
T

f g

1 1 2

1

2

Abstract

1 Introduction

A Formal Temporal Object-Oriented Data Model

Elisa Bertino Elena Ferrari Giovanna Guerrini

snapshot

tuple timestamping

attribute timestamping

bertino@hermes.mc.dsi.unimi.it, ferrarie@dsi.unimi.it

guerrini@disi.unige.it

Temporal databases are an active and fast growing research area. Although many exten-

sions to the relational data model have been proposed in order to incorporate time, there is no

comparable amount of work in the context of object-oriented data models. This paper presents

Chimera, a temporal extension of the Chimera object-oriented data model. The main con-

tribution of this work is to de�ne a formal temporal object-oriented data model and to address

on a formal basis several issues deriving from the introduction of time in an object-oriented

context.

Dipartimento di Scienze dell'Informazione - Universit�a di Milano

Via Comelico, 39/41 - I20133 Milano, Italy

Dipartimento di Informatica e Scienze dell'Informazione - Universit�a di Genova

Viale Benedetto XV, 3- I16132 Genova, Italy

Time is an important aspect of most real-world phenomena. Conventional database systems do

not o�er the possibility of dealing with time-varying data. The content of a database represents

a of the reality in that only the current data are recorded, without the possibility of

maintaining the complete history of data over time. If such a need arises, data histories must be

managed at application program level, thus, making the management of data very di�cult, if at all

possible. To overcome the lack of e�ective time support in database systems, in the past years there

has been a growing interest in extending data models to deal with temporal aspects [18, 20]. Most

proposals are temporal extensions of the relational data model [8, 9, 16]. In particular, the temporal

data models proposed in the literature extend the relational model by adding a temporal component

associated with tuples or attribute values. The extensions of the relational model to handle time

can be classi�ed in two main categories. The approach uses normalized (1NF)

relations in which special time attributes are added [16]. The approach

uses non-normalized (N1NF) relations and attaches time to attribute values [9]. One of the most

common approaches [8, 9] views attribute values as partial functions from the time domain to the

attribute value domain.

Research on temporal object-oriented databases is still in its early stage. Although various

object-oriented temporal models have been proposed [17], there is no amount of theoretical work

comparable to the work reported for the relational model. For example, Wuu and Dayal temporal

extension of the OODAPLEX model [21] addresses several problems related to the introduction

of time in an object-oriented context but not on a formal basis. By contrast, a great amount of

theoretical research is being carried on in the area of non-temporal object-oriented programming

1

1

1

T

T

T

(i) (ii)

(iii)

1.1 Related works

Objects can migrate during their lifetime from one class to another.

languages and databases and theoretical foundations are being established [1, 3, 14]. In particular,

issues concerning type systems and type checking have been widely investigated in a non-temporal

object-oriented framework [2, 5]. These issues, however, have never been addressed in the framework

of temporal object-oriented data models. Thus, the extension of established foundations to temporal

object-oriented data models still needs deep investigations.

In this paper we present the Chimera data model, a temporal extension of the Chimera

data model. Chimera is an object-oriented, deductive, active data model, being developed as part

of the ESPRIT Project Idea P6333 [12]. It provides all concepts commonly ascribed to object-

oriented data models, such as: object identity, complex objects, user-de�ned operations, classes

and inheritance. Moreover, it provides capabilities for de�ning deductive rules, that can be used to

de�ne views and integrity constraints, to formulate queries, to specify methods to compute derived

information. Finally, it supports a powerful language for de�ning triggers. A formal model has

been de�ned for Chimera, providing a formal foundation for the various features of the Chimera

data model [12].

The current paper focuses on selected features of Chimera. Its main contribution is to address

on a formal basis several issues deriving from adding temporal capabilities to an object-oriented

model. First, the notion of temporal type is introduced. Temporal types handle in a uniform way

temporal and non-temporal domains. Then, we provide a formal de�nition of classes and objects.

The notion of consistency of an object with respect to its class is speci�ed, keeping into account

that both the object state and the classes the object belongs to vary over time. Finally, a formal

treatment of other features of the model, like object equality, referential integrity and inheritance

is presented. Among the novel aspects of the proposed model, let us cite its support for immutable,

static and temporal attributes, the availability of di�erent notions of object equality and its notion

of substitutability through coercion from temporal to non-temporal domains.

This paper is organized as follows. In the remainder of this section we survey related works.

Section 2 provides a brief overview of the Chimera data model. Section 3 formally introduces

Chimera types and values, while Sections 4 and 5 deal with classes and objects respectively.

Inheritance is considered in Section 6. Finally, Section 7 concludes the paper and outlines future

work.

In this section we compare some of the temporal object-oriented data models proposed so far. Some

of the approaches considered here are compared under a quite di�erent perspective by Snodgrass

[17]. In [17] the emphasis is on temporal object-oriented query languages, while we consider here

only data model characteristics. Moreover, in [17] only the temporal characteristics are compared,

disregarding the object-oriented ones, whereas we consider both. Tables 1 and 2 compare the

existing proposals along a number of dimensions. These dimensions can be classi�ed into three

broad categories: object-oriented characteristics modeled; temporal characteristics modeled

(that is, notions of time supported); how these characteristics are integrated, that is, how time

is associated with objects.

For the object-oriented characteristics, we consider in the table only two dimensions: whether

values are distinguished from objects (and types from classes at the intensional level) [3, 14], and

whether class features are supported. As a general remark, we point out that most proposed

approaches focus on the temporal characteristics of the model and consider rather poor (simple)

object models.

2

1 2

2

1

2

valid

transaction

temporal

immutable

non-temporal

migration

oo data time time values & class

model structure dimension objects features

[21] OODAPLEX user-de�ned arbitrary objects NO

[6] OODAPLEX linear valid objects NO

[11] TIGUKAT user-de�ned valid objects NO

[13] MAD linear valid objects NO

[19] OSAM* linear valid objects NO

[15] 3DIS linear valid objects NO

[7] generic linear valid objects NO

Our model Chimera linear valid both YES

Legenda:

One single time dimension is considered, but it can be interpreted either as transaction or as valid time.

OODAPLEX supports metadata, but neither [21] nor [6] consider them.

Table 1: Comparison among the existing temporal object-oriented data models (I)

Concerning the temporal aspects, we identify the time domain considered by each approach.

In particular, we consider time structure and time dimension [17]. Most models support a linear

discrete time structure, whereas only few of them [21, 11] model a user-de�ned hierarchy of time

types. Two time dimensions are of interest in temporal databases: time (the time a fact was

true in reality) and time (the time the fact was stored in the database). Most models

consider only the �rst one. Although our model focuses on a single time structure and dimension,

it can be easily extended to di�erent notions of time.

Let us now consider how temporal and object-oriented characteristics are combined. As shown

by the table, some approaches associate a timestamp with the whole object state, whereas others

associate a timestamp separately with each object attribute. Among the approaches associating

timestamps with single attribute values, the majority regards the value of a temporal attribute

as a function from a temporal domain to the set of legal values for the attribute. Another im-

portant characteristic, along which the existing approaches can be classi�ed, is whether temporal,

immutable and non-temporal attributes are supported. A (or historical) attribute is an

attribute whose value may change over time, and whose values at di�erent times are recorded in

the database. An attribute is an attribute whose value cannot be modi�ed during the

object lifetime, whereas a (or static) attribute is an attribute whose value can change

over time, but whose past values are not meaningful for the application at hand, and are thus not

stored in the database. Immutable attributes can be regarded as a particular case of temporal

ones, since their value is a constant function from a temporal domain. For a model like ours,

that distinguishes between objects and values, we think that the notion of non-temporal attribute

is much more relevant in practice than the notion of immutable one. Finally, we have examined

whether the considered approaches model the history of associations between an object and its

type (class). Indeed, an important dynamic aspect of object-oriented databases is that an object

can dynamically change type, by specializing or generalizing its current one [22] (often this type

change is referred to as object). Thus, we distinguish the approaches keeping track of

the dynamic links between an object and its most speci�c class from those that does not consider

this aspect.

As a �nal remark, let us mention that, as noticed in [17], in contrast to temporal relational

data models, the speci�cation of temporal object-oriented data models is in most cases informal.

In particular, none of the considered proposals addresses the issues resulting from the introduction

3

oid oid

functions

1

1

2

4

2

3

1

1

1

2

3

4

objects

classes

2 The Chimera data model

attributes

operations

what temporal kinds histories

is attribute of of object

timestamped values attributes types

[21] arbitrary functions temporal + YES

immutable

[6] attributes functions temporal + NO

immutable

[11] arbitrary sets of temporal + YES

pairs immutable

[13] objects atomic temporal + NO

valued immutable

[19] objects atomic temporal + NO

valued immutable

[15] attributes sets of temporal NO

triples

[7] attributes functions temporal + YES

immutable

temporal +

Our model attributes functions immutable + YES

non-temporal

Legenda:

With the term we have denoted functions from a temporal domain.

Time is associated with the entire object state.

The triple elements are (oid, attribute name, attribute value); a time interval and a version number are

associated with each element of the triple.

The information is not associated to objects, it can however be derived from the histories of object in-

stances.

Table 2: Comparison among the existing temporal object-oriented data models (II)

of time in an object-oriented data model on a formal basis. Moreover, only Wuu and Dayal

in [21] discuss the consistency of an object with respect to the classes it belongs to, and only few

proposals [6, 11, 21] consider the impact of inheritance in a temporal framework. However, none

of them addresses the problems concerned with domain re�nement and substitutability.

In this section we briey review the main concepts of the Chimera data model that are relevant

to this work. In Chimera, as in many other object-oriented data models, are abstraction

of real-world entities (such as a person or an employee). Each object has a unique system de�ned

object identi�er (). The is assigned automatically by the system upon the object creation

and remains immutable for the lifetime of the object. Properties of objects are described by

means of . Attribute values may change over time, without changing the object identity.

Objects can be manipulated by means of , which can be built-in or user-de�ned. Objects

having similar properties and behavior are grouped into organized in inheritance hierarchies.

Chimera provides a uniform notion of object, in that classes are themselves objects. Then, classes

4

n1

3 Types and values

3.1 T Chimera types

T T

; ;

set

of T T set of T T

OI CI

AN

MN

BVT fB B g

OT

CI

values

De�nition 3.1 (Object Types)

integer, real, bool, character string

primitives complex

identity

temporal types

[12] The set of Chimera object types is de�ned as the set of

class identi�ers .

structured types

are characterized by their set of attributes and operations, called c-attributes and c-operations

respectively. C-attributes and c-operations are a mean for associating a value or an operation

with an entire class rather than with its instances. C-attributes can be used to record statistical

information, like the minimum salary or the average age of employees, while c-operations can be

used to manipulate such values.

Both and are supported. Complex values are built by using construc-

tors like set, list and record. Complex values are de�ned as instances of value types. Thus, value

types provide the same function as concrete types commonly found in programming languages.

Chimera supports both values and objects. The constructors provided by Chimera can be applied

to atomic values, complex values and objects. Therefore, constructors can be nested and a complex

value may refer to an object. The main di�erences between Chimera values and Chimera objects

can be summarized as follows. First, objects are abstract, non-symbolic elements of the application

domain; values are symbolic, printable elements. A second important di�erence is related to the

notion of . Objects are described by attributes but their identity does not depend on the

attribute values. Changing the values of an object attributes does not change the object identity.

A primitive value is identi�ed by the value itself, whereas a complex value is identi�ed by the values

of all its components. Therefore, changing a component in a complex value changes the \identity"

of the value. Finally, objects can be manipulated by user-de�ned operations, whereas values can

only be manipulated via pre-de�ned operations, which are provided by Chimera.

In this section we introduce the set of Chimera types and values. Chimera types extend the

set of Chimera types [12], with a set of . Temporal types are introduced to type, in

a uniform way, variables for which the history of changes over time is recorded and variables for

which only the current value is kept.

In the following we briey review the Chimera types, then we extend them to type historical

variables.

In the remainder of the discussion we denote with a set of object identi�ers, with a set

of class identi�ers, that is, class names. Moreover, we denote with a set of attribute names

and with a set of method names. Table 3 summarizes the functions used in de�ning the

model. For each of them the table reports the name, the signature, that is, the type of the input

parameters and of the output parameter and a brief description. The meaning of each function will

be clari�ed as soon as the functions will be introduced in the following sections.

In Chimera the existence of a �nite set = . . . of basic prede�ned value types is

postulated, containing at least the types and . More-

over, Chimera allows class names to be used in the de�nition of types. The following de�nition

states that each class name is a (object) type.

Chimera supports such as sets, lists and records. A set type is denoted -

(), where is a type. Instances of - () are sets of instances of type . A list type

5

�

�

OI

OI

1 1 1

1

1 1

1 1

n n n

n

i

n n

n n

2 AN

VT

� BVT � VT

�

� AN

CT VT

OT

De�nition 3.2 (Value Types)

type

h type

s type

h state

s state

o lifespan

m lifespan

ref

snapshot

list of T T list of T

T record of a T ; ; a T T ; ; T

a ; ; a n

i th T

; T ; ; a

T ; ; a T

T

T temporal T

T T T ! CT

CI � T IME !

CI ! T

CI ! T

CI ! T

OI � T IME ! V

OI ! V

OI ! T IME � T IME

OI � CI ! T IME � T IME

OI � T IME !

OI � T IME ! V

[12] The set of Chimera value types is recursively de�ned as

follows.

the prede�ned basic value types are value types ();

if T is a value type or an object type then list-of(T) and set-of(T) are structured value types,

respectively indicated as list type and set type;

if T , are value types or object types and a are distinct elements of , then

record-of(a) is a structured value type, indicated as record type.

temporal types

Name Signature Description

returns the static type

corresponding to a temporal type

2 returns the extent of a class

at a given instant

returns the structural type

of a class

returns the historical type

of a class

returns the static type

of a class

returns the historical value

of an object

returns the static value

of an object

returns the lifespan of an object

returns the lifespan of an object

as a member of a given class

2 returns the set of oids to which

an object refers at a given instant

projects the state of an object

at a given instant

Table 3: Functions employed in de�ning the model

is denoted - (), where is a type. Instances of - () are lists of instances of type

. A record type is denoted - (: . . . :), where . . . are types and

. . . are distinct names. Instances of this type are records with components, whose

- component is an instance of type . Chimera allows the use of class names, i.e. object types,

in the de�nition of structured types. Indeed, attributes of types structured as records, are allowed

to have classes as domains. Moreover, the de�nition of collections, structured as sets or lists, of

instances of classes must be supported in Chimera. The following de�nition introduces Chimera

value types.

.

: . . . :

The set of Chimera types is de�ned as the union of Chimera value types and Chimera

object types .

Chimera extends the set of Chimera types with a collection of . For each

Chimera type , a corresponding temporal type, denoted as (), is de�ned. First, the set

6

2

�

�

n n

n n

3.2 Values

2

1 1

1 1

1 2 1 2

BVT

T T

2 CT

T

� 2 T

� CT � T

� T T � T

�

� AN

CI

T T T ! CT

T

V

B 2 BVT

B R

f g

T IME f g

We elaborate on this informal de�nition in the following section.

temporal T

T

T

T

T

T

T

T

T

T

; T T ; ; a

T ; ; a T

T

temporal T

T temporal

T T

dom

true; false

I t ; t t t

De�nition 3.3 (T Chimera Temporal Types)

De�nition 3.4 (T Chimera Types)

Example 3.1

time

time

time time

project

time

temporal(integer)

list-of(boolean)

temporal(set-of(project))

record-of(task:temporal(project),startbudget:real,endbudget:real)

integer integer

real

bool

time

The set of Chimera temporal types is

de�ned as the set of types temporal(T), for each T .

The set of Chimera types is de�ned as follows.

is a Chimera type ();

the Chimera types are Chimera types ();

the temporal types are Chimera types ();

if T is a T Chimera type then list-of(T) and set-of(T) are Chimera structured types;

if T , are Chimera types and a are distinct elements of , then

record-of(a) is a record type.

Let be a class name, belonging to . The following are Chimera types:

.

now

now

of Chimera basic prede�ned value types is extended to contain also the type . Intuitively,

instances of type () are partial functions from instances of type to instances of type

.

In Chimera, temporal types can be used in the de�nition of structured types. The de�nition

of sets or lists of instances of temporal types are allowed in Chimera. Moreover, attributes in

a record are allowed to have temporal types as domain. The following de�nition formalizes these

concepts.

.

: . . . :

In the remainder of the discussion we make use of the following function: : ,

which takes as argument a temporal type () and returns the corresponding static type

. For example, (()) = .

In this subsection we introduce the set of Chimera legal values . For each Chimera type we

introduce the corresponding set of legal values.

For each prede�ned basic value type , we postulate the existence of a non-empty set

of values, denoted as (). For instance, the domain of the basic value type is the set

of reals numbers, while the domain of the basic value type is the set . Moreover,

we assume as the domain of the type the domain = 0,1,. . ., , . . . , isomorphic to

the set of natural numbers IN. Symbol `0' denotes the relative beginning, while is a special

constant denoting the current time. Thus, we assume time to be discrete. An interval, denoted

as = [] is a set of consecutive time instants. It includes all time instants between and ,

7

t

S

0

0

0

time

time

OI

2T IME

0 0 0

0

1 2

1 2 1 2 1 2

[[]]

1

1 1 1 1

1 1 1 1

De�nition 3.5 (Type Legal Values)

i j r s

t

t

t

t

t

t

t

T

t n i t

n n t n n i i i t

t

t

t

t

n n n n

i i

[\ �

2

f g

OI

OT

CI � T IME !

2 CI

� 2 8 2 T

� B B 8 2 BVT

� T IME

� 8 2 OT

�

� f j � 2 8 � � g

� f j 2 AN 2 8 �

� g

� f j T IME !

8 2 g

T IME

T IME

T IME

fh i h ig

i

denotes the extension of type T at time .

null , T ;

= (), ;

= ;

= (c,t), c ;

- = 2 ;

- = ;

- = (a , v

;

= f f: is a partial function such that

if is de�ned then .

t t t t; t

I I I I I I

t I t I

I t ; t ; ; t ; t

T

c c

c

c c

T

� t

c � c; t t c

t T t T

t

T t

T

dom B

c �

set of T

list of T v ; ; v n ; v T ; i; i n

record of a T ; ; a T v ; ; a v a T ; i;

i n

temporal T T

t f t f t T

t

t

temporal T

T t temporal T

t; f t f t

f t f t

� ; v � ; v v ; ; v T � ; ; �

v � i ; ; n

and included. A single time instant can be represented as the time interval [], while []

denotes the null interval, that is, the interval not containing any time instants. The operators of

union (), intersection () inclusion () have the usual semantics of set operations.

Moreover is true if is one of the time instants represented by interval . In the following

we use a set of disjoint intervals = [] . . . [] as a compact notation for the set of time

instants included in these intervals.

Note that in Chimera oids in are handled as values. Thus, an object identi�er is a

value of an object type in . According to the usual terminology, an object is an instance of a

class , if is the most speci�c class, in the inheritance hierarchy, to which the object belongs. If

an object is an instance of a class it is also a member of all the superclasses of . Therefore, we

consider as legal values for an object type all the oids of objects belonging to both as instances

or as members. The set of objects members or instances of a class changes dynamically over time.

Thus, to de�ne the extension, that is, the set of legal values for each Chimera type, we introduce

a function : 2 , assigning an extent to each class for each instant . For each

, () is the set of the identi�ers of objects that, at time , belonged to both as instances

or as members. To emphasize the fact that the interpretation of a type can only be given by �xing

a time instant , we denote the set of legal values for type at time as [[]] , meaning that this

set can only be given �xing a time instant .

[[]]

[[]]

[[]]

[[]]

[[]]

[[()]]

[[()]] [. . .] 0 [[]] 1

[[(: . . . :)]] : . . . :) [[]] 1

[[()]] [[]]

() () [[]]

Intuitively, given an instant the extensions of prede�ned basic value types are the elements of

their corresponding domains, the extensions of classes are their explicit extents at time , while the

set of legal values of the structured types are de�ned recursively in term of the legal values of their

component types. The extension of a temporal type () is the set of partial functions

from (i.e, the set of legal values for type) to the union of the set of legal values for

type for each instant in . The value of a variable of type () can then be

represented as a set of pairs (()), where is a partial function, is an element of and

() is the value of function at time . Usually, the value of a variable of temporal type does not

change at each instant. Therefore, its value can be represented more e�ciently as a set of pairs

, . . ., , where . . . are legal values for the type , and . . . are time

intervals, such that the variable assumes the value for each time instants in , = 1 We

adopt this representation throughout the paper.

8

3

4

F

F

1 2 1 2 2

2

1 2

3

1

=1

1

=1

1 1 1 1

1

1 1

4

t

t

t

t

t

i i

n

n

i

i

i i

n

n

i

i

i i

n n n n

n

i i

n n

i j

t

2 OI 2 2

� 2

� 2

� f g 2

� fh i h ig 2

� fh i h ig 2

�

8 2 T

2 B

B

8B 2 BVT

2 T IME

2

2 OI 2 CI 2 T IME

f g �

�

� �

�

2 AN

� �

f g

6 � �

t

2 T IME 2

Example 3.2

De�nition 3.6 Typing rules for values

Theorem 3.1 (Soundness of typing rules for values)

t � t

� t

;

T

null T

T

v dom

v

v

v

i � c; t

i c

i ; c ; t

v T

v ; ; v set of T

T T

v T

v ; ; v list of T

T T

v T i n

a v ; ; a v record of a T ; ; a T

a ; ; a

v T; t i n

t ; v ; ; t ; v temporal T

t t ; i; j n

T

T

v t v T

person

employee

10,100 integer

i employee

i ,i set of person

[5,10],12 , [11,30],5 temporal integer

(name:'Bob', score: [1,100],40 , [101,200],70)

record of name string score temporal integer

time

time

Let be a time instant, i and i such that i ,i (,) and i

(,).

;

;

- ;

;

.

(). The Chimera typing rules for values are the following .

. Let be the type deduced for a value

according to rules in De�nition 3.6, then there exists such that .

The meaning of these inference rules is the following: if the conditions in the rule premises (the upper part of

the rule) are satis�ed, then the rule consequence (the lower part of the rule) can be inferred.

We formalize these notions in the next section.

[[]]

[[]]

[[()]]

[[()]]

[[(: : ())]]

De�nition 3.5 formally de�nes the set of legal values, that is, the extension for each Chimera

type. In the following we introduce the corresponding typing rules.

:

()

:

:

()

:

:

. . . : ()

=

:

[. . .] : ()

=

: (1)

(: . . . :) : (: . . . :)

. . .

: : (1)

() . . . () : ()

= 1

In the above rules, denotes the least upper bound of a set of types with respect to the

subtyping order introduced in Section 6.

The above typing rules are used to check whether a database state is structurally consistent,

that is, if the value of the attributes of each object meets the requirements of the structural part

of its class de�nition . Such typing rules are also the basis for type checking the expressions of

Chimera language. The following theorems state the soundness and completeness of our type

system.

[[]]

9

t

4 Classes

v T

t v T T v

T

T

C

2

2 CI

2 f g

2 T IME � T IME

2 AN

2 T

Theorem 3.2 (Completeness of typing rules for values)

De�nition 4.1 (Class Signature)

(c,type,lifespan,attr,meth,history,mc)

c

type

lifespan

attr

(a name,a type)

a name

a type

meth

(m name,m sign)

. Let be a legal value for type

at time , that is, , then, according to rules in De�nition 3.6, we deduce type for .

signature implementation

static historical

lifespan

metaclass

A class is a 7-tuple

, where

is the class identi�er;

static,historical indicates whether the class is historical, i.e. it contains at least one

temporal c-attribute, or static;

() is the lifespan of the class;

contains the information about the attributes of the class. It is a set containing an item for

each attribute of the class. Such an item is a pair , where

is the attribute name;

is the attribute domain.

contains the information about the behavior of the instances of the class. It is a set containing

an item for each method of the class. Each item is a pair where

[[]]

The soundness can be easily proved by induction on the complexity of the derivation tree,

whereas the completeness can be proved by induction on the structure of the type. We refer the

interested reader to [4] for the proofs.

In this section we formally introduce the notion of class. A class in Chimera consists of two

components: the and the . The signature of a class contains all the

information for the use of the class and its instances, whereas the implementation provides an

implementation for the signature. The signature of a class contains information about the class

identi�er and the type of the class. A class can be or . A class is static if all its c-

attributes are static, that is, they do not have as domain a temporal type, it is historical otherwise.

Moreover, a is associated with each class, representing the time interval during which the

class has existed. As it does not make sense to recreate a class once it has been deleted, we make

the assumption that the lifespan of a class is contiguous, that is, it consists of a set of consecutive

time instants.

Furthermore, the class signature contains information about the attributes and methods of its

instances. Each attribute is characterized by its name, and by the type of its values. Each method

is characterized by its name, and by the type of the input and output parameters. Moreover,

the signature contains similar information about c-attributes and c-methods. Since the objects

belonging to a class vary over time, each Chimera class also maintains the history of all the

objects instances or members of the class over time.

To model in a uniform way object features and class features we introduce the concept of

. A metaclass is a special class having a class as unique instance. Each class is then seen

as an instance of a metaclass in the same way as an object is seen as an instance of a class [10].

The signature of a class is formally de�ned as follows.

10

0 0

0 0

1 4

1 1 2

1 1

1 1

1 1

n n

n n

n n

Example 4.1

2 MN

� � !

2 T

2 V

� 8 2

2

f

g

f ! g

fh f gig

fh f gi h f gig

T T T T ; T

C C

C

C

C C

t

PE t E t t C:lifespan

�

c � c ; t C:history:ext t t C:lifespan C

C:c c C c

T

c

type

lifespan ;

attr ; ; ; ; ;

; ; ;

meth ;

state ; ; ; ; ;

proper ext ; ; ; ; ; ;

mc m

C C

m name

m sign

history

History

mc

project

name

objective workplan

subproject participants

project

static

10 now

name temporal string objective string workplan set of task

subproject temporal project participants temporal set of person

add participant person project

record of average participants 20 10 now i i

10 50 i 51 now i i

project

project average-

participants

project average-

participants

is the method name;

is the signature of the method, expressed as: , where and

T , denote respectively types of input parameters and of the output parameter of the

method.

, is a value containing the values for each c-attribute, plus two temporal values, rep-

resenting respectively the objects instances of and the objects members of over time.

is a value of a record type, that is, it has the form

(a : v , , a : v , ext: E, proper-ext: PE)

where a , , a are the names of the c-attributes of , v , , v are their correspond-

ing values, E and PE are temporal values representing the set of objects belonging to class

over time;

is the identi�er of the metaclass corresponding to class , that is, the class of which is

instance.

ext proper-ext

Let us consider a class , whose instances are research projects. Suppose

moreover that objects of such a class have as attributes a , which is immutable during the

project lifetime, an and a whose variations over time are not relevant for the

application at hand, and a and some , for which we are interested in

keeping the whole history. The corresponding Chimera class signature is the following:

- ,

-

-

- - ext ,

-

-

.

. . .

.

The temporal attributes and in the class history keep track of the objects members

or instances of the class during its lifespan. They denote respectively, the set of the oids of objects

members of the class for each instant of its lifetime, and the oids of objects instances of the class.

Obviously () (), , because all objects instances of a class at a given instant

are also members of the class at the same instant. Function (cfr. Table 3), is such that, for each

class name , () = (), for each , where is the (unique) class

such that = , that is, is the class identi�ed by .

=

=

= []

= (()) () (())

(()) ((())

= ()

= (: : [] . . .

: [] [])

=

The class in the example above is a static class, since its only c-attribute

, which records the current average numbers of project participants, is static. How-

ever, instances of class are historical objects. If, by contrast, the c-attribute

had recorded the changes of the average number of participants over time, the class

would be historical.

Let us now discuss the relationships between a class and its associated types. The identi�er

of a class denotes the object type corresponding to . Such object type is the type of the

11

5

5

0 0

0 0 �

5 Objects

h type

s type

5.1 Objects

Example 4.2

f g

�

�

f g � � �

T 8

�

f g � � �

CI ! T

1 1 n n

1 1 n n

k

k

m

m

k k m m

i i i i

i i

i

k k m m

k k m m

i i i

C C

; ; ; ; C

C

; ;

C

; ;

; ; ; ; ; k m n

; ; i

k; ;m

C

; ;

; ; ; ; ; ; k m n

;

c

c

h type

s type

T

Structural type

Historical type

Static type

structural historical static

type h type s type

Referring to the class of Example 4.1:

() =

() = .

reincarnate

Note that function returns a null value when its argument is the identi�er of a class whose instances are

static, whereas function returns a null value when its input is a class whose instances only have temporal

attributes.

attr

a T a T

record-of a T a T

record-of a T a T

a T a T attr

a T T a T T T

record-of a T a T

a T a T attr

a T T

project record-of(name:string,subproject:project,participants:set-of(person))

project record-of(objective:string, workplan:set-of(task))

identi�ers of the objects instances of . Suppose that class has as component the set:

() . . . () , the following types can be associated to .

. It represents the type of the attributes of instances of . It is de�ned by the

following record type:

(: . . . :).

. It represents the type of the temporal attributes of instances of . It is

de�ned by the following record type:

(: . . . :)

let () . . . () 1 , be the subset of consisting of all the pairs

() such that is a temporal type. Then () is such that = (), =

. . . .

. It represents the type of the static attributes of instances of . It is de�ned by

the following record type:

(: . . . :)

where () . . . () 1 , is the subset of consisting of all the pairs

(), such that is not a temporal type.

The distinction between , and type of a class will be used in the next

section to check object consistency.

Therefore, we can de�ne three functions , , : which take as argument a

class identi�er , and return the structural, the historical and the static type of the class identi�ed

by , respectively .

In this section we �rst introduce the notion of object, then we investigate the notions of object

consistency and integrity in a temporal context. Finally, we consider object equality.

Chimera handles in a uniform way both historical and static objects. An object is historical if

it contains at least one attribute with a temporal domain, it is static otherwise. With each object,

either historical or static, a lifespan is associated, representing the time interval during which the

object exists. As for classes we assume the lifespan of an object to be contiguous. Therefore, we do

not consider a operation like the one proposed in [7]. The contiguity assumption does

not diminish the modeling power of our model. Objects can be instances of di�erent classes during

their lifetime, but we can assume that for each instant in their lifespan, there exists at least a class

to which they belong. This class is the most general class (in the inheritance hierarchy) the object

12

0 0 0 0

1

7 4 9

2 3 2 3 8

n n

n n

n n n n

i

i

1 1

1 1

1 1 1 1

1 2 3 4 7 8 9

De�nition 5.1 (Object)

Example 5.1

2 OI

2 T IME � T IME

2 V

2 AN

2 V

fh i h ig

� �

h i

2 OI 2 CI

f fh ig

f g fh i h ig

fh f gi h f gig g

fh ig

OI ! T IME � T IME

a v ; ; a v

a ; ; a v ; ; v

� ; c ; ; � ; c � ; ; � c ; ; c

c

� i n

�; c � now; now c

i ; i ; i ; i ; i ; i ; i

T

i

lifespan ;

attr history ; ; ; ; ; ;

; ; ; ; ; ; ;

; ; ; ; ; ; ; ; ; ;

class history ; ;

o lifespan

i i

person employee

(i,lifespan,v,class-history)

i

lifespan

v

class-history

class-history

class-history

project

i

20 now

name 20 now IDEA objective Implementation

workplan i subproject 20 45 i 46 now i

participants 20 80 i i 81 now i i i

20 now project

name subproject partecipants

An object is a 4-tuple

where

is the oid of o;

() is the lifespan of object o;

is a value, containing the values of each attribute of o. It is a value of record type:

where are the names of the attributes of o, are their corresponding

values;

is a value storing information about the most speci�c class to which o belongs

over time. It is a temporal value:

, where are time intervals and are class identi�er,

such that is the class identi�er of the most speci�c class to which o belongs in the interval

, .

Suppose that and . The following is an

example of Chimera object:

-

, ,

.

-

class-history

has ever belonged to. For example, an employee can be �red and rehired, but he remains instance

of the generic class , superclass of the class , till the end of its lifetime.

Moreover, for each historical object the history of the most speci�c class to which it belongs

during its lifespan is recorded. On the contrary, for each static object, only the class identi�er of

the most speci�c class to which it currently belongs is maintained. This information will be useful

to check object consistency. The following de�nition formally introduces the notion of object.

(: . . . :)

.

.

1

If o is static, records only the most speci�c class to which o currently belongs.

Thus contains only one pair , where = [] and is the most speci�c

class to which o belongs at the current time.

=

= []

= ([]) ()

() ([] [])

([] [])

= []

The object of the example above is an historical object, since it contains the temporal attributes

, and . Thus, the component keeps track of the most

speci�c class to which the object belongs over time. In the considered example the object has never

migrated, since it is an instance of the same class for all its lifespan.

In a temporal context, some temporal constraints must be satis�ed by object lifespans. To

formalize these constraints we de�ne function : , that given an

object oid returns the lifespan of the object identi�ed by .

Obviously, information about the historical extent of a class must be consistent with the class

history of objects in the database, as stated by the following invariant.

13

c

6

7

S

S

6

7

i i i

2 , 2

h i2 �

0 0

0 0

0

0 0

0 0

0

2CI

0 0

5.2 Consistency notions

Invariant 5.1

Invariant 5.2

c lifespan i; c �

t c lifespan i; c i c

� ;c o:class history; c subclass of c

i

t

8 2 OI 8 2 CI 8 2 T IME

2) 2

8 2 2 , h i 2

OI � CI ! T IME � T IME

8 2 OI 8 2 CI 8 2 T IME

2 , 2

, let be the object such that , be the class

such that , then

1. ;

2. - - .

, then

1. ;

2. , where is the class such that .

Note that () = . Functions o lifespan and c lifespan are sim-

ilar to those de�ned in [21].

This also implies that () [[]] .

manager employee

dependents officialcar

dependents officialcar

dependents officialcar

dependents officialcar

employee

manager

i ; c ; t o o:i i C

c C:c

i C:history:extent t t o lifespan i

t �; i C:history:proper extent t �; c o:class history

c lifespan

i c i

c

i ; c ; t

o lifespan i c lifespan i; c

t c lifespan i; c i C:history:extent t C c C:c

t t

t

=

=

() ()

(())

Moreover, the lifespan of an object can be partitioned in a set of intervals, depending on the

object most speci�c class. Indeed, during its lifetime an object can be member of di�erent classes.

Therefore, we introduce function : , that given an object

oid and a class identi�er , returns the interval representing the set of time instants in which

was a member of the class identi�ed by .

The temporal constraints stated by the following invariant must be satis�ed:

() = ()

() () =

The most speci�c class to which an object belongs can vary over time. An existing object can,

at a certain point of its lifetime, be inserted in a more speci�c subclass or moved up to a more

general superclass with respect to the one in which it is created. Moreover, an object can be an

instance of the same class in di�erent, not consecutive time instants. As an example, consider

the case of an employee that is promoted to manager, (being a subclass of

with some extra attributes, like and). The other, rather undesirable

case, is the transfer of the manager back to normal employee status (that means the loss of the

o�cial car and of the dependents). The migration of an object from a class to another can cause

the addition or the deletion of some attributes from the object. With reference to the example

above, the promotion of an employee to the manager status has the e�ect of adding the attributes

and to the corresponding object, while the transfer of the manager

back to the employee status causes dropping the attributes and from

the corresponding object. If the attributes and are are static, they are

simply deleted from the object and no track of their existence is recorded in the object when it

migrates to the class . By contrast, if they are temporal, the values they have assumed

when the object has migrated to the class are maintained in the object, even if they are

not part of the object anymore.

We require that each object must be a consistent instance of all the classes to which it belongs.

In a context where objects can have both static and temporal attributes, the notion of consistency

assumes a slightly di�erent semantics with respect to its classical de�nition. Verifying the consis-

tency of an object in a temporal context requires two steps. First, it is necessary to identify for

each instant of the object lifespan, the set of attributes which characterize the object at time ,

as the attributes characterizing a given object can vary over time. Then, the correctness of their

values must be checked. Note that, if we consider a time instant lesser than the current time,

14

1k m n

0 0

0 0

0 0

1 1 n n

k k m m

i i

1 7

1 9 2 3

T IME

�

�

2

�

f g � � � f g

�

OI � T IME ! V

OI ! V

f g

f g

t

a

o v a o t t

v

o

o

o i; lifespan; v; class history v ; ;

t o:lifespan

t k m n

o t

o t

; ;

t i k; ;m

t

t

s state ;

h state ; ; ; ;

De�nition 5.2 (Meaningful Temporal Attributes)

Example 5.2

De�nition 5.3 (Historical Consistency)

a v a v

a , ,a a , ,a

a v t a v t

v t a

i objective Implementation workplan i

i 50 name IDEA subproject i participants i i

Let be a temporal attribute of an object

. Let be its value. Attribute is said to be meaningful for at time , if belongs to the domain

of .

Historical consistency

Static consistency

Historical value

Static value

h state

s state

h state

Referring to object of Example 5.1:

historical static

h type s type

An object o = (i,lifespan,v,class-history) is an histor-

ically consistent instance of a class c at time t if h state(o.i,t) is a legal value for the type h type(c).

we are able to identify only the temporal attributes that characterize the object at time , since

for static attributes we record only their current values. Thus, for instants lesser than the current

time, it only makes sense to check the correctness of the values of the temporal attributes of the

objects. Therefore, we start by introducing the following de�nition:

Note that, as the value of a temporal attribute is a partial function from to the attribute

value domain, its domain is the set of time instants for which the value is de�ned. Therefore, the

domain of the value of a temporal attribute of an object represents the set of time instants in

which the attribute characterizes .

We distinguish two kinds of consistency:

. The values of the temporal attributes of the object at a given instant

are legal values for the temporal attributes of the class.

. The values of the static attributes of the object are legal values for the

static attributes of the class.

Consider an object = (-), such that = (: . . . :).

Therefore, given an instant , the following values can be de�ned:

. It is a record representing the values of the temporal attributes meaningful

for the object at time . Let . . . , 1 , be the subset of . . . ,

consisting of all the names of the temporal attributes meaningful for at time . The historical

value of at time is de�ned as follows:

(: () . . . : ())

where () denotes the value of at time , =

. It is a record representing the values of the static attributes of the object. Its

de�nition is analogous to that of the historical value, considering static attributes instead of

the temporal ones.

Thus, we can de�ne two functions : which takes as argument an

object identi�er and a time instant , and returns the record representing the historical value of the

object at time , : , which takes as argument an object identi�er, and returns the

static value of the object. Note that when an object consists only of temporal attributes, function

returns a snapshot of the value of the object attributes for a speci�ed time instant.

() = (: :)

() = (: : :)

We are now ready to formally introduce the notions of and consistency, by

making use of functions and (cfr. Table 3).

15

7

4

9

2 3

8

now

t

t

t

t

0 0

0

0 0

0 0

0 0

0 0

0

� h i

�

� h i

2

� h i 2

� 2

� 2 2

� 2 2

� 2 2

� 2 2

i task

i project

i project

i i person

i person

�; c �

� C:lifespan C

�; c

�

�; c �

t

t

t ;

t ; now

; t ; now

t ; now

o

o t o

t

t o o o o

t o o

De�nition 5.4 (Static Consistency)

De�nition 5.5 (Object Consistency)

Example 5.3

An object o = (i,lifespan,v,class-history) is a statically

consistent instance of a class c , if s state(o.i) is a legal value for the type s type(c).

An object o = (i,lifespan,v,class-history) is consistent if

and only if the following conditions hold:

For each pair in o.class-history, interval is contained in the lifespan of the class

identi�ed by c , that is, , where is the class such that C.c = c .

For each pair in o.class-history, o is an historical consistent instance of c , for each

instant t .

Let be the (unique) element of o.class-history, such that . Object o must be a

static consistent instance of class c.

The object of Example 5.1 is a consistent instance of the class of Example 4.1

provided that

;

, for each ;

, for each ;

, for each ;

, for each .

refer to

referential integrity

essence

Checking the consistency of an historical object means verifying its consistency with all the

classes to which it belongs during its lifespan. For time instants lesser than the current time, only

its historical consistency can be checked, since only for temporal values we have the history of all

their changes. For the current time also the static consistency must be checked. The consistency

of an object is checked only with respect to its most speci�c class. If an object is consistent with

respect to its most speci�c class, it is consistent with respect to all the superclasses.

now

The above de�nition states that each object, for each instant of its lifespan, must contain a

value for each temporal attribute of the class to which it belongs at time , and this value must be

of the correct type. Moreover, at the current time also the consistency with respect to the static

attributes must be checked. This notion of consistency allows to uniformly treat both static and

historical objects. In the case of static objects, De�nition 5.5 reduces to the notion of consistency

usually adopted in traditional object-oriented system [14].

[[]]

[[]] [20 45]

[[]] [46]

[[]] [20]

[[]] [81]

Objects can be de�ned by means of a set of component objects. An object is said to

an object at an instant , if the object identi�er of appears in one of its attribute values at time

. In traditional object-oriented system, the property must be enforced, that

is, if an object is in the set, also all the objects to which it refers must be in the set. Analogously

in our temporal model we require that if at instant an object refers an object , both and

exist, that is, instant belongs to the lifespan of both and . Moreover, the integrity of objects

identity is enforced through object oids. The oid of an object represents a time invariant property

of the object, shared by no other object in the system. It is analogous to the concept of

16

0 0

f j 2 g

2

2

ref

i t

i t

i i o:i; o

t

t

5.3 Object equality

1 2 1 2 1 2 1

2 1 2

1 2

1 2

1 2

1 2

obj obj

obj

obj

oid-uniqueness

obj

referential integrity

obj obj

oid-uniqueness

De�nition 5.6 (Consistent Set of Objects)

De�nition 5.7 (Equality by Identity)

De�nition 5.8 (Value Equality)

oid-uniqueness

A �nite set of objects is consistent at time

if and only if the following conditions hold:

1.

For each pair of objects o and o , if o .i = o .i, then o .lifespan = o .lifespan, o .v

= o .v and o .class-history = o .class-history;

2.

for all objects o , each object identi�er in ref(o.i,t) must be contained in I().

equality by identity

equality by value

shallow value equality

deep value equality

Two objects o and o are equal by identity if and only

if they have the same object identi�er, that is, o .i=o .i.

Two objects o and o are equal by value if and only if

o .v = o .v.

instantaneous-value equality weak-value equality

introduced in [7]. Thus, for a set of objects to be consistent the property of must

be ensured. These notions are formalized by De�nition 5.6.

In the following de�nition we make use of function that, receiving in input an object

identi�er and a time instant , returns the set of identi�ers of the objects to which the object

identi�ed by refers at time (cfr. Table 3). Moreover, given a set of objects , I() denotes

the set = .

Object equality is a fundamental concept in object-oriented languages. Chimera, like most object-

oriented systems, supports two di�erent notions of equality: (meaning that the

two denoted objects are the same object), and (meaning that the two objects have

the same attribute values). Equality by value can be further re�ned into: ,

which considers the equality of all the direct attributes of an object, and , which

considers in addition to the equality of the attributes the equality of the attributes of objects

which are recursively reached by means of oid references. A formalization of these concepts for the

Chimera model can be found in [12]. Here, we consider only shallow value equality.

In a temporal context, we still have the classical notion of object identity, being the oid of an

object a time invariant property. This notion is formalized as follows.

Obviously, if two objects have the same oid, also all their other components are equal, because

of the property. Note, moreover, that the notion of object identity uniformly

applies both to historical and to static objects.

Value equality can be formally de�ned as follows.

Note that the above de�nition implies both the equality of the attribute values and the attribute

names. De�nition 5.8 applies both to static and historical objects. In the case of static objects,

it simply reduces to the conventional notion of value equality, whereas for historical objects the

equality of the whole history of temporal attributes is required.

In a temporal object-oriented context, two further notions of value equality can be devised:

and . Two objects are instantaneously value equal

if there exists an instant in which their attributes have the same values. Two objects are said to

17

8

1

7 9 2 3 8

1

n n

j j j

j j j

ISA

6 Inheritance

0

0

0 0

0 0

0

0 00 0 00

1 1

8

1 2

1 2 1 2

1 2

1 2 1 2

OI � T IME ! V

� �

�

�

6

f g f g

6

2 \

2 2

� CI

snapshot h state

i t snapshot i; t

h state i; t

De�nition 5.9 (Instantaneous-value Equality)

De�nition 5.10 (Weak-value Equality)

Example 5.4

t

snapshot i

t i t

a v ; ; a v j j n

a v o:v:a

a v o:v:a t

o i o:i i

snapshot i; t

i t now

snapshot ; now ;

; ; ; ; ;

snapshot ; now t now

i name IDEA

objective Implementation workplan i subproject i participants i i i

i

project project

subproject participants

project

For historical objects containing only temporal attributes, the function coincides with the

function (cfr. Table 3); that is, if is the identi�er of an object of this kind, for any instant () =

() holds.

Two objects o and o are instantaneously value

equal if there exists an instant t o .lifespan o .lifespan such that, snapshot(o .i,t) = snapshot(o .i,t).

Two objects o and o are weakly value equal if there

exist two instants t o .lifespan and t o .lifespan, such that snapshot(o .i,t) = snapshot(o .i,t).

Referring to the class of Example 4.1, two objects having the same

current state and the same history of modi�cations for and attributes,

are value equal. By contrast, two objects having the same current value for all the attributes

are instantaneous (and thus, weak) value equal.

be weakly value equal if their attributes have ever had the same values, also in di�erent instants.

These notions of equality obviously make sense for historical objects consisting only of temporal

attributes. Moreover, also historical objects containing static attributes can be compared under

these types of equalities, but only at the current time, since we cannot reconstruct the value of

static attributes at a time instant lesser than the current time. Finally, static objects can be

compared only at the current time too.

Let us consider a function : that given an object identi�er and

an instant \projects" the state of the object identi�ed by at time . This function returns a

record value (: . . . :) such that, for all , 1 ,

if attribute is static, = ,

if is temporal, = (),

being the object identi�ed by (=) . For historical objects containing also static at-

tributes, we are able to reconstruct only the snapshot at the current time, thus (),

with identi�er of an historical object with at least a static attribute, is unde�ned for = .

Note that, as a particular case, the snapshot of a static object at any instant is its current

state. For instance, referring to the object of Example 5.1, () = (:

: ` : : : ,

whereas (), for = is unde�ned.

Note that the last three notions of equality do not require that the two objects are instances of

classes related in the inheritance hierarchy. Obviously, value equality implies instantaneous-value

equality and instantaneous-value equality implies weak-value equality, while equality by identity

implies all the other kinds of equality, when they are applicable.

The usefulness of these notions of equality is exempli�ed by the following example.

Inheritance relationships among classes are described by an ISA hierarchy established by the user.

The ISA hierarchy represents which classes are subclasses of (inherit from) other classes. We can

suppose this information to be expressed as a partial order on the set of class identi�ers .

18

6.1 Substitutability

T

T

ISA

T

T

n

n

n

n

i

T

i

T

T

ISA

T

T

�

2 T �

�

� 2 OT �

� �

� �

�

� � �

� �

T � t

�

2 T

�

�

0 0 0 0

0 0 0 0

0 0 00 00

0 00

0 0 0 0

0

0

0 00 00

1 2 2 1 2 1

1 2

2 1 1 2

2

2

1

1 2 1

2

2

1

1 2 1

1 1

1

2 1

1

2

2

1

1 2 1

1

1 2 2 1 2

De�nition 6.1 (Subtypes)

Rule 6.1 (Re�nement of attribute domains)

T ; T T T T T

T T

T ; T T T

T set of T T set of T T T

T list of T T list of T T T

T record of a T ; ; a T T record of a T ; ; a T i

i n T T

T temporal T T temporal T T T

c a

c T c c c a c

T

T T

T temporal T T T

substitutability

extent inclusion

covariance rule

contravariance rule

Given , is a subtype of (denoted as) i� at

least one of the following conditions holds:

;

and ;

- , - and ;

- , - and ;

- , - and for each ,

, ;

, and .

Let be a class, and an attribute whose do-

main in is . Let be a class such that , attribute in class can have as domain

a type such that:

1. , or

2. , .

Inheritance has two important implications in Chimera, like in other object-oriented data models

in which classes are associated with an extent. The �rst one is , that is, the property

that each instance of a class can be used whenever an instance of one of its superclasses is expected.

The second one is , that is, the property ensuring that the extent of a class is included

in that of its superclasses. In what follows we consider these two aspects.

A set of conditions must be satis�ed by two classes related by the ISA relationship. These condi-

tions are related to the fact that each subclass must contain all attributes and operations (both

on the class as well on the instance level) of all its superclasses. Apart from the inherited con-

cepts, additional features can be introduced in a subclass. Inherited concepts may be rede�ned

(overwritten) in a subclass de�nition under a number of restrictions. Indeed, in Chimera the re-

de�nition of the signature of an attribute is possible by specializing, that is, re�ning, the domain

of the attribute. The rede�nition of the signature of an operation must verify the

for result parameters and the for the input ones. Therefore, result parameter

domains may be specialized, whereas input parameter domains may be generalized, in the subclass

signature of the operation. We also require that the extent of a subclass is a subset of the extent

of all its superclasses.

To formally de�ne notions such as domain re�nement, we need to de�ne an ordering on types.

The subtype relationship is de�ned as follows.

=

()

= () = ()

= () = ()

= (: . . . :) = (: . . . :)

1

= () = ()

The set of types with the ordering is a poset. Thus, the notion of least upper bound ()

is well de�ned (cfr. Subsection 3.2).

Given the above de�nition of subtyping, the following rule establishes re�nement conditions for

attribute domains in subclasses.

= ()

19

S S

2T IME 2T IME

6.2 Extent inclusion

ISA

m

t

i

i i

i

m

t

t

i
t

t

j

T t t

2 1

2 1

1

2 1

1 2 2 1 1 1 2 2

2 1

2 2 1

2 1

1

1

1 2 1 2

2 CI �

�

8 2 �

8 2 OI �

2 T IME

6 � �

\ ;

� 8 2 T IME �

Invariant 6.1

Invariant 6.2

Theorem 6.1

coercion

Given , such that , and , , then

1. ;

2. , ;

3. .

root classes

Let be the root classes of the ISA relationship, then for each with

, ,

If , then , holds.

c a c

o c c

a o:v:a now

a now snapshot

now

snapshot i; now :a c

a

c c a

c ; c c c c C :c c C :c

C :lifespan C :lifespan

t C :lifespan C :history:ext t C :history:ext t

i c lifespan i; c c lifespan i; c

C ; ; C t

Ext i ; ;m C t C :history:extent t

C

C ; ; C i; j

i j i; j m

Ext Ext

T T t T T

This means that, as suggested in [6], a non-temporal attribute can be re�ned in a temporal

attribute (on the same domain or on a most speci�c one), but not vice-versa.

To ensure substitutability, however, we need to introduce a function, since the value

of a temporal attribute, which is a function from a temporal domain, cannot be substituted (from

a typing viewpoint) by a value of a non-temporal attribute, which is not a function. Suppose that

class re�nes the non-temporal domain of attribute of its superclass in a temporal domain.

Then, whenever an object , instance of , must be seen as an instance of , the value of attribute

is \coerced" to (), that is, the value of the function which is the value of the temporal

attribute at the instant . The coercion function we make use of is the function

(cfr. Table 3). By considering a snapshot of the object at the instant , the coerced value

is () . Note that this coercion is semantically meaningful. Indeed, in we are

not interested in the history of the values taken by attribute . Thus, whenever we see an object

instance of as an instance of , we forget the history of attribute and consider only its current

value.

At the extensional level, we require that in each database state the extent of a class is a subset of

the extent of its superclasses, as stated by the following invariant.

= =

() ()

() ()

It is important to note that in Chimera a common superclass of all the classes does not exist.

Therefore the hierarchy is a DAG, consisting of a number of connected components whose roots are

the classes without superclasses, which we call . Furthermore, since we consider objects

which are instances of a unique class, the sets of oids in di�erent hierarchies, that is, hierarchies with

di�erent roots, are disjoint. Consider a set of root classes . . . and a time instant ,

then , = 1 . . . , denotes the extension of at time (that is, ()) which

is the extent of the entire hierarchy rooted at at this time. The following invariant must hold,

stating that the sets of objects that have ever belonged to di�erent hierarchies are disjoint (that

is, an object cannot belong to di�erent hierarchies even at di�erent times), since an object cannot

migrate over di�erent hierarchies.

. . .

= 1

=

The invariant also implies that at each time the sets of objects belonging to di�erent hierarchies

are disjoint.

Finally, the following result holds, relating the subtype relationship to type extensions de�ned

in Section 3.

[[]] [[]]

20

T

T

7 Conclusion and future work

References

Foundations of Databases

Theoretical

Computer Science

Proc.

First Int'l Conf. on Deductive and Object-Oriented Databases

Proc. First Int'l Conf. on Extending Database Technology

Proc.

of the Int'l Workshop on an Infrastructure for Temporal Databases

Proc. Fourth IEEE Int'l Conf. on Data

Engineering

Tempo-

ral Databases: Theory, Design, and Implementation

Temporal Databases: Theory, Design, and Implementation

In this paper we have presented Chimera, an extension of the Chimera data model incorporating

temporal capabilities. We have introduced the notion of temporal type to handle in a uniform

way temporal and non-temporal domains, and we have de�ned the set of legal Chimera values

for each type. We have discussed the notion of object consistency and integrity and we have also

investigated problem related to inheritance and object identity in a temporal framework.

We plan to extend this work in several directions. First, we plan to extend Chimera triggers and

deductive rules with time. In particular, temporal triggers have not been much investigated; issues

such as termination and conuence will need to be re-visited when dealing with temporal triggers.

Second, we plan to de�ne a temporal integrity constraint language for the Chimera data model.

Such a language would allow, among other things, to express constraints based on past histories of

objects. Then, we are interested in investigating temporal object references and, more generally,

issues related to the query language and its typing. Time-dependent behavior is an interesting

topic of future work, too. Finally, implementation issues will be investigated.

[1] S. Abiteboul, R. Hull, and V. Vianu. . Chapter 21: Object

Databases. Addison-Wesley, 1995.

[2] H. Balsters and M. Fokkinga. Subtyping can have a Simple Semantics.

, 87:81{96, September 1991.

[3] C. Beeri. Formal Models for Object Oriented Databases. In W. Kim et al., editors,

, pages 370{395, 1989.

[4] E. Bertino, E. Ferrari and G. Guerrini. A Formal Temporal Object-Oriented Data

Model. Technical Report, University of Milano, May 1995. (Extended Version of this

paper).

[5] L. Cardelli. Types for Data Oriented Languages. In J. W. Schmidt, S. Ceri, and

M. Missiko�, editors, , Lecture

Notes in Computer Science, pages 1{15, 1988.

[6] T. Cheng and S. Gadia. An Object-Oriented Model for Temporal Databases. In

, 1993.

[7] J. Cli�ord and A. Croker. Objects in Time. In

, pages 11{18, 1988.

[8] A. Crocker and J. Cli�ord. The Historical Relational Data Model (HRDM) Revisited. In

A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors,

, pages 6{26. Benjamin/Cummings,

1993.

[9] S.K. Gadia and S.S. Nair. Temporal Databases: A Prelude to Parametric Data.

In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, edi-

tors, , pages 28{66. Ben-

jamin/Cummings, 1993.

21

2

Smalltalk-80: the Language and its Implementation

Proc. Twelfth Int'l Conf. on

the Entity-Relationship Approach Lecture Notes in Computer Science

Proc. of the ACM SIGMOD Int'l Conf. on Management of

Data

Advances in Database Programming Languages

Proc.

First Int'l Conf. on Information and Knowledge Management Lecture

Notes in Computer Science

ACM Transactions on Database

Systems

Modern Database Systems: The Object Model, Interoperability and

Beyond

Proc.

Seventeenth Int'l Conf. on Very Large Data Bases

Temporal

Databases: Theory, Design, and Implementation

Temporal Databases: Theory, Design, and Implementation

Advances in Database Programming Languages

[10] A. Goldberg and D. Robson. .

Addison-Wesley, 1983.

[11] I. Goralwalla and M.

�

Ozsu. Temporal Extensions to a Uniform Behavioral Object Model.

In R. Elmasri, V. Kouramajian, and B. Thalheim, editors,

, volume 823 of ,

pages 110{121. Springer-Verlag, Berlin, 1993.

[12] G. Guerrini, E. Bertino, and R. Bal. A Formal De�nition of the Chimera Object-

Oriented Data Model. Technical Report IDEA.DE.2P.011.01, ESPRIT Project 6333,

May 1994. Submitted for publication.

[13] W. K�afer and H. Sch�oning. Realizing a Temporal Complex-Object Data Model. In

M. Stonebraker, editor,

, pages 266{275. ACM Press, 1992.

[14] C. Lecluse, P. Richard, and F. Velez. 0 , an Object-Oriented Data Model. In F. Ban-

cilhon and P. Buneman, editors, , pages

257{276. Addison-Wesley, 1990.

[15] N. Pissinou and K. Makki. A Framework for Temporal Object Databases. In

, volume 752 of

, pages 86{97. Springer-Verlag, Berlin, 1992.

[16] R. Snodgrass. The Temporal Query Language TQUEL.

, 12(2):247{298, June 1987.

[17] R. Snodgrass. Temporal Object-Oriented Databases: A Critical Comparison. In

W. Kim, editor,

. Addison-Wesley/ACM Press, 1995.

[18] R. Stam and R. Snodgrass. A Bibliography on Temporal Databases. Database Engi-

neering, December 1988.

[19] S. Su and H. Chen. A Temporal Knowledge Representation Model OSAM*/T and its

Query Language OQL/T. In G. M. Lohman, A. Sernadas, and R. Camps, editors,

, pages 431{441, 1991.

[20] A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass.

. Database Systems and Applications

Series. Benjamin/Cummings, 1993.

[21] G. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned Object-Oriented

Databases. In A. Tansel, J. Cli�ord, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass,

editors, , pages 230{247. Ben-

jamin/Cummings, 1993.

[22] S. Zdonik. Object-Oriented Type Evolution. In F. Bancilhon and P. Buneman, editors,

, pages 277{288. Addison-Wesley, 1990.

22

