
An Approa
h

to Classify Semi-Stru
tured Obje
ts

?

Elisa Bertino

1

Giovanna Guerrini

2

Isabella Merlo

2

Mar
o Mesiti

3

1

Dipartimento di S
ienze dell'Informazione

Universit�a degli Studi di Milano

Via Comeli
o 39/41 - I20135 Milano, Italy

bertino�dsi.unimi.it

2

Dipartimento di Informati
a e S
ienze dell'Informazione

Universit�a di Genova

Via Dode
aneso 35 - I16146 Genova, Italy

fguerrini,merloisag�disi.unige.it

3

Bell Communi
ations Resear
h

445, South Street - Morristown (NJ), U.S.A.

mar
o�resear
h.bell
ore.
om

Abstra
t. Several advan
ed appli
ations, su
h as those dealing with

the Web, need to handle data whose stru
ture is not known a-priori.

Su
h requirement severely limits the appli
ability of traditional database

te
hniques, that are based on the fa
t that the stru
ture of data (e.g. the

database s
hema) is known before data are entered into the database.

Moreover, in traditional database systems, whenever a data item (e.g.

a tuple, an obje
t, and so on) is entered, the appli
ation spe
i�es the

olle
tion (e.g. relation,
lass, and so on) the data item belongs to. Col-

le
tions are the basis for handling queries and indexing and therefore a

proper
lassi�
ation of data items in
olle
tions is
ru
ial. In this pa-

per, we address this issue in the
ontext of an extended obje
t-oriented

data model. We propose an approa
h to
lassify obje
ts,
reated without

spe
ifying the
lass they belong to, in the most appropriate
lass of the

s
hema, that is, the
lass
losest to the obje
t state. In parti
ular, we

introdu
e the notion of weak membership of an obje
t in a
lass, and

de�ne two measures, the
onformity and the heterogeneity degrees, ex-

ploited by our
lassi�
ation algorithm to identify the most appropriate

lass in whi
h an obje
t
an be
lassi�ed, among the ones of whi
h it is

a weak member.

1 Introdu
tion

In the last few years, there has been in the database
ommunity a growing

interest in the management of semi-stru
tured data [1℄. Semi-stru
tured data are

data whose stru
ture is not regular, is heterogeneous, is partial, has not a �xed

?

Work partially supported by the Italian MURST under the Interdata Proje
t.

format and qui
kly evolves. Moreover, the distin
tion between the data des
ribed

by the stru
ture and the stru
ture itself is blurred. Those
hara
teristi
s are

typi
al of data available on the Web [5℄, of data
oming from heterogeneous

information sour
es [24℄ and so on. The la
k of a �xed a-priori s
hema and of

information on the data stru
tures makes it diÆ
ult handling semi-stru
tured

data through
onventional database te
hnology.

Currently, the resear
h a
tivity
on
erning the management of semi-stru
tured

data is moving along three dire
tions [14℄: (1) te
hniques for gathering all kinds

of information (HTML pages, images, multimedia do
uments and so on) from

various information sour
es (like the Web) and for extra
ting stru
tural infor-

mation from them [3, 19℄; (2) development of data models able to represent su
h

kinds of information and extension of traditional database te
hniques to manage

them; (3) development of query exe
ution te
hniques able to exploit the stru
-

tural information extra
ted from data and of te
hniques to export data on the

Web [2℄.

In the data model area the resear
h
ommunity has proposed two main ap-

proa
hes to model semi-stru
tured data [10, 14℄. The �rst one is a more tradi-

tional approa
h and
onsists of adapting existing data models to deal with semi-

stru
tured data. In parti
ular, extensions to the obje
t-oriented data model have

been proposed with less restri
tive type systems [13, 26℄. The se
ond approa
h,

by
ontrast, does not have any notion of type and s
hema to avoid any restri
-

tion on the stru
ture of the data to be stored in the database. The basi
 idea

of this approa
h [4, 12℄ is to use a labeled graph to store stru
tural information

together with data they refer to. An advantage of the �rst approa
h over the se
-

ond one is the existen
e of a stru
ture
ontaining information on the type of data

separated from the data themselves. This is important for eÆ
iently querying

data and for developing adequate storage stru
tures and indexing te
hniques. To

over
ome the drawba
ks of the la
k of \s
hema" information, proposals following

the se
ond approa
h have been re
ently extended with the introdu
tion of some

exible \s
hema me
hanism" [11, 17℄, able to represent information on the data,

and yet leaving a high degree of freedom with respe
t to the data entered into

the database.

An important issue, quite independent from the modeling approa
h adopted,

is to
apture the existen
e of some regularity in the data, i.e., typing data or, as

in our approa
h,
lassifying them. Automati
 typing or
lassi�
ation is
ru
ial in

order to a
hieve e�e
tive storage and retrieval. However, limited work has been

arried out in the
ontext of semi-stru
tured data. In this paper, we address

su
h issue by de�ning a
lassi�
ation approa
h for data, whose stru
ture is not

known, with respe
t to
lasses in an inheritan
e hierar
hy of an obje
t-oriented

database. Therefore we assume the existen
e of an a-priori de�ned s
hema and

allow one to
reate obje
ts, whose
lass is not known, whi
h are automati
ally

lassi�ed in the existing s
hema. On
e an obje
t has been
lassi�ed, it
an be

e�e
tively
onsidered part of the database. Appli
ations
an, therefore, a

ess

and modify su
h an obje
t exploiting all the database features.

It is important to remark that the problem of automati
ally
lassifying infor-

mation has also been investigated in other areas. However, semi-stru
tured data

have features requiring the development of spe
i�

lassi�
ation te
hniques. In

parti
ular, the problem of automati

lassi�
ation has been dealt with in the

ontext of frame-based terminologi
al languages [25℄, whi
h use automati

las-

si�
ation te
hniques both at the terminologi
al and assertional levels (s
hema

and data, respe
tively), for
orre
tly positioning a
on
ept in the taxonomy

and for determining the most spe
i�

on
ept for an instan
e. Classi�
ation ap-

proa
hes, typi
al of su
h languages, rely on determining subsumption relations

among
on
epts. Subsumption, however, takes into a

ount also attribute values,

rather than only
onsidering the similarity of the stru
ture, as in our approa
h,

whi
h then results in simpler and more eÆ
ient algorithms. The problem has

also been investigated in the software engineering area. In [7℄ a CASE tool is

proposed that starting from a set of obje
t examples derives a s
hema suited for

handling those obje
ts.

In the
ontext of semi-stru
tured data the problem of automati
 typing has

been addressed in [23℄. However, the goal of that work substantially di�ers from

ours, sin
e their main aim is to extra
t s
hema information from data, that is, to

extra
t stru
ture from raw data. They deal with the problem of how to avoid the

proliferation of types by de�ning a distan
e among types, but they do not address

how their framework
ould exploit some a-priori knowledge on the data s
hema.

We remark that this knowledge, that we assume in our approa
h, often o

urs

in pra
ti
e, for instan
e when integrating semi-stru
tured data, dis
overed on

the Web, with data having a known stru
ture or when the semi-stru
tured data

have asso
iated some kind of stru
tural information (for example the Do
ument

Type De�nition asso
iated with an XML page [21℄). Moreover, in [23℄ it is not

spe
i�ed whether the insertion of new obje
ts, on
e the s
hema is set,
an result

in s
hema modi�
ations and attribute domains are not kept into a

ount.

Our
lassi�
ation approa
h has been proposed in the
ontext of a referen
e

data model [8℄. The referen
e data model in
ludes some new types ensuring a

highly
exible type system. In parti
ular, its modeling power is
omparable to

that of the best known data models for semi-stru
tured data, su
h as [4, 13, 26℄,

in that it
aptures all the kinds of data heterogeneity that
an be represented

in those models. Moreover, we remark that, though tailored to a given data

model, our approa
h to automati

lassi�
ation is highly independent from the

parti
ular type system and it
an be easily adapted to other obje
t-oriented data

models and type systems supporting union types. In fa
t, union types represent

a
ommon extension to a traditional obje
t type system to meet the
exibility

requirements for managing semi-stru
tured data.

In our model, a semi-stru
tured obje
t is an obje
t that has been
reated

without spe
ifying the
lass it belongs to. To this purpose, our model supports

a new operation in whi
h the
lass to whi
h the obje
t belongs to may not be

spe
i�ed.

In the
ontext of semi-stru
tured data, the assumption that for ea
h obje
t

there is a type exa
tly des
ribing it is too strong. Thus, in our model we do

not make su
h assumption and we rely on a notion of weak membership. Su
h

notion is weaker than the
lassi
al notion of
lass membership, sin
e we only

require the
omponents

1

in the obje
t state be a subset of the
omponents of

the stru
tural type of the
lass,

2

rather than requiring the
omponents of the

obje
t state be exa
tly all and only those appearing in the stru
tural type of the

lass, as in traditional obje
t-oriented data models. A

ording to our notion of

weak membership, an obje
t
an be a weak member of no
lass, of just one
lass

or of several
lasses, even not related by inheritan
e hierar
hies. To determine the

most appropriate
lass for an obje
t, among the ones of whi
h the obje
t is a weak

member, we use two measures: the
onformity degree, measuring the similarity

degree between the type of the semi-stru
tured obje
t and the stru
tural type

of the
lass, and the heterogeneity degree of the
lass, measuring how mu
h the

extension of the
lass is heterogeneous. If an obje
t is a weak member of no
lass,

it is inserted in a repository of un
lassi�ed obje
ts. As the s
hema evolves the

repository is periodi
ally examined, trying to
lassify obje
ts
ontained in it.

As it is outlined in [23℄, addressing the problem of extra
ting stru
ture from

semi-stru
tured data leads to approximate typing or
lassi�
ation, sin
e heuristi

te
hniques are exploited. The
onformity and heterogeneity degrees are measures

that allow one to
lassify a given obje
t in the s
hema, inserting it into a
lass

whi
h is as
lose as possible to the a
tual obje
t stru
ture.

Among the possible appli
ations of our
lassi�
ation te
hnique, we would

like to mention its use in supporting
ontent-based sear
h on the Web. The idea

is to re
ord the
ontent of HTML pages in an existing database. Through an

information extra
tion tool one
an delimit a (semi-stru
tured) obje
t represent-

ing the relevant information of the page. Then, our automati

lassi�
ation tool

determines the most appropriate
lass to insert the obje
t in. On
e the obje
t,

orresponding to the HTML page, is inserted in the database, su
h information

an be used to support
ontent-based data retrieval through a query language.

We believe that su
h an approa
h
ould represent a relevant improvement to the

well-known te
hniques, based on pattern mat
hing, adopted by the most popular

Web sear
h engines.

The remainder of the paper is organized as follows. In Se
tion 2 we review the

on
epts of the referen
e data model that are relevant to this work. In Se
tion 3

we introdu
e the notion of weak membership, whereas in Se
tion 4 we dis
uss the

proposed
lassi�
ation approa
h and we present an algorithm to automati
ally

lassify obje
ts a

ording to our notion of weak membership. Finally, Se
tion 5

on
ludes the paper and dis
usses future work. Appendix A presents the formal

de�nitions of some
on
epts introdu
ed throughout the paper.

1

A
omponent of a re
ord value or of a re
ord type is one of the slots
omposing it.

2

The stru
tural type of a
lass is the re
ord type
ontaining the attributes of the
lass

and their respe
tive domains.

2 Referen
e Data Model

The referen
e data model, de�ned as extension of the basi
 obje
t-oriented data

model [18℄, is based on a type system whi
h
onsists of three kinds of types: value

types, obje
t types, and the spring type. Value types are
lassi
al types su
h

as basi
 value types (integer, bool, real, et
.) and stru
tured types (built by

means of re
ord, set and list
onstru
tors). The referen
e data model adds

to this set of types the union type, that we will dis
uss in more details below.

Obje
t types are types
orresponding to
lasses (
lass names). Finally, the

spring type is a new type, not present in the basi
 obje
t-oriented data model,

allowing one to spe
ify that an attribute does not have any spe
i�
 domain. Be-

ause of the relevan
e of this type in handling semi-stru
tured data, we will also

dis
uss it in more details below. It is important to remark that the referen
e data

model, as the basi
 obje
t-oriented data model, supports all the
ommon features

of obje
t-oriented data models su
h as obje
t identity, user-de�ned operations,

lasses, inheritan
e (we refer the reader to [8℄ for details on the referen
e data

model). The spring and union types enri
h the original obje
t-oriented data

model with the
exibility required to manage semi-stru
tured data, and make

the type system of our model more
exible than those of existing data models

for semi-stru
tured data [13, 26℄. In order to provide a safe obje
t-oriented data

model, in [8℄ subtyping relationship and
lass re�nement are addressed.

In the remainder of this se
tion we �rst dis
uss the new types added to

the basi
 data model and then we introdu
e the notions of
lass and obje
t as

supported by the model.

2.1 Union Types

A union type
onsists of a set of types belonging to the basi
 type system ea
h

one asso
iated with a distin
t label. Let T

1

; : : : ; T

n

be value types of the basi

obje
t-oriented data model or obje
t types and a

1

; : : : ; a

n

be distin
t labels,

then the type union-of(a

1

: T

1

; : : : ; a

n

: T

n

) is a union type. Our union type

de�nition is similar to the one proposed in [13℄, but it is not identi
al sin
e we

impose the restri
tion that the types of the union type
omponents be neither

the spring type nor union types. This restri
tion ensures eÆ
ien
y in terms of

spa
e allo
ation and type safety, and simpli�es
lassi�
ation of semi-stru
tured

obje
ts. Subtyping rules for union types are similar to those proposed in [13℄.

Legal values for a union type are pairs l : v, where l is the label of a union type

omponent, and v is a legal value for the type asso
iated with l.

As a
onsequen
e of the introdu
tion of union types, we have modi�ed the

re
ord type de�nition of the basi
 obje
t-oriented data model to allow one to

omit the label asso
iated with a
omponent whose type is a union type. In this

way, in order to a

ess that
omponent, we only need to use the label appearing

in the union type de�nition.

Example 1. Let person be a
lass name. Let re
ord-of(a:integer, union-of

(b:string,
:person)) be a re
ord type. Let X be a variable of this type. In

order to a

ess
omponent b, we simply write X:b. 3

To avoid ambiguities in a

essing a
omponent of a re
ord type, we impose that

the labels of re
ord type
omponents and the labels of union type
omponents

be all distin
t. That is, we disallow re
ord types su
h as re
ord-of(a:integer,

union-of(a:string,
:person)).

A legal value, for a re
ord type, has the form (a

1

: v

1

; : : : ; a

n

: v

n

), where a

i

is the label of a re
ord type
omponent or the label of a union type
omponent

appearing in the re
ord type de�nition, and v

i

is a legal value for the type

asso
iated with a

i

in the
orresponding re
ord type de�nition. For example, let i

p

be the identi�er of an obje
t belonging to the
lass person, then (a : 5; b :'rose')

and (a : 8;
 : i

p

) are legal values for the type of the previous example.

2.2 Spring Type

The spring type is the
ommon supertype of value types and obje
t types.

The introdu
tion of this type allows us to manage data without knowing their

a
tual type. Ea
h legal value of ea
h type of the model is a legal value for the

spring type. Note that our notion of spring type is di�erent from the notion of

Obje
t type, supported by some systems like GemStone [9℄. The �rst di�eren
e

is that in our model we have both value types and obje
t types, whereas those

systems only support obje
t types. The spring type, in our model, is not an

obje
t type and is not a value type, rather it is a
ommon supertype of all (value

and obje
t) types of the model. Another relevant di�eren
e is that in our model

the spring type
annot be dire
tly instantiated, that is, no obje
ts or values
an

be proper instan
es of the spring type. In other systems, by
ontrast, obje
ts

an be proper instan
es of the Obje
t type.

2.3 Classes, Obje
ts and Semi-stru
tured Obje
ts

Our model supports a quite standard notion of
lass, with some di�eren
es aris-

ing from the introdu
tion of the union and spring types. Ea
h
lass, moreover,

has a stru
tural type, whi
h is a re
ord type des
ribing the state of the
lass

instan
es, formally de�ned as follows.

De�nition 1. (Stru
tural type of a
lass). Given a
lass
, de�ned as

lass
 fa

1

: T

1

; : : : ; a

m

: T

m

;

union-of(a

1

1

: T

1

1

; : : : ; a

p

1

: T

p

1

); : : : ; union-of(a

1

n

: T

1

n

; : : : ; a

p

n

: T

p

n

) g

the re
ord type re
ord-of(a

1

: T

1

; : : : ; a

m

: T

m

; T

m+1

; : : : ; T

m+n

), where, for k =

1; : : : ; n: T

m+k

= union-of(a

1

k

: T

1

k

; : : : ; a

p

k

: T

p

k

), is the stru
tural type of
lass

, denoted by stype(
). 2

Note that, as spe
i�ed in the de�nition above, the
lass
ontains some �xed

attributes (a

1

; : : : ; a

m

), and some other
omponents for whi
h one out of some

possible alternatives, spe
i�ed through a union type,
an be
hosen (
omponent

m+ 1 to m+ n).

The notion of obje
t supported by the model, formalized by the following

de�nition, is also quite standard.

De�nition 2. (Obje
t). An obje
t is a triple o = (i; v;
) where i is an obje
t

identi�er, v is a re
ord value (the obje
t state) and
 is the most spe
i�

lass to

whi
h o belongs. 2

Finally, the following de�nition states the
onditions for an obje
t to be an

instan
e of a
lass.

De�nition 3. (Instan
e). An obje
t o is an instan
e of a
lass
 if o:v is a legal

value for stype(
). 2

De�nition 3 above requires that the following
onditions hold:

(1) for ea
h
omponent a : v of the obje
t state, a
omponent a : T exists in

stype(
) su
h that v is a legal value for T or a
omponent union-of(a

1

:

T

1

; : : : ; a

p

: T

p

) exists su
h that a : v is a legal value for that
omponent,

that is, 9 i; 1 � i � p, su
h that a = a

i

, and v is a legal value for T

i

;

(2) for ea
h
omponent a : T in stype(
), a
omponent a : v exists in the obje
t

state su
h that v is a legal value for T , and for ea
h
omponent union-

of(a

1

: T

1

; : : : ; a

p

: T

p

) in stype(
) a
omponent a : v exists in the obje
t

state su
h that a : v is a legal value for that
omponent, that is, 9 i; 1 � i � p,

su
h that a = a

i

and v is a legal value for T

i

.

Condition (1) above requires that ea
h
omponent in the obje
t state
orre-

sponds either to an attribute of the
lass (and in this
ase the
omponent value

must be a legal value for the attribute domain) or to one of the
omponents of

a union type in the stru
tural type of the
lass (and in this
ase the
omponent

value must be a legal value for the union type
omponent domain). Condition

(2) above, by
ontrast, requires that the obje
t state
ontains a
omponent for

ea
h attribute of the
lass and a
omponent for ea
h union type in the stru
tural

type of the
lass (
orresponding to one of the
omponents of the union type).

The following is an example of
lasses and obje
ts in our model.

Example 2. Suppose we wish to model information about people, and in parti
-

ular name, age, birthday and love, where name may be a string, or a re
ord

with two
omponents, �rst name (f-name), surname (s-name), and love may

assume any value (a person may love another person or an animal or anything

else). Let date be a
lass of the database s
hema and i

d

be the identi�er of an

obje
t instan
e of
lass date. We may de�ne a
lass person whose stru
tural

type is:

re
ord-of(union-of(nameS:string, nameR:re
ord-of(f-name:string,

s-name:string)),age:integer,birthday:date,love:spring).

mailperson

employee internal_mail personal_mail business_mail

Fig. 1. A
hunk of a database s
hema

The following obje
ts are instan
es of
lass person: o

1

= (i

1

; v

1

; person), where

v

1

= (nameS :'X '; age : 25; birthday : i

d

; love :'rose'), and o

2

= (i

2

; v

2

; person),

where v

2

= (nameR:(f-name :'Max'; s-name : 'X '); age : 25; birthday : i

d

; love :

i

p

). Note that, even if their states are legal values for the stru
tural type of
lass

person, they have di�erent stru
tures. 3

In our model, �nally, we denote by semi-stru
tured obje
t an obje
t

reated without spe
ifying the
lass it belongs to. The obje
t is
alled semi-

stru
tured be
ause it is inserted in the database without any a-priori information

about its
lass. The obje
t
an be an instan
e of several
lasses of the s
hema,

or of no
lass. In other words, the obje
t state may be a legal value for the stru
-

tural type of more than one
lass, or it may be a legal value for no stru
tural

type asso
iated with any
lass in the s
hema.

Example 3. Suppose we want to
lassify e-mails in a database in order to make

their retrieval easier. Suppose we have a mailer that allows to asso
iate some

stru
tural information with e-mails and that we have an extra
tion information

tool able to take that stru
tural information out from them. Now we want to

reate a database to store e-mails using our model. The idea is that when a new

e-mail is sent or re
eived through the mailer, the extra
tion information tool

takes out information (with a stru
ture) from the e-mail and tries to insert this

semi-stru
tured obje
t in the database. Suppose we have
reated the following

lasses in the database:

3

{ stype(mail) =

re
ord-of(union-of(re
eiverS:string, re
eiverP:person),

body:spring);

{ stype(internal mail) =

re
ord-of(subje
t:spring, sender:person, union-of(re
eiverS:

string, re
eiverP:employee), body:string);

{ stype(personal mail) =

re
ord-of(subje
t:person, sender:person, union-of(re
eiverS:

string, re
eiverP:person), body:string);

{ stype(business mail) =

3

We do not present
lasses person and employee and the other
lasses of the s
hema

be
ause they are irrelevant for the example.

re
ord-of(logo:string, sender:person, union-of(re
eiverS:

string, re
eiverP:employee), body:string).

The meaning of the previous
lasses is intuitive. The idea is to have a
lass for

e-mails and to re�ne the personal, internal and business e-mails in distin
t sub-

lasses. Figure 1 shows a
hunk of the database s
hema, showing the inheritan
e

relationships among
lasses. Suppose the extra
tion information tool generates

obje
ts o

1

, : : :, o

4

from some e-mails arrived in the mailbox, whose states are,

respe
tively:

1. (re
eiverS:'Elena F : : :', body:'Dear Moni
a : : :'),

2. (subje
t:i

p

, sender:i

p

),

3. (sender:i

p

, re
eiverP: i

e

, body:'Hello Ugo : : :'),

4. (subje
t:'Summer in : : :', atta
hment:'photo:jpg')

where i

p

is an identi�er of an obje
t of
lass person and i

e

is an identi�er of an

obje
t of
lass employee. The �rst obje
t is an instan
e of
lass mail, whereas

the others have less attributes or, as in the last
ase, has an attribute not in

the s
hema. In the following we will see how our
lassi�
ation approa
h handles

these situations. 3

3 Weak Membership

In the management of semi-stru
tured obje
ts we want to emphasize the role

of the
lass as a repository that
ontains obje
ts whose states have the same

type,

4

rather than as a template for
reating obje
ts. In this
ontext, we al-

low appli
ations to
reate obje
ts without spe
ifying the
lass they belong to.

Then, it is the system that automati
ally
lassi�es those obje
ts in an appro-

priate
lass. In order to
lassify a semi-stru
tured obje
t, we need a
riterion to

bind su
h obje
t to a
lass. The notion of instan
e
ould be used for this pur-

pose, but its de�nition is too restri
tive to be used for semi-stru
tured obje
ts.

In order to a
hieve the
exibility needed to
lassify semi-stru
tured obje
ts, we

propose a weaker notion, referred to as weak membership, only requiring
on-

dition (1), stated after De�nition 3. Thus, the stru
tural type of a
lass may

have more
omponents than those appearing in the obje
t state. In su
h a
ase,

we need some ex
eption-handling me
hanism to manage a

esses to
omponents

not present in the
lassi�ed obje
t. The idea of
lassifying semi-stru
tured data

in an existing a-priori database s
hema
ould seem too restri
tive. By
ontrast

we believe that our automati

lassi�
ation, based on the notion of weak mem-

bership, represents a
ompromise between the
exibility of semi-stru
tured data

and the rigidity of obje
t-oriented s
hemas and allows one to bene�t from all the

features of obje
t-oriented database systems to manage this kind of information.

4

Note that, in our model, this
ondition does not mean that all obje
ts instan
es of

a
lass have the same stru
ture (
fr. Example 2).

id

REC

REC

string

REC

UNIONnameS birthday

date integer

age

love
birthday

’X’ nameS nameR

stringstring

s-name f-name

SPRING

(b)(a)

Fig. 2. (a) Obje
t value expression, (b)
lass stru
tural expression and their simulation

relation

In order to formally de�ne the notion of weak membership and to de�ne

a method to
he
k whether an obje
t is a weak member of a
lass, we extend

a well-known theoreti
al notion, the simulation relation [22℄. First, we provide

an abstra
t representation of the stru
tural type of a
lass, the
lass stru
tural

expression, and an abstra
t representation of the obje
t state, the obje
t value

expression. Then, to verify whether the obje
t is a weak member of the
lass,

we
he
k whether a parti
ular simulation exists between those two expressions.

Intuitively, the
lass stru
tural expression is a tree labeled with symbols rep-

resenting the attributes of the
lass and their types, whereas the obje
t value

expression is a tree labeled with symbols representing the attributes of the ob-

je
t and their values. In the remainder of this se
tion, we �rst present the formal

de�nitions
on
erning
lass and obje
t expressions (Subse
tion 3.1) and then the

weak membership notion is formally de�ned (Subse
tion 3.2).

3.1 Class and Obje
t Expressions

In the following the set PRED denotes a set of predi
ates where ea
h predi-

ate represents the set of legal values for basi
 value types and obje
t types. A

predi
ate p 2 PRED applied to a value v holds if and only if v belongs to the

set of instan
es asso
iated with the type p, where the type p may be a basi

value type or an obje
t type. Moreover, given the set AN of attribute names,

LT denotes the set of tree labels, that is LT = fLIST, REC, SET, UNION,

SPRINGg [AN [PRED. The following de�nition states the notion of
lass

stru
tural expression.

De�nition 4. (Class stru
tural expression). Given a
lass
, the
lass stru
tural

expression of
 (denoted by "

t

(
)) is a tree (V

t

; E

t

; '

t

), labeled on LT , where V

t

is a set of verti
es, E

t

� V

t

� V

t

is a set of edges, and '

t

: E

t

! LT is the edge

labeling fun
tion. 2

Sin
e the
lass stru
tural expression is a tree asso
iated with a type of the

model (the stru
tural type of a
lass), we have developed an indu
tive system

to map any type of the model into a labeled tree [8℄. Figure 2(b) shows the

lass stru
tural expression asso
iated with
lass person of Example 2. Note that

string, date, and integer symbols are predi
ates whi
h represent the set of

legal values for the
orresponding types. Note also that we have not generated

the stru
tural expression asso
iated with the obje
t type date sin
e we are

interested in shallow

5

omparison among obje
ts and
lasses.

In the following de�nition, stating the notion of obje
t value expression, LV

denotes the set of labels of obje
t value expressions, that is, LV = fLIST, REC,

SET, UNION, NULLg [AN [V , where V denotes the set of legal values for

basi
 value types and obje
t identi�ers.

De�nition 5. (Obje
t value expression). Given an obje
t o, the obje
t value

expression of o (denoted by "

v

(o)) is a tree (V

v

; E

v

; '

v

), labeled on LV, where

V

v

is a set of verti
es, E

v

� V

v

� V

v

is a set of edges and, '

v

: E

v

! LV is the

edge labeling fun
tion. 2

Similarly to what has been done for the
lass stru
tural expression, an indu
-

tive system has been de�ned in [8℄ to map values of the model into labeled trees.

Figure 2(a) shows the obje
t value expression asso
iated with a semi-stru
tured

obje
t whose state is (nameS :'X '; birthday : i

d

). A

ording to our shallow ap-

proa
h, we have not generated the obje
t value expression asso
iated with the

state of the obje
t identi�ed by i

d

.

We also introdu
e the notion of re�nement among stru
tural expressions,

whi
h is used by our
lassi�
ation algorithm. Intuitively, a stru
tural expression

(that is, a tree whose edges are labeled in LT) "

0

is a re�nement of a stru
tural

expression " if the two trees are isomorphi
, but some of the labels of "

0

are
lass

names
orresponding to sub
lasses of the
orresponding labels in ". Let PRED

o

denote the subset of PRED
orresponding to obje
t types, and �

ISA

denote the

inheritan
e relationship on obje
t types, then, the notion of re�nement among

stru
tural expressions is de�ned as follows.

De�nition 6. (Stru
tural expression re�nement). Let " = (V

t

; E

t

; '

t

) and "

0

=

(V

t

; E

t

; '

0

t

) be two stru
tural expressions. "

0

is a re�nement of " if

8e 2 E

t

: '

t

(e) = '

0

t

(e)_('

t

(e) 2 PRED

o

^'

0

t

(e) 2 PRED

o

^'

0

t

(e) �

ISA

'

t

(e)): 2

The following example illustrates the notion of stru
tural expression re�ne-

ment.

Example 4. The stru
tural expression presented in Figure 3(b) is a re�nement of

the one presented in Figure 3(a) be
ause the two trees have the same stru
ture

and the labels are all equals ex
ept person and employee whi
h are in the �

ISA

relation. 3

5

Shallow is used here with the same meaning as in shallow equality [16℄.

receiverP

body

string

REC

personperson

sender

(a)

receiverP

body

string

REC

person

sender

employee

(b)

Fig. 3. Stru
tural expression re�nement

3.2 Simulation Relation

Before de�ning the relation between the
lass stru
tural expression and the ob-

je
t value expression we introdu
e a mapping between labels in set LV and labels

in set LT , that is used to identify a set of
ases to be managed in the same way.

De�nition 7. (Relation �

L

between labels). A relation �

L

holds between a

label l

v

2 LV and a label l

t

2 LT (denoted by l

v

�

L

l

t

), if and only if one of

the following
onditions holds: (1) l

v

= NULL and l

t

6= SPRING; (2) l

v

; l

t

2

fLIST, REC, SET, UNIONg [AN and l

v

= l

t

; (3) l

t

2 PRED and l

t

holds on

l

v

. 2

We are now able, using relation �

L

, to introdu
e the notion of simulation.

The simulation is a parti
ular relation among the verti
es of the obje
t value

expression and the verti
es of the
lass stru
tural expression that takes into

a

ount the symbols used to label the edges of these expressions. The idea of

simulation is used in several resear
h areas [11, 20℄ and it has a solid theoreti
al

foundation. We will use it to formally de�ne the notion of weak membership. Our

de�nition of simulation in an extension of the \
lassi
al" one, thus it preserves

its good properties [20℄.

Informally, a relation R between the verti
es of an obje
t value expression

(V

v

; E

v

; '

v

) and the verti
es of a
lass stru
tural expression (V

t

; E

t

; '

t

) is a

simulation if the following
onditions hold:

{ If the label l

v

2 LV asso
iated with the edge (u

1

; u

0

1

) 2 E

v

, outgoing from

vertex u

1

, identi�es a parti
ular type (stru
tural, basi
, obje
t), then an

edge (u

2

; u

0

2

) 2 E

t

must outgo from u

2

labeled with a symbol l

t

2 LT , for

whi
h relation �

L

holds between l

v

and l

t

. Moreover, relation R must hold

between u

0

1

and u

0

2

.

{ If the label l

v

2 LV asso
iated with the edge (u

1

; u

0

1

) 2 E

v

, outgoing from

vertex u

1

, is an attribute name (l

v

2 AN) and the label asso
iated with

the edge (u

2

; u

0

2

) 2 E

t

, outgoing from vertex u

2

, is UNION , then an edge

(u

0

2

; u

00

2

) 2 E

t

must exist, outgoing from vertex u

0

2

, with the same label of

the edge (u

1

; u

0

1

). Moreover, relation R must hold between u

0

1

and u

00

2

.

lt

1

lv

1 2

2
u

u’ u’

u

(a)

lv

lv

UNION

2

1

1 2

2

u’’

u’

uu

u’

(b)

lv SPRING

1

1 2

2

u

u’

u

u’

(
)

Fig. 4. Visual representation of relation among verti
es of item (2) of De�nition 8

{ If the label l

t

2 LT asso
iated with the edge (u

2

; u

0

2

) 2 E

t

, outgoing from

vertex u

2

, is SPRING, then there is no
ondition to verify. In this situation

we do not need to
he
k other pairs in the relation whose �rst
omponent

is a vertex belonging to the subtree rooted at u

1

, sin
e the value asso
iated

with the subtree rooted at u

1

surely is a legal value for the type asso
iated

with the subtree rooted at u

2

(that is, the spring type).

The following de�nition formally states our notion of simulation. In the def-

inition root(A) denotes the root of tree A and u

l

�! u

0

denotes an edge (u; u

0

)

su
h that '((u; u

0

)) = l.

De�nition 8. (Simulation). A binary relation R from the verti
es of A

v

=

(V

v

; E

v

; '

v

) labeled on LV to the verti
es of A

t

= (V

t

; E

t

; '

t

) labeled on LT ,

is a simulation if and only if the following
onditions hold:

1. root(A

v

) R root(A

t

);

2. if u

1

R u

2

, then 8u

1

l

v

�! u

0

1

in E

v

, 9 u

2

l

t

�! u

0

2

in E

t

, su
h that one and

only one of the following
onditions holds:

(a) l

v

�

L

l

t

and u

0

1

R u

0

2

,

(b) l

t

= UNION , 9u

0

2

l

0

t

�! u

00

2

in E

t

su
h that l

v

= l

0

t

and u

0

1

R u

00

2

,

(
) l

t

= SPRING. 2

In Figure 2 the dashed lines represent the simulation between the obje
t value

expression asso
iated with the semi-stru
tured obje
t, that we have introdu
ed

previously, and the stru
tural expression asso
iated with the stru
tural type of

lass person of Example 2. A visual representation of relation among verti
es

of item (2) of De�nition 8 is shown in Figure 4. The dashed lines identify the

relation that must hold between the verti
es of the two trees. Note that, as you

an see in Figure 4(
), we do not require the relation to hold between verti
es

u

0

1

and u

0

2

.

For determining weak membership, we do not
onsider every simulation.

Consider the following example.

Example 5. Consider the obje
t value expression asso
iated with the obje
t state

(a: 5, b:'rose') and the
lass stru
tural expression asso
iated with the stru
tural

type re
ord-of(union-of(a:integer, b:string)). A

ording to De�nition 8

a simulation exists between them. 3

The simulation in the above example, however, does not
apture our notion of

the set of legal values for the re
ord type in the example. The idea of the union

type is, instead, that of
hoosing one out of some possible alternatives. Thus,

in the de�nition of weak membership, we leave out this kind of simulations, as

formally stated by the following de�nition.

De�nition 9. (Weak membership). An obje
t o is a weak member of a
lass

 if a simulation R exists between the obje
t value expression asso
iated with o

("

v

(o)) and the
lass stru
tural expression asso
iated with
 ("

t

(
)), su
h that

8u

2

UNION

�! u

0

2

labeled edge of "

t

(
) at most one pair (u; u

0

) 2 R exists su
h that

u

0

2 f�u j (u

0

2

; �u) is an edge of "

t

(
)g. 2

The above de�nition of membership is more
exible than the notion of instan-

tiation. A

ording to su
h de�nition, an obje
t state
an
ontain less
omponents

than those present in the stru
tural type of a
lass. Su
h de�nition, however, does

not allow one to identify only one
lass to whi
h the obje
t belongs. In the next

se
tion we propose an approa
h to establish the most appropriate
lass to whi
h

the obje
t belongs.

4 Automati
 Classi�
ation Approa
h

In the previous se
tion we have proposed an approa
h to determine whether a

semi-stru
tured obje
t is a weak member of a
lass. An obje
t may be a weak

member of several
lasses.

Example 6. Consider an obje
t whose state
onsists only of the
omponent

(age: 25). Su
h obje
t is a weak member of all the sub
lasses of
lass person

in the s
hema of Example 2. 3

When an obje
t is a weak member of several
lasses, we need some measures

to determine the most appropriate
lass in whi
h we
an
lassify the obje
t. If

no
lass exists of whi
h the obje
t is a weak member, we insert it into a reposi-

tory of un
lassi�ed obje
ts. As the s
hema evolves the repository is periodi
ally

examined, trying to
lassify obje
ts
ontained in it.

In the remainder of this se
tion we propose two measures to sele
t the most

appropriate
lass where we
an
lassify a given obje
t, among those of whi
h

the obje
t is a weak member. We also outline an algorithm using those mea-

sures to automati
ally
lassify semi-stru
tured obje
ts. Finally, we
ompute the

algorithm
omplexity and present some examples of automati

lassi�
ation.

4.1 Conformity Degree

With the �rst measure, referred to as
onformity degree, we want to
he
k how

mu
h the type of the semi-stru
tured obje
t is
lose to the stru
tural type of

a given
lass. In other words, we
he
k how many
omponents the
lass has in

addition to those of the obje
t. In
ase an obje
t is a weak member of more than

one
lass, we sele
t the
lasses that have the minimal number of additional
om-

ponents with respe
t to the
omponents in the obje
t state. For example, if an

obje
t is a weak member of a
lass and it is a weak member of some sub
lasses

of that
lass, we are not interested in
lassifying the obje
t in the most spe
i�

lass of the inheritan
e hierar
hy if this
lass has several attributes whi
h are

not part of the obje
t. To formally de�ne the
onformity degree, we introdu
e an

additional data stru
ture, referred to as obje
t stru
tural expression, representing

the a
tual type of the obje
t. This data stru
ture, intuitively, is a subtree of the

tree asso
iated with the stru
tural type of a
lass of whi
h the obje
t is a weak

member. It is asso
iated with a legal type of our type system and allows the

a
tual type of the obje
t to be
ompared with the stru
tural type of the
lass,

sin
e the obje
t stru
tural expression is built starting from the
lass stru
tural

expression. Informally, to generate this stru
ture we start from the existing sim-

ulation between the obje
t value expression and the
lass stru
tural expression

and extra
t the verti
es of the
lass stru
tural expression that appear in the

se
ond
omponent of the simulation. Then, we add to this set of verti
es other

verti
es to handle two parti
ular
ases: the presen
e of null values in the obje
t

state and the presen
e of spring types in the stru
tural type of the
lass. The

edges and the labeling fun
tion of this tree are
reated a

ordingly. For further

details on the formal de�nition of the obje
t stru
tural expression, that will be

denoted by "(o;
), we refer the reader to Appendix A. Figure 5(a) shows the

obje
t stru
tural expression asso
iated with the obje
t value expression shown

in Figure 2(a). As we
an see, this obje
t stru
tural expression represents the

type re
ord-of(nameS:string, birthday:date). The value asso
iated with

the obje
t value expression shown in Figure 2(a) is a legal value for that type.

Moreover, to formally de�ne the
onformity degree, we must take into a

ount

that when there is a union type in the stru
tural type de�nition of a
lass only

one of its
omponents may appear in the obje
t state. Thus, we
onsider the real

paths of a
lass stru
tural expression. Real paths, formally de�ned in Appendix

A, are paths that do not
ontain any edge labeled by UNION followed by an

edge labeled by l (l 2 AN) where l is an attribute not appearing in the ob-

je
t state. Figure 5(b) shows the tree only
ontaining the real paths of the
lass

stru
tural expression shown in Figure 2(b). The following de�nition formalizes

the notion of
onformity degree.

De�nition 10. (Conformity degree). Let o be a semi-stru
tured obje
t and
 be

a
lass su
h that o is a weak member of
. We de�ne the
onformity degree of o

with respe
t to
 (denoted by C

Æ

(o;
)), as the ratio of the number of paths of the

obje
t stru
tural expression and the number of real paths of the
lass stru
tural

REC

birthdaynameS

string date

(a)

date integer

age

love

SPRING

REC

birthday
nameS

string

(b)

Fig. 5. (a) Obje
t stru
tural expression, and (b) the part of
lass person stru
tural

expression
ontaining only the union
omponents that appear in the obje
t state

expression. Formally:

C

Æ

(o;
) =

#(path("(o;
)))

#(real-path("

t

(
)))

2

In the previous example, the number of paths of the obje
t stru
tural expres-

sion is 2, the number of real paths of the
lass stru
tural expression is 4, thus

the
onformity degree is 0.5.

The following proposition (proved in [8℄) holds.

Proposition 1. The following results on
onformity degree and weak member-

ship hold:

{ The
onformity degree is always a number between 0 (low
onformity) and 1

(high
onformity).

{ If a semi-stru
tured obje
t is an instan
e of a
lass, the
onformity degree is

1.

{ If a semi-stru
tured obje
t is a weak member of a
lass and the
onformity

degree is 1, then the obje
t is an instan
e of the
lass.

4.2 Heterogeneity Degree

With the se
ond measure, referred to as heterogeneity degree, we want to
he
k

how mu
h the extension of a
lass is heterogeneous. By using the heterogeneity

degree, we
an insert a given obje
t in the
lass with the most homogeneous ex-

tension. The advantage of having
lasses with a homogeneous extension is that

more eÆ
ient query exe
ution strategies and storage organizations are possible.

In Se
tion 2 we have seen that, be
ause of the presen
e of union and spring

types in the type system, several stru
tures may
orrespond to the same type.

In Se
tion 2 we have also seen that for ea
h
lass in the s
hema the set of obje
ts

belonging to a
lass may have di�erent stru
tures. For example, if in the stru
-

tural type of a
lass there is only a union type with two
omponents, and there

is no
omponent of spring type, then the extension of this
lass
onsists of a

set with two kinds of obje
ts: the ones having the �rst
omponent of the union

type, and the ones having the se
ond
omponent of the union type. Thus the

heterogeneity degree is 2.

6

By
ontrast, if we have only a
omponent of spring

type in the stru
tural type of the
lass, this
omponent may assume any legal

value of any type in the s
hema. Thus, the stru
ture of obje
ts belonging to

this
lass may be highly heterogeneous. In su
h
ase, the heterogeneity degree is

evaluated as the number of all value and obje
t types introdu
ed in the s
hema

(these sets are denoted by VT and CI, respe
tively). The heterogeneity degree

of a re
ord type is the produ
t of the heterogeneity degree of its
omponents,

while the heterogeneity degree of a set type (list type) is the heterogeneity degree

of its
omponent types. The heterogeneity degree of other types (belonging to

the basi
 type system) is 1 sin
e they do not generate heterogeneous extensions.

In
omputing the heterogeneity degree we take into a

ount that we perform a

shallow
omparison among the
lass stru
tural expression and the obje
t value

expression. That is, if the type of an attribute in a
lass
 is an obje
t type �
,

in
al
ulating the heterogeneity degree we do not take into a

ount the hetero-

geneity degree asso
iated with the
lass �
, rather we state that its heterogeneity

degree is 1. The following de�nition states how the heterogeneity degree of a

lass is
omputed.

De�nition 11. (Heterogeneity degree). Let T = stype(
) be the stru
tural type

of
lass
, then the heterogeneity degree asso
iated with
 is the value returned

by the following fun
tion applied to T .

H

Æ

(T) =

8

>

>

>

>

<

>

>

>

>

:

1 if T is a basi
 value type or obje
t type

n if T = union-of(a

1

: T

1

; : : : ; a

n

: T

n

)

#VT +#CI if T = spring

Q

m+n

i=1

H

Æ

(T

i

) if T = re
ord-of(a

1

: T

1

; ::; a

m

: T

m

; T

m+1

; ::; T

m+n

)

H

Æ

(T

0

) if T = list-of(T

0

) or T = set-of(T

0

)

2

Note that the heterogeneity degree, like the
lass stru
tural expression, does

not depend on the database instan
es but only on the s
hema. Thus, the hetero-

geneity degree and the
lass stru
tural expression may be
omputed at s
hema

de�nition time. This is important in order to de�ne eÆ
ient algorithms to
lassify

obje
ts in the s
hema.

4.3 Classi�
ation Algorithm

In our
lassi�
ation approa
h we look for a
lass su
h that: the semi-stru
tured

obje
t is a weak member of the
lass with the highest
onformity degree; the

lass has the lowest heterogeneity degree. In addition, for
lasses with the same

6

Note that, sin
e the types of union type
omponents are
onstrained to belong to

the basi
 type system, their heterogeneity degree is always 1.

onformity and heterogeneity degrees, we take into a

ount the inheritan
e hi-

erar
hy, by
hoosing the most spe
i�

lass in the hierar
hy.

The
lassi�
ation algorithm takes as input a semi-stru
tured obje
t and ex-

e
utes the following steps:

1. The set of
lasses of whi
h the obje
t is a weak member is
omputed; su
h

set is denoted as WMS. If WMS = ; then the obje
t
annot be
lassi�ed

and it is simply inserted in the repository of un
lassi�ed obje
ts. Otherwise,

2. The set of
lasses WMS

C-max

is extra
ted from the set WMS by
hoosing

the
lasses with respe
t to whi
h the obje
t has the highest
onformity de-

gree. If this set is a singleton, the most appropriate
lass has been found and

the obje
t is inserted in the
lass extension. Otherwise,

3. The set of
lasses WMS

H-min

is extra
ted from the set WMS

C-max

by

hoosing the
lasses with the lowest heterogeneity degree. If this set is a sin-

gleton, the most appropriate
lass has been found and the obje
t is inserted

in the
lass extension. Otherwise,

4. We delete fromWMS

H-min

all the
lasses having a sub
lass in that set, and

any
lass
 su
h that WMS

H-min

ontains a
lass

0

whose obje
t stru
tural

expression

7

is a re�nement of the obje
t stru
tural expression of
, a

ording

to De�nition 6. If the resulting set is a singleton, then the most appropri-

ate
lass has been found and the obje
t is inserted in the
lass extension.

Otherwise, an arbitrary
lass is sele
ted in whi
h the obje
t is inserted.

In the previous algorithm, �rst of all we �nd out the set of
lasses having the

highest
onformity degree from the
lasses whi
h the obje
t is a weak member

of. We use the
onformity degree as the main measure in the
lassi�
ation ap-

proa
h be
ause it allows one to identify the
lasses with the smallest number of

attributes not present in the obje
t state. At this point we try to minimize the

heterogeneity degree. To sele
t a
lass among the remaining
lasses, we
hoose

those
lasses whi
h are most spe
i�
 in the inheritan
e hierar
hy as well as those

lasses whose attribute domains most
losely mat
hes the attribute values of the

obje
t.

Note that, if the resulting set of the algorithm is not a singleton then an ar-

bitrary
lass is sele
ted in whi
h the obje
t is inserted. An alternative approa
h,

whi
h however is left for future investigation, would be to
lassify the obje
t in

all the
lasses in that set.

4.4 Complexity of the Classi�
ation Algorithm

In this se
tion we present the
omplexity of our algorithm. The following notation

is used:

{ C is the set of
lasses of the s
hema with respe
t to the obje
t is being

lassi�ed;

7

We re
all that the obje
t stru
tural expression (formally de�ned in Appendix A) is

the stru
tural expression representing the portion of the
lass stru
tural expression

a
tually present in the obje
t.

{ k the number of
lasses in C;

{ dim(o) is the dimension of the obje
t value expression asso
iated with the

obje
t being to
lassi�ed, that is, the number of verti
es of the tree;

{ dim(
) is the dimension of the
lass stru
tural expression asso
iated with a

lass
 2 C, that is, the number of verti
es of the tree.

8

The �rst step of the algorithm is the
omputation of the set of
lasses of whi
h

the obje
t is a weak member. A

ording to De�nition 9, this is equivalent to

determine whether a simulation exists between the obje
t value expression and

the
lass stru
tural expression. In the
omputation of the simulation relationship

(De�nition 8), at ea
h step, for ea
h edge u

1

l

v

�! u

0

1

of the obje
t value expression

we
he
k whether an edge u

2

l

t

�! u

0

2

exists su
h that one of the
onditions of

De�nition 8 holds. Note that, sin
e the time required to
he
k whether one of the

onditions of De�nition 8 holds is
onstant, we have to
ompute how many times

this step is iterated. Sin
e, for both the obje
t value expression and the
lass

stru
tural expression, the outgoing edges from a given vertex having an attribute

name as label are distin
t, no ba
ktra
king is needed during the iteration pro
ess,

whi
h, at most, repeats the
he
k of the properties as many times as the number

of edges of the obje
t value expression. Sin
e the number of edges in a tree is

equal to the number of the verti
es minus one, we
an
on
lude that the �rst step

has a
ost in O(dim(o)) for ea
h
lass, that is, in O(k�dim(o)) for all the
lasses of

the s
hema. In the se
ond step, �rst the
onformity degree is
omputed for ea
h

lass of whi
h the obje
t is a weak member. Be
ause the number of su
h
lasses

is at most k, the third step has a
ost in O(k �max

2C

fdim(
)g). After that,

the set of
lasses with respe
t to whi
h the obje
t has the highest
onformity

degree,WMS

C-max

, is
omputed. This step has a
ost in O(k). In the third step,

the set of
lasses with respe
t to whi
h the obje
t has the lowest heterogeneity

degree, among the ones in WMS

C-max

, is
omputed. Su
h step has a
ost in

O(k). In fa
t, the heterogeneity degree is an information whi
h
an be asso
iated

with a
lass when it is
reated, without overhead for the algorithm. Finally, in

the fourth step, we
ompare all the remaining
lasses testing for inheritan
e

and re�nement. Supposing testing for sub
lassing
onstant [6℄, the step
an be

exe
uted in O(k �max

2C

fdim(
)g).

Therefore, O(k � maxfdim(o); max

2C

fdim(
)gg) is the total
ost of the

algorithm. Thus, the
lassi�
ation algorithm solves the problem in a time that

is linear in the dimension of the entities involved in the
lassi�
ation pro
ess.

4.5 An Example of Classi�
ation

In this se
tion we present some examples of the appli
ation of our
lassi�
ation

algorithm. We
lassify the semi-stru
tured obje
ts that we have presented in

Example 3. Note that the other
omponents of the s
hema are not relevant for

8

Note that given an obje
t o and a
lass
 the obje
t stru
tural expression ("(o;
))

is a subtree of the tree asso
iated with the stru
tural type of a
lass of whi
h the

obje
t is a weak member, thus dim(
) is an upper-bound of the dimension of "(o;
).

the example, we only need to know that the number of di�erent (value or obje
t)

types de�ned in the s
hema is 20. Based on the number of di�erent types in the

s
hema, we
an
ompute the heterogeneity degree of the
lasses presented in

Example 3.

{ H

Æ

(stype(mail)) = 20 � 2 � 1 = 40,

{ H

Æ

(stype(internal mail)) = 20 � 1 � 2 � 1 = 40,

{ H

Æ

(stype(personal mail)) = 1 � 1 � 2 � 1 = 2,

{ H

Æ

(stype(business mail)) = 1 � 1 � 2 � 1 = 2.

When the algorithm presented in Se
tion 4.3 is applied to obje
t o

1

, it

omputes, in step 1, the set WMS = fmail; internal mail; personal mail;

business mailg. Ea
h attribute in the obje
t state, indeed, is an attribute in

the stru
tural type of ea
h
lass of the set WMS and the values are of the

orre
t types. Sin
e WMS 6= ; the se
ond step of the algorithm is applied and

the set WMS

C-max

= fmailg is determined. The
lasses internal mail and

personal mail have been removed from the set WMS

C-max

be
ause they have

an attribute, sender, not in the obje
t state, whereas the
lass business mail

has been deleted sin
e it has two attributes, sender and logo, not in the ob-

je
t state. At this point, sin
e the set WMS

C�max

is a singleton, the obje
t is

lassi�ed in
lass mail.

When the algorithm is applied to
lassify obje
t o

2

, it
omputes, in step 1,

the set WMS = finternal mail; personal mailg. It does not
onsider
lasses

mail and business mail be
ause they do not
ontain the subje
t attribute.

Then, the set of
lasses with the highest
onformity degree (WMS

C-max

) is

determined, but this set is equal to the previous one (the two
lasses have the

same attributes). Therefore, the set of
lasses with the lowest heterogeneity de-

greeWMS

H-min

= fpersonal mailg is
omputed. Thus, the obje
t is
lassi�ed

in
lass personal mail.

When the algorithm is applied to
lassify obje
t o

3

, it
omputes, in step 1,

the set WMS = finternal mail; personal mail; business mailg. It does not

onsider
lass mail be
ause it does not
ontain the sender attribute. Then, the

set of
lasses with the highest
onformity degree (WMS

C-max

) is determined,

but this set is equal to the previous one (the three
lasses have the same number

of additional attributes). Therefore, the set of
lasses with the lowest hetero-

geneity degree WMS

H-min

= fpersonal mail, business mailg is
omputed.

Class personal mail is not a sub
lass of business mail, but if we
onsider

the obje
t stru
tural expressions asso
iated with obje
t o

3

9

we �nd out that

business mail is a re�nement of personal mail, thus the obje
t is
lassi�ed in

lass business mail.

When the algorithm is applied to
lassify obje
t o

4

, it determines that the

obje
t is not weak member of any
lass. Thus, the obje
t is put in the repository

of un
lassi�ed obje
ts.

9

The obje
t stru
tural expression asso
iated with o

3

with respe
t to personal mail

and business mail is shown in Figure 3.

5 Con
lusions

In this paper we have proposed an approa
h to
lassify obje
ts whose stru
ture is

not ne
essarily a type present in the database s
hema. The proposed te
hnique,

whi
h is
urrently being implemented, is based on the notion of weak membership

and on
onformity and heterogeneity degrees, and allows one to automati
ally

lassify an obje
t in the
lass whose stru
tural type best �ts the obje
t state.

Our
lassi�
ation approa
h is totally based on the obje
t stru
ture. An al-

ternative approa
h
ould be to
lassify obje
ts a

ording to their response to

messages that they re
eive. We did not investigate su
h an approa
h be
ause it

is more related to obje
t-oriented programming languages than to databases. In

obje
t-oriented databases the stru
ture, rather than the behavior, is regarded

as the most relevant information asso
iated with obje
ts. However, su
h an ap-

proa
h
ould still represent an interesting resear
h dire
tion.

Another interesting resear
h dire
tion is the development of suitable infor-

mation extra
tion tools. Two approa
hes are possible. The �rst one is to de�ne

\prototype do
uments" with respe
t to whi
h the do
uments are
ompared. The

omparison of a given do
ument against a prototype do
ument allows one to

infer stru
tural information from the do
ument. The se
ond approa
h is to use

de
ision trees with rules that spe
ify
onditions on the attribute types. A path

in the de
ision tree may thus represent a parti
ular type to whi
h a set of obje
ts

may belongs to. We plan to investigate those approa
hes as future work.

We are extending the work presented in this paper along several other dire
-

tions. First, we would like to
onsider the possibility of
lassifying an obje
t in

more than one
lass, rather than always for
ing the sele
tion of a single
lass.

This
ould be useful when there are several
lasses of whi
h the obje
t is a

weak member, with the same values for
onformity and heterogeneity degrees.

Moreover, our
urrent notion of weak membership is based on the fa
t that

the obje
t state
ontains less
omponents than those of the
lass. Su
h notion

an be extended to the
ase of obje
ts whose state
ontains additional
ompo-

nents with respe
t to those spe
i�ed in the
lass, in the same spirit of the O

2

ex
eptional instan
es [15℄. In this way we
an a
hieve a more a

urate
lassi�-

ation. Another possible extension
ould be that of allowing
omponents to be

dynami
ally added, or deleted, to the state of obje
ts in the database. This
ould

require a re-
lassi�
ation of the obje
t, that is, a migration of the obje
t in a

more appropriate
lass. We would like to
onsider the possibility that the s
hema

evolves, as a
onsequen
e of obje
t
lassi�
ation. The appli
ability of the
lassi-

�
ation approa
h to Web sear
h engines, to perform
ontent-based queries will

also be investigated. The idea is to de�ne, starting from the query, the value to

be sear
hed on the Web, to asso
iate a stru
tural expression with HTML pages,

and then to verify whether a simulation exists between the tree asso
iated with

the query and the tree asso
iated with the HTML page. If the simulation exists

then the HTML page is a possible answer for the query. Finally, we plan to in-

vestigate how semi-stru
tured obje
ts
an be handled by appli
ation programs

and queried, in the
ontext of semi-stru
tured data, by revisiting type
he
king

notions.

Referen
es

1. S. Abiteboul. Querying Semi-Stru
tured Data. In F. Afrati and P. Kolaitis, editors,

Database Theory - ICDT'97, pages 1{18, 1997.

2. S. Abiteboul, S. Cluet, and T. Milo. Corresponden
e and Traslation for Hetero-

geneous Data. In F. Afrati and P. Kolaitis, editors, Database Theory - ICDT'97,

pages 351{363, 1997.

3. S. Abiteboul, R. Motwani, and S. Nestorov. Inferring Stru
ture in Semistru
-

tured Data. In Pro
. Workshop on Management of Semistru
tured Data, SIGMOD

Re
ord, 26(4):39{43, 1997.

4. S. Abiteboul, D. Quass, J. M
Hugh, J. Widom, and J. L. Wiener. The Lorel Query

Language for Semistru
tured Data. Journal of Digital Libraries, 1(1):68{88, 1996.

5. S. Abiteboul and V. Vianu. Queries and Computation on the Web. In F. Afrati

and P. Kolaitis, editors, Database Theory - ICDT'97, pages 262{275, 1997.

6. R. Agrawal, A. Borgida, and H. Jagadish. EÆ
ient Management of Transitive

Relationships in Large Data and Knowledge Bases. In J. Cli�ord, B. Lindsay, and

D. Maier, editors, Pro
. of the ACM SIGMOD Int'l Conf. on Management of Data,

pages 253{262, 1989.

7. P. L. Bergstein and K. J. Lieberherr. In
remental Class Di
tionary Learning and

Optimization. In P. Ameri
a, editor, Pro
. Fifth European Conferen
e on Obje
t-

Oriented Programming, number 512 in Le
ture Notes in Computer S
ien
e, pages

377{396, 1991.

8. E. Bertino, G. Guerrini, I. Merlo, and M. Mesiti. An Obje
t-Oriented Data Model

for Semi-Stru
tured Data. Te
hni
al Report DISI-TR-99-06, University of Genova,

Department of Computer S
ien
e (DISI), 1998.

9. R. Breitl, D. Maier, A. Otis, J. Penney, B. S
hu
hardt, J. Stein, E. H. Williams,

and M. Williams. The GemStone Data Management System. In W. Kim and F. H.

Lo
hovsky, editors, Obje
t-Oriented Con
epts, Databases, and Appli
ations, pages

283{308. Addison-Wesley, 1989.

10. P. Buneman. Semistru
tured Data. In Pro
. of 6th ACM SIGACT-SIGMOD-

SIGART Symposium on PODS, pages 117{121, 1997. Tutorial.

11. P. Buneman, S. Davidson, M. Fernandez, and D. Su
iu. Adding Stru
ture to Un-

stru
tured Data. In F. Afrati and P. Kolaitis, editors, Database Theory - ICDT'97,

pages 336{350, 1997.

12. P. Buneman, S. Davidson, D. Su
iu, and G. Hillebrand. A Query Language and

Optimization Te
hniques for Unstru
tured Data. In Pro
. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 505{516, 1996.

13. V. Christophides, S. Abiteboul, S. Cluet, and M. S
holl. From Stru
tured Do
-

uments to Novel Query Fa
ilities. In Pro
. of the ACM SIGMOD Int'l Conf. on

Management of Data, pages 313{324, 1994.

14. S. Cluet. Modeling and Querying Semi-Stru
tured Data. In M. T. Pazienza, editor,

Information Extra
tion. LNAI 1299, pages 192{213, 1997.

15. O. Deux et al. The Story of o

2

. IEEE Transa
tions on Knowledge and Data

Engineering, 2(1):91{108, 1990.

16. A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.

Addison-Wesley, 1983.

17. R. Goldman and J. Widom. Dataguides: Enabling Query Formulation and Opti-

mization in Semistru
tured Databases. In Pro
. Twentythird Int'l Conf. on Very

Large Data Bases, pages 436{445, 1997.

18. G. Guerrini, E. Bertino, and R. Bal. A Formal De�nition of the Chimera Obje
t-

Oriented Data Model. Journal of Intelligent Information Systems, 11(1):5{40,

1998.

19. J. Hammer, H. Gar
ia-Molina, J. Cho, R. Aranha, and A. Crespo. Extra
ting

Semistru
tured Information from the Web, 1997. Available via anonymous ftp at

ftp://db.stanford.edu/pub/paper/extra
t.ps.

20. M. Henzinger, T. Henzinger, and P. Kopke. Computing Simulation on Finite and

In�nite Graphs. In Pro
. of 20th Symposium on Foundations on Computer S
ien
e,

pages 453{462, 1995.

21. S. Holzner. XML Complete. M
Graw-Hill, 1998.

22. R. Milner. An Algebrai
 De�nition of Simulation between Programs. In Pro
. of

the 2nd IJCAI, pages 481{489, London, UK, 1971.

23. S. Nestorov, S. Abiteboul, and R. Motwani. Extra
ting S
hema from Semistru
-

tured Data. In L. M. Haas and A. Tiwary, editors, Pro
. of the ACM SIGMOD

Int'l Conf. on Management of Data, pages 295{306, 1998.

24. Y. Papakonstantinou, H. Gar
ia-Molina, and J. Widom. Obje
t Ex
hange A
ross

Heterogeneous Information Sour
es. In Pro
. of the 11th Int'l Conf. on Data En-

gineering, pages 251{260, 1995.

25. C. Peltason, A. S
hmiedel, C. Kindermann, and J. Quantz. The BACK System

Revisited. Te
hni
al Report KIT - Report 75, Te
hnis
he Universitat Berlin, 1989.

26. F. Rabitti. The Multos Do
ument Model, volume Human Fa
tors in Information

Te
hnology of 6,
hapter 3, pages 17{52. North-Holland, 1990.

SPRING

SET

3
5

7

SET

*

*
SPRING

SET

(a) (b) (c)

Fig. 6. Presen
e of SPRING label in a part of
lass stru
tural expression

A Additional Formal De�nitions

In this se
tion we present the formal de�nition of obje
t stru
tural expression

and two �gures that illustrate two parti
ular
ases, that is, the spring type

and the null value, dis
ussed in Se
tion 4. The �gures illustrate how to obtain,

starting from the obje
t value expression (a) and the
lass stru
tural expression

(b), the obje
t stru
tural expression (
). In the following de�nition, given a tree

A and a vertex u, we denote by vertex(A) the set of verti
es of A and with

tree(u;A) the subtree of A rooted at u.

De�nition 12. (Obje
t stru
tural expression). Let o be a semi-stru
tured obje
t

and
 be a
lass in the s
hema su
h that o is a weak member of
, that is, a

simulation R exists between "

v

(o) = (V

v

; E

v

; '

v

) and "

t

(
) = (V

t

; E

t

; '

t

), then

we de�ne obje
t stru
tural expression, denoted by "(o;
), the following tree:

(V;E; ')

where:

{ V = V [V [V

� V = fu j (u

1

; u) 2 Rg,

� V = fu j (u

1

; u

2

) 2 R; (u

2

; u) 2 E

t

and '

t

((u

2

; u)) = SPRINGg

� V =

S

(u

1

;u

0

1

)2E

v

s:t: '

v

((u

1

;u

0

1

))=NULL

fu j (u

0

1

; u

0

2

) 2 R and

u 2 vertex(tree(u

0

2

; "

t

(
)))g

{ E = E [E

� E = f(u

1

; u

2

) j u

1

; u

2

2 V; (u

1

; u

2

) 2 E

t

g,

� E = f(u

1

; u

2

) j u

1

; u

2

2 V and 9u s:t: (u

1

; u); (u; u

2

) 2 E

t

;

'

t

((u

1

; u)) = UNION)g

� '((u

1

; u

2

)) =

(

'

t

((u

1

; u

2

)) if (u

1

; u

2

) 2 E

'

t

((u; u

2

)) if (u

1

; u

2

) 2 E and (u; u

2

) 2 E

t

2

We introdu
e the following de�nitions to formally state the
on
ept of real

path.

integer

b

REC

char bool

c ed

LIST

UNION

a

person

integer

a b

REC

char bool

c ed

LIST

UNION

*

*

*

LIST

NULL

person

(a) (b) (c)

Fig. 7. Presen
e of NULL label in a part of obje
t value expression

De�nition 13. (Labeled path). Let A = (V;E; ') be a labeled tree on LT , the

sequen
e:

u

1

:l

1

:u

2

:l

2

: � � � :l

n�1

:u

n

is a labeled path, where:

{ u

1

; : : : ; u

n

2 V ,

{ 8i; 1 � i � n� 1; (u

i

; u

i+1

) 2 E and '((u

i

; u

i+1

)) = l

i

. 2

De�nition 14. (Maximal labeled path). Let A = (V;E; ') be a labeled tree on

LT , a labeled path

u

1

:l

1

:u

2

:l

2

: � � � :l

n�1

:u

n

is
alled maximal if u

1

= root(A) and u

n

is a leaf of A. 2

Now we are able to de�ne the notion of real paths of a tree. In the following

de�nition we denote by path(A) the set of maximal labeled paths of the tree A

and with �

2

(R) = fu j (�u; u) 2 Rg.

De�nition 15. (Real paths). Let o be a semi-stru
tured obje
t and
 be a
lass

in the s
hema su
h that o is a weak member of
, that is, a simulation R exists

between "

v

(o) and "

t

(
), then we de�ne real-path the following set:

real-path("

t

(
)) =

f! j ! 2 path("

t

(
)) and (! = : : : REC:u

1

:UNION:u

2

:l:u

3

: : :)

(u

3

2 �

2

(R)) or (fu j (u

2

; u) is an edge of "

t

(
) and u 2 �

2

(R)g = ;))g

2

