, produced in a

certain quantity (e.g., per day) and at a certain temperature. Materials

are characterized by a number of physical properties and are classi�ed

in non-toxic, toxic and highly toxic. For each area the position and the

number of inhabitants are recorded. A method to compute the distance

of the area from a given location is also provided. Areas are classi�ed

as safe, dangerous or critical, depending on the number of inhabitants,

and on the distance from factories producing certain quantities of highly

toxic or toxic wastes.

Thus, there are several database operations that may cause a re-



26 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

classi�cation (and thus a class migration) of a certain area: the creation

of a new factory, the change of the factory location, the update of the kind,

or of the quantity (or of the temperature, if it inuences the toxicity) of

the wastes produced by a factory.

6 OBJECT EVOLUTION IN OTHER SYSTEMS AND MODELS

In this section, we �rst discuss evolution in object systems, other than

Chimera, namely in O

2

, GemStone and Iris. We then briey discuss

approaches to role modeling. Roles can be used, among other things, to

provide alternative and/or additional views of objects and thus can be

used to support object evolution.

6.1 Object Evolution in OODBMSs

In O

2

[14] instances can be specialized. This enables attributes and

methods to be added and rede�ned for an individual object. In rede�ning

an attribute or a method, the new de�nition must be compatible with the

de�nition given by the class. In this respect, rules governing subtype

de�nitions are used. For example, the domain of an attribute in an

instance can be specialized with respect to the domain speci�ed for the

attribute in its class. However, the domain used in the instance must be

a subclass of the domain speci�ed in the class.

The only kinds of instance evolution supported in GemStone [8] are

state evolution and migration between classes. GemStone allows state

evolutions of objects to be controlled, since the state of objects can be

\frozen" by using the immediateInvariant message which, when sent

to an object, does not allow any further modi�cations to the state of the

object. Note that it can also be speci�ed that all the instances of a class

are non-modi�able by using a ag (instanceInvariant) which appears

in a class de�nition. In this case, an instance can only be manipulated

during the transaction in which it was created. Once the transaction

commits, the instance can no longer be modi�ed. In GemStone, instances

can only migrate between two given classes if:

� the new class is a subclass of the old class;

� the new class has no instance attributes in addition to those of the

superclass (however, it can have additional instance methods and

additional class attributes);



OBJECT EVOLUTION IN OBJECT DATABASES 27

� the new class has the same storage format as the old class;

� the new class has exactly the same attribute domains as the old

class.

Therefore, instances can migrate only under very restrictive condi-

tions. The purpose of these restrictions is to allow instance migration

only when there are no modi�cations on the involved instances. The

message for requiring the migration of an object is changeClassTo. This

message has the class to which the object must migrate as its only argu-

ment.

Types in the Iris system [15] can be added to and removed from an

object. The object can thus migrate from a type T to a type T

0

; type

T

0

has just to be added to the object and and type T deleted from the

object. A type T

0

can moreover be added to an object without loosing

the previous type to which the object belonged; to do this, the type T

0

has to be added to the object. Thus, in Iris objects can acquire and loose

types dynamically with the instructions ADD TYPE TO and REMOVE TYPE

FROM. The ADD TYPE statement also speci�es the values to be assigned to

the properties of the type which is added. Thus in Iris, arbitrary types

can be added to an object. Iris, however, does not support context-

dependent behavior since the entire set of types of an object is visible in

every context. To avoid conicts, two di�erent types of an object must

not have di�erent methods with the same name.

Table 1 summarizes the various forms of object evolution supported

by existing object-oriented database systems. As it can be seen from

the table, most systems support very limited forms of evolution. In

particular, note that Ode and Orion do not provide any form of object

evolution in addition to state modi�cation.

6.2 Role Models

Object models with roles support evolving objects, that is, objects mi-

grating among classes, and objects that cannot be exclusively classi�ed

in a single class. In such object models, two di�erent hierarchies are

provided: a class (type) hierarchy and a role hierarchy. The role hier-

archy is a tree of special types, called role types. The root of this tree

de�nes the time-invariant properties of an object. The other nodes rep-

resent properties (types) that the object may acquire and loose during its

lifetime. At any point in time, an entity is represented by an instance of



28 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

Chimera GemStone Iris O

2

Ode Orion

Reference [11] [8] [15] [14] [1] [19]

State

modi�cation YES YES

?

YES YES YES YES

Explicit object

migration YES Limited YES NO NO NO

Dynamic

state-based YES NO NO NO

??

NO NO

classi�cation

Multiple class

direct YES NO YES

???

NO NO NO

membership

Exceptional

instances NO NO NO YES NO NO

?

As discussed earlier, in GemStone, an object state can be modi�ed

provided that the instanceInvariant ag has not been set to True in

the class of the object.

??

A view model has, however, been proposed for O

2

[29].

???

In Iris, arbitrary types can be added to an object. To avoid conicts,

however, two di�erent types of an object cannot have di�erent methods

with the same name.

Table 1. Object evolution in existing OO data models

the root type and an instance of every role type whose role it currently

plays. When an entity acquires a new role, a role-speci�c instance of

the appropriate role type is created; when it abandons a role, the role-

speci�c instance is destroyed. Thus, the role concept supports the dy-

namic nature of entities and their non-exclusive classi�cation. Moreover,

entities can exhibit role-speci�c behavior and roles can be used to re-

strict access to a particular context. The main drawback of models with

roles compared to those allowing an object to be a direct member of

multiple classes is that in a model with roles the di�erent hierarchies

(role and class ones) highly increases the complexity of the model. Such

complexity impacts both the system architecture and the application de-



OBJECT EVOLUTION IN OBJECT DATABASES 29

velopment. For example, users must choose which features to model as

classes and which as roles.

A �rst approach based on role hierarchies has been proposed by Sciore

[28]. In his approach, real-world entities are modeled as object hierarch-

ies where inheritance is determined on a per-object basis, thus merging

class-based and prototype-based approaches. When an object receives a

message, it either directly replies to the message or delegates the message

to its parents. The observed behavior thus depends on the organization

of the object hierarchy. A similar approach is proposed in [20]. Richard-

sons and Schwartz [25] have introduced the concept of aspect to model

roles in strongly typed object-oriented database systems. More recently,

Wieringa et al. in [33] have pointed out that objects may reference a

particular role of an object and not only the object itself. The relevance

of roles in object-oriented analysis has been stressed by Pernici [24],

Papazoglou [23], and Martin and Odell [21]. The Fibonacci object data

model [3] and the model proposed in [17] are quite similar. In both a role

hierarchy can be associated with a root class; an object in this class can

play any role belonging to the hierarchy. In both models, messages are

dispatched according to the roles the object plays (though di�erently).

The emphasis in data models supporting roles is on context-dependent

behavior. In Fibonacci [3], the selection of the methods to be executed

depends on the role receiving the message. Dispatching is based on the

following basic principles: (i) the most speci�c behavior prevails (unless

a strict interpretation of messages is explicitly required); (ii) the most

recently acquired behavior prevails. In Fibonacci, messages are inter-

preted as follows. When a role receives a message, �rst it is checked

whether a descendant of this role exists having a proper (that is, non-

inherited) method to reply to this message. Descendants are considered

in inverse temporal order, that is, the more recently acquired descendant

is considered �rst. Subtyping rules ensure that the delegated role can

safely replace the receiving role. If no descendant role is able to handle

the message, an implementation for the message is then looked for among

the methods of the receiver itself. If also this search fails, an implement-

ation for the message is �nally looked for in the ancestor role from which

the property corresponding to the message has been inherited. If the

method invocation is type correct, the last search will certainly succeed.

Fibonacci also supports an alternative dispatch mechanism (referred to as

strict binding) to force an object to exhibit the behavior of a certain role

without keeping into account possible specializations of the role. Strict



30 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

binding must be explicitly required, through a special operator, when a

message is sent to a role.

In the role model of Gottlob et al. [17], a message that cannot be

handled by any role instance is delegated to the more general instance

in the role hierarchy. In that model, however, no priorities are used to

select a subrole among a number of candidates; this approach can lead to

improper behaviors. Consider, for example, the roles Enterpreneur and

Employee of type Person, each de�ning a method income. The income

of a person might not be reduced neither to its income as an employee

nor to its income as an entrepreneur, nor to the one of the most recently

acquired role. By contrast, the income of a person can be obtained as an

aggregate of the incomes of all its roles. Aggregation is one choice, but

it is not always the most meaningful one.

7 CONCLUSIONS

In this paper we have discussed the various kinds of object evolution that

should be supported in object database systems. The required capabil-

ities include the possibility for an object to change class, either through

an explicit migration operation or through state-based dynamic object

classi�cation. These kinds of evolution introduce problems both for im-

plementation and consistency. In particular, object evolution introduces

problems with respect to type checking, since an object changes its type

during its lifetime. Moreover, if multiple class direct membership is al-

lowed, problems concerning name conicts arise and forms of context-

dependence may need to be used. Semantic problems related to ob-

ject evolution can be handled through appropriate integrity constraints.

Those issues have been discussed in the context of the Chimera data

model. The forms of object evolution supported by other object-oriented

data models have also been surveyed.

A�liations

Elisa Bertino is with the Dipartimento di Scienze dell'Informazione, Uni-

versit�a di Milano, Via Comelico, 39/41 - 20135 Milano, Italy. E-mail:

bertino@dsi.unimi.it. Giovanna Guerrini and Luca Rusca are with

the Dipartimento di Informatica e Scienze dell'Informazione, Universit�a

di Genova, Via Dodecaneso, 35 - 16146Genova, Italy. E-mail: fguerrini,

ruscag@disi.unige.it.



OBJECT EVOLUTION IN OBJECT DATABASES 31

REFERENCES

[1] R. Agrawal and N. Gehani. Ode (Object Database and Environment): The Lan-

guage and the Data Model. In Proc. of the ACM SIGMOD Int'l Conf. on Man-

agement of Data, pages 36{45, 1989.

[2] R. Agrawal, L. G. De Michiel, and B. C. Lindsay. Static Type Checking of Multi-

Methods. In A. Paepcke, editor, Proc. Sixth Int'l Conf. on Object-Oriented Pro-

gramming: Systems, Languages, and Applications, pages 113{128, 1991.

[3] A. Albano, R. Bergamini, G. Ghelli, and R. Orsini. An Object Data Model with

Roles. In R. Agrawal, S. Baker, and D. Bell, editors, Proc. Nineteenth Int'l Conf.

on Very Large Data Bases, pages 39{51, 1993.

[4] E. Bertino and G. Guerrini. Objects with Multiple Most Speci�c Classes. In

W. Oltho�, editor, Proc. Ninth European Conference on Object-Oriented Pro-

gramming, number 952 in Lecture Notes in Computer Science, pages 102{126,

1995.

[5] E. Bertino and G. Guerrini. A Composite Object Model. Technical Report, Di-

partimento di Informatica e Scienze dell'Informazione, Universit�a di Genova, 1996.

Submitted for publication.

[6] E. Bertino, G. Guerrini, and L. Rusca. Method Dispatching in Object Data Models

with Multiple Class Direct Membership. Technical Report DISI-TR-96-17, Dipar-

timento di Informatica e Scienze dell'Informazione, Universit�a di Genova, 1996.

Submitted for publication.

[7] E. Bertino and L. D. Martino. Object-Oriented Database Systems - Concepts and

Architecture. Addison-Wesley, 1993.

[8] R. Breitl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams,

and M. Williams. The GemStone Data Management System. In W. Kim and

F. H. Lochovsky, editors, Object-Oriented Concepts, Databasases, and Applica-

tions, pages 283{308. Addison-Wesley, 1989.

[9] S.J. Cannan and G.A.M. Otten. SQL - The Standard Handbook. McGraw-Hill,

1992.

[10] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Poli-

morphism. Computing Surveys, 17:471{522, 1985.

[11] S. Ceri and R. Manthey. Consolidated Speci�cation of Chimera. Technical Report

IDEA.DE.2P.006.01, ESPRIT Project 6333, November 1993.

[12] C. Chambers. PredicateClasses. InProc. Seventh European Conference on Object-

Oriented Programming, pages 268{296, 1993.

[13] A. Coen Porisini, L. Lavazza, and R. Zicari. Static Type Checking of Object-

Oriented Databases. Technical Report 91-60, Dipartimento di Elettronica e In-

formazione, Politecnico di Milano, 1991.

[14] O. Deux et al. The Story of 0

2

. IEEE Transactions on Knowledge and Data

Engineering, 2(1):91{108, 1990.

[15] D. H. Fishman et al. Overview of the Iris DBMS. In W. Kim and F. H. Lochovsky,

editors, Object-Oriented Concepts, Databases, and Applications, pages 219{250.

Addison-Wesley, 1989.

[16] R. Gabriel, J. White, and D. Bobrow. CLOS: Integrating Object-Oriented and

Functional Programming. Communications of the ACM, 34(9):28{38, September

1991.

[17] G. Gottlob, M. Schre, and B. R�ock. Extending Object-Oriented Systems with

Roles. ACM Transactions on Information Systems, 1994.



32 ELISA BERTINO, GIOVANNA GUERRINI AND LUCA RUSCA

[18] G. Guerrini, E. Bertino, and R. Bal. A Formal De�nition of the Chimera Object-

Oriented Data Model. To appear in Journal of Intelligent Information Systems,

Kluwer Academic Publishers, 1997.

[19] W. Kim et al. Features of the ORION Object-Oriented Database System. In

W. Kim and F. H. Lochovsky, editors, Object-Oriented Concepts, Databasases,

and Applications, pages 251{282. Addison-Wesley, 1989.

[20] G. Kniesel. Implementation of Dynamic Delegation in Srongly Typed Inheritance-

Based Systems. Technical Report IAI-TR-94-3, Institut f�ur Informatik, Universit�at

Bonn, 1994.

[21] J. Martin and J. J. Odell. Object-Oriented Analysis and Design. Prentice Hall,

1992.

[22] A. Ohori and K. Tajima. A Polimorphic Calculus for Views and Object Shar-

ing. In Proc. of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pages 255{266, 1994.

[23] M. P. Papazoglou. Roles: A Methodology for RepresentingMultifaced Objects. In

Proc. of the International Conference on Database and Expert Systems Applica-

tions, pages 7{12, 1991.

[24] B. Pernici. Objects with Roles. In Proc. of the ACM Conference on O�ce In-

formation Systems, pages 205{215, 1990.

[25] J. Richardson and P. Schwartz. Aspects: Extending Objects to Support Multiple,

IndipendentRoles. In J. Cli�ord and R. King, editors,Proc. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 298{307, 1991.

[26] E.A. Rundensteiner. A Methodology for Supporting Multiples Views in Object-

Oriented Databases. In Proc. Eighteenth Int'l Conf. on Very Large Data Bases,

pages 187{198, 1992.

[27] M. Scholl, C. Laasch, and M. Tresch. Views in Object-Oriented Databases. In

Proc. Second International Workshop on Foundations of Models and Languages

for Data and Objects, pages 37{58, 1990.

[28] E. Sciore. Object Specialization. ACM Transactions on Information Systems,

7(2):103{122, April 1989.

[29] C. Souza dos Santos, S. Abiteboul, and C. Delobel. Virtual Schemas and Bases.

In M. Jarke, J. Bubenko, and K. Je�ery, editors, Proc. Fourth Int'l Conf. on Ex-

tending Database Technology, number 779 in Lecture Notes in Computer Science,

pages 81{94, 1994.

[30] M. Staudt, M. Jarke, M. Jeusfeld, and H. Nissen. Query Classes. In S. Tsur,

S. Ceri, and K. Tanaka, editors, Proc. Third Int'l Conf. on Deductive and Object-

Oriented Databases, number 760 in Lecture Notes in Computer Science, pages

283{295, 1993.

[31] L. A. Stein. A Uni�ed Methodology for Object-OrientedProgramming. In M. Len-

zerini, D. Nardi, and M. Simi, editors, Inheritance Hierarchies in Knowledge Rep-

resentation and Programming Languages, pages 211{222. John Wiley & Sons,

1991.

[32] J. Su. DynamicConstraints and Object Migration. In G. M. Lohman, A. Sernadas,

and R.Camps, editors, Proc. Seventeenth Int'l Conf. on Very Large Data Bases,

pages 233{242, 1991.

[33] R. Wieringa,W. de Jonge, and P. Spruit. Roles and Dynamic Subclasses: a Modal

Logic Approach. In M. Tokoro and R. Pareschi, editors, Proc. Eighth European

Conference on Object-Oriented Programming, number 821 in Lecture Notes in

Computer Science, 1994.

[34] R. Wieringa,W. de Jonge, and P. Spruit. Using Dynamic Classes and Role Classes

to Model Object Migration. Theory and Practice of Object Systems, 1(1):61{83,

Spring 1995. Special Issue: Selected Papers from ECOOP `94.



OBJECT EVOLUTION IN OBJECT DATABASES 33

[35] P. Yelland. Experimental Classi�cation Facilities for Smalltalk. In A. Paepcke, ed-

itor, Proc. Seventh Int'l Conf. on Object-Oriented Programming: Systems, Lan-

guages, and Applications, pages 235{246, 1992.

[36] S. Zdonik. Object-Oriented Type Evolution. In F. Bancilhon and P. Buneman,

editors, Advances in Database Programming Languages, pages 277{288. Addison-

Wesley, 1990.


