
Triggers in Java-based Databases

Elisa Bertino* — Giovanna Guerrini** — Isabella Merlo*

* Dipartimento di Scienze dell’Informazione
Università di Milano - Milano, Italy
Via Comelico 39/41
20135 Milano (Italy)

{bertino,merloisa}@dsi.unimi.it

** Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova - Genova, Italy
Via Dodecaneso, 35
16146 Genova (Italy)

guerrini@disi.unige.it

ABSTRACT. JavaTM is recently establishing itself as a very successful programming language,
and it is more and more widely used also in applications requiring persistence support and
database technology. It has not, however, been conceived as a database programming language.
One of the main limitations of Java with respect to the mature relational database technology
is the lack of integrity constraint support. An important functionality supported by many of
the most recent relational and object-relational database systems is represented by triggers,
that enhance the database with reactive capabilities and which can be used to support integrity
constraints. In this paper, we discuss the problems entailed by the addition of active features to
Java-based databases.

RÉSUMÉ. JavaTM s’est récemment imposé comme langage de programmation, il est de plus
en plus utilisé dans des applications nécessitant des bases de données et un support pour la
persistance. Toutefois il n’a pas été conçu comme un langage pour la programmation des
bases de donnés. Une des principales limitations de Java en rapport avec la technologie des
bases de donnés relationnelles est le manque de support pour les contraintes d’intégrité. Une
fonctionnalité importante prévue dans la plupart des récents systèmes de base de données à
objets ou relationnel est la notion de "déclencheur" qui enrichit la base de données avec des
possibilités réactives et qui peuvent servir à assurer les contraintes d’intégrité. Dans cet article
nous discutons des problèmes provenant de l’ajout de traits actifs dans les base de données
basées sur Java.

KEYWORDS: Active databases, triggers, Java.

MOTS-CLÉS : Base de données active, déclencheur, Java.

L’objet. Volume 6 - nÆ 3/2000

2 L’objet. Volume 6 - nÆ 3/2000

1. Introduction

Active features are critical for many advanced data management applications. An

active database system is a system in which some operations are automatically exe-

cuted when specified events happen and particular conditions are met. Examples of

the use of active capabilities are integrity constraint enforcement, authorization and

monitoring. Most recent relational and object-relational DBMSs and the forthcoming

standard SQL:1999 [EIS 00b, EIS 00a] provide those capabilities. Moreover, several

proposals for adding triggers to object-oriented database systems have been presented

[CER 96, PAT 99].

In both the relational and the object frameworks active rules provide a comprehen-

sive means to formally state the semantics of data, the high-level semantic operations

on data and the integrity constraints. Even though current relational database systems

provide stored procedures, and object-relational and object-oriented database systems

provide methods, as a means to express behavior of data, specifying the semantics of

data through rules has important advantages over coding it into methods (or stored

procedures). For instance, the behavior represented by methods must be explicitly in-

voked by the user or by applications, whereas active rules are autonomously activated.

Moreover, a specialized trigger subsystem, internal to the database system, supports a

more efficient active behavior processing compared to the approach where the active

behavior is coded into methods.

As remarked in [PAT 99], however, whereas relational database vendors have been

quick to extend their products with active facilities, object-oriented database vendors

have not yet incorporated active facilities into their products. This is also reflected in

the fact that the object-oriented database standard ODMG [CAT 99] does not include

triggers. In [BER 99] we have proposed an extension of the ODMG standard with

triggers.

JavaTM [GOS 96] is recently establishing itself as a very successful programming

language, and it is more and more widely used also in applications requiring per-

sistence support and database technology. It has not, however, been conceived as a

database programming language. Three major limitations of Java from the viewpoint

of object-oriented database technology have been discussed in [ALA 98], namely lack

of support for persistence, lack of parametric polymorphism, and lack of integrity con-

straint support. The first limitation is the most obvious. A considerable amount of

work has however been devoted to that topic in the last few years [PJW98] and dif-

ferent proposals, such as PJama, JavaSPIN and ObjectStore PSE, have emerged. The

second limitation is related to the heavy use of collections in database applications.

The topic of extending Java with parametric classes has also been extensively inves-

tigated and several approaches have been proposed [OOP98]. The third aspect, by

contrast, has received little attention. To the best of our knowledge, the only works in

this direction are [ALA 98, COL 00]. In [ALA 98] a declarative assertional language

to express pre and post conditions for methods, as well as some forms of integrity

constraints, is proposed. In [COL 00] an approach that uses assertions to ensure con-

Triggers in Java-based Databases 3

sistency during the life cycle, starting from the design stage, of persistent applications

is presented.

Triggers are a typical database mechanism, well suited to express integrity con-

straints. Besides allowing one to express the conditions that should not be violated,

they allow one to specify the action to be taken upon constraint violation (repairing
action) to restore a consistent state. Moreover, their use is absolutely not limited to

integrity maintenance, since they allow one to specify any generic form of reactive

behavior, such as consequential actions.

In this paper, we discuss the problems entailed by the addition of reactive features

in object-oriented databases, focusing our attention to Java-based databases. We first

briefly discuss trigger support in commercial “traditional" DBMSs and then discuss

which issues have to be re-examined in an object-oriented context.

2. Triggers in Object Relational DBMSs

Most commercial DBMSs, such as Oracle, DB2, Informix, Sybase, supports trig-

gers. Though their trigger languages present some differences, they are all quite close

to the trigger language of SQL:1999 [SQL99]. In SQL:1999, triggers are expressed

by means of event-condition-action (ECA) rules. The event specifies what causes the

rule to be triggered, that is, the database operation monitored by the trigger. In the

SQL:1999 standard proposal, each trigger reacts to a single event. Considered events

are insert, delete, or update to a particular relation. For update events, the attribute (or

set of attributes) target of the modification can also be specified. The condition (WHEN

clause) specifies an additional condition to be checked once the rule is triggered and

before the action is executed. Conditions are predicates over the database state. If the

condition does not hold, nothing else associated with the trigger happens in response

to the event. In SQL:1999, the condition is expressed as an arbitrary SQL predicate,

potentially involving complex queries. The action is executed when the rule is trig-

gered and its condition is true. The action may then prevent the event from taking

place, or it could undo the event (e.g., delete the inserted tuple). The action can be

any sequence of database operations, even operations not connected in any way to

the triggering event. In particular, the action can include any SQL data manipulation

statement, as well as invocations of user-defined functions and procedures.

The SQL:1999 trigger statement gives the user the possibility of specifying several

different options. The main features are illustrated below.

– The trigger can be executed before or after the triggering operation.

– The possibility is given of specifying that the trigger be executed: (i) once for

each modified tuple (row-level trigger), or (ii) once for all the tuples that are changed

in a database operation (statement-level trigger).

– The trigger condition and action can refer to both old and new values of tuples

that were inserted, deleted or updated by the operation that triggered the rule. In a

4 L’objet. Volume 6 - nÆ 3/2000

statement-level trigger, similarly, the set of old tuples and the set of new tuples can be

referred as two relations1.

If an entire table is updated with an SQL update statement, a statement-level trigger

would execute only once, while a row-level trigger would execute once for each tuple.

In a row-level trigger, the condition is evaluated on each tuple affected by triggering

operation, and if it holds, the trigger action is executed on the tuple. By contrast,

in a statement-level trigger, the trigger condition is evaluated once on all the tuples

affected by the triggering operation, and if it holds, the trigger action is executed in a

set-oriented way.

The processing granularity is an orthogonal dimension with respect to the activa-

tion time, thus both before and after triggers can be either row-level or statement-level.

Triggers are all executed in the context of the same transaction to which the trigger-

ing operation belongs. Moreover, a single trigger activation time is considered. After

triggers are indeed all activated (if their monitored event occurred) immediately after

the execution of the triggering operation. This kind of triggers are usually referred

to as immediate triggers. It could be possible to have after triggers whose activation

is deferred at transaction commit [CER 96]. This is useful for rules that enforce in-

tegrity constraints, since a transaction may execute several operations that violate a

constraint, but the transaction may restore the constraint before it reaches its commit

point.

The interaction among triggers and inheritance have not been investigated in the

object-relational context. Actually, some object-relational DBMSs (e.g. DB2 and

Oracle) do not currently support inheritance; all of them, however, mention inheritance

as one of the most relevant planned extensions to the model. Inheritance, both at

the type (ADT) and at the table level, is part of the SQL:1999 data model; however,

no discussion on how inheritance interacts with triggers is included in the standard

documentation. Note that in SQL:1999 triggers are not defined in the context of tables.

However, an SQL:1999 trigger monitors a single event, thus it is implicitly associated

with the table to which the monitored event refers.

3. Triggers in Java-based Databases

Most of the research and development efforts on active databases and commer-

cial implementations have focused on active capabilities in the context of relational

database systems. Although several approaches have been proposed in the past to ex-

tend object database systems with triggers and interesting results have been achieved,

there is a lack of uniformity and standardization across those approaches, and most

common commercial OODBMSs do not support triggers. An overview of the existing

proposals of active object-oriented DBMSs can be found in [BER 00b].

1. Actually, those transition tables can also be referred in row-level triggers, for instance to

apply aggregations over the whole set of tuples manipulated by the triggering operation.

Triggers in Java-based Databases 5

<trig_dcl> :: = trigger <name>

{before j after } <event> on <class>

[referencing {old as <variable> j new as <variable> j

oldset as <variable> j newset as <variable>}]

[when <condition>]

<action>

[for each {instance j statement}]

Figure 1. Language extension for specifying triggers

The paradigm shift from the relational model to the object-oriented one requires

revising the functionalities as well as the mechanisms by which reactive capabilities

are incorporated into the object-oriented data model. There are several factors not

present in relational database systems that complicate the extension of object-oriented

database systems to include active behavior.

In what follows, we discuss how to adapt the SQL:1999 trigger language to a

Java-based context. This choice is mainly motivated by the convergence between

object-oriented and object-relational approaches. Moreover, we are not interested in

proposing a new trigger language, incorporating a large number of features. Rather,

we simply would like to re-examine a trigger language, like the one proposed for

SQL:1999, in a pure object-oriented data model, like the one supported by Java.

This shift entails addressing several issues. In the remainder of this section, we

first briefly sketch the considered trigger definition language, then we focus on two of

those issues that we believe are the most relevant. The first issue is related to the data

manipulation primitives, with respect to which triggers are defined. The second issue

is related to trigger inheritance and overriding.

3.1. Trigger Definition Language

The primitive for defining triggers we consider is presented in Figure 1. Each

trigger is identified by a name and is targeted to a class. A trigger targeted to a class

monitors objects of class .

As in SQL:1999, it is possible to specify whether a trigger must be executed before

or after its triggering operation. As in SQL:1999, the possibility is given of referencing

in the condition (as well as in the action) the objects affected by the operation that

triggered the rule. This is accomplished through transition variables declared in the

referencing clause of the trigger definition statement. Both the new and the past

states of objects affected by the data manipulation statement (triggering event) can

be queried. Affected objects can be seen individually (old and new) or jointly as a

“temporary” extent (oldset and newset).

6 L’objet. Volume 6 - nÆ 3/2000

The condition specifies an additional condition to be checked once the rule is trig-

gered and before the action is executed. Conditions are predicates over the database

state. They can be expressed as OQL conditions (that is, any construct that can ap-

pear in an OQL query where clause) if the database is ODMG-compliant, otherwise

they can be any side-effect free Java expression returning a boolean value. The when

clause of the trigger definition statement is optional. If it is missing, the condition

is supposed to be true and the trigger action is executed as soon as the trigger event

occurs. The action is executed when the rule is triggered and its condition is true.

Possible actions include database operations, that is, the data manipulation statements

discussed in Section 3.2, and method invocations. A sequence of actions can be spec-

ified, so that the specified actions are sequentially executed, and other Java imperative

constructs that can appear in method bodies can be used as well.

The set of events supported, as well as the trigger processing granularity, are

strictly related to the approach adopted for data manipulation, and will thus be dis-

cussed in the following section.

3.2. Data Manipulation Language

Triggers usually react to data manipulation operations (such as INSERT, DELETE

and UPDATE in SQL:1999). Data manipulation in Java-based databases is mainly per-

formed through methods defined in the class to which the object to be manipulated

belongs. A very limited set of manipulation primitives is predefined: the assignment

statement, allowing one to set the value of an attribute of an object to a specified

value, and the new operator, allowing one to create an instance of a class, even if no

constructor method is specified for that class. No explicit deletion operation is pro-

vided, since objects are supposed to be removed from the database when no longer

referenced, through a garbage collection mechanism. More important, data manipu-

lation in SQL:1999 is set-oriented. In the database context, indeed, the common case

is to execute a given update operation on a set of objects rather than on a single ob-

ject. Data manipulation primitives in SQL have a set-oriented semantics, that is, they

work on a set of objects at-a-time. Whereas DMLs support sets of instances as logi-

cal units of computation, conventional programming languages, such as Java, reason

on a single instance (record) at-a-time. Note that SQL:1999 supports the two pos-

sibilities (instance-oriented and set-oriented computation) for triggers, whereas data

manipulation is always set-oriented.

The possibility of extending Java with set-oriented data manipulation primitives

can be considered. These primitives are employed for creating and updating objects.

Rather than acting on a single object (instance), they work on a set of objects at-a-time,

where this set is determined by the objects satisfying a given condition (query). This

is exactly the approach of SQL data manipulation statements. Table 1 summarizes

the different options for data manipulation. No set-oriented method invocations are

considered.

Triggers in Java-based Databases 7

OPERATION EVENT INSTANCE-ORIENTED SET-ORIENTED

object creation insert new (p

1

; : : : ; p

n

) insert into expr

attribute update update, o:a = expr update set a = expr

update of a where F

object deletion delete — —

method invocation m o:m(p

1

; : : : ; p

n

) —

Table 1. Data manipulation

If data manipulation is instance-oriented and trigger execution is immediate, as in

SQL:1999, trigger execution will obviously be instance-oriented as well. By contrast,

if deferred triggers are supported, then both set-oriented and instance-oriented trig-

gers can be specified. In the NAOS system, for instance, trigger execution is instance-

oriented for immediate trigger, whereas it is set-oriented for deferred ones. Thus,

statement-level triggers make sense only if a set-oriented data manipulation is sup-

ported in the language, or if deferred triggers are included. The default processing

granularity is instance-oriented.

Another important aspect to consider is that in Java-based databases data manip-

ulation primitives handle in a uniform way persistent and ordinary data. It could be

thus quite difficult to express triggers that only apply to persistent data, since the ac-

tual storage or deletion from disk (that is, the insertion or deletion of a persistent

object) are handled by the underlying system and do not correspond to the execu-

tion of a user statement. In our proposal a trigger monitor both the persistent and the

non-persistent instances of a class. Note that is in accordance with the orthogonal
persistence [ATK 95] principle on which most Java-based databases are based.

3.3. Trigger Inheritance and Overriding

In adapting the SQL:1999 trigger definition language to an object-oriented context,

however, the main issues to be investigated concern trigger inheritance and overrid-

ing. Such issues have neither been considered in the context of SQL:1999, nor been

satisfactorily addressed by existing proposals of active object-oriented data models.

They are however crucial for a proper integration of reactive capabilities with object-

oriented modeling primitives.

The approach taken by the majority of the systems for rule inheritance is to sim-

ply apply all rules, defined in a class, to the entire extent of the class, that is, to all

the instances of the class itself2. Such an approach, that we refer to as full trigger
inheritance, simply means that event types are propagated across the class inheritance

2. An object is a proper instance of a class if this class is the most specialized class in the

inheritance hierarchy to which the object belongs. An object is an instance of a class if it is a

proper instance of this class or a proper instance of any subclass of this class.

8 L’objet. Volume 6 - nÆ 3/2000

hierarchy. Consider a trigger r, defined on a class

0, monitoring an operation op. If

0 has a subclass , when an operation op occurs on a proper instance of , rule r is

triggered, as well as any other rule defined in having op as event. This means that,

for example, given a class Person and a class Employee, extending class Person, a

trigger monitoring the update of the age attribute of class Person would react also

to updates to the age attribute of objects instances of class Employee. Thus, inheri-

tance of triggers is accomplished by applying a trigger to all the instances of the class

in which the trigger is defined, rather than only to the proper instances of this class.

In the remainder of this section we discuss some more subtle issues concerned with

inheritance of triggers.

3.3.1. Method Selection in Inherited Triggers.

One of the problems arising in defining the semantics of an active object language

supporting trigger inheritance is method selection with respect to inherited triggers.

Consider a trigger r defined in a class 0 and invoking in its action an operation op on

the objects affected by the event. Consider moreover a subclass of 0 and suppose

that operation op is redefined in . Rule r is triggered when the event monitored by

r occurs both on objects proper instances of 0 and on objects proper instances of .

For objects proper instances of 0 the method implementation in class

0 is selected,

where the trigger itself is defined. By contrast, for objects proper instances of two

different options are possible: (i) choosing the most specialized implementation of op

(that is, the implementation in class); (ii) choosing the implementation according to

the class where the rule is defined (that is, the implementation in class

0). We refer

to the first and second approach as object-specific method selection and rule-specific
method selection, respectively.

In our opinion, the first approach should be adopted, because it is consistent with

the object-oriented approach, in that it conforms to the principle of exhibiting the most

specific behavior. The rule-specific method selection is not consistent with the object-

oriented approach because it refers to the static nature of objects, that is, the class in

which the trigger is defined, and not to their dynamic nature, that is, the classes the

objects are proper instances of. Even though the rule-specific method selection is not

coherent with the object-oriented approach, it is used in some active object-oriented

database systems, like Ode. Rule-specific method selection can however, be useful

in some cases. It can simply be realized in Java by inserting an explicit upward cast

before the method invocation.

Example 1 Consider the following class and trigger definitions.

lass Person{

string name;

int age;

void display() {System.out.println(name);}

}

Triggers in Java-based Databases 9

lass Employee extends Person{

int emp_number;

void display() {System.out.println(emp_number);}

}

trigger test

after update of age on Person

when age > 120

new.display();

If the statement e.age = 150 is executed, where variable e denotes an object in-
stance of class Employee:

– under rule-specific method selection, the string e.name is printed;

– under object-specific method selection, the integer e.emp_number is printed.

Under object-specific method selection, rule-specific behavior can be obtained by sub-
stituting the trigger action with the following casted method invocation:
((Person)new).display().

3.3.2. Trigger Overriding.

Another important issue to be investigated concerns rule overriding. Full trigger

inheritance is not, indeed, always appropriate. There are situations in which trig-

ger overriding is required. The lack of trigger overriding capabilities does not allow

triggers to manage in different ways the proper and non-proper instances of a class.

Moreover, the meaning of the ISA hierarchy is to define a class in terms of another

class, possibly refining its attributes, methods and triggers. This modeling approach

is one of the key features of the object-oriented paradigm.

An active object language should thus provide the possibility of redefining triggers

in subclasses, exactly as methods can be redefined. The way in which trigger over-

riding is accomplished in our approach is simple. Let r be a trigger defined in a class

0, r can be overridden by the definition of a new trigger in class , subclass of

0,

with the same name of r. Late binding is supported also for triggers, thus at execution

time for each object affected by the execution of the specified trigger the most specific

implementation will be chosen.

Example 2 Referring to the classes and triggers of Example 1, if the following trig-
ger definition is added, trigger test of class Personwill not be executed on instances
of class Employee. Thus, upon the execution of the statement e.age = 150, where
variable e denotes an object instance of class Employee, no information will be dis-
played.

trigger test

after update of age on Employee

when age > 70

new.age = 70;

10 L’objet. Volume 6 - nÆ 3/2000

Note that trigger overriding is supported in very few active object systems. Rule

overriding is supported in TriGS and, even with some limitations, in Ode3. In those

systems no restrictions are imposed on rule overriding, thus a rule may also override

another rule on completely different events. Some other active object systems (such

as NAOS) suggest to program rule overriding “by hand". This requires a trigger lan-

guage in which priorities among triggers can be explicitly defined (this is not the case

in SQL:1999). Under this approach, to refine the behavior of a trigger in a subclass

one can define in the subclass a trigger on the same event which performs the refined

action, such that the trigger in the superclass has priority over the trigger in the sub-

class. Thus, upon occurrence of the common triggering event on an object belonging

to the subclass, both triggers are activated, but, since the trigger defined in the su-

perclass is executed first, the action in the trigger defined in the subclass “prevails”.

However, it is not always possible to refine the behavior of a trigger in a subclass by

adding a new trigger, even by specifying that the subclass trigger has lower priority

than (thus, is executed after) the superclass one [BER 00b].

3.3.3. Preserving Trigger Semantics in Subclasses.

Since trigger behavior is often quite complex and impredictable, because of mutual

interactions among triggers, it is important to provide some mechanism for preserving

trigger semantics in subclasses. This means, for example, that conservative trigger

redefinitions are specified. We impose that in overriding a trigger only the condition

and the action components can be redefined, that is, the monitored events must be the

same. Moreover, to ensure that the trigger in the subclass is executed at least each time

the trigger in the superclass would be executed, and that what would be executed by the

trigger in the superclass is also executed by the refined trigger, the super mechanism

provided by Java can be exploited. We allow the boolean expression corresponding

to a trigger condition to contain the expression super.ondition(), and the trigger

action to contain the expression super.ation(), to refer to the superclass trigger,

currently being redefined, condition and action, respectively.

Example 3 Referring to the classes and triggers of Example 1, the following trigger
definition make use of the super mechanism to conservatively redefine the trigger in
class Employee.

trigger test

after update of age on Employee

when age > 70

super.ation();

new.age = 70;

3. In Ode triggers must be explicitly activated on objects. If the trigger activation is part of

the superclass constructor, than both triggers apply to a subclass object, and there is no way to

override the trigger.

Triggers in Java-based Databases 11

4. Conclusions

Reactive capabilities are a very important component of current commercial database

technology. We believe that though Java provide a notion of event and an exception

handling mechanism, reactive capabilities similar to the ones that can be achieved

through the language we propose cannot be provided relying on those mechanisms.

An analysis of the differences between triggers and exceptions can be found in [BER 00a].

Thus, their support in Java-based databases is crucial. In this paper, we have dis-

cussed the main issues entailed by the introduction of these capabilities. The dis-

cussion applies both to persistent extensions of Java (like PJama) and to ODMG-

compliant OODBMSs with a Java binding. The introduction of triggers in Java-based

databases obviously entails addressing relevant issues also from the architectural point

of view. Different architectural alternatives ranges from those based on a preproces-

sor to extensions of the Java Virtual Machine. The treatment of architectural issues is

however beyond the scope of this work.

5. References

[ALA 98] ALAGIĆ S., SOLORZANO J., GITCHELL D., “Orthogonal to the Java Imperative”,

JUL E., Ed., Proc. Twelfth European Conference on Object-Oriented Programming, Lecture

Notes in Computer Science, 1998, p. 212-233.

[ATK 95] ATKINSONS M., MORRISON R., “Orthogonally Persistent Object Systems”, VLDB
Journal, vol. 4, 1995, p. 319-401.

[BER 99] BERTINO E., GUERRINI G., MERLO I., “Extending the ODMG Object Model with

Triggers”, report , 1999, Dipartimento di Informatica e Scienze dell’Informazione, Univer-

sità di Genova.

[BER 00a] BERTINO E., GUERRINI G., MERLO I., “Do Triggers Have Any-

thing To Do With Exceptions?”, ECOOP Workshop on Exception Han-

dling in Object Oriented Systems. Available at http://www.cs.ncl.ac.uk/ peo-

ple/alexander.romanovsky/home.formal/ehooslist.html, 2000, Cannes (France).

[BER 00b] BERTINO E., GUERRINI G., MERLO I., “Trigger Inheritance and Overriding in

Active Object Database Systems”, IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 12, num. 4, 2000, p. 588-608.

[CAT 99] CATTEL R., BARRY D., BERLER M., EASTMAN J., JORDAN D., RUSSEL C.,

SCHADOW O., STANIENDA T., VELEZ F., The Object Database Standard: ODMG 3.0,

Morgan-Kaufmann, 1999.

[CER 96] CERI S., WIDOM J., Active Database Systems - Triggers and Rules for Advanced
Database Processing, Morgan-Kaufmann, 1996.

[COL 00] COLLET P., VIGNOLA G., “Towards a Consistent Viewpoint on Consistency for

Persistent Applications”, Proc. of the ECOOP 2000 Symposium on Objects and Databases,

Lecture Notes in Computer Science, 2000, To Appear.

[EIS 00a] EISENBERG A., MELTON J., “SQL Standardization: The Next Steps”, ACM SIG-
MOD Record, vol. 29, num. 1, 2000, p. 63-67.

12 L’objet. Volume 6 - nÆ 3/2000

[EIS 00b] EISENBERG A., MELTON J., “SQL:1999, formerly known as SQL3”, ACM SIG-
MOD Record, vol. 28, num. 1, 2000, p. 131-138.

[GOS 96] GOSLING J., JOY B., STEELE G., The JavaTM Language Specification, Addison-

Wesley, 1996.

[OOP98] Proc. of the Thirteenth Int’l Conf. on Object-Oriented Programming: Systems, Lan-
guages, and Applications (OOPSLA98), Vancouver, Canada, October 1998, ACM SIG-

PLAN Notices 33(10).

[PAT 99] PATON N., Active Rules in Database Systems, Springer-Verlag, 1999.

[PJW98] Proc. of the Third International Workshop on Persistence and JavaTM (PJW3),
Tiburon, California, September 1998, Sun Microsystems Laboratories.

[SQL99] “ISO/IEC 9075-2:1999 Information technology - Database language - SQL - Part 2:

Foundation (SQL/Foundation)”, 1999.

Elisa Bertino received the doctor degree in Computer Sciences from the University of Pisa,
Italy, in 1980. She is currently professor of database systems in the Department of Computer
Science of the University of Milan where she heads the Database Systems Group. Since Oc-
tober 1997, she is also the chair of the Computer Science School of the University of Milano.
She has also been on the faculty in the Department of Computer and Information Science of
the University of Genova, Italy. Until 1990, she was a researcher for the Italian National Re-
search Council in Pisa, Italy, where she headed the Object-Oriented Systems Group. She has
been a visiting researcher at the IBM Research Laboratory (now Almaden) in San Jose, at the
Microelectronics and Computer Technology Corporation in Austin, Texas, at George Mason
University in Fairfax, Virginia, and at Rutgers University in Newark, New Jersey.

Her main research interests include object-oriented databases, distributed databases, de-
ductive databases, multimedia databases, interoperability of heterogeneous systems, integra-
tion of artificial intelligence and database techniques, database security. In those areas, Prof.
Bertino has published several papers in all major refereed journals, and in proceedings of inter-
national conferences and symposia. She is a co-author of the books "Object-Oriented Database
Systems - Concepts and Architectures" 1993 (Addison-Wesley International Publ.), and "Index-
ing Techniques for Advanced Database Systems" 1997 (Kluwer Academic Publishers). She is
member of the advisory board of the IEEE Transactions on Knowledge and Data Engineering
and a member of the editorial boards of the following scientific journals: the International
Journal of Theory and Practice of Object Systems, the Very Large Database Systems (VLDB)
Journal, the Parallel and Distributed Database Journal, the Journal of Computer Security, Data
& Knowledge Engineering, the International Journal of Information Technology, the Interna-
tional Journal of Cooperative Information Systems. She has been consultant to several italian
companies on data management systems and applications and has given several courses to in-
dustries. She has been also involved in several European Projects sponsored by the EEC under
the ESPRIT programme.

Elisa Bertino is a senior member of IEEE and a member of ACM and AICA and has been
been named a Golden Core Member for her service to the IEEE Computer Society. She has
served as Program Committee members of several international conferences, such as ACM
SIGMOD and VLDB, as Program Chair of the 1996 European Symposium on Research in
Computer Security (ESORICS’96), as General Chair of the 1997 International Workshop on

Triggers in Java-based Databases 13

Multimedia Information Systems, and as Program Co-Chair of the 1998 IEEE International
Conference on Data Engineering (ICDE).

Giovanna Guerrini is an assistant professor at the Department of Computer and Information
Sciences of the University of Genova. She received the MS and PhD degrees in Computer
Science from the University of Genova, Italy, in 1993 and 1998, respectively. Her research
interests include object-oriented, active, deductive and temporal databases, semi-structured
data.

Isabella Merlo is an assistant professor at the Department of Computer Sciences of the Univer-
sity of Milano. She received a MS Degree in Computer Science (with honours) at the University
of Genova in 1996. Since November 1996, she is enrolled in a PhD program, under the super-
vision of Prof. Elisa Bertino and Dr. Giovanna Guerrini, in the Department of Computer and
Information Sciences of the University of Genova as a member of the Database and Informa-
tion System Group. Her current research interests include object-oriented, active and temporal
databases, data models for management of semi-structured data.

