
Updating XML Schemas and Associated
Documents through EXup
Federico Cavalieri1, Giovanna Guerrini1, Marco Mesiti2

1DISI, University of Genova, Italy
{cavalieri, guerrini}@disi.unige.it

2DiCo, University of Milano, Italy
mesiti@dico.unimi.it

Abstract— Data on the Web mostly are in XML format and the
need often arises to update their structure, commonly described
by an XML Schema. When a schema is modified the effects
of the modification on documents need to be faced. XSUpdate
is a language that allows to easily identify parts of an XML
Schema, apply a modification primitive on them and finally
define an adaptation for associated documents, while EXup is
the corresponding engine for processing schema modification and
document adaptation statements. Purpose of this demonstration
is to provide an overview of the facilities of the XSUpdate
language and of the EXup system.

I. MOTIVATIONS

In the last few years we have observed a proliferation of
approaches for querying and updating XML documents both
from the research community and the big DBMS companies.
Suitable languages have been provided for both querying and
updating, the SQL standard has been extended to query and
publish XML data, vendors have enhanced their DBMSs to
support XML as a native type.

On the contrary, updates on XML schemas have received
a limited attention despite the great impact they may have
in the database organization and in many application fields.
The need to update the schema may arise for several reasons,
ranging to reflecting a change in the application domain, to
a restructuring of the business alliance sharing the data, to
revisions on recently developed and still unstable domain-
specific data representation standards. Schema updates may
have different impacts in data management in the context of
schema versioning, where the updated schema gives rise to a
new schema version, and schema evolution, where the updated
schema replaces the previous one.

Commercial DBMSs, like Oracle 11g, Tamino, DB2 v.9,
provide different support for schema versioning but the pos-
sibilities to handle schema evolution is quite limited and
mainly rely on the use of ad-hoc routines (like the Oracle
copyEvolve and inPlaceEvolve functions). There is
therefore the need to identify a language for updating schemas
that is easy to use, whose semantics is well specified, and
that copes with all the effects of schema updates on related
documents. Specifically, in a schema evolution context, old
documents may need to be (incrementally) revalidated against
the new schema, and, if they are not valid anymore, adapted
to the new schema.

The XQuery Update (XQU) facilities [4] can be exploited to
face the issues of schema updates. However, the specification
of updates on a schema results in quite verbose expressions,
that are not easy to understand and error-prone. Moreover, the
management of effects on related documents is completely
decoupled from the schema modification and does not take
advantage of knowledge of the update occurred on the schema.

In this demo paper we show the potential of XSUpdate [1], a
language that we have developed for expressing modifications
on XML schemas and for supporting incremental revalidation,
as well as automatic and user-defined adaptation of documents
associated with a schema. The capabilities of the language will
be demonstrated by means of the EXup system [1] that repre-
sents a very flexible and useful tool for handling modifications
to schemas with associated documents. The EXup system
extends the X-Evolution system [3] by introducing support for
XSUpdate statements and providing different approaches for
making effective the updates in off-the-shelf native DBMSs.

In the remainder of the paper, Section II briefly presents
XSUpate providing some example statements on a running
example. The characteristics of the EXup engine are summa-
rized in Section III. Section IV presents the features of the
system that will be demonstrated.

II. XSUPDATE IN A NUTSHELL

XSUpdate is an SQL-like language designed to express
evolution statements over an XML Schema. Every schema
modification operation is executed over a set of one or more
components in a specific schema, named the evolution objects.
An evolution object can be the root element, a type definition
or the declaration of an attribute, element or grouping operator
(sequence, choice or all).

An XSUpdate statement is composed of three parts: (i)
the identification of the evolution objects in a schema, (ii)
the specification of the modification operation to carry out
on the evolution objects and (iii) the specification of the
impact of the update on documents (document adaptation). In
the following we detail these components and provide some
complete examples.

A. Evolution object

Starting from the text representation of an XML Schema, an
abstract graph representation can be easily obtained that points

Fig. 1. XML Schema HTML-Log.xsd (left) and graph representation.

out the hierarchical organization of a schema plus the implicit
relationships due to the presence of elements or attributes
that need to be bound with their global types or referred
global declarations. Fig. 1 shows a simple schema with its
graph representation (solid arrows represent the hierarchical
organization, while dashed ones the implicit relationships).

Relying on this representation, the schema components to be
updated or the corresponding elements/attributes in documents
associated with the schema are identified by means of naviga-
tional expressions specified in XSPath [2]. By means of this
language concise and intuitive navigational expressions can
be specified on a schema, being able, for instance, to retrieve
the elements in a declaration regardless on how their type
has been actually defined. XSPath relies on a compositional
semantic similar to that of XPath but using the names specified
in declarations and definitions as primary identification means.
As in XPath, axes are employed to identify nodes in a specific
relation, while node selectors and predicates can be used to
identify only those nodes exhibiting specific properties.

B. Schema modification

The second part of an XSUpdate statement specifies the
modification primitive to apply on the identified components
of the schema (element/attribute declaration, simple/complex
type definition). The set of primitives includes those for insert-
ing/deleting/modifying the evolution object, those for moving
the evolution object into another position in the schema, and
those for migrating a local type/element into a global one or
vice versa. Each primitive is associated with a set of appli-
cability conditions that guarantee that the modified schema is
still well-formed according to the W3C specification.

C. Document adaptation

Schema modifications can invalidate associated documents,
therefore XSUpdate offers three different approaches to handle
them: (i) documents can be left unmodified, (ii) an automatic

approach can be applied to minimally change the documents
in order to make them valid for the updated schema, or (iii)
the entire adaptation process can be controlled by the user
through XQU expressions. After the adaptation, the parts of
the documents affected by the schema evolution are revalidated
and those still invalid can be disassociated from the schema
or the whole modification can be rolled back.

The first and simplest approach is to leave documents unal-
tered. To identify the documents no longer valid, they should
go through a re-validation. The knowledge of the applied
schema modification allows an incremental revalidation only
on the parts of the documents affected by the modification.

The automatic adaptation approach follows two major
guidelines: (i) make smallest modification to document nodes
affected by the modifications to re-establish the document
validity; (ii) insertions of new nodes, alterations or removal
of existing data are realized only when strictly needed. This
approach guarantees document validity after the adaptation.

A user-defined document adaptation can finally be specified,
allowing the user to specify, through XQU expressions, ad
hoc ways to convert old documents in documents valid for
the new schema. Specifically, user-defined adaptation allows to
specify an iteration expression and a document expression. The
iteration and document expressions may present free variables
that are automatically bound relying on the modification
performed at schema level. The binding is realized through an
environment that establishes the position within the document
where the two expressions should be evaluated and the values
to be assigned to the free variables.

D. Examples of XSUpdate statements

The following XSUpdate statements refer to the schema
in Fig. 1. To modify the type definition IPAddressType
replacing the minLength and maxLength restrictions with
a pattern restriction and leave any document containing
invalid IP addresses disassociated from the modified schema,

Fig. 2. The GUI.

the following statement can be specified:
UPDATE SCHEMA ("HTTP-Log.xsd")/#IPAddressType
REPLACE RESTRICTIONS minLength, maxLength
WITH pattern =
[0-9]{1-3}\.[0-9]{1-3}\.[0-9]{1-3}\.[0-9]{1-3}
NO ADAPT REMOVE INVALID

Types, elements, attributes, operators or group of nodes can
be inserted specifying a position in the schema and providing
their definition (which may include XML Schema fragments).
Suppose we wish to insert an element Direction of type
xs:string as last child in the Log declaration, and to
adapt the associated documents inserting - where needed - a
Direction element, whose value is determined depending
on the occurrence of the SourceIP element. The following
statement can be issued:
UPDATE SCHEMA ("HTTP-Log.xsd")/Log!sequence
INSERT ELEMENT Direction OF TYPE xs:string
FOR EACH ENVIRONMENT
REFERENCING TARGET AS $Message DO
local:insertAtCurrentPosition

(element Direction {
if ($Message/SourceIP)
then ("inbound") else ("outbound")})

The statement is composed of two parts: the modification of
the schema and the XQU expression to be evaluated in each
environment bound by the $Message variable.

Types, cardinality specifications, and names can be changed
as needed. The following statement requires to change the
cardinality of the Cookies element from 0,1 to 1,1.
Relying on the automatic adaptation option, a new Cookies
element is inserted in each message without one. The value
of the inserted elements is the empty string (the default value
for the string type).

UPDATE SCHEMA ("HTTP-Log.xsd")/Log/Cookies
CHANGE CARDINALITY TO 1,1

Any definition/declaration can be removed, provided that the
resulting schema remains consistent. The following statement
removes the type IPAddressType and any element or type
depending on it.

UPDATE SCHEMA ("HTTP-Log.xsd")/#IPAddressType
REMOVE CASCADE

III. THE EX UP ENGINE

EXup is a Java application for the translation and evaluation
of XSUpdate statements. Given an XSUpdate statement on a
schema, it is translated in an XQU expression to be evaluated
on the schema, and in an XQU expression to be evaluated
on any of the documents associated with it. Key point of this
last translation is the identification in the document of the
environments where the iteration and document expressions
must be evaluated. Moreover, XSPath expressions as well are
translated into simple XPath expressions that can be evaluated
on the schema or on associated documents.

EXup offers two user interfaces, one applet-based for Web
use and one for local use. EXup implements the algorithms
for the automatic adaptation, and for translating statements
in corresponding XQU expressions; it can also be used to
validate XML documents or parts of them. Other features
include detailed syntactic and semantic error reporting and
visual analysis of the modifications performed on a schema
as well as on its associated documents. A comprehensive set
of APIs is also available, offering all the features of the user
interfaces and additional implementation-related options.

Document collections and schemas can be loaded from files
or from an XML native or enabled DBMS. The translation of
XSUpdate evolution statements on documents employs exter-
nal Java functions to perform the environment identification
process described above. An effort has been made to support
all common Java XQuery Update libraries supporting external
functions: Saxon EE, MXQuery, and Qizx/open. Without any
optimization, the translation process of XSPath expressions
in both XQuery and XPath, with respect to their length,
requires linear time to be generated and produces expression
of linear length. The translation of a schema modification,
with respect to the XSUpdate statement length, has linear
length and requires linear time. To translate and evaluate
an XSUpdate statement against a schema usually require
no more than a tenth of a second (with schemas of size
100KB). We also compared the overall performance of the
translation plus evaluation of a document adaptation specified
as an XSUpdate statement with the evaluation of a hand-
written XQU expression achieving the same goal. Note that,
especially when optional surrounding elements have to be
considered, such an equivalent hand-written expression might
be too complex for most XQuery users. Even if the translation
on average is no more than 20% slower, we are working to
enhance this result.

Fig. 2 reports the main EXup GUI. A user can specify the
schema and the documents on which she wishes to work on.
The schema is loaded in the left bottom text box, whereas
the documents are loaded in the right bottom text box (when
more than one document is loaded, it is possible to access a
specific one by means of arrows). When the documents are
loaded, they are also validated against the schema. In the left
top text box, the user can specify the XSPath expression or the
XSUpdate statement. Then, by means of different check boxes,
the user can specify the kind of query, whether it should be
evaluated only on the schema, on the documents, or on both,
and, in case of an update, make effective the modifications
on the storage. Fig. 3 shows a comparison between the old
and new documents due to the update required through the
XSUpdate statement in Fig. 2.

IV. DEMONSTRATION

The demo shows how easy it is to specify XSUpdate
statements using the EXup engine and to check the effects
of modifications on the associated documents by means of the
EXup GUIs. Specifically:

• A set of XSPath expressions will be evaluated. For
each of them, the system will outline the identified
evolution object in the schema and the corresponding
elements/attributes in the associated documents. More-
over, the corresponding XPath expressions that can be
evaluated on the schema and documents to obtain the
same result will be shown.

• A set of XSUpdate statements will be evaluated to show
the functionalities of the language in updating a schema
and the associated documents. For each of them, we will
graphically show the effects on the schema (by comparing

Fig. 3. Comparison between the old and new document.

the new and old versions of the schema), and on the
associated documents (highlighting through colors - green
and red, respectively - inserted and deleted nodes).

• We will show the corresponding XPath and XQU expres-
sions that the system generates for being evaluated in the
Qizx engine and the difference between them and those
we have explicitly hand-written for the same purpose.

• We will show how the generated XQU expression can
be locally evaluated and a corresponding PUL generated.
This functionality can be useful when the updates on
the current documents/schema should be propagated to
a third party repository holding their master copy.

The EXup tool is, to the best of our knowledge, the
only tool supporting XML Schema evolution and associated
document adaptation. The associated XSUpdate language is
highly flexible in supporting both automatic and user-defined
arbitrary document adaptations. A language usability analysis
demonstrated that, also for experienced XQuery users, denot-
ing schema components, specifying their modifications and
corresponding document adaptations in XSUpdate is much
more intuitive and less error prone than using XPath/XQU
on the XML documents representing XML Schemas. On
the other side, experimental performance evaluation demon-
strated that the overhead imposed by the translation from
XSPath/XSUpdate to XPath/XQU is tolerable.

Interested readers can play with EXup through the following
website felix.disi.unige.it/exup by loading the
java applet contained in the demo section.

REFERENCES

[1] F. Cavalieri. EXup: An Engine for the Evolution of XML Schemas and
associated Documents. EDBT/ICDT Workshops 2010

[2] F. Cavalieri, G. Guerrini, and M. Mesiti. Navigational Path Expressions
on XML Schemas. In DEXA, LNCS(5181), 718–726. 2008.

[3] G. Guerrini, and M. Mesiti. X-Evolution: A Comprehensive Approach
for XML Schema Evolution. In DEXA workshop, 251-255. 2008.

[4] W3C, “XQuery Update Facility 1.0,”
http://www.w3.org/TR/xquery-update-10/, June 2009.

