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Abstrat. Several advaned appliations, suh as those dealing with

the Web, need to handle data whose struture is not known a-priori.

Suh requirement severely limits the appliability of traditional database

tehniques, that are based on the fat that the struture of data (e.g. the

database shema) is known before data are entered into the database.

Moreover, in traditional database systems, whenever a data item (e.g.

a tuple, an objet, and so on) is entered, the appliation spei�es the

olletion (e.g. relation, lass, and so on) the data item belongs to. Col-

letions are the basis for handling queries and indexing and therefore a

proper lassi�ation of data items in olletions is ruial. In this pa-

per, we address this issue in the ontext of an extended objet-oriented

data model. We propose an approah to lassify objets, reated without

speifying the lass they belong to, in the most appropriate lass of the

shema, that is, the lass losest to the objet state. In partiular, we

introdue the notion of weak membership of an objet in a lass, and

de�ne two measures, the onformity and the heterogeneity degrees, ex-

ploited by our lassi�ation algorithm to identify the most appropriate

lass in whih an objet an be lassi�ed, among the ones of whih it is

a weak member.

1 Introdution

In the last few years, there has been in the database ommunity a growing

interest in the management of semi-strutured data [1℄. Semi-strutured data are

data whose struture is not regular, is heterogeneous, is partial, has not a �xed

?
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format and quikly evolves. Moreover, the distintion between the data desribed

by the struture and the struture itself is blurred. Those harateristis are

typial of data available on the Web [5℄, of data oming from heterogeneous

information soures [24℄ and so on. The lak of a �xed a-priori shema and of

information on the data strutures makes it diÆult handling semi-strutured

data through onventional database tehnology.

Currently, the researh ativity onerning the management of semi-strutured

data is moving along three diretions [14℄: (1) tehniques for gathering all kinds

of information (HTML pages, images, multimedia douments and so on) from

various information soures (like the Web) and for extrating strutural infor-

mation from them [3, 19℄; (2) development of data models able to represent suh

kinds of information and extension of traditional database tehniques to manage

them; (3) development of query exeution tehniques able to exploit the stru-

tural information extrated from data and of tehniques to export data on the

Web [2℄.

In the data model area the researh ommunity has proposed two main ap-

proahes to model semi-strutured data [10, 14℄. The �rst one is a more tradi-

tional approah and onsists of adapting existing data models to deal with semi-

strutured data. In partiular, extensions to the objet-oriented data model have

been proposed with less restritive type systems [13, 26℄. The seond approah,

by ontrast, does not have any notion of type and shema to avoid any restri-

tion on the struture of the data to be stored in the database. The basi idea

of this approah [4, 12℄ is to use a labeled graph to store strutural information

together with data they refer to. An advantage of the �rst approah over the se-

ond one is the existene of a struture ontaining information on the type of data

separated from the data themselves. This is important for eÆiently querying

data and for developing adequate storage strutures and indexing tehniques. To

overome the drawbaks of the lak of \shema" information, proposals following

the seond approah have been reently extended with the introdution of some

exible \shema mehanism" [11, 17℄, able to represent information on the data,

and yet leaving a high degree of freedom with respet to the data entered into

the database.

An important issue, quite independent from the modeling approah adopted,

is to apture the existene of some regularity in the data, i.e., typing data or, as

in our approah, lassifying them. Automati typing or lassi�ation is ruial in

order to ahieve e�etive storage and retrieval. However, limited work has been

arried out in the ontext of semi-strutured data. In this paper, we address

suh issue by de�ning a lassi�ation approah for data, whose struture is not

known, with respet to lasses in an inheritane hierarhy of an objet-oriented

database. Therefore we assume the existene of an a-priori de�ned shema and

allow one to reate objets, whose lass is not known, whih are automatially

lassi�ed in the existing shema. One an objet has been lassi�ed, it an be

e�etively onsidered part of the database. Appliations an, therefore, aess

and modify suh an objet exploiting all the database features.



It is important to remark that the problem of automatially lassifying infor-

mation has also been investigated in other areas. However, semi-strutured data

have features requiring the development of spei� lassi�ation tehniques. In

partiular, the problem of automati lassi�ation has been dealt with in the

ontext of frame-based terminologial languages [25℄, whih use automati las-

si�ation tehniques both at the terminologial and assertional levels (shema

and data, respetively), for orretly positioning a onept in the taxonomy

and for determining the most spei� onept for an instane. Classi�ation ap-

proahes, typial of suh languages, rely on determining subsumption relations

among onepts. Subsumption, however, takes into aount also attribute values,

rather than only onsidering the similarity of the struture, as in our approah,

whih then results in simpler and more eÆient algorithms. The problem has

also been investigated in the software engineering area. In [7℄ a CASE tool is

proposed that starting from a set of objet examples derives a shema suited for

handling those objets.

In the ontext of semi-strutured data the problem of automati typing has

been addressed in [23℄. However, the goal of that work substantially di�ers from

ours, sine their main aim is to extrat shema information from data, that is, to

extrat struture from raw data. They deal with the problem of how to avoid the

proliferation of types by de�ning a distane among types, but they do not address

how their framework ould exploit some a-priori knowledge on the data shema.

We remark that this knowledge, that we assume in our approah, often ours

in pratie, for instane when integrating semi-strutured data, disovered on

the Web, with data having a known struture or when the semi-strutured data

have assoiated some kind of strutural information (for example the Doument

Type De�nition assoiated with an XML page [21℄). Moreover, in [23℄ it is not

spei�ed whether the insertion of new objets, one the shema is set, an result

in shema modi�ations and attribute domains are not kept into aount.

Our lassi�ation approah has been proposed in the ontext of a referene

data model [8℄. The referene data model inludes some new types ensuring a

highly exible type system. In partiular, its modeling power is omparable to

that of the best known data models for semi-strutured data, suh as [4, 13, 26℄,

in that it aptures all the kinds of data heterogeneity that an be represented

in those models. Moreover, we remark that, though tailored to a given data

model, our approah to automati lassi�ation is highly independent from the

partiular type system and it an be easily adapted to other objet-oriented data

models and type systems supporting union types. In fat, union types represent

a ommon extension to a traditional objet type system to meet the exibility

requirements for managing semi-strutured data.

In our model, a semi-strutured objet is an objet that has been reated

without speifying the lass it belongs to. To this purpose, our model supports

a new operation in whih the lass to whih the objet belongs to may not be

spei�ed.

In the ontext of semi-strutured data, the assumption that for eah objet

there is a type exatly desribing it is too strong. Thus, in our model we do



not make suh assumption and we rely on a notion of weak membership. Suh

notion is weaker than the lassial notion of lass membership, sine we only

require the omponents

1

in the objet state be a subset of the omponents of

the strutural type of the lass,

2

rather than requiring the omponents of the

objet state be exatly all and only those appearing in the strutural type of the

lass, as in traditional objet-oriented data models. Aording to our notion of

weak membership, an objet an be a weak member of no lass, of just one lass

or of several lasses, even not related by inheritane hierarhies. To determine the

most appropriate lass for an objet, among the ones of whih the objet is a weak

member, we use two measures: the onformity degree, measuring the similarity

degree between the type of the semi-strutured objet and the strutural type

of the lass, and the heterogeneity degree of the lass, measuring how muh the

extension of the lass is heterogeneous. If an objet is a weak member of no lass,

it is inserted in a repository of unlassi�ed objets. As the shema evolves the

repository is periodially examined, trying to lassify objets ontained in it.

As it is outlined in [23℄, addressing the problem of extrating struture from

semi-strutured data leads to approximate typing or lassi�ation, sine heuristi

tehniques are exploited. The onformity and heterogeneity degrees are measures

that allow one to lassify a given objet in the shema, inserting it into a lass

whih is as lose as possible to the atual objet struture.

Among the possible appliations of our lassi�ation tehnique, we would

like to mention its use in supporting ontent-based searh on the Web. The idea

is to reord the ontent of HTML pages in an existing database. Through an

information extration tool one an delimit a (semi-strutured) objet represent-

ing the relevant information of the page. Then, our automati lassi�ation tool

determines the most appropriate lass to insert the objet in. One the objet,

orresponding to the HTML page, is inserted in the database, suh information

an be used to support ontent-based data retrieval through a query language.

We believe that suh an approah ould represent a relevant improvement to the

well-known tehniques, based on pattern mathing, adopted by the most popular

Web searh engines.

The remainder of the paper is organized as follows. In Setion 2 we review the

onepts of the referene data model that are relevant to this work. In Setion 3

we introdue the notion of weak membership, whereas in Setion 4 we disuss the

proposed lassi�ation approah and we present an algorithm to automatially

lassify objets aording to our notion of weak membership. Finally, Setion 5

onludes the paper and disusses future work. Appendix A presents the formal

de�nitions of some onepts introdued throughout the paper.

1

A omponent of a reord value or of a reord type is one of the slots omposing it.

2

The strutural type of a lass is the reord type ontaining the attributes of the lass

and their respetive domains.



2 Referene Data Model

The referene data model, de�ned as extension of the basi objet-oriented data

model [18℄, is based on a type system whih onsists of three kinds of types: value

types, objet types, and the spring type. Value types are lassial types suh

as basi value types (integer, bool, real, et.) and strutured types (built by

means of reord, set and list onstrutors). The referene data model adds

to this set of types the union type, that we will disuss in more details below.

Objet types are types orresponding to lasses (lass names). Finally, the

spring type is a new type, not present in the basi objet-oriented data model,

allowing one to speify that an attribute does not have any spei� domain. Be-

ause of the relevane of this type in handling semi-strutured data, we will also

disuss it in more details below. It is important to remark that the referene data

model, as the basi objet-oriented data model, supports all the ommon features

of objet-oriented data models suh as objet identity, user-de�ned operations,

lasses, inheritane (we refer the reader to [8℄ for details on the referene data

model). The spring and union types enrih the original objet-oriented data

model with the exibility required to manage semi-strutured data, and make

the type system of our model more exible than those of existing data models

for semi-strutured data [13, 26℄. In order to provide a safe objet-oriented data

model, in [8℄ subtyping relationship and lass re�nement are addressed.

In the remainder of this setion we �rst disuss the new types added to

the basi data model and then we introdue the notions of lass and objet as

supported by the model.

2.1 Union Types

A union type onsists of a set of types belonging to the basi type system eah

one assoiated with a distint label. Let T

1

; : : : ; T

n

be value types of the basi

objet-oriented data model or objet types and a

1

; : : : ; a

n

be distint labels,

then the type union-of(a

1

: T

1

; : : : ; a

n

: T

n

) is a union type. Our union type

de�nition is similar to the one proposed in [13℄, but it is not idential sine we

impose the restrition that the types of the union type omponents be neither

the spring type nor union types. This restrition ensures eÆieny in terms of

spae alloation and type safety, and simpli�es lassi�ation of semi-strutured

objets. Subtyping rules for union types are similar to those proposed in [13℄.

Legal values for a union type are pairs l : v, where l is the label of a union type

omponent, and v is a legal value for the type assoiated with l.

As a onsequene of the introdution of union types, we have modi�ed the

reord type de�nition of the basi objet-oriented data model to allow one to

omit the label assoiated with a omponent whose type is a union type. In this

way, in order to aess that omponent, we only need to use the label appearing

in the union type de�nition.



Example 1. Let person be a lass name. Let reord-of(a:integer, union-of

(b:string, :person)) be a reord type. Let X be a variable of this type. In

order to aess omponent b, we simply write X:b. 3

To avoid ambiguities in aessing a omponent of a reord type, we impose that

the labels of reord type omponents and the labels of union type omponents

be all distint. That is, we disallow reord types suh as reord-of(a:integer,

union-of(a:string,:person)).

A legal value, for a reord type, has the form (a

1

: v

1

; : : : ; a

n

: v

n

), where a

i

is the label of a reord type omponent or the label of a union type omponent

appearing in the reord type de�nition, and v

i

is a legal value for the type

assoiated with a

i

in the orresponding reord type de�nition. For example, let i

p

be the identi�er of an objet belonging to the lass person, then (a : 5; b :'rose')

and (a : 8;  : i

p

) are legal values for the type of the previous example.

2.2 Spring Type

The spring type is the ommon supertype of value types and objet types.

The introdution of this type allows us to manage data without knowing their

atual type. Eah legal value of eah type of the model is a legal value for the

spring type. Note that our notion of spring type is di�erent from the notion of

Objet type, supported by some systems like GemStone [9℄. The �rst di�erene

is that in our model we have both value types and objet types, whereas those

systems only support objet types. The spring type, in our model, is not an

objet type and is not a value type, rather it is a ommon supertype of all (value

and objet) types of the model. Another relevant di�erene is that in our model

the spring type annot be diretly instantiated, that is, no objets or values an

be proper instanes of the spring type. In other systems, by ontrast, objets

an be proper instanes of the Objet type.

2.3 Classes, Objets and Semi-strutured Objets

Our model supports a quite standard notion of lass, with some di�erenes aris-

ing from the introdution of the union and spring types. Eah lass, moreover,

has a strutural type, whih is a reord type desribing the state of the lass

instanes, formally de�ned as follows.

De�nition 1. (Strutural type of a lass). Given a lass , de�ned as

lass  fa

1

: T

1

; : : : ; a

m

: T

m

;

union-of(a

1

1

: T

1

1

; : : : ; a

p

1

: T

p

1

); : : : ; union-of(a

1

n

: T

1

n

; : : : ; a

p

n

: T

p

n

) g

the reord type reord-of(a

1

: T

1

; : : : ; a

m

: T

m

; T

m+1

; : : : ; T

m+n

), where, for k =

1; : : : ; n: T

m+k

= union-of(a

1

k

: T

1

k

; : : : ; a

p

k

: T

p

k

), is the strutural type of lass

, denoted by stype(). 2



Note that, as spei�ed in the de�nition above, the lass ontains some �xed

attributes (a

1

; : : : ; a

m

), and some other omponents for whih one out of some

possible alternatives, spei�ed through a union type, an be hosen (omponent

m+ 1 to m+ n).

The notion of objet supported by the model, formalized by the following

de�nition, is also quite standard.

De�nition 2. (Objet). An objet is a triple o = (i; v; ) where i is an objet

identi�er, v is a reord value (the objet state) and  is the most spei� lass to

whih o belongs. 2

Finally, the following de�nition states the onditions for an objet to be an

instane of a lass.

De�nition 3. (Instane). An objet o is an instane of a lass  if o:v is a legal

value for stype(). 2

De�nition 3 above requires that the following onditions hold:

(1) for eah omponent a : v of the objet state, a omponent a : T exists in

stype() suh that v is a legal value for T or a omponent union-of(a

1

:

T

1

; : : : ; a

p

: T

p

) exists suh that a : v is a legal value for that omponent,

that is, 9 i; 1 � i � p, suh that a = a

i

, and v is a legal value for T

i

;

(2) for eah omponent a : T in stype(), a omponent a : v exists in the objet

state suh that v is a legal value for T , and for eah omponent union-

of(a

1

: T

1

; : : : ; a

p

: T

p

) in stype() a omponent a : v exists in the objet

state suh that a : v is a legal value for that omponent, that is, 9 i; 1 � i � p,

suh that a = a

i

and v is a legal value for T

i

.

Condition (1) above requires that eah omponent in the objet state orre-

sponds either to an attribute of the lass (and in this ase the omponent value

must be a legal value for the attribute domain) or to one of the omponents of

a union type in the strutural type of the lass (and in this ase the omponent

value must be a legal value for the union type omponent domain). Condition

(2) above, by ontrast, requires that the objet state ontains a omponent for

eah attribute of the lass and a omponent for eah union type in the strutural

type of the lass (orresponding to one of the omponents of the union type).

The following is an example of lasses and objets in our model.

Example 2. Suppose we wish to model information about people, and in parti-

ular name, age, birthday and love, where name may be a string, or a reord

with two omponents, �rst name (f-name), surname (s-name), and love may

assume any value (a person may love another person or an animal or anything

else). Let date be a lass of the database shema and i

d

be the identi�er of an

objet instane of lass date. We may de�ne a lass person whose strutural

type is:

reord-of(union-of(nameS:string, nameR:reord-of(f-name:string,

s-name:string)),age:integer,birthday:date,love:spring).



mailperson

employee internal_mail personal_mail business_mail

Fig. 1. A hunk of a database shema

The following objets are instanes of lass person: o

1

= (i

1

; v

1

; person), where

v

1

= (nameS :'X '; age : 25; birthday : i

d

; love :'rose'), and o

2

= (i

2

; v

2

; person),

where v

2

= (nameR:(f-name :'Max'; s-name : 'X '); age : 25; birthday : i

d

; love :

i

p

). Note that, even if their states are legal values for the strutural type of lass

person, they have di�erent strutures. 3

In our model, �nally, we denote by semi-strutured objet an objet

reated without speifying the lass it belongs to. The objet is alled semi-

strutured beause it is inserted in the database without any a-priori information

about its lass. The objet an be an instane of several lasses of the shema,

or of no lass. In other words, the objet state may be a legal value for the stru-

tural type of more than one lass, or it may be a legal value for no strutural

type assoiated with any lass in the shema.

Example 3. Suppose we want to lassify e-mails in a database in order to make

their retrieval easier. Suppose we have a mailer that allows to assoiate some

strutural information with e-mails and that we have an extration information

tool able to take that strutural information out from them. Now we want to

reate a database to store e-mails using our model. The idea is that when a new

e-mail is sent or reeived through the mailer, the extration information tool

takes out information (with a struture) from the e-mail and tries to insert this

semi-strutured objet in the database. Suppose we have reated the following

lasses in the database:

3

{ stype(mail) =

reord-of(union-of(reeiverS:string, reeiverP:person),

body:spring);

{ stype(internal mail) =

reord-of(subjet:spring, sender:person, union-of(reeiverS:

string, reeiverP:employee), body:string);

{ stype(personal mail) =

reord-of(subjet:person, sender:person, union-of(reeiverS:

string, reeiverP:person), body:string);

{ stype(business mail) =

3

We do not present lasses person and employee and the other lasses of the shema

beause they are irrelevant for the example.



reord-of(logo:string, sender:person, union-of(reeiverS:

string, reeiverP:employee), body:string).

The meaning of the previous lasses is intuitive. The idea is to have a lass for

e-mails and to re�ne the personal, internal and business e-mails in distint sub-

lasses. Figure 1 shows a hunk of the database shema, showing the inheritane

relationships among lasses. Suppose the extration information tool generates

objets o

1

, : : :, o

4

from some e-mails arrived in the mailbox, whose states are,

respetively:

1. (reeiverS:'Elena F : : :', body:'Dear Monia : : :'),

2. (subjet:i

p

, sender:i

p

),

3. (sender:i

p

, reeiverP: i

e

, body:'Hello Ugo : : :'),

4. (subjet:'Summer in : : :', attahment:'photo:jpg')

where i

p

is an identi�er of an objet of lass person and i

e

is an identi�er of an

objet of lass employee. The �rst objet is an instane of lass mail, whereas

the others have less attributes or, as in the last ase, has an attribute not in

the shema. In the following we will see how our lassi�ation approah handles

these situations. 3

3 Weak Membership

In the management of semi-strutured objets we want to emphasize the role

of the lass as a repository that ontains objets whose states have the same

type,

4

rather than as a template for reating objets. In this ontext, we al-

low appliations to reate objets without speifying the lass they belong to.

Then, it is the system that automatially lassi�es those objets in an appro-

priate lass. In order to lassify a semi-strutured objet, we need a riterion to

bind suh objet to a lass. The notion of instane ould be used for this pur-

pose, but its de�nition is too restritive to be used for semi-strutured objets.

In order to ahieve the exibility needed to lassify semi-strutured objets, we

propose a weaker notion, referred to as weak membership, only requiring on-

dition (1), stated after De�nition 3. Thus, the strutural type of a lass may

have more omponents than those appearing in the objet state. In suh a ase,

we need some exeption-handling mehanism to manage aesses to omponents

not present in the lassi�ed objet. The idea of lassifying semi-strutured data

in an existing a-priori database shema ould seem too restritive. By ontrast

we believe that our automati lassi�ation, based on the notion of weak mem-

bership, represents a ompromise between the exibility of semi-strutured data

and the rigidity of objet-oriented shemas and allows one to bene�t from all the

features of objet-oriented database systems to manage this kind of information.

4

Note that, in our model, this ondition does not mean that all objets instanes of

a lass have the same struture (fr. Example 2).
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Fig. 2. (a) Objet value expression, (b) lass strutural expression and their simulation

relation

In order to formally de�ne the notion of weak membership and to de�ne

a method to hek whether an objet is a weak member of a lass, we extend

a well-known theoretial notion, the simulation relation [22℄. First, we provide

an abstrat representation of the strutural type of a lass, the lass strutural

expression, and an abstrat representation of the objet state, the objet value

expression. Then, to verify whether the objet is a weak member of the lass,

we hek whether a partiular simulation exists between those two expressions.

Intuitively, the lass strutural expression is a tree labeled with symbols rep-

resenting the attributes of the lass and their types, whereas the objet value

expression is a tree labeled with symbols representing the attributes of the ob-

jet and their values. In the remainder of this setion, we �rst present the formal

de�nitions onerning lass and objet expressions (Subsetion 3.1) and then the

weak membership notion is formally de�ned (Subsetion 3.2).

3.1 Class and Objet Expressions

In the following the set PRED denotes a set of prediates where eah predi-

ate represents the set of legal values for basi value types and objet types. A

prediate p 2 PRED applied to a value v holds if and only if v belongs to the

set of instanes assoiated with the type p, where the type p may be a basi

value type or an objet type. Moreover, given the set AN of attribute names,

LT denotes the set of tree labels, that is LT = fLIST, REC, SET, UNION,

SPRINGg [ AN [ PRED. The following de�nition states the notion of lass

strutural expression.

De�nition 4. (Class strutural expression). Given a lass , the lass strutural

expression of  (denoted by "

t

()) is a tree (V

t

; E

t

; '

t

), labeled on LT , where V

t

is a set of verties, E

t

� V

t

� V

t

is a set of edges, and '

t

: E

t

! LT is the edge

labeling funtion. 2



Sine the lass strutural expression is a tree assoiated with a type of the

model (the strutural type of a lass), we have developed an indutive system

to map any type of the model into a labeled tree [8℄. Figure 2(b) shows the

lass strutural expression assoiated with lass person of Example 2. Note that

string, date, and integer symbols are prediates whih represent the set of

legal values for the orresponding types. Note also that we have not generated

the strutural expression assoiated with the objet type date sine we are

interested in shallow

5

omparison among objets and lasses.

In the following de�nition, stating the notion of objet value expression, LV

denotes the set of labels of objet value expressions, that is, LV = fLIST, REC,

SET, UNION, NULLg [ AN [ V , where V denotes the set of legal values for

basi value types and objet identi�ers.

De�nition 5. (Objet value expression). Given an objet o, the objet value

expression of o (denoted by "

v

(o)) is a tree (V

v

; E

v

; '

v

), labeled on LV, where

V

v

is a set of verties, E

v

� V

v

� V

v

is a set of edges and, '

v

: E

v

! LV is the

edge labeling funtion. 2

Similarly to what has been done for the lass strutural expression, an indu-

tive system has been de�ned in [8℄ to map values of the model into labeled trees.

Figure 2(a) shows the objet value expression assoiated with a semi-strutured

objet whose state is (nameS :'X '; birthday : i

d

). Aording to our shallow ap-

proah, we have not generated the objet value expression assoiated with the

state of the objet identi�ed by i

d

.

We also introdue the notion of re�nement among strutural expressions,

whih is used by our lassi�ation algorithm. Intuitively, a strutural expression

(that is, a tree whose edges are labeled in LT ) "

0

is a re�nement of a strutural

expression " if the two trees are isomorphi, but some of the labels of "

0

are lass

names orresponding to sublasses of the orresponding labels in ". Let PRED

o

denote the subset of PRED orresponding to objet types, and �

ISA

denote the

inheritane relationship on objet types, then, the notion of re�nement among

strutural expressions is de�ned as follows.

De�nition 6. (Strutural expression re�nement). Let " = (V

t

; E

t

; '

t

) and "

0

=

(V

t

; E

t

; '

0

t

) be two strutural expressions. "

0

is a re�nement of " if

8e 2 E

t

: '

t

(e) = '

0

t

(e)_('

t

(e) 2 PRED

o

^'

0

t

(e) 2 PRED

o

^'

0

t

(e) �

ISA

'

t

(e)): 2

The following example illustrates the notion of strutural expression re�ne-

ment.

Example 4. The strutural expression presented in Figure 3(b) is a re�nement of

the one presented in Figure 3(a) beause the two trees have the same struture

and the labels are all equals exept person and employee whih are in the �

ISA

relation. 3

5

Shallow is used here with the same meaning as in shallow equality [16℄.
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Fig. 3. Strutural expression re�nement

3.2 Simulation Relation

Before de�ning the relation between the lass strutural expression and the ob-

jet value expression we introdue a mapping between labels in set LV and labels

in set LT , that is used to identify a set of ases to be managed in the same way.

De�nition 7. (Relation �

L

between labels). A relation �

L

holds between a

label l

v

2 LV and a label l

t

2 LT (denoted by l

v

�

L

l

t

), if and only if one of

the following onditions holds: (1) l

v

= NULL and l

t

6= SPRING; (2) l

v

; l

t

2

fLIST, REC, SET, UNIONg [AN and l

v

= l

t

; (3) l

t

2 PRED and l

t

holds on

l

v

. 2

We are now able, using relation �

L

, to introdue the notion of simulation.

The simulation is a partiular relation among the verties of the objet value

expression and the verties of the lass strutural expression that takes into

aount the symbols used to label the edges of these expressions. The idea of

simulation is used in several researh areas [11, 20℄ and it has a solid theoretial

foundation. We will use it to formally de�ne the notion of weak membership. Our

de�nition of simulation in an extension of the \lassial" one, thus it preserves

its good properties [20℄.

Informally, a relation R between the verties of an objet value expression

(V

v

; E

v

; '

v

) and the verties of a lass strutural expression (V

t

; E

t

; '

t

) is a

simulation if the following onditions hold:

{ If the label l

v

2 LV assoiated with the edge (u

1

; u

0

1

) 2 E

v

, outgoing from

vertex u

1

, identi�es a partiular type (strutural, basi, objet), then an

edge (u

2

; u

0

2

) 2 E

t

must outgo from u

2

labeled with a symbol l

t

2 LT , for

whih relation �

L

holds between l

v

and l

t

. Moreover, relation R must hold

between u

0

1

and u

0

2

.

{ If the label l

v

2 LV assoiated with the edge (u

1

; u

0

1

) 2 E

v

, outgoing from

vertex u

1

, is an attribute name (l

v

2 AN ) and the label assoiated with

the edge (u

2

; u

0

2

) 2 E

t

, outgoing from vertex u

2

, is UNION , then an edge

(u

0

2

; u

00

2

) 2 E

t

must exist, outgoing from vertex u

0

2

, with the same label of

the edge (u

1

; u

0

1

). Moreover, relation R must hold between u

0

1

and u

00

2

.
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Fig. 4. Visual representation of relation among verties of item (2) of De�nition 8

{ If the label l

t

2 LT assoiated with the edge (u

2

; u

0

2

) 2 E

t

, outgoing from

vertex u

2

, is SPRING, then there is no ondition to verify. In this situation

we do not need to hek other pairs in the relation whose �rst omponent

is a vertex belonging to the subtree rooted at u

1

, sine the value assoiated

with the subtree rooted at u

1

surely is a legal value for the type assoiated

with the subtree rooted at u

2

(that is, the spring type).

The following de�nition formally states our notion of simulation. In the def-

inition root(A) denotes the root of tree A and u

l

�! u

0

denotes an edge (u; u

0

)

suh that '((u; u

0

)) = l.

De�nition 8. (Simulation). A binary relation R from the verties of A

v

=

(V

v

; E

v

; '

v

) labeled on LV to the verties of A

t

= (V

t

; E

t

; '

t

) labeled on LT ,

is a simulation if and only if the following onditions hold:

1. root(A

v

) R root(A

t

);

2. if u

1

R u

2

, then 8u

1

l

v

�! u

0

1

in E

v

, 9 u

2

l

t

�! u

0

2

in E

t

, suh that one and

only one of the following onditions holds:

(a) l

v

�

L

l

t

and u

0

1

R u

0

2

,

(b) l

t

= UNION , 9u

0

2

l

0

t

�! u

00

2

in E

t

suh that l

v

= l

0

t

and u

0

1

R u

00

2

,

() l

t

= SPRING. 2

In Figure 2 the dashed lines represent the simulation between the objet value

expression assoiated with the semi-strutured objet, that we have introdued

previously, and the strutural expression assoiated with the strutural type of

lass person of Example 2. A visual representation of relation among verties

of item (2) of De�nition 8 is shown in Figure 4. The dashed lines identify the

relation that must hold between the verties of the two trees. Note that, as you

an see in Figure 4(), we do not require the relation to hold between verties

u

0

1

and u

0

2

.

For determining weak membership, we do not onsider every simulation.

Consider the following example.



Example 5. Consider the objet value expression assoiated with the objet state

(a: 5, b:'rose') and the lass strutural expression assoiated with the strutural

type reord-of(union-of(a:integer, b:string)). Aording to De�nition 8

a simulation exists between them. 3

The simulation in the above example, however, does not apture our notion of

the set of legal values for the reord type in the example. The idea of the union

type is, instead, that of hoosing one out of some possible alternatives. Thus,

in the de�nition of weak membership, we leave out this kind of simulations, as

formally stated by the following de�nition.

De�nition 9. (Weak membership). An objet o is a weak member of a lass

 if a simulation R exists between the objet value expression assoiated with o

("

v

(o)) and the lass strutural expression assoiated with  ("

t

()), suh that

8u

2

UNION

�! u

0

2

labeled edge of "

t

() at most one pair (u; u

0

) 2 R exists suh that

u

0

2 f�u j (u

0

2

; �u) is an edge of "

t

()g. 2

The above de�nition of membership is more exible than the notion of instan-

tiation. Aording to suh de�nition, an objet state an ontain less omponents

than those present in the strutural type of a lass. Suh de�nition, however, does

not allow one to identify only one lass to whih the objet belongs. In the next

setion we propose an approah to establish the most appropriate lass to whih

the objet belongs.

4 Automati Classi�ation Approah

In the previous setion we have proposed an approah to determine whether a

semi-strutured objet is a weak member of a lass. An objet may be a weak

member of several lasses.

Example 6. Consider an objet whose state onsists only of the omponent

(age: 25). Suh objet is a weak member of all the sublasses of lass person

in the shema of Example 2. 3

When an objet is a weak member of several lasses, we need some measures

to determine the most appropriate lass in whih we an lassify the objet. If

no lass exists of whih the objet is a weak member, we insert it into a reposi-

tory of unlassi�ed objets. As the shema evolves the repository is periodially

examined, trying to lassify objets ontained in it.

In the remainder of this setion we propose two measures to selet the most

appropriate lass where we an lassify a given objet, among those of whih

the objet is a weak member. We also outline an algorithm using those mea-

sures to automatially lassify semi-strutured objets. Finally, we ompute the

algorithm omplexity and present some examples of automati lassi�ation.



4.1 Conformity Degree

With the �rst measure, referred to as onformity degree, we want to hek how

muh the type of the semi-strutured objet is lose to the strutural type of

a given lass. In other words, we hek how many omponents the lass has in

addition to those of the objet. In ase an objet is a weak member of more than

one lass, we selet the lasses that have the minimal number of additional om-

ponents with respet to the omponents in the objet state. For example, if an

objet is a weak member of a lass and it is a weak member of some sublasses

of that lass, we are not interested in lassifying the objet in the most spei�

lass of the inheritane hierarhy if this lass has several attributes whih are

not part of the objet. To formally de�ne the onformity degree, we introdue an

additional data struture, referred to as objet strutural expression, representing

the atual type of the objet. This data struture, intuitively, is a subtree of the

tree assoiated with the strutural type of a lass of whih the objet is a weak

member. It is assoiated with a legal type of our type system and allows the

atual type of the objet to be ompared with the strutural type of the lass,

sine the objet strutural expression is built starting from the lass strutural

expression. Informally, to generate this struture we start from the existing sim-

ulation between the objet value expression and the lass strutural expression

and extrat the verties of the lass strutural expression that appear in the

seond omponent of the simulation. Then, we add to this set of verties other

verties to handle two partiular ases: the presene of null values in the objet

state and the presene of spring types in the strutural type of the lass. The

edges and the labeling funtion of this tree are reated aordingly. For further

details on the formal de�nition of the objet strutural expression, that will be

denoted by "(o; ), we refer the reader to Appendix A. Figure 5(a) shows the

objet strutural expression assoiated with the objet value expression shown

in Figure 2(a). As we an see, this objet strutural expression represents the

type reord-of(nameS:string, birthday:date). The value assoiated with

the objet value expression shown in Figure 2(a) is a legal value for that type.

Moreover, to formally de�ne the onformity degree, we must take into aount

that when there is a union type in the strutural type de�nition of a lass only

one of its omponents may appear in the objet state. Thus, we onsider the real

paths of a lass strutural expression. Real paths, formally de�ned in Appendix

A, are paths that do not ontain any edge labeled by UNION followed by an

edge labeled by l (l 2 AN ) where l is an attribute not appearing in the ob-

jet state. Figure 5(b) shows the tree only ontaining the real paths of the lass

strutural expression shown in Figure 2(b). The following de�nition formalizes

the notion of onformity degree.

De�nition 10. (Conformity degree). Let o be a semi-strutured objet and  be

a lass suh that o is a weak member of . We de�ne the onformity degree of o

with respet to  (denoted by C

Æ

(o; )), as the ratio of the number of paths of the

objet strutural expression and the number of real paths of the lass strutural



REC

birthdaynameS

string date

(a)

date integer

age

love

SPRING

REC

birthday
nameS

string

(b)

Fig. 5. (a) Objet strutural expression, and (b) the part of lass person strutural

expression ontaining only the union omponents that appear in the objet state

expression. Formally:

C

Æ

(o; ) =

#(path("(o; )))

#(real-path("

t

()))

2

In the previous example, the number of paths of the objet strutural expres-

sion is 2, the number of real paths of the lass strutural expression is 4, thus

the onformity degree is 0.5.

The following proposition (proved in [8℄) holds.

Proposition 1. The following results on onformity degree and weak member-

ship hold:

{ The onformity degree is always a number between 0 (low onformity) and 1

(high onformity).

{ If a semi-strutured objet is an instane of a lass, the onformity degree is

1.

{ If a semi-strutured objet is a weak member of a lass and the onformity

degree is 1, then the objet is an instane of the lass.



4.2 Heterogeneity Degree

With the seond measure, referred to as heterogeneity degree, we want to hek

how muh the extension of a lass is heterogeneous. By using the heterogeneity

degree, we an insert a given objet in the lass with the most homogeneous ex-

tension. The advantage of having lasses with a homogeneous extension is that

more eÆient query exeution strategies and storage organizations are possible.

In Setion 2 we have seen that, beause of the presene of union and spring

types in the type system, several strutures may orrespond to the same type.

In Setion 2 we have also seen that for eah lass in the shema the set of objets

belonging to a lass may have di�erent strutures. For example, if in the stru-

tural type of a lass there is only a union type with two omponents, and there



is no omponent of spring type, then the extension of this lass onsists of a

set with two kinds of objets: the ones having the �rst omponent of the union

type, and the ones having the seond omponent of the union type. Thus the

heterogeneity degree is 2.

6

By ontrast, if we have only a omponent of spring

type in the strutural type of the lass, this omponent may assume any legal

value of any type in the shema. Thus, the struture of objets belonging to

this lass may be highly heterogeneous. In suh ase, the heterogeneity degree is

evaluated as the number of all value and objet types introdued in the shema

(these sets are denoted by VT and CI, respetively). The heterogeneity degree

of a reord type is the produt of the heterogeneity degree of its omponents,

while the heterogeneity degree of a set type (list type) is the heterogeneity degree

of its omponent types. The heterogeneity degree of other types (belonging to

the basi type system) is 1 sine they do not generate heterogeneous extensions.

In omputing the heterogeneity degree we take into aount that we perform a

shallow omparison among the lass strutural expression and the objet value

expression. That is, if the type of an attribute in a lass  is an objet type �,

in alulating the heterogeneity degree we do not take into aount the hetero-

geneity degree assoiated with the lass �, rather we state that its heterogeneity

degree is 1. The following de�nition states how the heterogeneity degree of a

lass is omputed.

De�nition 11. (Heterogeneity degree). Let T = stype() be the strutural type

of lass , then the heterogeneity degree assoiated with  is the value returned

by the following funtion applied to T .

H

Æ

(T ) =

8

>

>

>

>

<

>

>

>

>

:

1 if T is a basi value type or objet type

n if T = union-of(a

1

: T

1

; : : : ; a

n

: T

n

)

#VT +#CI if T = spring

Q

m+n

i=1

H

Æ

(T

i

) if T = reord-of(a

1

: T

1

; ::; a

m

: T

m

; T

m+1

; ::; T

m+n

)

H

Æ

(T

0

) if T = list-of(T

0

) or T = set-of(T

0

)

2

Note that the heterogeneity degree, like the lass strutural expression, does

not depend on the database instanes but only on the shema. Thus, the hetero-

geneity degree and the lass strutural expression may be omputed at shema

de�nition time. This is important in order to de�ne eÆient algorithms to lassify

objets in the shema.

4.3 Classi�ation Algorithm

In our lassi�ation approah we look for a lass suh that: the semi-strutured

objet is a weak member of the lass with the highest onformity degree; the

lass has the lowest heterogeneity degree. In addition, for lasses with the same

6

Note that, sine the types of union type omponents are onstrained to belong to

the basi type system, their heterogeneity degree is always 1.



onformity and heterogeneity degrees, we take into aount the inheritane hi-

erarhy, by hoosing the most spei� lass in the hierarhy.

The lassi�ation algorithm takes as input a semi-strutured objet and ex-

eutes the following steps:

1. The set of lasses of whih the objet is a weak member is omputed; suh

set is denoted as WMS. If WMS = ; then the objet annot be lassi�ed

and it is simply inserted in the repository of unlassi�ed objets. Otherwise,

2. The set of lasses WMS

C-max

is extrated from the set WMS by hoosing

the lasses with respet to whih the objet has the highest onformity de-

gree. If this set is a singleton, the most appropriate lass has been found and

the objet is inserted in the lass extension. Otherwise,

3. The set of lasses WMS

H-min

is extrated from the set WMS

C-max

by

hoosing the lasses with the lowest heterogeneity degree. If this set is a sin-

gleton, the most appropriate lass has been found and the objet is inserted

in the lass extension. Otherwise,

4. We delete fromWMS

H-min

all the lasses having a sublass in that set, and

any lass  suh that WMS

H-min

ontains a lass 

0

whose objet strutural

expression

7

is a re�nement of the objet strutural expression of , aording

to De�nition 6. If the resulting set is a singleton, then the most appropri-

ate lass has been found and the objet is inserted in the lass extension.

Otherwise, an arbitrary lass is seleted in whih the objet is inserted.

In the previous algorithm, �rst of all we �nd out the set of lasses having the

highest onformity degree from the lasses whih the objet is a weak member

of. We use the onformity degree as the main measure in the lassi�ation ap-

proah beause it allows one to identify the lasses with the smallest number of

attributes not present in the objet state. At this point we try to minimize the

heterogeneity degree. To selet a lass among the remaining lasses, we hoose

those lasses whih are most spei� in the inheritane hierarhy as well as those

lasses whose attribute domains most losely mathes the attribute values of the

objet.

Note that, if the resulting set of the algorithm is not a singleton then an ar-

bitrary lass is seleted in whih the objet is inserted. An alternative approah,

whih however is left for future investigation, would be to lassify the objet in

all the lasses in that set.

4.4 Complexity of the Classi�ation Algorithm

In this setion we present the omplexity of our algorithm. The following notation

is used:

{ C is the set of lasses of the shema with respet to the objet is being

lassi�ed;

7

We reall that the objet strutural expression (formally de�ned in Appendix A) is

the strutural expression representing the portion of the lass strutural expression

atually present in the objet.



{ k the number of lasses in C;

{ dim(o) is the dimension of the objet value expression assoiated with the

objet being to lassi�ed, that is, the number of verties of the tree;

{ dim() is the dimension of the lass strutural expression assoiated with a

lass  2 C, that is, the number of verties of the tree.

8

The �rst step of the algorithm is the omputation of the set of lasses of whih

the objet is a weak member. Aording to De�nition 9, this is equivalent to

determine whether a simulation exists between the objet value expression and

the lass strutural expression. In the omputation of the simulation relationship

(De�nition 8), at eah step, for eah edge u

1

l

v

�! u

0

1

of the objet value expression

we hek whether an edge u

2

l

t

�! u

0

2

exists suh that one of the onditions of

De�nition 8 holds. Note that, sine the time required to hek whether one of the

onditions of De�nition 8 holds is onstant, we have to ompute how many times

this step is iterated. Sine, for both the objet value expression and the lass

strutural expression, the outgoing edges from a given vertex having an attribute

name as label are distint, no baktraking is needed during the iteration proess,

whih, at most, repeats the hek of the properties as many times as the number

of edges of the objet value expression. Sine the number of edges in a tree is

equal to the number of the verties minus one, we an onlude that the �rst step

has a ost in O(dim(o)) for eah lass, that is, in O(k�dim(o)) for all the lasses of

the shema. In the seond step, �rst the onformity degree is omputed for eah

lass of whih the objet is a weak member. Beause the number of suh lasses

is at most k, the third step has a ost in O(k �max

2C

fdim()g). After that,

the set of lasses with respet to whih the objet has the highest onformity

degree,WMS

C-max

, is omputed. This step has a ost in O(k). In the third step,

the set of lasses with respet to whih the objet has the lowest heterogeneity

degree, among the ones in WMS

C-max

, is omputed. Suh step has a ost in

O(k). In fat, the heterogeneity degree is an information whih an be assoiated

with a lass when it is reated, without overhead for the algorithm. Finally, in

the fourth step, we ompare all the remaining lasses testing for inheritane

and re�nement. Supposing testing for sublassing onstant [6℄, the step an be

exeuted in O(k �max

2C

fdim()g).

Therefore, O(k � maxfdim(o); max

2C

fdim()gg) is the total ost of the

algorithm. Thus, the lassi�ation algorithm solves the problem in a time that

is linear in the dimension of the entities involved in the lassi�ation proess.

4.5 An Example of Classi�ation

In this setion we present some examples of the appliation of our lassi�ation

algorithm. We lassify the semi-strutured objets that we have presented in

Example 3. Note that the other omponents of the shema are not relevant for

8

Note that given an objet o and a lass  the objet strutural expression ("(o; ))

is a subtree of the tree assoiated with the strutural type of a lass of whih the

objet is a weak member, thus dim() is an upper-bound of the dimension of "(o; ).



the example, we only need to know that the number of di�erent (value or objet)

types de�ned in the shema is 20. Based on the number of di�erent types in the

shema, we an ompute the heterogeneity degree of the lasses presented in

Example 3.

{ H

Æ

(stype(mail)) = 20 � 2 � 1 = 40,

{ H

Æ

(stype(internal mail)) = 20 � 1 � 2 � 1 = 40,

{ H

Æ

(stype(personal mail)) = 1 � 1 � 2 � 1 = 2,

{ H

Æ

(stype(business mail)) = 1 � 1 � 2 � 1 = 2.

When the algorithm presented in Setion 4.3 is applied to objet o

1

, it

omputes, in step 1, the set WMS = fmail; internal mail; personal mail;

business mailg. Eah attribute in the objet state, indeed, is an attribute in

the strutural type of eah lass of the set WMS and the values are of the

orret types. Sine WMS 6= ; the seond step of the algorithm is applied and

the set WMS

C-max

= fmailg is determined. The lasses internal mail and

personal mail have been removed from the set WMS

C-max

beause they have

an attribute, sender, not in the objet state, whereas the lass business mail

has been deleted sine it has two attributes, sender and logo, not in the ob-

jet state. At this point, sine the set WMS

C�max

is a singleton, the objet is

lassi�ed in lass mail.

When the algorithm is applied to lassify objet o

2

, it omputes, in step 1,

the set WMS = finternal mail; personal mailg. It does not onsider lasses

mail and business mail beause they do not ontain the subjet attribute.

Then, the set of lasses with the highest onformity degree (WMS

C-max

) is

determined, but this set is equal to the previous one (the two lasses have the

same attributes). Therefore, the set of lasses with the lowest heterogeneity de-

greeWMS

H-min

= fpersonal mailg is omputed. Thus, the objet is lassi�ed

in lass personal mail.

When the algorithm is applied to lassify objet o

3

, it omputes, in step 1,

the set WMS = finternal mail; personal mail; business mailg. It does not

onsider lass mail beause it does not ontain the sender attribute. Then, the

set of lasses with the highest onformity degree (WMS

C-max

) is determined,

but this set is equal to the previous one (the three lasses have the same number

of additional attributes). Therefore, the set of lasses with the lowest hetero-

geneity degree WMS

H-min

= fpersonal mail, business mailg is omputed.

Class personal mail is not a sublass of business mail, but if we onsider

the objet strutural expressions assoiated with objet o

3

9

we �nd out that

business mail is a re�nement of personal mail, thus the objet is lassi�ed in

lass business mail.

When the algorithm is applied to lassify objet o

4

, it determines that the

objet is not weak member of any lass. Thus, the objet is put in the repository

of unlassi�ed objets.

9

The objet strutural expression assoiated with o

3

with respet to personal mail

and business mail is shown in Figure 3.



5 Conlusions

In this paper we have proposed an approah to lassify objets whose struture is

not neessarily a type present in the database shema. The proposed tehnique,

whih is urrently being implemented, is based on the notion of weak membership

and on onformity and heterogeneity degrees, and allows one to automatially

lassify an objet in the lass whose strutural type best �ts the objet state.

Our lassi�ation approah is totally based on the objet struture. An al-

ternative approah ould be to lassify objets aording to their response to

messages that they reeive. We did not investigate suh an approah beause it

is more related to objet-oriented programming languages than to databases. In

objet-oriented databases the struture, rather than the behavior, is regarded

as the most relevant information assoiated with objets. However, suh an ap-

proah ould still represent an interesting researh diretion.

Another interesting researh diretion is the development of suitable infor-

mation extration tools. Two approahes are possible. The �rst one is to de�ne

\prototype douments" with respet to whih the douments are ompared. The

omparison of a given doument against a prototype doument allows one to

infer strutural information from the doument. The seond approah is to use

deision trees with rules that speify onditions on the attribute types. A path

in the deision tree may thus represent a partiular type to whih a set of objets

may belongs to. We plan to investigate those approahes as future work.

We are extending the work presented in this paper along several other dire-

tions. First, we would like to onsider the possibility of lassifying an objet in

more than one lass, rather than always foring the seletion of a single lass.

This ould be useful when there are several lasses of whih the objet is a

weak member, with the same values for onformity and heterogeneity degrees.

Moreover, our urrent notion of weak membership is based on the fat that

the objet state ontains less omponents than those of the lass. Suh notion

an be extended to the ase of objets whose state ontains additional ompo-

nents with respet to those spei�ed in the lass, in the same spirit of the O

2

exeptional instanes [15℄. In this way we an ahieve a more aurate lassi�-

ation. Another possible extension ould be that of allowing omponents to be

dynamially added, or deleted, to the state of objets in the database. This ould

require a re-lassi�ation of the objet, that is, a migration of the objet in a

more appropriate lass. We would like to onsider the possibility that the shema

evolves, as a onsequene of objet lassi�ation. The appliability of the lassi-

�ation approah to Web searh engines, to perform ontent-based queries will

also be investigated. The idea is to de�ne, starting from the query, the value to

be searhed on the Web, to assoiate a strutural expression with HTML pages,

and then to verify whether a simulation exists between the tree assoiated with

the query and the tree assoiated with the HTML page. If the simulation exists

then the HTML page is a possible answer for the query. Finally, we plan to in-

vestigate how semi-strutured objets an be handled by appliation programs

and queried, in the ontext of semi-strutured data, by revisiting type heking

notions.
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Fig. 6. Presene of SPRING label in a part of lass strutural expression

A Additional Formal De�nitions

In this setion we present the formal de�nition of objet strutural expression

and two �gures that illustrate two partiular ases, that is, the spring type

and the null value, disussed in Setion 4. The �gures illustrate how to obtain,

starting from the objet value expression (a) and the lass strutural expression

(b), the objet strutural expression (). In the following de�nition, given a tree

A and a vertex u, we denote by vertex(A) the set of verties of A and with

tree(u;A) the subtree of A rooted at u.

De�nition 12. (Objet strutural expression). Let o be a semi-strutured objet

and  be a lass in the shema suh that o is a weak member of , that is, a

simulation R exists between "

v

(o) = (V

v

; E

v

; '

v

) and "

t

() = (V

t

; E

t

; '

t

), then

we de�ne objet strutural expression, denoted by "(o; ), the following tree:

(V;E; ')

where:

{ V = V [ V [ V

� V = fu j (u

1

; u) 2 Rg,

� V = fu j (u

1

; u

2

) 2 R; (u

2

; u) 2 E

t

and '

t

((u

2

; u)) = SPRINGg

� V =

S

(u

1

;u

0

1

)2E

v

s:t: '

v

((u

1

;u

0

1

))=NULL

fu j (u

0

1

; u

0

2

) 2 R and

u 2 vertex(tree(u

0

2

; "

t

()))g

{ E = E [ E

� E = f(u

1

; u

2

) j u

1

; u

2

2 V; (u

1

; u

2

) 2 E

t

g,

� E = f(u

1

; u

2

) j u

1

; u

2

2 V and 9u s:t: (u

1

; u); (u; u

2

) 2 E

t

;

'

t

((u

1

; u)) = UNION)g

� '((u

1

; u

2

)) =

(

'

t

((u

1

; u

2

)) if (u

1

; u

2

) 2 E

'

t

((u; u

2

)) if (u

1
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2

) 2 E and (u; u

2

) 2 E

t

2

We introdue the following de�nitions to formally state the onept of real

path.



integer
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REC
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Fig. 7. Presene of NULL label in a part of objet value expression

De�nition 13. (Labeled path). Let A = (V;E; ') be a labeled tree on LT , the

sequene:

u

1

:l

1

:u

2

:l

2

: � � � :l

n�1

:u

n

is a labeled path, where:

{ u

1

; : : : ; u

n

2 V ,

{ 8i; 1 � i � n� 1; (u

i

; u

i+1

) 2 E and '((u

i

; u

i+1

)) = l

i

. 2

De�nition 14. (Maximal labeled path). Let A = (V;E; ') be a labeled tree on

LT , a labeled path

u

1

:l

1

:u

2

:l

2

: � � � :l

n�1

:u

n

is alled maximal if u

1

= root(A) and u

n

is a leaf of A. 2

Now we are able to de�ne the notion of real paths of a tree. In the following

de�nition we denote by path(A) the set of maximal labeled paths of the tree A

and with �

2

(R) = fu j (�u; u) 2 Rg.

De�nition 15. (Real paths). Let o be a semi-strutured objet and  be a lass

in the shema suh that o is a weak member of , that is, a simulation R exists

between "

v

(o) and "

t

(), then we de�ne real-path the following set:

real-path("

t

()) =

f! j ! 2 path("

t

()) and (! = : : : REC:u

1

:UNION:u

2

:l:u

3

: : : )

(u

3

2 �

2

(R)) or (fu j (u

2

; u) is an edge of "

t

() and u 2 �

2

(R)g = ;))g

2


