An Approach
to Classify Semi-Structured Objects*

Elisa Bertino* Giovanna Guerrini® Isabella Merlo> Marco Mesiti®

! Dipartimento di Scienze dell’Informazione
Universita degli Studi di Milano
Via Comelico 39/41 - 120135 Milano, Italy

bertino@dsi.unimi.it

2 Dipartimento di Informatica e Scienze dell’Informazione
Universita di Genova
Via Dodecaneso 35 - 116146 Genova, Italy
{guerrini,merloisa}@disi.unige.it

3 Bell Communications Research
445, South Street - Morristown (NJ), U.S.A.

marco@research.bellcore.com

Abstract. Several advanced applications, such as those dealing with
the Web, need to handle data whose structure is not known a-priori.
Such requirement severely limits the applicability of traditional database
techniques, that are based on the fact that the structure of data (e.g. the
database schema) is known before data are entered into the database.
Moreover, in traditional database systems, whenever a data item (e.g.
a tuple, an object, and so on) is entered, the application specifies the
collection (e.g. relation, class, and so on) the data item belongs to. Col-
lections are the basis for handling queries and indexing and therefore a
proper classification of data items in collections is crucial. In this pa-
per, we address this issue in the context of an extended object-oriented
data model. We propose an approach to classify objects, created without
specifying the class they belong to, in the most appropriate class of the
schema, that is, the class closest to the object state. In particular, we
introduce the notion of weak membership of an object in a class, and
define two measures, the conformity and the heterogeneity degrees, ex-
ploited by our classification algorithm to identify the most appropriate
class in which an object can be classified, among the ones of which it is
a weak member.

1 Introduction

In the last few years, there has been in the database community a growing
interest in the management of semi-structured data [1]. Semi-structured data are
data whose structure is not regular, is heterogeneous, is partial, has not a fixed

* Work partially supported by the Italian MURST under the Interdata Project.

format and quickly evolves. Moreover, the distinction between the data described
by the structure and the structure itself is blurred. Those characteristics are
typical of data available on the Web [5], of data coming from heterogeneous
information sources [24] and so on. The lack of a fixed a-priori schema and of
information on the data structures makes it difficult handling semi-structured
data through conventional database technology.

Currently, the research activity concerning the management of semi-structured
data is moving along three directions [14]: (1) techniques for gathering all kinds
of information (HTML pages, images, multimedia documents and so on) from
various information sources (like the Web) and for extracting structural infor-
mation from them [3,19]; (2) development of data models able to represent such
kinds of information and extension of traditional database techniques to manage
them; (3) development of query execution techniques able to exploit the struc-
tural information extracted from data and of techniques to export data on the
Web [2].

In the data model area the research community has proposed two main ap-
proaches to model semi-structured data [10,14]. The first one is a more tradi-
tional approach and consists of adapting existing data models to deal with semi-
structured data. In particular, extensions to the object-oriented data model have
been proposed with less restrictive type systems [13,26]. The second approach,
by contrast, does not have any notion of type and schema to avoid any restric-
tion on the structure of the data to be stored in the database. The basic idea
of this approach [4,12] is to use a labeled graph to store structural information
together with data they refer to. An advantage of the first approach over the sec-
ond one is the existence of a structure containing information on the type of data
separated from the data themselves. This is important for efficiently querying
data and for developing adequate storage structures and indexing techniques. To
overcome the drawbacks of the lack of “schema” information, proposals following
the second approach have been recently extended with the introduction of some
flexible “schema mechanism” [11,17], able to represent information on the data,
and yet leaving a high degree of freedom with respect to the data entered into
the database.

An important issue, quite independent from the modeling approach adopted,
is to capture the existence of some regularity in the data, i.e., typing data or, as
in our approach, classifying them. Automatic typing or classification is crucial in
order to achieve effective storage and retrieval. However, limited work has been
carried out in the context of semi-structured data. In this paper, we address
such issue by defining a classification approach for data, whose structure is not
known, with respect to classes in an inheritance hierarchy of an object-oriented
database. Therefore we assume the existence of an a-priori defined schema and
allow one to create objects, whose class is not known, which are automatically
classified in the existing schema. Once an object has been classified, it can be
effectively considered part of the database. Applications can, therefore, access
and modify such an object exploiting all the database features.

It is important to remark that the problem of automatically classifying infor-
mation has also been investigated in other areas. However, semi-structured data
have features requiring the development of specific classification techniques. In
particular, the problem of automatic classification has been dealt with in the
context of frame-based terminological languages [25], which use automatic clas-
sification techniques both at the terminological and assertional levels (schema
and data, respectively), for correctly positioning a concept in the taxonomy
and for determining the most specific concept for an instance. Classification ap-
proaches, typical of such languages, rely on determining subsumption relations
among concepts. Subsumption, however, takes into account also attribute values,
rather than only considering the similarity of the structure, as in our approach,
which then results in simpler and more efficient algorithms. The problem has
also been investigated in the software engineering area. In [7] a CASE tool is
proposed that starting from a set of object examples derives a schema suited for
handling those objects.

In the context of semi-structured data the problem of automatic typing has
been addressed in [23]. However, the goal of that work substantially differs from
ours, since their main aim is to extract schema information from data, that is, to
extract structure from raw data. They deal with the problem of how to avoid the
proliferation of types by defining a distance among types, but they do not address
how their framework could exploit some a-priori knowledge on the data schema.
We remark that this knowledge, that we assume in our approach, often occurs
in practice, for instance when integrating semi-structured data, discovered on
the Web, with data having a known structure or when the semi-structured data
have associated some kind of structural information (for example the Document
Type Definition associated with an XML page [21]). Moreover, in [23] it is not
specified whether the insertion of new objects, once the schema is set, can result
in schema modifications and attribute domains are not kept into account.

Our classification approach has been proposed in the context of a reference
data model [8]. The reference data model includes some new types ensuring a
highly flexible type system. In particular, its modeling power is comparable to
that of the best known data models for semi-structured data, such as [4, 13, 26],
in that it captures all the kinds of data heterogeneity that can be represented
in those models. Moreover, we remark that, though tailored to a given data
model, our approach to automatic classification is highly independent from the
particular type system and it can be easily adapted to other object-oriented data
models and type systems supporting union types. In fact, union types represent
a common extension to a traditional object type system to meet the flexibility
requirements for managing semi-structured data.

In our model, a semi-structured object is an object that has been created
without specifying the class it belongs to. To this purpose, our model supports
a new operation in which the class to which the object belongs to may not be
specified.

In the context of semi-structured data, the assumption that for each object
there is a type exactly describing it is too strong. Thus, in our model we do

not make such assumption and we rely on a notion of weak membership. Such
notion is weaker than the classical notion of class membership, since we only
require the components® in the object state be a subset of the components of
the structural type of the class,? rather than requiring the components of the
object state be exactly all and only those appearing in the structural type of the
class, as in traditional object-oriented data models. According to our notion of
weak membership, an object can be a weak member of no class, of just one class
or of several classes, even not related by inheritance hierarchies. To determine the
most appropriate class for an object, among the ones of which the object is a weak
member, we use two measures: the conformity degree, measuring the similarity
degree between the type of the semi-structured object and the structural type
of the class, and the heterogeneity degree of the class, measuring how much the
extension of the class is heterogeneous. If an object is a weak member of no class,
it is inserted in a repository of unclassified objects. As the schema evolves the
repository is periodically examined, trying to classify objects contained in it.

As it is outlined in [23], addressing the problem of extracting structure from
semi-structured data leads to approximate typing or classification, since heuristic
techniques are exploited. The conformity and heterogeneity degrees are measures
that allow one to classify a given object in the schema, inserting it into a class
which is as close as possible to the actual object structure.

Among the possible applications of our classification technique, we would
like to mention its use in supporting content-based search on the Web. The idea
is to record the content of HTML pages in an existing database. Through an
information extraction tool one can delimit a (semi-structured) object represent-
ing the relevant information of the page. Then, our automatic classification tool
determines the most appropriate class to insert the object in. Once the object,
corresponding to the HTML page, is inserted in the database, such information
can be used to support content-based data retrieval through a query language.
We believe that such an approach could represent a relevant improvement to the
well-known techniques, based on pattern matching, adopted by the most popular
Web search engines.

The remainder of the paper is organized as follows. In Section 2 we review the
concepts of the reference data model that are relevant to this work. In Section 3
we introduce the notion of weak membership, whereas in Section 4 we discuss the
proposed classification approach and we present an algorithm to automatically
classify objects according to our notion of weak membership. Finally, Section 5
concludes the paper and discusses future work. Appendix A presents the formal
definitions of some concepts introduced throughout the paper.

L A component of a record value or of a record type is one of the slots composing it.
2 The structural type of a class is the record type containing the attributes of the class
and their respective domains.

2 Reference Data Model

The reference data model, defined as extension of the basic object-oriented data
model [18], is based on a type system which consists of three kinds of types: value
types, object types, and the spring type. Value types are classical types such
as basic value types (integer, bool, real, etc.) and structured types (built by
means of record, set and list constructors). The reference data model adds
to this set of types the union type, that we will discuss in more details below.
Object types are types corresponding to classes (class names). Finally, the
spring type is a new type, not present in the basic object-oriented data model,
allowing one to specify that an attribute does not have any specific domain. Be-
cause of the relevance of this type in handling semi-structured data, we will also
discuss it in more details below. It is important to remark that the reference data
model, as the basic object-oriented data model, supports all the common features
of object-oriented data models such as object identity, user-defined operations,
classes, inheritance (we refer the reader to [8] for details on the reference data
model). The spring and union types enrich the original object-oriented data
model with the flexibility required to manage semi-structured data, and make
the type system of our model more flexible than those of existing data models
for semi-structured data [13,26]. In order to provide a safe object-oriented data
model, in [8] subtyping relationship and class refinement are addressed.

In the remainder of this section we first discuss the new types added to
the basic data model and then we introduce the notions of class and object as
supported by the model.

2.1 Union Types

A union type consists of a set of types belonging to the basic type system each
one associated with a distinct label. Let Ty,...,T,, be value types of the basic
object-oriented data model or object types and ai,...,a, be distinct labels,
then the type union-of(ay : Ti,...,a, : T)) is a union type. Our union type
definition is similar to the one proposed in [13], but it is not identical since we
impose the restriction that the types of the union type components be neither
the spring type nor union types. This restriction ensures efficiency in terms of
space allocation and type safety, and simplifies classification of semi-structured
objects. Subtyping rules for union types are similar to those proposed in [13].
Legal values for a union type are pairs [: v, where [is the label of a union type
component, and v is a legal value for the type associated with [.

As a consequence of the introduction of union types, we have modified the
record type definition of the basic object-oriented data model to allow one to
omit the label associated with a component whose type is a union type. In this
way, in order to access that component, we only need to use the label appearing
in the union type definition.

Ezample 1. Let person be a class name. Let record-of (a:integer, union-of
(b:string, c:person)) be a record type. Let X be a variable of this type. In
order to access component b, we simply write X.b. o

To avoid ambiguities in accessing a component of a record type, we impose that
the labels of record type components and the labels of union type components
be all distinct. That is, we disallow record types such as record-of (a:integer,
union-of (a:string,c:person)).

A legal value, for a record type, has the form (a; : vy,...,a, : v,), where a;
is the label of a record type component or the label of a union type component
appearing in the record type definition, and v; is a legal value for the type
associated with a; in the corresponding record type definition. For example, let 4,
be the identifier of an object belonging to the class person, then (a : 5,b ’rose’)
and (a : 8,c:ip) are legal values for the type of the previous example.

2.2 Spring Type

The spring type is the common supertype of value types and object types.
The introduction of this type allows us to manage data without knowing their
actual type. Each legal value of each type of the model is a legal value for the
spring type. Note that our notion of spring type is different from the notion of
Object type, supported by some systems like GemStone [9]. The first difference
is that in our model we have both value types and object types, whereas those
systems only support object types. The spring type, in our model, is not an
object type and is not a value type, rather it is a common supertype of all (value
and object) types of the model. Another relevant difference is that in our model
the spring type cannot be directly instantiated, that is, no objects or values can
be proper instances of the spring type. In other systems, by contrast, objects
can be proper instances of the Object type.

2.3 Classes, Objects and Semi-structured Objects

Our model supports a quite standard notion of class, with some differences aris-
ing from the introduction of the union and spring types. Each class, moreover,
has a structural type, which is a record type describing the state of the class
instances, formally defined as follows.

Definition 1. (Structural type of a class). Given a class ¢, defined as

class c{a1 : Th,...,am : Ty,
union-of (a} : T, ...,a} : TF), ... ,union-of(al : T}, ... af : TP) }

the record type record-of (a1 : Th, ..., am : Ty Tint1y -« oy Do), where, for k =
L,...,n: Tk = union-of (ay : T}, ..., a} : TY), is the structural type of class
¢, denoted by stype(c). |

Note that, as specified in the definition above, the class contains some fixed
attributes (a1, -..,an), and some other components for which one out of some
possible alternatives, specified through a union type, can be chosen (component
m+1tom+n).

The notion of object supported by the model, formalized by the following
definition, is also quite standard.

Definition 2. (Object). An object is a triple o = (i,v,c) where i is an object
identifier, v is a record value (the object state) and c is the most specific class to
which o belongs. |

Finally, the following definition states the conditions for an object to be an
instance of a class.

Definition 3. (Instance). An object o is an instance of a class ¢ if o.v is a legal
value for stype(c). a

Definition 3 above requires that the following conditions hold:

(1) for each component a : v of the object state, a component a : T' exists in
stype(c) such that v is a legal value for T' or a component union-of(a; :
Ti,...,ap : Tp) exists such that a : v is a legal value for that component,
that is, 3 7,1 <4 < p, such that a = a;, and v is a legal value for T5;

(2) for each component a : T in stype(c), a component a : v exists in the object
state such that v is a legal value for T, and for each component union-
of(ar : T1,...,ap : Tp) in stype(c) a component a : v exists in the object
state such that a : v is a legal value for that component, that is, 3,1 < i < p,
such that @ = a; and v is a legal value for T;.

Condition (1) above requires that each component in the object state corre-
sponds either to an attribute of the class (and in this case the component value
must be a legal value for the attribute domain) or to one of the components of
a union type in the structural type of the class (and in this case the component
value must be a legal value for the union type component domain). Condition
(2) above, by contrast, requires that the object state contains a component for
each attribute of the class and a component for each union type in the structural
type of the class (corresponding to one of the components of the union type).

The following is an example of classes and objects in our model.

Ezxample 2. Suppose we wish to model information about people, and in partic-
ular name, age, birthday and love, where name may be a string, or a record
with two components, first name (f-name), surname (s-name), and love may
assume any value (a person may love another person or an animal or anything
else). Let date be a class of the database schema and i4 be the identifier of an
object instance of class date. We may define a class person whose structural
type is:

record-of (union-of (nameS:string, nameR:record-of (f-name:string,
s-name:string)), age:integer, birthday:date, love:spring).

person

=

Fig.1. A chunk of a database schema

{hdl
D

The following objects are instances of class person: 0; = (i1, v;, person), where
v; = (nameS "X’ age : 25, birthday : i4, love :'rose’), and 02 = (i2, v, person),
where vy = (nameR:(f-name :’Max’, s-name : 'X’), age : 25,birthday : i4, love :
ip). Note that, even if their states are legal values for the structural type of class
person, they have different structures. &

In our model, finally, we denote by semi-structured object an object
created without specifying the class it belongs to. The object is called semi-
structured because it is inserted in the database without any a-priori information
about its class. The object can be an instance of several classes of the schema,
or of no class. In other words, the object state may be a legal value for the struc-
tural type of more than one class, or it may be a legal value for no structural
type associated with any class in the schema.

Ezxample 3. Suppose we want to classify e-mails in a database in order to make
their retrieval easier. Suppose we have a mailer that allows to associate some
structural information with e-mails and that we have an extraction information
tool able to take that structural information out from them. Now we want to
create a database to store e-mails using our model. The idea is that when a new
e-mail is sent or received through the mailer, the extraction information tool
takes out information (with a structure) from the e-mail and tries to insert this
semi-structured object in the database. Suppose we have created the following
classes in the database:

— stype(mail) =
record-of (union-of (receiverS:string, receiverP:person),
body:spring);

— stype(internal mail) =
record-of (subject:spring, sender:person, union-of (receiverS:
string, receiverP:employee), body:string);

— stype(personal mail) =
record-of (subject:person, sender:person, union-of (receiverS:
string, receiverP:person), body:string);

— stype(businessmail) =

% We do not present classes person and employee and the other classes of the schema
because they are irrelevant for the example.

record-of (logo:string, sender:person, union-of (receiversS:
string, receiverP:employee), body:string).

The meaning of the previous classes is intuitive. The idea is to have a class for
e-mails and to refine the personal, internal and business e-mails in distinct sub-
classes. Figure 1 shows a chunk of the database schema, showing the inheritance
relationships among classes. Suppose the extraction information tool generates
objects o1, ..., o4 from some e-mails arrived in the mailbox, whose states are,
respectively:

1. (receiverS:’Elena F ..., body:’Dear Monica...’),
2. (subject:ip, sender:i,),

3. (sender:iy, receiverP: 4., body:’"Hello Ugo..."),

4. (subject:’Summer in...’, attachment:'photo.jpg’)

where i, is an identifier of an object of class person and ¢. is an identifier of an
object of class employee. The first object is an instance of class mail, whereas
the others have less attributes or, as in the last case, has an attribute not in
the schema. In the following we will see how our classification approach handles
these situations. &

3 Weak Membership

In the management of semi-structured objects we want to emphasize the role
of the class as a repository that contains objects whose states have the same
type,* rather than as a template for creating objects. In this context, we al-
low applications to create objects without specifying the class they belong to.
Then, it is the system that automatically classifies those objects in an appro-
priate class. In order to classify a semi-structured object, we need a criterion to
bind such object to a class. The notion of instance could be used for this pur-
pose, but its definition is too restrictive to be used for semi-structured objects.
In order to achieve the flexibility needed to classify semi-structured objects, we
propose a weaker notion, referred to as weak membership, only requiring con-
dition (1), stated after Definition 3. Thus, the structural type of a class may
have more components than those appearing in the object state. In such a case,
we need some exception-handling mechanism to manage accesses to components
not present in the classified object. The idea of classifying semi-structured data
in an existing a-priori database schema could seem too restrictive. By contrast
we believe that our automatic classification, based on the notion of weak mem-
bership, represents a compromise between the flexibility of semi-structured data
and the rigidity of object-oriented schemas and allows one to benefit from all the
features of object-oriented database systems to manage this kind of information.

* Note that, in our model, this condition does not mean that all objects instances of
a class have the same structure (cfr. Example 2).

love

~ birthday age

nameR

integer SPRING

string string

@ (b)

Fig. 2. (a) Object value expression, (b) class structural expression and their simulation
relation

In order to formally define the notion of weak membership and to define
a method to check whether an object is a weak member of a class, we extend
a well-known theoretical notion, the simulation relation [22]. First, we provide
an abstract representation of the structural type of a class, the class structural
expression, and an abstract representation of the object state, the object value
expression. Then, to verify whether the object is a weak member of the class,
we check whether a particular simulation exists between those two expressions.
Intuitively, the class structural expression is a tree labeled with symbols rep-
resenting the attributes of the class and their types, whereas the object value
expression is a tree labeled with symbols representing the attributes of the ob-
ject and their values. In the remainder of this section, we first present the formal
definitions concerning class and object expressions (Subsection 3.1) and then the
weak membership notion is formally defined (Subsection 3.2).

3.1 Class and Object Expressions

In the following the set PRED denotes a set of predicates where each predi-
cate represents the set of legal values for basic value types and object types. A
predicate p € PRED applied to a value v holds if and only if v belongs to the
set of instances associated with the type p, where the type p may be a basic
value type or an object type. Moreover, given the set AN of attribute names,
LT denotes the set of tree labels, that is £7 = {LIST, REC, SET, UNION,
SPRING} U AN U PRED. The following definition states the notion of class
structural expression.

Definition 4. (Class structural expression). Given a class ¢, the class structural
expression of ¢ (denoted by e¢(c)) is a tree (Vi, Ey, p1), labeled on LT, where V,
is a set of vertices, By C V; x Vi is a set of edges, and @ : Ey — LT is the edge
labeling function. |

Since the class structural expression is a tree associated with a type of the
model (the structural type of a class), we have developed an inductive system
to map any type of the model into a labeled tree [8]. Figure 2(b) shows the
class structural expression associated with class person of Example 2. Note that
string, date, and integer symbols are predicates which represent the set of
legal values for the corresponding types. Note also that we have not generated
the structural expression associated with the object type date since we are
interested in shallow® comparison among objects and classes.

In the following definition, stating the notion of object value expression, LV
denotes the set of labels of object value expressions, that is, £V = {LIST, REC,
SET, UNION, NULL} U AN U V, where V denotes the set of legal values for
basic value types and object identifiers.

Definition 5. (Object value expression). Given an object o, the object value
expression of o (denoted by €,(0)) is a tree (Vy, Ey,py), labeled on LV, where
Vy is a set of vertices, E, CV, XV, is a set of edges and, ¢, : E, — LV is the
edge labeling function. O

Similarly to what has been done for the class structural expression, an induc-
tive system has been defined in [8] to map values of the model into labeled trees.
Figure 2(a) shows the object value expression associated with a semi-structured
object whose state is (nameS :’X’,birthday : i4). According to our shallow ap-
proach, we have not generated the object value expression associated with the
state of the object identified by ig4.

We also introduce the notion of refinement among structural expressions,
which is used by our classification algorithm. Intuitively, a structural expression
(that is, a tree whose edges are labeled in £7) ¢’ is a refinement of a structural
expression ¢ if the two trees are isomorphic, but some of the labels of £’ are class
names corresponding to subclasses of the corresponding labels in . Let PRED®
denote the subset of PRED corresponding to object types, and <jsa denote the
inheritance relationship on object types, then, the notion of refinement among
structural expressions is defined as follows.

Definition 6. (Structural expression refinement). Let € = (V, Et, p¢) and €' =
(Vi, Et, 1) be two structural expressions. €' is a refinement of € if

Ve € E; : pi(e) = pi(e)V(pi(e) € PREDNpy(e) € PRED’Npy(e) <rsa pi(e)). O

The following example illustrates the notion of structural expression refine-
ment.

Ezample 4. The structural expression presented in Figure 3(b) is a refinement of
the one presented in Figure 3(a) because the two trees have the same structure
and the labels are all equals except person and employee which are in the <;g4
relation. <&

® Shallow is used here with the same meaning as in shallow equality [16].

receiverP sender .
receiverP sender

body

person | string| person employee string| person

(a) (b)

Fig. 3. Structural expression refinement

3.2 Simulation Relation

Before defining the relation between the class structural expression and the ob-
ject value expression we introduce a mapping between labels in set £V and labels
in set LT, that is used to identify a set of cases to be managed in the same way.

Definition 7. (Relation ~; between labels). A relation = holds between a
label I, € LV and a label Iy € LT (denoted by l, ~r 1), if and only if one of
the following conditions holds: (1) 1, = NULL and l; # SPRING; (2) l,,1: €
{LIST, REC, SET, UNION} UAN and l, =l¢; (3) 1l € PRED and l; holds on
ly. O

We are now able, using relation ., to introduce the notion of simulation.
The simulation is a particular relation among the vertices of the object value
expression and the vertices of the class structural expression that takes into
account the symbols used to label the edges of these expressions. The idea of
simulation is used in several research areas [11,20] and it has a solid theoretical
foundation. We will use it to formally define the notion of weak membership. Our
definition of simulation in an extension of the “classical” one, thus it preserves
its good properties [20].

Informally, a relation R between the vertices of an object value expression
(Vu, By, @y) and the vertices of a class structural expression (Vi, Ey,) is a
simulation if the following conditions hold:

— If the label I, € LV associated with the edge (ui,u}) € E,, outgoing from
vertex u, identifies a particular type (structural, basic, object), then an
edge (uq,ub) € E; must outgo from uy labeled with a symbol I, € LT, for
which relation ~, holds between [,, and l;. Moreover, relation R must hold
between u] and u,.

— If the label I, € LV associated with the edge (ui,u}) € E,, outgoing from
vertex up, is an attribute name (I, € AN) and the label associated with
the edge (uq,u}) € Et, outgoing from vertex uq, is UNION, then an edge
(uh,uly) € Ep must exist, outgoing from vertex uf, with the same label of
the edge (u1,u}). Moreover, relation R must hold between u} and u}.

1
“ 1v UNION
i T <
2 u’ ué)
~ SPRING
’
2

(a) (b) (c)

Fig. 4. Visual representation of relation among vertices of item (2) of Definition 8

— If the label I; € LT associated with the edge (u2,ub) € Ey, outgoing from
vertex uq, is SPRING, then there is no condition to verify. In this situation
we do not need to check other pairs in the relation whose first component
is a vertex belonging to the subtree rooted at u, since the value associated
with the subtree rooted at wu; surely is a legal value for the type associated
with the subtree rooted at us (that is, the spring type).

The following definition formally states our notion of simulation. In the def-

inition root(A) denotes the root of tree A and u L4 u' denotes an edge (u,u')
such that o((u,u’)) =1.

Definition 8. (Simulation). A binary relation R from the vertices of A, =
(Vi, By, @y) labeled on LV to the vertices of Ay = (Vi, Ei, 1) labeled on LT,
is a simulation if and only if the following conditions hold:

1. root(Ay) R root(As);

2. if uy R us, then Yuy LN uy in Ey, 3 uy ey uly in Ey, such that one and
only one of the following conditions holds:
(a) 1, =l and uf R u,

(b) l, =UNION, Ju} Ly ub in Ey such that I, =1} and u] R uj,
(c) l; = SPRING. O

In Figure 2 the dashed lines represent the simulation between the object value
expression associated with the semi-structured object, that we have introduced
previously, and the structural expression associated with the structural type of
class person of Example 2. A visual representation of relation among vertices
of item (2) of Definition 8 is shown in Figure 4. The dashed lines identify the
relation that must hold between the vertices of the two trees. Note that, as you
can see in Figure 4(c), we do not require the relation to hold between vertices
v} and ub.

For determining weak membership, we do not consider every simulation.
Consider the following example.

Ezample 5. Consider the object value expression associated with the object state
(a: 5, b’rose’) and the class structural expression associated with the structural
type record-of (union-of (a:integer, b:string)). According to Definition 8
a simulation exists between them. <&

The simulation in the above example, however, does not capture our notion of
the set of legal values for the record type in the example. The idea of the union
type is, instead, that of choosing one out of some possible alternatives. Thus,
in the definition of weak membership, we leave out this kind of simulations, as
formally stated by the following definition.

Definition 9. (Weak membership). An object o is a weak member of a class
¢ if a simulation R exists between the object value expression associated with o
(ev(0)) and the class structural expression associated with ¢ (e¢(c)), such that

Vu, TGN uby labeled edge of €¢(c) at most one pair (u,u') € R exists such that
u' € {a| (uh,u) is an edge of e,(c)}. O

The above definition of membership is more flexible than the notion of instan-
tiation. According to such definition, an object state can contain less components
than those present in the structural type of a class. Such definition, however, does
not allow one to identify only one class to which the object belongs. In the next
section we propose an approach to establish the most appropriate class to which
the object belongs.

4 Automatic Classification Approach

In the previous section we have proposed an approach to determine whether a
semi-structured object is a weak member of a class. An object may be a weak
member of several classes.

Ezxample 6. Consider an object whose state consists only of the component
(age: 25). Such object is a weak member of all the subclasses of class person
in the schema of Example 2. &

When an object is a weak member of several classes, we need some measures
to determine the most appropriate class in which we can classify the object. If
no class exists of which the object is a weak member, we insert it into a reposi-
tory of unclassified objects. As the schema evolves the repository is periodically
examined, trying to classify objects contained in it.

In the remainder of this section we propose two measures to select the most
appropriate class where we can classify a given object, among those of which
the object is a weak member. We also outline an algorithm using those mea-
sures to automatically classify semi-structured objects. Finally, we compute the
algorithm complexity and present some examples of automatic classification.

4.1 Conformity Degree

With the first measure, referred to as conformity degree, we want to check how
much the type of the semi-structured object is close to the structural type of
a given class. In other words, we check how many components the class has in
addition to those of the object. In case an object is a weak member of more than
one class, we select the classes that have the minimal number of additional com-
ponents with respect to the components in the object state. For example, if an
object is a weak member of a class and it is a weak member of some subclasses
of that class, we are not interested in classifying the object in the most specific
class of the inheritance hierarchy if this class has several attributes which are
not part of the object. To formally define the conformity degree, we introduce an
additional data structure, referred to as object structural expression, representing
the actual type of the object. This data structure, intuitively, is a subtree of the
tree associated with the structural type of a class of which the object is a weak
member. It is associated with a legal type of our type system and allows the
actual type of the object to be compared with the structural type of the class,
since the object structural expression is built starting from the class structural
expression. Informally, to generate this structure we start from the existing sim-
ulation between the object value expression and the class structural expression
and extract the vertices of the class structural expression that appear in the
second component of the simulation. Then, we add to this set of vertices other
vertices to handle two particular cases: the presence of null values in the object
state and the presence of spring types in the structural type of the class. The
edges and the labeling function of this tree are created accordingly. For further
details on the formal definition of the object structural expression, that will be
denoted by (o, c), we refer the reader to Appendix A. Figure 5(a) shows the
object structural expression associated with the object value expression shown
in Figure 2(a). As we can see, this object structural expression represents the
type record-of (nameS:string, birthday:date). The value associated with
the object value expression shown in Figure 2(a) is a legal value for that type.
Moreover, to formally define the conformity degree, we must take into account
that when there is a union type in the structural type definition of a class only
one of its components may appear in the object state. Thus, we consider the real
paths of a class structural expression. Real paths, formally defined in Appendix
A, are paths that do not contain any edge labeled by UNION followed by an
edge labeled by [(I € AN') where [is an attribute not appearing in the ob-
ject state. Figure 5(b) shows the tree only containing the real paths of the class
structural expression shown in Figure 2(b). The following definition formalizes
the notion of conformity degree.

Definition 10. (Conformity degree). Let o be a semi-structured object and c be
a class such that o is a weak member of c. We define the conformity degree of o
with respect to ¢ (denoted by C°(o,c)), as the ratio of the number of paths of the
object structural expression and the number of real paths of the class structural

X 1
namesS birthday nameS ove

birthday age

string date string date | integer SPRING

(a) (b)

Fig. 5. (a) Object structural expression, and (b) the part of class person structural
expression containing only the union components that appear in the object state

expression. Formally:

#(path(e(o, ¢)))

C°(0,¢) = #(real-path(e:(c)))

d

In the previous example, the number of paths of the object structural expres-
sion is 2, the number of real paths of the class structural expression is 4, thus
the conformity degree is 0.5.

The following proposition (proved in [8]) holds.

Proposition 1. The following results on conformity degree and weak member-
ship hold:

— The conformity degree is always a number between 0 (low conformity) and 1
(high conformity).

— If a semi-structured object is an instance of a class, the conformity degree is
1.

— If a semi-structured object is a weak member of a class and the conformity
degree is 1, then the object is an instance of the class. O

4.2 Heterogeneity Degree

With the second measure, referred to as heterogeneity degree, we want to check
how much the extension of a class is heterogeneous. By using the heterogeneity
degree, we can insert a given object in the class with the most homogeneous ex-
tension. The advantage of having classes with a homogeneous extension is that
more efficient query execution strategies and storage organizations are possible.
In Section 2 we have seen that, because of the presence of union and spring
types in the type system, several structures may correspond to the same type.
In Section 2 we have also seen that for each class in the schema the set of objects
belonging to a class may have different structures. For example, if in the struc-
tural type of a class there is only a union type with two components, and there

is no component of spring type, then the extension of this class consists of a
set with two kinds of objects: the ones having the first component of the union
type, and the ones having the second component of the union type. Thus the
heterogeneity degree is 2.5 By contrast, if we have only a component of spring
type in the structural type of the class, this component may assume any legal
value of any type in the schema. Thus, the structure of objects belonging to
this class may be highly heterogeneous. In such case, the heterogeneity degree is
evaluated as the number of all value and object types introduced in the schema
(these sets are denoted by V7T and CZ, respectively). The heterogeneity degree
of a record type is the product of the heterogeneity degree of its components,
while the heterogeneity degree of a set type (list type) is the heterogeneity degree
of its component types. The heterogeneity degree of other types (belonging to
the basic type system) is 1 since they do not generate heterogeneous extensions.
In computing the heterogeneity degree we take into account that we perform a
shallow comparison among the class structural expression and the object value
expression. That is, if the type of an attribute in a class ¢ is an object type ¢,
in calculating the heterogeneity degree we do not take into account the hetero-
geneity degree associated with the class ¢, rather we state that its heterogeneity
degree is 1. The following definition states how the heterogeneity degree of a
class is computed.

Definition 11. (Heterogeneity degree). Let T' = stype(c) be the structural type
of class c, then the heterogeneity degree associated with ¢ is the value returned
by the following function applied to T.

1 if T is a basic value type or object type
n if T =wunion-of (ay : Th,...,an : T},)
H°(T) = #Kl'n+ #CZ if T = spring
L2 Ho(Ty) if T = record-of (a1 - T, ..y am = Ty Tinge 15+, Trnin)
He(T") if T =list-of (T") or T = set-of (T")

O

Note that the heterogeneity degree, like the class structural expression, does
not depend on the database instances but only on the schema. Thus, the hetero-
geneity degree and the class structural expression may be computed at schema
definition time. This is important in order to define efficient algorithms to classify
objects in the schema.

4.3 Classification Algorithm

In our classification approach we look for a class such that: the semi-structured
object is a weak member of the class with the highest conformity degree; the
class has the lowest heterogeneity degree. In addition, for classes with the same

6 Note that, since the types of union type components are constrained to belong to
the basic type system, their heterogeneity degree is always 1.

conformity and heterogeneity degrees, we take into account the inheritance hi-
erarchy, by choosing the most specific class in the hierarchy.

The classification algorithm takes as input a semi-structured object and ex-
ecutes the following steps:

1. The set of classes of which the object is a weak member is computed; such
set is denoted as WM S. If WM S = 0 then the object cannot be classified
and it is simply inserted in the repository of unclassified objects. Otherwise,

2. The set of classes WM S¢-pnqz 18 extracted from the set WM S by choosing
the classes with respect to which the object has the highest conformity de-
gree. If this set is a singleton, the most appropriate class has been found and
the object is inserted in the class extension. Otherwise,

3. The set of classes WM Sg-min is extracted from the set WM Sc-pmaz by
choosing the classes with the lowest heterogeneity degree. If this set is a sin-
gleton, the most appropriate class has been found and the object is inserted
in the class extension. Otherwise,

4. We delete from W M Sg-min all the classes having a subclass in that set, and
any class ¢ such that W M Sg_,:, contains a class ¢’ whose object structural
expression’ is a refinement of the object structural expression of ¢, according
to Definition 6. If the resulting set is a singleton, then the most appropri-
ate class has been found and the object is inserted in the class extension.
Otherwise, an arbitrary class is selected in which the object is inserted.

In the previous algorithm, first of all we find out the set of classes having the
highest conformity degree from the classes which the object is a weak member
of. We use the conformity degree as the main measure in the classification ap-
proach because it allows one to identify the classes with the smallest number of
attributes not present in the object state. At this point we try to minimize the
heterogeneity degree. To select a class among the remaining classes, we choose
those classes which are most specific in the inheritance hierarchy as well as those
classes whose attribute domains most closely matches the attribute values of the
object.

Note that, if the resulting set of the algorithm is not a singleton then an ar-
bitrary class is selected in which the object is inserted. An alternative approach,
which however is left for future investigation, would be to classify the object in
all the classes in that set.

4.4 Complexity of the Classification Algorithm

In this section we present the complexity of our algorithm. The following notation
is used:

— (' is the set of classes of the schema with respect to the object is being
classified;

T We recall that the object structural expression (formally defined in Appendix A) is
the structural expression representing the portion of the class structural expression
actually present in the object.

— k the number of classes in C;

— dim/(o) is the dimension of the object value expression associated with the
object being to classified, that is, the number of vertices of the tree;

— dim/(c) is the dimension of the class structural expression associated with a
class ¢ € C, that is, the number of vertices of the tree.®

The first step of the algorithm is the computation of the set of classes of which
the object is a weak member. According to Definition 9, this is equivalent to
determine whether a simulation exists between the object value expression and
the class structural expression. In the computation of the simulation relationship

(Definition 8), at each step, for each edge u; Loy u} of the object value expression

we check whether an edge wus N uy exists such that one of the conditions of
Definition 8 holds. Note that, since the time required to check whether one of the
conditions of Definition 8 holds is constant, we have to compute how many times
this step is iterated. Since, for both the object value expression and the class
structural expression, the outgoing edges from a given vertex having an attribute
name as label are distinct, no backtracking is needed during the iteration process,
which, at most, repeats the check of the properties as many times as the number
of edges of the object value expression. Since the number of edges in a tree is
equal to the number of the vertices minus one, we can conclude that the first step
has a cost in O(dim/(0)) for each class, that is, in O(kxdim (o)) for all the classes of
the schema. In the second step, first the conformity degree is computed for each
class of which the object is a weak member. Because the number of such classes
is at most k, the third step has a cost in O(k * maz.cc{dim(c)}). After that,
the set of classes with respect to which the object has the highest conformity
degree, WM Sc-maz, is computed. This step has a cost in O(k). In the third step,
the set of classes with respect to which the object has the lowest heterogeneity
degree, among the ones in WM S¢-paz, is computed. Such step has a cost in
O(k). In fact, the heterogeneity degree is an information which can be associated
with a class when it is created, without overhead for the algorithm. Finally, in
the fourth step, we compare all the remaining classes testing for inheritance
and refinement. Supposing testing for subclassing constant [6], the step can be
executed in O(k * maz.cc{dim(c)}).

Therefore, O(k * maz{dim(o), maz.cc{dim(c)}}) is the total cost of the
algorithm. Thus, the classification algorithm solves the problem in a time that
is linear in the dimension of the entities involved in the classification process.

4.5 An Example of Classification

In this section we present some examples of the application of our classification
algorithm. We classify the semi-structured objects that we have presented in
Example 3. Note that the other components of the schema are not relevant for

8 Note that given an object o and a class ¢ the object structural expression (£(o,c))
is a subtree of the tree associated with the structural type of a class of which the
object is a weak member, thus dim(c) is an upper-bound of the dimension of (o, c).

the example, we only need to know that the number of different (value or object)
types defined in the schema is 20. Based on the number of different types in the
schema, we can compute the heterogeneity degree of the classes presented in
Example 3.

!
E

When the algorithm presented in Section 4.3 is applied to object o1, it
computes, in step 1, the set WMS = {mail, internal mail, personal mail,
businessmail}. Each attribute in the object state, indeed, is an attribute in
the structural type of each class of the set WMS and the values are of the
correct types. Since WM S # () the second step of the algorithm is applied and
the set WM Sc-maz = {mail} is determined. The classes internalmail and
personal mail have been removed from the set W M Sc-mq. because they have
an attribute, sender, not in the object state, whereas the class business mail
has been deleted since it has two attributes, sender and logo, not in the ob-
ject state. At this point, since the set WM Sc_ 4. 18 a singleton, the object is
classified in class mail.

When the algorithm is applied to classify object o0z, it computes, in step 1,
the set WM S = {internal mail, personal mail}. It does not consider classes
mail and business mail because they do not contain the subject attribute.
Then, the set of classes with the highest conformity degree (WM Sc-maz) is
determined, but this set is equal to the previous one (the two classes have the
same attributes). Therefore, the set of classes with the lowest heterogeneity de-
gree WM Sp-min = {personal mail} is computed. Thus, the object is classified
in class personal mail.

When the algorithm is applied to classify object o3, it computes, in step 1,
the set WM S = {internal mail, personal mail, businessmail}. It does not
consider class mail because it does not contain the sender attribute. Then, the
set of classes with the highest conformity degree (WM Sc-maz) is determined,
but this set is equal to the previous one (the three classes have the same number
of additional attributes). Therefore, the set of classes with the lowest hetero-
geneity degree WM SH-min = {personalmail, businessmail} is computed.
Class personalmail is not a subclass of business mail, but if we consider
the object structural expressions associated with object 03? we find out that
businessmail is a refinement of personal mail, thus the object is classified in
class business mail.

When the algorithm is applied to classify object o4, it determines that the
object is not weak member of any class. Thus, the object is put in the repository
of unclassified objects.

% The object structural expression associated with o3 with respect to personal mail
and business_mail is shown in Figure 3.

5 Conclusions

In this paper we have proposed an approach to classify objects whose structure is
not necessarily a type present in the database schema. The proposed technique,
which is currently being implemented, is based on the notion of weak membership
and on conformity and heterogeneity degrees, and allows one to automatically
classify an object in the class whose structural type best fits the object state.

Our classification approach is totally based on the object structure. An al-
ternative approach could be to classify objects according to their response to
messages that they receive. We did not investigate such an approach because it
is more related to object-oriented programming languages than to databases. In
object-oriented databases the structure, rather than the behavior, is regarded
as the most relevant information associated with objects. However, such an ap-
proach could still represent an interesting research direction.

Another interesting research direction is the development of suitable infor-
mation extraction tools. Two approaches are possible. The first one is to define
“prototype documents” with respect to which the documents are compared. The
comparison of a given document against a prototype document allows one to
infer structural information from the document. The second approach is to use
decision trees with rules that specify conditions on the attribute types. A path
in the decision tree may thus represent a particular type to which a set of objects
may belongs to. We plan to investigate those approaches as future work.

We are extending the work presented in this paper along several other direc-
tions. First, we would like to consider the possibility of classifying an object in
more than one class, rather than always forcing the selection of a single class.
This could be useful when there are several classes of which the object is a
weak member, with the same values for conformity and heterogeneity degrees.
Moreover, our current notion of weak membership is based on the fact that
the object state contains less components than those of the class. Such notion
can be extended to the case of objects whose state contains additional compo-
nents with respect to those specified in the class, in the same spirit of the Os
exceptional instances [15]. In this way we can achieve a more accurate classifi-
cation. Another possible extension could be that of allowing components to be
dynamically added, or deleted, to the state of objects in the database. This could
require a re-classification of the object, that is, a migration of the object in a
more appropriate class. We would like to consider the possibility that the schema
evolves, as a consequence of object classification. The applicability of the classi-
fication approach to Web search engines, to perform content-based queries will
also be investigated. The idea is to define, starting from the query, the value to
be searched on the Web, to associate a structural expression with HTML pages,
and then to verify whether a simulation exists between the tree associated with
the query and the tree associated with the HTML page. If the simulation exists
then the HTML page is a possible answer for the query. Finally, we plan to in-
vestigate how semi-structured objects can be handled by application programs
and queried, in the context of semi-structured data, by revisiting type checking
notions.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

S. Abiteboul. Querying Semi-Structured Data. In F. Afrati and P. Kolaitis, editors,
Database Theory - ICDT’97, pages 1-18, 1997.

S. Abiteboul, S. Cluet, and T. Milo. Correspondence and Traslation for Hetero-
geneous Data. In F. Afrati and P. Kolaitis, editors, Database Theory - ICDT’97,
pages 351-363, 1997.

S. Abiteboul, R. Motwani, and S. Nestorov. Inferring Structure in Semistruc-
tured Data. In Proc. Workshop on Management of Semistructured Data, SIGMOD
Record, 26(4):39-43, 1997.

S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query
Language for Semistructured Data. Journal of Digital Libraries, 1(1):68-88, 1996.
S. Abiteboul and V. Vianu. Queries and Computation on the Web. In F. Afrati
and P. Kolaitis, editors, Database Theory - ICDT’97, pages 262275, 1997.

R. Agrawal, A. Borgida, and H. Jagadish. Efficient Management of Transitive
Relationships in Large Data and Knowledge Bases. In J. Clifford, B. Lindsay, and
D. Maier, editors, Proc. of the ACM SIGMOD Int’l Conf. on Management of Data,
pages 253-262, 1989.

P. L. Bergstein and K. J. Lieberherr. Incremental Class Dictionary Learning and
Optimization. In P. America, editor, Proc. Fifth European Conference on Object-
Oriented Programming, number 512 in Lecture Notes in Computer Science, pages
377-396, 1991.

E. Bertino, G. Guerrini, I. Merlo, and M. Mesiti. An Object-Oriented Data Model
for Semi-Structured Data. Technical Report DISI-TR-99-06, University of Genova,
Department of Computer Science (DISI), 1998.

R. Breitl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams,
and M. Williams. The GemStone Data Management System. In W. Kim and F. H.
Lochovsky, editors, Object-Oriented Concepts, Databases, and Applications, pages
283-308. Addison-Wesley, 1989.

P. Buneman. Semistructured Data. In Proc. of 6th ACM SIGACT-SIGMOD-
SIGART Symposium on PODS, pages 117-121, 1997. Tutorial.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding Structure to Un-
structured Data. In F. Afrati and P. Kolaitis, editors, Database Theory - ICDT’97,
pages 336-350, 1997.

P. Buneman, S. Davidson, D. Suciu, and G. Hillebrand. A Query Language and
Optimization Techniques for Unstructured Data. In Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, pages 505-516, 1996.

V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured Doc-
uments to Novel Query Facilities. In Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pages 313-324, 1994.

S. Cluet. Modeling and Querying Semi-Structured Data. In M. T. Pazienza, editor,
Information Extraction. LNAI 1299, pages 192-213, 1997.

O. Deux et al. The Story of 0. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91-108, 1990.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

R. Goldman and J. Widom. Dataguides: Enabling Query Formulation and Opti-
mization in Semistructured Databases. In Proc. Twentythird Int’l Conf. on Very
Large Data Bases, pages 436-445, 1997.

18

19.

20.

21.

22.

23.

24.

25.

26.

G. Guerrini, E. Bertino, and R. Bal. A Formal Definition of the Chimera Object-
Oriented Data Model. Journal of Intelligent Information Systems, 11(1):5-40,
1998.

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. Extracting
Semistructured Information from the Web, 1997. Available via anonymous ftp at
ftp://db.stanford.edu/pub/paper/extract.ps.

M. Henzinger, T. Henzinger, and P. Kopke. Computing Simulation on Finite and
Infinite Graphs. In Proc. of 20th Symposium on Foundations on Computer Science,
pages 453-462, 1995.

S. Holzner. XML Complete. McGraw-Hill, 1998.

R. Milner. An Algebraic Definition of Simulation between Programs. In Proc. of
the 2nd IJCAI pages 481-489, London, UK, 1971.

S. Nestorov, S. Abiteboul, and R. Motwani. Extracting Schema from Semistruc-
tured Data. In L. M. Haas and A. Tiwary, editors, Proc. of the ACM SIGMOD
Int’l Conf. on Management of Data, pages 295-306, 1998.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across
Heterogeneous Information Sources. In Proc. of the 11th Int’l Conf. on Data En-
gineering, pages 251-260, 1995.

C. Peltason, A. Schmiedel, C. Kindermann, and J. Quantz. The BACK System
Revisited. Technical Report KIT - Report 75, Technische Universitat Berlin, 1989.
F. Rabitti. The Multos Document Model, volume Human Factors in Information
Technology of 6, chapter 3, pages 17-52. North-Holland, 1990.

[SET [' SET

SPRING J SPRING

@ (b) ©

Fig. 6. Presence of SPRING label in a part of class structural expression

A Additional Formal Definitions

In this section we present the formal definition of object structural expression
and two figures that illustrate two particular cases, that is, the spring type
and the null value, discussed in Section 4. The figures illustrate how to obtain,
starting from the object value expression (a) and the class structural expression
(b), the object structural expression (c). In the following definition, given a tree
A and a vertex u, we denote by vertex(A) the set of vertices of A and with
tree(u, A) the subtree of A rooted at w.

Definition 12. (Object structural expression). Let o be a semi-structured object
and ¢ be a class in the schema such that o is a weak member of c, that is, a
simulation R exists between €,(0) = (Vy, Ey,) and e¢(c) = (Vi, B, 1), then
we define object structural expression, denoted by £(o, c), the following tree:

(V. E,¢)
where:

-~ V=VuVuV

d K: {U’ | (U'lau') € R}:

. E ={u| (u1,u2) € R, (uz,u) € E; and ¢((u2,u)) = SPRING}

oV =

Ut upyer, st gu(uuy)=nuocit | (w1,us) € R and
u € vertex(tree(u),e:(c)))}

- E=FEUE

[] g = {(Ul,UQ) | Uy, U2 S V, (Ul,’LLQ) S Et},

o F={(u1,u2) | ui,u2 €V and Ju s.t. (ur,u), (u,us) € E,

o1((uy,u)) =UNION)}

and (u,us) € Ey

) ee((ur, u2)) if (ur,uz)
Pl ue)) = {%((u,Uz)) i (ur,ua)

O

We introduce the following definitions to formally state the concept of real
path.

LIST LIST I LIST

NULL UNION ’ UNION

integer integer

person char | bool person char | bool

@ (b) ©

Fig. 7. Presence of NULL label in a part of object value expression

Definition 13. (Labeled path). Let A = (V, E,) be a labeled tree on LT, the
sequence:

Ul.ll.Uz.lQ. s .ln,l.un
is a labeled path, where:
— Up,...,uy €V,
= Vi, 1<i<n—1, (u,ui1) € E and @((us, uiv1)) = - =

Definition 14. (Maximal labeled path). Let A = (V, E,) be a labeled tree on
LT, a labeled path
Ul.ll.U,Q.lz. te .ln_l.un

is called mazimal if uy = root(A) and u,, is a leaf of A. o

Now we are able to define the notion of real paths of a tree. In the following
definition we denote by path(A) the set of maximal labeled paths of the tree A
and with m2(R) = {u | (4,u) € R}.

Definition 15. (Real paths). Let o be a semi-structured object and c be a class
in the schema such that o is a weak member of c, that is, a simulation R ezists
between €,(0) and e¢(c), then we define real-path the following set:

real-path(e¢(c)) =
{w| w € path(ei(c)) and (w=... RECuy UNION.uzluz... =
(ug € m2(R)) or ({u] (u2,u) is an edge of e¢(c) and u € m2(R)} = 0))}
O

