
A Bottom-Up Interpreter for a Database

Language with Updates and Transactions

�

E. Bertino

1

, B. Catania

1

, G. Guerrini

2

, M. Martelli

2

, D. Montesi

y3

1) Dipartimento di Informatica

Universit�a di Milano

Via Comelico, 39 20133 Milano, Italy

bertino@hermes.mc.dsi.unimi.it, catania@ghost.dsi.unimi.it

2) Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

Viale Benedetto XV, 3 16132 Genova, Italy

guerrini/martelli@disi.unige.it

3) Informatics Department

Rutherford Appleton Laboratory

Chilton, Didcot, Oxon OX11 0QX, UK

danilo@inf.rl.ac.uk

Abstract

Deductive databases with updates in rule bodies do not allow bottom-up execu-

tion model. This is due to the introduction of control in rule bodies. However,

bottom-up execution models are very important due to the set oriented query-

answering process of database systems. In [4] we have proposed a rule language

to avoid the above drawback and to provide transaction optimization through

transaction transformation. In this paper we describe a prototype that provide

a bottom-up meta interpreter for the database rule language and will allow to

check the validity of future extensions theoretical conjecture about transaction

optimization and integrity constraints. The experience in the use of KBMS1 as

a tool to develop a run time support for the rule language is reported together

with an overview of the system architecture.

�

This work has been supported by a grant from the Italian National Research Council.

y

The work of D. Montesi has been partly supported by the ERCIM fellowship Information and

Knowledge Systems.

1 Introduction

Recent database languages have been deeply in
uenced by the introduction of Horn

clauses languages. Indeed, the database community has realized that rule languages

are the most natural tool for uniformly modeling several database concepts such

as: data, views, constraints and queries. However, two fundamental capabilities,

needed by database applications, are not provided by Horn clauses languages: up-

dates and transactions. Indeed, databases contain a large set of information which

can be queried and updated. Due to the nature of data, the update language should

be integrated with the query language. In many cases, data to be modi�ed are deter-

mined by issuing queries. Moreover, updates should be collected into atomic execution

units which are executed in all-or-nothing style, that is, as transactions. Transactions

are a crucial functionality, since data integrity is a major requirement for database

applications. In [4] we presented a new language based on a new approach to integrate

a declarative query language with an update language. Such integration is achieved

by taking into account the transactional behavior. The resulting language, called

U-Datalog, provides both update and query capabilities and has a formal declarative

semantics. Our approach is based on a two phases computation. In the �rst phase

updates are collected and their consistency is checked. In the second phase the up-

dates are executed together modeling a transactional behavior. The formal semantics

is given in [8], while two optimization techniques are presented in [7]. We refer the

reader to [9] for additional details. The computation model chosen for the U-Datalog

interpreter is based on a bottom-up strategy. This is very important for two reasons:

in database context the answer to a query is a set, hence the bottom-up strategy is

the most appropriate; however, Datalog with updates in rule bodies do not �t into

the bottom-up strategy.

In this paper we describe run time support for such language. In particular we

describe the organization of a meta interpreter computing in a bottom-up style our

rule language with update in rule bodies. Such meta interpreter has been realized

on top of KBMS1 - a Prolog extension developed at Hewlett-Packard Laboratories

in Bristol, providing modular program construction (through theory composition)

[13]. The main feature of the U-Datalog interpreter is a modular organization of the

architecture, which results from the use of software engineering principles such as

modular program development and composition. Such modular organization will be

useful for several future extensions of U-Datalog.

The remainder of this paper is organized as follows. Section 2 introduces the rule

language and sketches its semantics through some examples. Section 3 presents the

organization of the meta interpreter based on the bottom-up evaluation strategies.

Moreover it introduces KBMS1 main features. Section 4 presents the architecture

of the systems and the implementation choices. Finally, in Section 5 future work is

outlined.

2 U-Datalog

A Datalog program consists of a set of base relations (EDB) and a set of rules (IDB).

Many extensions to Datalog have been proposed to express updates (see [1] for a

survey). In the following we summarize our approach based on non-immediate update

semantics. Update-Datalog (U-Datalog) is a rule language which allows declarative

speci�cation of updates in program rules. The execution model of U-Datalog consist

of two phases, the marking phase and the update phase [18]. The �rst phase collects

the updates found during the evaluation process without, however, executing them.

During the update phase they are executed altogether only if they are ground and

consistent. If the set of updates is not consistent, or if it contains non-ground updates,

the query is aborted and no update in the set is performed. The notion of consistency

is an important one, in that it prevents a set of updates containing both an insertion

and a deletion of the same fact to be executed. By contrast in DLP and LDL, updates

are executed as soon as they are evaluated, that is, they are executed as side e�ect of

the derivation process. In this section we recall some basic notions on the syntax and

the semantics of U-Datalog, which are de�ned by means of an instance of constraint

logic programming schema (CLP) [12] called CLP (AD) [9].

Updates in U-Datalog are in rule bodies. In addition we consider also bindings in

rule bodies which are de�ned by means of a set of equations (this is related to the

fact that U-Datalog is an instance of CLP). Updates to base relations are expressed

as a set of special atoms pre�xed by �. The relations can be either extensional or

intensional. The current version of our language allows only updates to extensional

relations.

De�nition 2.1 (Extensional database) The EDB is a set of ground (ie, without vari-

ables) relations. A state EDB 2 S is a (possibly empty) set of ground relations. S

denotes the set of all possible database states.

In the following we denote with EDB

i

; i = 1; : : : ; n the possible extensional

databases.

De�nition 2.2 (Intensional database) The intensional database IDB is a set of rules

of the form

H b

1

; : : : ; b

k

; u

1

; : : : ; u

s

; B

1

; : : : ; B

t

:

where B

1

; : : : ; B

t

(as in Datalog) is the query part, u

1

; : : : ; u

s

is the update part and

b

1

; : : : ; b

k

is the binding part. The update and query parts cannot be both empty.

The intuitive meaning of a rule is: \ifB

1

; : : : ; B

t

is true, the bindings b

1

; : : : ; b

k

and

the updates u

1

; : : : ; u

s

are consistent, then H is true". The notion of consistency is

given informally. Intuitively, the bindings X = bob;X = tom are not consistent, while

the bindings X = Y; Y = bob are consistent. Similarly, the updates +p(X);�p(X),

i.e. complementary updates, are not consistent. The updates +p(Y);�p(X) could be

consistent if the related bindings were for example X = tom; Y = bob. By contrast

with the bindings X = tom; Y = tom, +p(Y);�p(X) are not consistent.

De�nition 2.3 (Query) A query (or simple query) is a rule with no head of the form

b

1

; : : : ; b

k

; u

1

; : : : ; u

s

; B

1

; : : : ; B

t

where B

0

i

s; u

0

j

s and b

0

h

s are as in De�nition 2.2 and B

1

; : : : ; B

t

cannot be empty.

The condition that B

1

; : : : ; B

t

cannot be empty is due to the fact that the update

phase must always follow the marking phase. Therefore, before updating a database,

it must be queried, by means of a query in order to compute the bindings for the

variables of the language. We refer to a query also as a simple transaction, to stress

the transactional behavior of a query. Following the tradition in the examples we

always pre�x a query with the symbol `?'. A complex transaction T is a sequence

of transaction T

1

; : : : ;T

n

. In the following the words query, goal, update query, and

transaction are synonymous.

De�nition 2.4 (U-Datalog) An U-Datalog program with update (or database) DB =

IDB[EDB consists of the extensional database EDB and of the intensional database

IDB.

Example 2.1 Consider EDB

i

= q(b) and

IDB = p(X) �q(X); q(X):

r(X) +t(X); p(X):

s(X) t(X):

The user transaction T

1

=?r(X) evaluated in EDB

i

[IDB computes the binding X =

b and collects the updates �q(b);+t(b). Note that such updates form a transaction that

we call induced transaction. Informally the new extensional database EDB

i+1

= t(b)

is the result of the application of these updates to EDB

i

. The transaction T

2

=?s(X)

evaluated in EDB

i+1

[IDB computes the binding X = b and does not compute any

update, thus the new extensional database is still EDB

i+1

. The transaction T

3

=

? + q(X); s(X) evaluated in EDB

i+1

[IDB computes the binding X = b and collect

the update +q(b), thus the new extensional database is EDB

i+2

= t(b); q(b). The

transaction T

4

=?+ q(X); p(X) computes the binding X = b, and collects the updates

+q(b);�q(b). They are not consistent and therefore T

4

aborts. �

The semantics of an U-Datalog program is given in three steps. The �rst step

semantics models the marking phase. We note that database systems use as default a

set-oriented semantics, that is, the query-answering process computes a set of answers

[11]. Therefore

Set(T; IDB [EDB) = fhb

j

; u

j

i j T 7�!

�

h

~

b

j

; ~u

j

i g

denotes the set of pairs (bindings and updates) computed as the consistent answers

of the transaction T . Such answers are computed in a bottom-up style. This se-

mantics does not include the execution of the collected updates neither considers the

transactional behavior. In order to model these features we de�ne the semantics of a

transaction T with respect to a database IDB [EDB. Before we de�ne a function

that performs the updates.

De�nition 2.5 Let EDB

i

be the current database state and u be a consistent set of

ground updates. Then the new database EDB

i+1

is computed by means of the function

� : 2

B

e

� 2

U

! 2

B

e

as follows:

�(EDB

i

; u) = (EDB

i

n fp(

~

t) j �p(

~

t) 2 ug) [fp(

~

t

0

) j +p(

~

t

0

) 2 ug

where 2

B

e

is the set of possible database states and 2

U

is the set of possible updates.

The second step provides the transactional behavior, modeling the update phase;

the hypothetical updates computed by the marking phase are executed with a transac-

tional mechanism, i.e. an all or nothing style. As observable property of a transaction

we consider the set of answers, the database state and the result of the transaction

itself, which can be Commit o Abort. We consider the set of updates collected by the

marking phase, to which the bindings have been applied. The set �u is obtained as

the union of all the updates gathered by the di�erent solutions, appropriately instan-

tiated. It can be a ground consistent set of updates. If so, the result of the marking

phase is a set of bindings and a set of hypothetical updates. If the updates collected

are consistent and ground, the new database state is computed and the transaction

commits. If �u is not ground or it is inconsistent, the transaction aborts. Note that

in such a way we model a set-oriented transactional behavior. The set of possible

observable Oss

i

is OSS. In the following we de�ne the semantics of a transaction T

with respect to the intensional database IDB as a function from extensional database

to observable. In the following, 2

B

e

denotes the set of possible extensional databases.

De�nition 2.6 (Semantics of a transaction) LetDB

i

= IDB[EDB

i

be the database.

The semantics of a transaction is denoted by the function S

IDB

(T) : 2

B

e

�! OSS.

If a transaction T has the form

~

b; ~u;

~

G, then

S

IDB

(T)(EDB

i

) =

8

<

:

Oss

i+1

if OK

h;; EDB

i

; Aborti otherwise

where Oss

i+1

= hfb

j

j hb

j

; u

j

i 2 Set(T;DB

i

)g; EDB

i+1

; Commiti, EDB

i+1

is com-

puted by means of �(EDB

i

; �u). The condition OK expresses the fact that the set

�u =

S

j

u

j

b

j

is consistent, that is, there are no complementary ground updates. u

j

b

j

denotes the ground updates obtained by substituting the variables in u

j

with the ground

terms associated with the variables in b

j

. denotes the n-th component of the tuple

Oss

i

.

Example 2.2 Consider the database DB

1

= IDB [EDB

1

, where

IDB = p(X) �q(X); q(X): EDB

1

= q(b):

r(X) +t(X); p(X): t(a):

k(X) +t(X):

s(X) t(X):

Let Oss

1

= h;; EDB

1

; Commiti. The semantics of T

1

= ? r(X) is

S

IDB

(T

1

)(Oss

1

) = hfX = bg; EDB

2

; Commiti

where EDB

2

= ft(a); t(b)g. The semantics of T

2

= ? s(X) is

S

IDB

(T

2

)(Oss

2

) = hffX = ag; fX = bgg; EDB

2

; Commiti

The semantics of T

3

= ? X = c; k(X) is

S

IDB

(T

3

)(Oss

2

) = hfX = cg; EDB

3

; Commiti

with EDB

3

= ft(a); t(b); t(c)g and Fix(DB

3

) = Proj(O

e

(O

e

(IDB) [O

e

(EDB

3

))).

The semantics of T

4

= ? X = a;+t(X); s(X) is

S

IDB

(T

4

)(Oss

3

) = h;; EDB

3

; Aborti

�

The third step semantics is related to complex transactions.

De�nition 2.7 (Sequence) Let DB

i

= IDB [EDB

i

be the database and T

1

;T

2

be

a transaction. The semantics of T

1

;T

2

is denoted by the function S

IDB

(T

1

;T

2

) :

OSS �! OSS.

S

IDB

(T

1

;T

2

)(Oss

i

) =

8

<

:

Oss

i+2

if OK

h;; Oss

i

:2; Aborti otherwise

where Oss

i+2

= S

IDB

(T

2

)(Oss

i+1

). Oss

i+1

= S

IDB

(T

1

)(Oss

i

) represents the ob-

servable of the database after the transaction T

1

and OK expresses the condition that

S

IDB

(T

2

)(Oss

i+1

):3 = Commit and

S

IDB

(T

1

)(Oss

i

):3 = Commit.

Therefore, according to the above de�nition, the abort of a simple transaction in

a sequence results in the abort of the entire sequence.

Example 2.3 Consider the database

IDB = p(X) �q(X); q(X): EDB

1

= q(b):

r(X) +t(X); p(X): t(a):

k(X) �t(X):

s(X) t(X):

� Let Oss

1

= h;; EDB

1

; Commiti. The semantics of T = ? r(X); ? s(X) is

S

IDB

(T)(Oss

1

) = hffX = ag; fX = bgg; EDB

2

; Commiti

where EDB

2

= ft(a); t(b)g.

� The semantics of T

0

= ? r(X); ? s(X); ? X = a; k(X) is

S

IDB

(T

0

)(Oss

1

) = hfX = ag; EDB

3

; Commiti

with EDB

3

= ft(b)g.

�

3 Meta interpreter for U-Datalog

Several evaluation strategies have been investigated for rule based languages [2]. Our

application provides a bottom-up strategy for the U-Datalog. Such strategy is im-

plemented through a meta interpreter. Note that classic top-down meta interpreter

is de�ned with few Prolog line code [17] and can be easily extended to CLP. How-

ever, to the best of our knowledge there are not bottom-up meta interpreters for

the CLP schema. The emphasis of our application is not on an e�cient run time

support, rather is on extensibility and modularity in order to develop a core system

which can be extended to test the validity of some ideas related to the transaction

optimization and to constraint languages. The goal of the transaction optimization

techniques we are developing is to reduce the transaction execution times by detecting

invariant/redundant updates within the same transaction. Invariant and redundant

updates can be indeed omitted from the execution of transactions without changing

the �nal result of transaction executions. Thus, we are interested in a logical opti-

mization rather than in a physical one. Similarly, our work on integrity constraints

deals with optimizing constraint checking within complex transactions [3, 15, 16].

The meta interpreter allows to make all the above mentioned experiments. Cur-

rently, the core system supporting the full U-Datalog, introduced in Section 2, has

been completely implemented. Ongoing extensions are related to the transaction op-

timization and constraint language. Integrity constraints in the database language

are expressed as constraints in CLP. Thus the constraint solver will be extended by

plugging a new constraint solver into the CLP meta interpreter. Note that this exten-

sibility feature derives from the use of a CLP schema. The use of KBMS1 is related

to the fact that its features nicely �t into our requirements in order to make the U-

Datalog system a tool to check the validity of our ideas. However, other systems such

as G�odel, [10] and Eclipse could be used. Hereafter we discuss the major features of

KBMS1.

3.1 KBMS1

A Knowledge Base Management System (KBMS) is a programming system provid-

ing: (i) a declarative language, not necessarily a logic language, used both as query

language and as host language; (ii) the main features of a database system (e�ciency,

data sharing, reliability and so on).

KBMSs represent for knowledge what databases represent for data. Data com-

prises facts, while knowledge comprises facts and rules. A particular domain knowl-

edge can be shared among di�erent users and applications, using the same logical

paradigm, because a single unifying language is used for representing both facts

and rules. A KBMS supports representation, storage, retrieval and update of great

amounts of knowledge. Moreover a KBMS often provides tools for metaprogramming

and for knowledge modularization.

Among the KBMSs, KBMS1 is a Logic Programming-based system which enables

the storage, retrieval and update of very large volume of knowledge, expressed in an

extended Prolog-like language. It supports persistent knowledge bases by providing

a very tight integration between the interpreter and the storage manager. In the

following subsections we brie
y describe the main characteristics of the system, and

�nally we provide a few motivations on why to use KBMS1 instead of Prolog.

3.1.1 Theories

The main concept behind KBMS1 is the theory. A theory is a partition of the knowl-

edge base; it is an unordered set of procedures, where a procedure is an ordered set

of clauses which possesses the same primary functor and arity.

The main characteristics of theories can be summarized as follows.

� Theories are �rst class objects; so they are objects which can be modi�ed by

the programming language supported by the system.

� Theories are an exhaustive partitioning of the knowledge base. Therefore, the

customary global database of standard Prolog is no longer needed.

� Theories can be modi�ed in a completely declarative way through update op-

erations. For example, if an update operation U is applied to theory T

1

, a new

theory T

2

is generated, whereas theory T

1

is left unmodi�ed. The result of

applying an update to a theory is in fact another theory.

� Theories allow to overcome some drawbacks and criticised features of standard

Prolog. In particular a program cannot make side-e�ect updates to itself.

� The possibility of performing declarative theory updates leads to a powerful

versioning facility, which allows the use of hypothetical reasoning.

� The system heavily uses substructures sharing for reducing the spatial complex-

ity due to the versioning mechanism.

� Theories can be named by the user, so they can be easily identi�ed.

Grouping sets of clauses in theories is useful also because it allows reasoning in

multiple theories.

To provide a logical organization of theories, system theories are used. A system

theory is a meta-theory which holds the correspondence between theories and theory

names. Moreover each theory has associated a triple of named meta-theories. Such a

triple consists of the following elements:

1. an interpreter theory, which is the query�interface of the associated theory; all

the queries to a theory are in fact handled by its interpreter

2. an assimilator theory, which is the update�interface of the associated theory;

updates on a theory are in fact handled by its assimilator theory

3. an attribute theory, which holds metadata related to the associated theory; these

metadata are generally used by the interpreter and by the assimilator in the

specialized inference process and in the specialized update process, respectively.

An attribute theory is a way for abstracting from the speci�c object theory,

allowing the interpreters and assimilators to be used on many di�erent object

theories. Examples of metadata that allow to abstract from the speci�c theory

are functional dependencies among predicate arguments, number of clauses in

a procedure and integrity constraints to be checked when executing updates.

The correspondence between a theory and its associated triple of meta-theories is

kept by the system theory. The main role of the system theory is, in fact, to resolve

names and to couple a theory with its metatheories.

Meta-theories are themselves theories and so they in turn have a triple of built-in

meta-theories associated with them. These built-in theories are PrologInt, PrologAss

and none, respectively. PrologInt is the system interpreter, which performs a Prolog-

like inference. PrologAss is a trivial assimilator, which updates a theory exactly as

told, without any control. None denotes the empty theory.

Other distinguishing KBMS1 concepts are the notions of current theory and of

current system theory. The current theory is the (user) theory in which the current

goal has to been refuted. The current system theory is the system theory that is

currently to be used for determining the correspondence between theories and theory

names, and between theories and meta-theories.

3.1.2 Other KBMS1 characteristics

The language of KBMS1 is kbProlog, a Prolog extension which integrates the theory

mechanism and other features in the usual logic programming. It can be loosely re-

garded as a Prolog in which operations on the global database have been replaced by

non-side-e�ecting operations on theories. kbProlog programs can be interfaced with C

procedures (both call-ins and call-outs). Call-out is useful for encoding performance-

sensitive procedures e�ciently and for accessing to other systems (graphical systems,

conventional databases, and so on). Call-in allows KBMS1 applications to be in-

tegrated into larger systems. The system can be used interactively and program-

matically. Because of the theory update mechanism the distinction between the two

modalities of use is more marked than in standard Prolog.

Another distinguishing KBMS1 feature is related to the support for a global

database, shared by all the theories. The main di�erence between theory updates

and global database updates is that updates of the �rst kind have no side-e�ects on

the theory, whereas updates of the second kind do. So if an update U is performed on

theory T

1

, a new theory T

2

is generated. By contrast the global database is unique,

therefore if U is performed on the global database, the global database itself (mod-

i�ed) is returned. Note that the side-e�ect updates on the global database leads to

programs more di�cult to understand and to test, but may be useful in many sit-

uations. In particular the global database may be used to assert global conditions,

to be tested in di�erent modules of a program. The global database increases the

kbProlog power, allowing to store information, that, otherwise, would be lost during

backtracking.

Assertions of facts in the global database may look like usual Prolog assert. Note,

however, that global database assertions di�er from Prolog asserts in that the kbPro-

log interpreter considers the deduction in the global database only if explicitly re-

quested, and facts in the global database are not seen in usual deduction. A fact

asserted in the global database is therefore considered in the deduction of a goal only

if explicitly requested. By contrast, in Prolog there is a unique theory, hence every

asserted fact is always considered in all the deductions following the assertion. The

global database should however be used in such a way that the declarative interpre-

tation of the program is not lost.

Finally KBMS1 supports the notion of database theories. These theories can be

seen as collections of relations (holding structured, typed ground facts) and a relation

schema. Database theories support non-declarative updates, therefore no versioning

is possible. Updates on a database theory do not de�ne a new theory, di�ering from

the starting one for the realized updates, as in usual theories, rather they simply

modify the starting theory, that keeps its identity.

3.1.3 Motivations

In this subsection we discuss a few motivations for the use of KBMS1 instead of Prolog.

In Section 4, after having described the interpreter we have developed, we remark the

KBMS1 features that have been most useful in the development of the interpreter.

Generally speaking the main advantages of KBMS1 with respect to Prolog are

(a) modularization

(b) declarative updates.

The advantages of modularization are well-known. The bene�ts of developing

modular programs are often stressed in software engineering �eld, in that modular

program development leads to programs more easily maintained, easier to understand

and to test. In the knowledge base �eld, modularization supports multiple theory

reasoning, that is it allows to multiple domains to be handled and di�erent kinds of

reasoning to be performed on these domains. For example we may handle knowledge

on di�erent domains with a single inference mechanism.

In a usual logic program, in fact, all clauses may be used in the refutation of a

goal, while in KBMS1 a goal is always directed to a speci�c theory, and its refutation

only uses the clauses of the speci�ed theory, until a context switch is requested.

The refutation of a subgoal may in fact be requested to another speci�ed theory.

Advantages of declarative updates to theories can be found in a greater program

readability and in the versioning mechanism provided.

4 Architecture of the system

In order to implement a bottom-up interpreter for U-Datalog KBMS1 has been used.

Our choice has been motivated by the useful metaprogramming facilities o�ered by

the system. In the following, implementation choices are discussed and an analysis of

the tool is performed.

4.1 Implementation choices

In deductive databases, two basic strategies are found for query evaluation, namely

top-down and bottom-up strategies. The main advantage of a top-down strategy is

the use constants in the query in order to reduce the search space [2]. It is a one

tuple at a time approach, in that the execution of a query generates one tuple at a

time. Moreover, a top-down evaluation of a query is not ensured to always terminate.

By contrast, a bottom-up strategy is a set oriented approach to query evaluation, in

that all solutions to a query are returned as results of its execution. In addition the

bottom-up strategy does not bene�t from constant in the query to reduce the research

space. This method is based on the computation of the �xpoint semantics. Whenever

the signature is �nite, the �xpoint semantics is �nite too. Therefore the bottom-up

computation always ends. Finally note that, extending Datalog with updates in rule

bodies does not �t with the bottom-up strategy.

We note that the main features of a bottom-up computation are the set oriented

approach and always ending computations. This properties are not satis�ed by a top-

down approach, however they are essential in database area. Therefore, to implement

a meta interpreter for U-Datalog we have adopted a bottom-up strategy. This choice

is made stronger from the fact that rule languages with updates in rule bodies do not

�t into this computational model.

4.2 Knowledge partition

In order to implement in KBMS1 a meta interpreter for U-Datalog, the theory mech-

anism has been used. In particular, the following theories have been de�ned:

1. a number of user theories

2. an interpreter theory

3. an assimilator theory

4. an attribute theory

In the following these theories are brie
y described.

User theories

A U-Datalog database is consists of two components: an intensional database

IDB and an extensional database EDB. Such databases contain di�erent information.

EDB is a knowledge base containing all the information about the situation we model.

IDB is an inference system, that allows to obtain new intensional information from

the extensional one. Moreover the EDB can be updated, whereas the IDB does not.

These properties allow to represent every database as a theory.

The current architecture of the U-Datalog interpreter consists of only one exten-

sional database and several intensional ones. Every intensional database is a view on

our knowledge (the EDB). Therefore it is possible to have several views on the same

extensional database. Note that having more than one intensional database allows

to maintain di�erent forms of the same view. For example, we can maintain an in-

tensional predicate but also its optimized de�nition, performing some analysis on the

performance of a given intensional predicate. We will refer to the theory representing

the extensional database as EDB theory, and similarly to the theory representing an

intensional database as IDB theory.

In addition a theory has been de�ned managing the environment in which the

transactions are executed. This theory implements the interface operations. It takes

an IDB and a transaction (given in input by the user), converts them in an internal

format and calls the interpreter to execute the transaction on the database com-

posed by the IDB and by the only extensional database implemented in the system.

The internal format allows a simple uni�cation of the binding part, of the update part

and of the query part of a rule.

Assimilator theory

The assimilator theory facility supported by KBMS1 has been used to implement

the update operations on the extensional database theory. In particular, we have

implemented two update operations.

� An insert operation plus(Fact), where Fact is the fact to be inserted in the

extensional database. The assimilator inserts this fact (by the assert predicate)

only if Fact is ground and it is not already present in the theory. If the fact is

ground and it is already present, no insertion is performed. If the fact is not

ground, the operation fails.

� A delete operation minus(Fact) where Fact is the fact to be removed from

the intensional database. The assimilator removes this fact (by the retract

predicate) only if Fact is ground and it is present in the theory. Otherwise the

assimilator has the same behavior as in the case of the insert operation.

Attribute theory

The attribute theory, associated with the theory representing the extensional

database, has been used for maintaining the information useful for the execution

of a transaction. In particular, the attribute theory maintains the �xpoint semantics

of the current database. It is updated by the bottom-up interpreter.

Interpreter theory

The interpreter theory associated with the EDB theory implements the bottom-up

interpreter for U-Datalog. As it is associated with the EDB theory, all queries are

sent to the extensional database. The interpreter has three main tasks:

(a) managing transactions

(b) generating the �xpoint semantics (marking phase)

(c) updating the extensional database (update phase)

In the following we examine in a little more detail these tasks.

(a) Given a sequence of goals, the interpreter sequentially executes all of them. If the

execution of a goal generates an abort condition, the evaluation is terminated.

Indeed, in this case the observable returned by the execution of the sequence

is determined without evaluating all the goals in the sequence and it is equal

to (;; EDB;Abort), where EDB is the extensional database existing before the

execution of the sequence. In this case the extensional theory is not updated.

Otherwise, i.e. no abort condition is generated, the goal is evaluated and the

extensional theory is updated.

(b) In order to evaluate a goal according to the bottom up strategy, the �xpoint

semantics is computed. The semantics refers to the current database, consisting

of the current extensional theory and of the chosen IDB. The �xpoint semantics

is maintained in the attribute theory and it is updated during the deduction of

a sequence of goals.

(c) In order to obtain the solutions of a goal, the attribute theory is inspected. All

the obtained solutions are maintained in a list and represents the result of the

marking phase. After the execution of a goal, the list obtained as result of the

marking phase is inspected to identify possible abort conditions. If no abort

conditions arises, i.e. if all the updates generated by the goal are ground and

consistent, the extensional theory is updated.

Global database

The global database has been used to maintain temporary information. In partic-

ular:

� a fact is asserted in the global database when an abort condition arises

� if no abort conditions arise, the solutions of a transaction are maintained in the

global database, and are, then, used in the output operations.

4.3 Analysis of the tool

The main advantages in the use of KBMS1 for the development of an interpreter for

U-Datalog can be summarized as follows.

� Intensional and extensional components, which in U-Datalog have a di�erent

syntactic forms, have been represented by two di�erent theories, modeling ade-

quately the characteristics of di�erent database components.

� The features of explicit theory update supports an adequate model of the state

evolutions resulting from goal executions.

� The mechanism that allows to de�ne a specialized interpreter in an interpreter

theory and to associate it with a given theory has been very useful. In this way,

every goal reduction in the theory is held using the speci�ed interpreter theory.

� The update functionalities of the assimilator theory have been useful in many

respects, for example in the development of the mechanism checking the ground-

ness of updates.

5 Conclusions and future work

We have presented a system developed at University of Genova which is a run time

support for a database language supporting queries, updates and transactions. The

updates and transactions have been developed through a new approach which nicely

�t with the structure of KBMS1. Our system is open and will be used as a prototype

to check the validity of future extensions such modular construction based on object

oriented paradigm ([6]) as transaction optimization techniques ([5]) and integrity con-

straint support ([14]). Thus, it can be seen as an open prototyping database system

where several new features can be \plugged in" with a limited impact on the other

components of the system. This is also a nice feature of the CLP approach which

allows the database language to be extended with minimal changes. Indeed, there

are two research directions we are currently investigating. The �rst one is related to

transaction optimization by means of some new theories. The second one is related

include integrity constraints.

References

[1] S. Abiteboul. Updates, a New Frontier. In M. Gyssens, J.Paredaens, and D. Van

Gucht, editors, Proc. Second Int'l Conf. on Database Theory, Vol. 326 of Lecture Notes

in Computer Science, pages 1{18. Springer-Verlag, Berlin, 1988.

[2] F. Bancilhon and R. Ramakrishnan. An Amatures's Introduction to Recursive Query

Processing Strategies. In Proc. Int'l Conf. ACM on Management of Data, pages 16{52,

1986.

[3] E. Bertino, D. Musto. Correctness of Semantic Integrity Checking in Database Man-

agement Systems. Acta Informatica, 28:25{57, 1988.

[4] E. Bertino, B. Catania, G. Guerrini, M. Martelli and D. Montesi. Formalizzazione e

Ottimizazione di Transazioni di Modi�ca in CLP(AD). Proc. Italian Conference on

Logic Programming (GULP'93), 1993.

[5] E. Bertino, B. Catania, G. Guerrini and D. Montesi. Static Analysis of Transactional

Intensional Databases. Proc. Second ICLP-Workshop on Deductive Databases and Logic

Programming of International Conference on Logic Programming, Genova, 1994.

[6] E. Bertino, G. Guerrini and D. Montesi. Deductive Object Databases, To Appear on

Proc. European Conference on Object Oriented, Bologna, 1994.

[7] E. Bertino, B. Catania, G. Guerrini, and D. Montesi. Transaction Optimization in Rule

Databases. 1993. Fourth IEEE Research Issues in Data Engineering: Active Database

Systems (RIDE-ADS'94), IEEE Computer Society Press, 1994.

[8] E. Bertino, M. Martelli, and D. Montesi. An Incremental Semantics for CLP(AD). In

A. Marchetti, Spaccamela, P. Mentrasti, and M. Venturini Zilli, editors, Proc. Fourth

Italian Conference on Theoretical Computer Science, pages 53{67. World Scienti�c,

1992.

[9] E. Bertino, M. Martelli, and D. Montesi. Modeling Database Updates with Constraint

Logic Programming. In U. W. Lipeck and B. Thalheim, editors, Proc. Fourth Int'l

Work. on Foundations of Models and Languages for Data and Objects, pages 120{132,

1992.

[10] A. D. Burt, P. M. Hill, and J. W. Lloyd. Preliminary Report on the Logic Programming

Language G�odel. Technical Report TR 90-02, Computer Science Department, Univeristy

of Britstol, 1990.

[11] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer-Verlag,

Berlin, 1990.

[12] J. Ja�ar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth Annual

ACM Symp. on Principles of Programming Languages, pages 111{119. ACM, New York,

USA, 1987.

[13] J. Manley, A. Cox, K. Harrison, M. Syrett, and D. Wells. KBMS1 A User Manual.

Information System Centre Hewlett-Packard Laboratories, March 1990.

[14] D. Montesi and E. Bertino. Queries, Constraints, Updates and Transactions within

a Logic-based Language. 1993. Proc. of International Conference of Information and

Knowledge Management, Washington, 1993

[15] J-M. Nicolas. Logic for Improving Checking in Relational Data Bases. Acta Informatica,

18(3):227{253, 1982. Springer-Verlag, Berlin.

[16] F. Sadri and R. Kowalski. A Theorem-Proving Approach to Database Integrity. In

J. Minker, editor, Foundation of Deductive Databases and Logic Programming, pages

313{362. Morgan-Kaufmann, 1987.

[17] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, Cambridge, Mass., 1986.

[18] M. Zloof. Query-by-example: a Data Base Language. IBM Systems Journal, 16(4):324{

343, 1977.

