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Abstract. Although many temporal extensions of the relational data

model have been proposed, there is no comparable amount of work in

the context of object-oriented data models. Moreover, extensions to the

relational model have been proposed in the framework of SQL standards,

whereas no attempts have been made to extend the standard for object-

oriented databases, de�ned by ODMG. This paper presents T ODMG, a

temporal extension of the ODMG-93 standard data model. The main con-

tributions of this work are, thus, the formalization of the ODMG standard

data model and its extension with time. Another contribution of this work

is the investigation, on a formal basis, of the main issues arising from the

introduction of time in an object-oriented model.

1 Introduction

Temporal databases [16] provide capabilities for e�ciently managing not only

the current values of data, but also the entire history of data over time. Several

database applications, such as the ones in the medical and scienti�c domains or

the ones in the business and �nancial context, require support for historical data.

In most cases, data of interest to those applications are meaningful only if related

to time.

Most of the research and development e�orts in the area of temporal data-

bases have been carried out in the context of the relational model. A temporal

extension, known as TSQL-2 [13], of the SQL-92 relational database standard,

has been proposed and issues related to temporal relational data models and

query languages have been extensively investigated from the theoretical point of

view [17].

By contrast, research on temporal object-oriented databases is still in an

early stage. Although various object-oriented temporal models have been pro-

posed [12], there is no amount of work comparable to the work reported for the

relational model. One of the main reasons for the delay in the development of

temporal object-oriented data models is that, until recently, there was no stand-

ard for object-oriented databases. Recently, a proposal for an object database



standard has been formulated by ODMG [4]. The ODMG standard includes a

reference object model (ODMG Object Model), an object de�nition language

(ODL) and an object query language (OQL). The de�nition of such a standard

represents an important step toward the widespread di�usion of object-oriented

DBMSs. Indeed, most of the success of relational databases, as well as of its tem-

poral extensions, is undoubtly due to the existence of a well-accepted standard.

The acceptance of the SQL standard ensures a high degree of portability and

interoperability between systems, simpli�es learning new relational DBMSs, and

represents a wide endorsement of the relational approach.

For all the above reasons, in this paper we propose T ODMG, a temporal

extension of the ODMG standard object data model. Thus, the goal of our work

is not to develop a new temporal object-oriented data model. Rather our goal is

to incorporate temporal features into the ODMG object model. To the best of

our knowledge, this is the �rst extensive attempt of complementing the ODMG

data model with temporal capabilities.

The ODMG data model provides a very rich set of modeling primitives.

Objects are characterized by a state and a behavior. The state of an object is

represented by the values of its properties. Properties can be either attributes, like

in most object-oriented data models, or relationships. Relationships are declared

between two object types and induce a pair of traversal paths between the two

types. Moreover, the ODMG data model supports the notion of key, that is, a set

of properties whose values uniquely identify each object within a class extent.

The development of a temporal extension of a semantically rich data model,

like the one proposed by ODMG, entails several interesting issues that we address

in this paper. First the rich set of data types provided by ODMG has been

complemented with a set of temporal types, which allows to handle in a uniform

way temporal and non temporal domains. Then, we have added the temporal

dimension to both object attributes and relationships. A relevant feature provided

by T ODMG is the support for temporal, immutable and static object properties.

A temporal property is a property whose value may change over time, and whose

values at di�erent times are recorded in the database. An immutable property is

a property whose value cannot be modi�ed during the object lifetime, whereas a

static property is a property whose value can change over time, but whose past

values are not meaningful, and are thus not stored in the database. In addition,

we have investigated how the notions of extent, key and object consistency should

be modi�ed to deal with the temporal dimension.

Another important property of the T ODMG data model we propose is that

it extends the ODMG data model in an \upward compatible" way, that is, non-

temporal and temporal data coexist in an integrated way. This is very important

if applications should migrate to a temporal conext.

A further contribution of this paper is that the addition of time in the ODMG

standard data model has been carried out on a formal basis. This has required

to �rst provide a formalization of the main components of the ODMG model,

which was not provided in [4].

The temporal object model presented in this paper is based on the T Chimera



formal data model proposed by us in [2]. Such model represents the starting

point of our current work. However the work reported in this paper substantially

extends the previous work. First ODMG is characterized by a richer set of types

with respect to the T Chimera one. Second, ODMG supports the notions of

relationship and key which are not provided by T Chimera. Finally, the notions of

temporal types and the distinction among temporal, static, immutable attributes,

that are inherited from T Chimera, obviously need to be revisited in the context

of the T ODMG model.

This paper is organized as follows. Section 2 summarizes the main features

of the ODMG standard. Section 3 introduces types and values, whereas Sections

4 and 5 deal with classes and objects, respectively. Section 6 discusses existing

proposals of temporal object-oriented data models. Finally, Section 7 concludes

the paper.

2 The object database standard: ODMG-93

In what follows we summarize the main features of the ODMG data model.

We refer the interested reader to [4] for the description of the object de�nition

language (ODL) and the object query language (OQL).

The basic modeling concepts in the ODMG data model are the concepts of

object and literal. The main di�erence between objects and literals is that each

object has a unique identi�er (oid), whereas a literal has no identi�er. Literals are

sometimes described as being constant or immutable since the value of a literal

cannot change. By contrast, objects are described as beingmutable. Changing the

values of the attributes of an object, or the relationships in which it is involved,

does not change the identity of the object.

Objects and literals can be categorized according to their types. Object types

can be partitioned into two main groups: atomic object types and collection

object types.

Atomic object types are user-de�ned types (e.g., Person, Employee). Collec-

tion object types represent set, bag, list and array objects. Literal types can be

partitioned into three main groups: atomic literal types, collection literal types

and structured literal types. Atomic literal types are numbers, characters and so

on. Collection literal types represent set, bag, list and array literals. Structured

literal types have a �xed number of elements, each of which has a variable name

and can contain either a literal value or an object. Moreover ODMG supports

user-de�ned structures implementing records.

The formalization of object and literal types and the di�erences between

collection object types and collection literal types are presented in Subsection

3.1. An object is sometimes referred to as an instance of its type.

An object in ODMG is characterized by a state and a behavior. The state

of an object is de�ned by the values of its properties. Properties can be either

attributes of the object itself or relationships among the object and one or more

other objects. Typically the value of an object property can change over time.

The behavior of an object is de�ned by the set of operations that can be executed



on or by the object. All objects of a given type have the same set of properties

and the same set of de�ned operations.

There are two aspects in the de�nition of a type. A type has an interface

speci�cation and one or more implementation speci�cations. The interface de�nes

the external characteristics of an instance of the type. That is the operations that

can be invoked on the object and the state variables whose values can be accessed.

By contrast, a type implementation de�nes the internal aspects of the instances

of the type.

The distinction between interface and implementation is important, since

the separation between these two is the approach according to which ODMG

supports encapsulation. Throughout the paper we assume that a type has a

single implementation speci�cation. Therefore the terms object type, interface

and class are used as synonymous. More precisely, we distinguish between object

types and literal types, object interfaces and literal interfaces, while the term

class is used only when dealing with objects. Moreover, implementation details

are not relevant from a modeling point of view. Thus, we focus on the interface

speci�cation, disregarding the implementation speci�cation of a type.

The attribute declarations in an interface de�ne the abstract state of a type.

An attribute value is either a literal or an object identi�er. Relationships are

de�ned between object types. The ODMG object model supports only binary

relationships, i.e., relationships between two types, each of which must have

instances that can be referenced by object identi�ers. Therefore literal types

cannot participate in relationships (since they do not have object identi�ers).

Relationships in the ODMG object model are similar to relationships in the

entity-relationship data model [6]. A binary relationship may be one-to-one, one-

to-many, or many-to-many, depending on how many instances of each type par-

ticipate in the relationship. For instance, marriage is an example of one-to-one

relationship between two instances of type Person. A woman can have a one-to-

manymother of relationship with many children. Teachers and students typically

participate in many-to-many relationships.

A relationship is implicitly de�ned by declaring traversal paths that enable

applications to use the logical connections between the objects participating in

the relationship. For each relationship two traversal paths are declared, one for

each direction of traversal of the binary relationship. For instance, the relationship

between a professor and the courses he/she teaches generates two traversal paths,

since a professor teaches courses and a course is taught by a professor. The

teaches traversal path is de�ned in the interface declaration of the Professor

type. The is taught by traversal path is de�ned in the interface declaration of

the Course type. The fact that the teaches and is taught by traversal paths

apply to the same relationship is indicated by an inverse clause in both the

traversal path declarations.

One-to-many and many-to-many relationships can also be implemented using

bags, lists and arrays.

Besides the attribute and relationship properties, the other characteristic of

a type is its behavior, which is speci�ed as a set of operation signatures (method



signatures). Each signature de�nes the name of an operation, the name and type

of each of its arguments, the types of the value(s) returned.

1

Each operation is

associated with a single type and its name must be unique within the correspond-

ing type de�nition. However, operations with the same name can be de�ned for

di�erent types. The names of these operations are said to be overloaded. When

an operation is invoked using an overloaded name, a speci�c operation must be

selected for execution. This selection is called operation dispatching. An opera-

tion may have side e�ects. Some operations may return no value. The ODMG

object model does not include formal speci�cation of the semantics of opera-

tions; it is highly implementation dependent. Finally extents, keys and supertype

information can be optionally associated with a type.

The extent of a type is the set of all instances of the type within a particular

database. If an object is an instance of a type t, than it necessarily belongs to

the extent of t. If type t is a subtype of type t

0

, then the extent of t is a subset

of the extent of t

0

.

In some cases, instances of a type can be uniquely identi�ed by the values

they carry for some property or set of properties. These identifying properties

are called keys. The scope of uniqueness is the extent of the type, thus a type

must have an extent in order to have a key.

Similar to most object models, also the ODMG object model includes in-

heritance based type-subtype relationships. Supertype information is one of the

characteristics of types, together with extent naming and key speci�cations. The

type-subtype relationships are commonly represented by oriented graphs; each

node represents a type and there exists an arc from a node t to a node t

0

if t

0

is

the supertype of t (subtype). The type/subtype relationship is sometimes called an

is-a relationship, or simply an ISA relationship, or generalization-specialization

relationship. The supertype is the more general type; the subtype is the more

specialized one.

3 Types and values

In this section we formally introduce T ODMG types and values. First, we give a

formalization of ODMG types. Then, we extend the ODMG types with temporal

types. The resulting model is T ODMG, the temporal extension of the ODMG

model. Temporal structured literal types are described in detail. Finally, we

de�ne T ODMG legal values. In the followingwe refer to Table 1 that summarizes

the functions used in de�ning the model. For each function the table reports the

name, the signature and the output.

2

In the following we denote with OI a set of object identi�ers, with CI a set

of class identi�ers, that is, interface names, with AN a set of attribute names,

with RN a set of relationship names and with MN a set of method names.

1

Moreover each signature de�nes the names of exceptions (error conditions) the oper-

ation can raise. In this context we do not consider exceptions.

2

The meaning of each function will be clari�ed in the remainder of the discussion.



Name Signature Output

� CI � T IME ! 2

OI

extent of a class at a given instant

pe set CI � T IME ! 2

OI

proper extent of a class at a given instant

type CI ! T � T structural property type of a class

h type CI ! T � T historical property type of a class

s type CI ! T � T static property type of a class

h state OI � T IME ! V � V historical value of an object

s state OI ! V � V static value of an object

o lifespanOI ! T IME � T IME lifespan of an object

c lifespan OI � CI ! T IME � T IME lifespan of an object as a member of a class

Table 1. Functions employed in de�ning the model

3.1 ODMG types

As we mentioned in Section 2, objects and literals can be categorized according to

their types. First we give the formal de�nition of object types. In the remainder,

ODMGT denotes the set of ODMG types. It is formally de�ned later on in this

subsection.

De�nition 1 (Object Types). The set of ODMG object types OT is de�ned as

follows.

OT = AOT [AOST [ COT

where:

- AOT is the set of ODMG atomic object types; it is de�ned as the set of class

identi�ers CI;

- AOST is the set of ODMG atomic object system types; it is de�ned as the

following set fObject, Collection, Set, Bag, List, Arrayg;

- COT is the set of ODMG collection object types; it is de�ned as the following

set COT = fO Set<t> j t 2 ODMGT g [ fO Bag<t> j t 2 ODMGT g [

fO List<t> j t 2 ODMGT g [ fO Array<t> j t 2 ODMGT g.

3

2

As De�nition 1 states, the ODMG object types can be partitioned into three

sets. The set AOT denotes the simple user-de�ned interfaces. The set AOST

denotes a set of prede�ned system types. Finally, the set COT denotes the types

of objects of type set, bag, etc. The direct supertype of each collection object is

3

Note that in [4] the notation for collection object types is di�erent. For example, in

case of sets Set<t> is used to denote both collection literal and collection object set

types. We have chosen, for sake of clarity, to distinguish collection object and literal

types. Therefore we use O Set<t> to denote the collection object type for sets and

Set<t> to denote the corresponding collection literal type.



the relative atomic object system type (e.g., Set is the direct supertype of each

O Set<t> such that t 2 ODMGT ). ODMG also provides collection literal types

to de�ne sets, bags, lists and arrays (De�nition 2).

Note that a name in CI can be associated with a collection object type. For

instance, the name EmployeeSet can be associated with the collection object type

O Set<Employee>. Names are associated with collection object types for an easy

reference, there is, however, the complete substitutability of a collection object

type and the name assigned to it.

The following de�nition formalizes ODMG literal types.

De�nition 2 (Literal Types). The set of ODMG literal types LT is de�ned as

follows.

LT = ALT [ CLT [ SLT [ ST

where:

- ALT is the set of ODMG atomic literal types; it is de�ned as the following

set ALT = fLong, Short, Unsigned long, Unsigned short, Float, Double,

Boolean, Octet, Char, String, Enumg;

- CLT is the set of ODMG collection literal types; it is de�ned as the following

set CLT = fSet<t> j t 2 ODMGT g [ fBag<t> j t 2 ODMGT g [ fList<t>

j t 2 ODMGT g [ fArray<t> j t 2 ODMGT g;

- SLT is the set of ODMG structured literal types; it is de�ned as the following

set SLT = fDate, Interval, Time, TimeStampg;

4

- ST is the set of ODMG struct literal types; it is de�ned as the following set

ST = fStructft

1

p

1

; : : : ; t

n

p

n

gj t

i

2 ODMGT , p

i

2 AN[RN , i 2 [1; n]g.

2

An important di�erence between collection object types and collection literal

types is that instances of collection object types have identi�ers while instances

of collection literal types do not have identi�ers. For more details on such features

of the ODMG model we refer the reader to [4].

The set of ODMG types ODMGT is de�ned as the union of the set of ODMG

object types OT and the set of ODMG literal types LT . Therefore:

ODMGT = OT [ LT .

We also recall that in the ODMG data model the type any stands for any

type t 2 ODMGT , and that void stands for \no values" and it is used for side

e�ect operations which return no values.

4

The interfaces of these types can be found in [4]. In the following we only specify the

interfaces we are interested in, since they are relevant for our work.



3.2 T ODMG types

T ODMG extends the set of ODMG types with a collection of temporal types,

introduced to handle in a uniform way temporal and non temporal domains.

For each ODMG type t, a corresponding temporal type is de�ned through a

special constructor temporal. Intuitively, instances of type temporal(t) are partial

functions from instances of type TimeStamp

5

to instances of type t. We elaborate

on this informal de�nition in the following section.

De�nition 3 (T ODMG Temporal Types). The set of T ODMG temporal types

ODMGT T is de�ned as follows.

ODMGT T = ftemporal(t) j t 2 ODMGT g.

2

In T ODMG, temporal types can be used in the de�nition of collection object,

literal and struct types, as stated by the following de�nitions. In the remainder,

T denotes the set of T ODMG types.

De�nition 4 (T ODMG Object Types). The set of T ODMG object types OT T

is de�ned as follows.

OT T = AOT [AOST [ COT T

where:

- AOT is the set of ODMG atomic object types, as speci�ed by De�nition 1;

- AOST is the set of ODMG atomic object system types, as speci�ed by De�n-

ition 1;

- COT T is the set of T ODMG collection object types; it is de�ned as the fol-

lowing set COT T = fO Set<t> j t 2 T g [ fO Bag<t> j t 2 T g [ fO List<t>

j t 2 T g [ fO Array<t> j t 2 T g.

2

De�nition 5 (T ODMG Literal Types). The set of T ODMG literal types LT T

is de�ned as follows.

LT T = ALT [ CLT T [ SLT T [ ST T

where:

- ALT is the set of ODMG atomic literal types, as speci�ed by De�nition 2;

- CLT T is the set of T ODMG collection literal types; it is de�ned as the

following set CLT T = fSet<t> j t 2 T g [ fBag<t> j t 2 T g [ fList<t> j

t 2 T g [ fArray<t> j t 2 T g;

5

Type TimeStamp will be described in Subsection 3.3.



- SLT T is the set of T ODMG structured literal types; it is de�ned as the

following set SLT T = SLT [ fTimeIntervalg;

- ST T is the set of T ODMG struct literal types; it is de�ned as the following

set ST T = fStructft

1

p

1

; : : : ; t

n

p

n

gj t

i

2 T , a

i

2 AN , i 2 [1; n] g.

2

Now we can de�ne the set of T ODMG types T .

De�nition 6 (T ODMG Types). The set of T ODMG types T is de�ned as

follows.

T = ODMGT T [ OT T [ LT T .

2

In the remainder of the discussion we use ODMGST to denote the set of static,

that is non temporal, T ODMG types. Formally , ODMGST = T n ODMGT T .

3.3 Temporal structured literals

In what follows we briey discuss the interfaces speci�ed for TimeStamp, de�ned

as part of the ODMG standard [4], and TimeInterval, the new structured literal

we propose. For sake of simplicity, in introducing the following interfaces we do

not deal with di�erent time zones.

As we will see in Section 6, most models support a linear discrete time struc-

ture and a single time dimension, that is, valid time. ODMG structured types

provide data structures for managing time. Thus, to adhere to the ODMG model,

we have chosen to support time features using the ODMG existing data struc-

tures. We will see in Subsection 3.4 that this is conceptually equivalent to sup-

porting a linear discrete time structure.

The structured type TimeStamp, whose interface is described in Figure 1,

provides the time granularity of our model. In what follows a time instant t is

therefore represented as a pair hdate; timei, where date is a value of type Date

that is, a year, a month and a day, whereas time is a value of type Time, that

is, a particular time instant in such date, i.e., hour, minutes and seconds. In

the following if T has type TimeStamp then T.date denotes the date and T.time

denotes the time instant in the day, moreover T.date.year = T.year and so on.

We do not present here the interface speci�cations of Date and Time for lack of

space; we refer the interested reader to [4].

Note that we have chosen to model time instants as pairs hdate; timei. We

could alternatively have chosen to employ dates as our time granularity.

In order to support time intervals, we introduce a new type TimeInterval,

whose interface is described in Figure 2. We do not use the type interface

Interval supplied by ODMG for intervals. Such interface does not implement

our abstract notion of interval as a a set of consecutive time instants between two

given instants, that is, two values of type TimeStamp. Rather it is only used to per-

form some operations on Time and TimeStamp objects. The type TimeInterval is



interface TimeStamp f

typedef Unsigned short ushort;

Date date();

Time time();

ushort year();

ushort month();

ushort day();

ushort hour();

ushort minute();

float second();

TimeStamp plus(in Interval an interval);

TimeStamp minus(in Interval an interval);

Boolean is equal(in TimeStamp t);

Boolean is greater(in TimeStamp t);

Boolean is greater or equal(in TimeStamp t);

Boolean is less(in TimeStamp t);

Boolean is less or equal(in TimeStamp t);

Boolean is between(in TimeStamp a t, in TimeStamp b t);

g;

Fig. 1. TimeStamp interface

interface TimeInterval f

TimeStamp start();

TimeStamp end();

TimeInterval equal(in TimeInterval I);

Set<TimeInterval> union(in Set<TimeInterval> SI,in TimeInterval I);

TimeInterval intersect(in TimeInterval I);

Boolean inclusion(in TimeInterval I);

Boolean in interval(in TimeStamp t);

g;

Fig. 2. TimeInterval interface



characterized by two elements start and end, both of type TimeStamp, denoting

the starting and ending time of the interval, respectively.

In order to simplify the notation, we use symbols, such as \=", \�", with

the obvious meaning instead of operation names. For example the symbol \="

is used to denote the equality between two structured literals; this implies that

the corresponding operation, equal, is implemented for the type. Other examples

are \�" for is less or equal between values of type TimeStamp, \[" for union

between time intervals etc.

Let I be a variable of type TimeInterval such that I.start= hdate

1

; time

1

i

and I.end = hdate

2

; time

2

i. Thus I denotes the set of consecutive time instants,

including all time instants between t

1

, that is the time instant identi�ed by

hdate

1

; time

1

i, and t

2

, that is the time instant identi�ed by hdate

2

; time

2

i, t

1

and t

2

included. The constraint imposed on objects of type TimeInterval is

that I.start � I.end. A single time instant can be represented as a time inter-

val I such that I.start = I.end, whereas if I.start = I.end = nil, I denotes

the null interval. The operators equal (=), intersect (\), inclusion (�) have

the well-known semantics of interval operations. Moreover, function in interval

(2) takes as arguments an instant t and an interval I and returns true if t is one

of the instants denoted by interval I. The union ([) operation takes as input an

interval and a set of intervals and returns the set of intervals consisting of the

given set plus the given interval. In the following, we often use a set of disjoint

intervals I = fI

1

; : : : ; I

n

g as a compact notation for the set of time instants

included in these intervals.

3.4 T ODMG values

For each prede�ned atomic literal type t 2 ALT , we postulate the existence of

a non-empty set of values, denoted as dom(t). For instance, the domain of the

atomic literal type Boolean consists of the two classical boolean values true

and false. The domain of type TimeStamp is the set T IME , which is a set of

pairs hdate; timei, where date is a value of type Date and time is a value of type

Time. We can say that T IME represents the sequence of time instants starting

from the �rst time instant considered in the system until now, where now is the

timestamp corresponding to the current date and hour according to the system

clock. Such set is isomorphic to the set of natural numbers IN.

It is easy to verify that the set of values of type Date is isomorphic to a

subset of IN (in the following we denote with D this subset), and that the set of

values of type Time is obviously a �nite set (denoted in the following with S).

6

Therefore T IME is isomorphic to D � S and, since D � S is isomorphic to IN,

T IME is then isomorphic to IN. Thus, we assume time to be discrete.

Of course, since each pair belonging to T IME is an instance of the ODMG

type TimeStamp, the operations de�ned for type TimeStamp can be applied on

it. Moreover the operations of the type Date can be applied to the �rst compon-

ent of the pair, whereas the operations of the type Time can be applied to the

6

The number of seconds in a day is a �nite number.



second component of the pair. Moreover values of type TimeInterval are pairs

where each component is of type TimeStamp. Then, the set of values of type

TimeInterval is the cartesian product T IME � T IME .

Note that in T ODMG oids in OI are handled as values. Thus, an object

identi�er i is a value of an object type in CI. We consider as legal values for an

object type t 2 CI all the oids of objects belonging to the extent of t both as

instances or as proper instances.

7

The set of objects instances of a class changes

dynamically over time. Thus, to de�ne the extension, that is, the set of legal

values for T ODMG object types, we introduce a function �: CI � T IME !

2

OI

, assigning an extent to each object type, for each instant t. For each t 2 CI,

�(t; t) is the set of the identi�ers of objects that, at time t, belong to the extent

of t as instances. To emphasize the fact that the interpretation of a type can only

be given �xing a time instant t, we denote the set of legal values for type t at

time t as [[ t ]]

t

.

The following de�nition states the set of legal values for each T ODMG type,

denoted with V.

De�nition 7 (Type Legal Values). [[ t ]]

t

denotes the extension of type t 2 T at

time t.

{ nil 2 [[ t ]]

t

, 8t 2 T ;

{ [[ t ]]

t

= dom(t), 8t 2 ALT ;

{ [[ TimeStamp ]]

t

= T IME ;

{ [[ TimeInterval ]]

t

= T IME � T IME ;

8

{ [[ t ]]

t

= �(t; t), 8t 2 OT T ;

{ [[ Set<t> ]]

t

= 2

[[ t ]]

t

;

{ [[ Bag<t> ]]

t

= multiset( [[ t ]]

t

);

9

{ [[ List<t> ]]

t

= f[v

1

; : : : ; v

n

] j n � 0; v

i

2 [[ t ]]

t

; 8i 2 [1; n]g;

{ [[ Array<t> ]]

t

= f[[1; v

1

]; : : : ; [n; v

n

]] j n � 0; v

i

2 [[ t ]]

t

; 8i 2 [1; n]g;

{ [[ Structft

1

p

1

; : : : ; t

n

p

n

g ]]

t

= fhv

1

p

1

; : : : ; v

n

p

n

i j p

i

2 AN [RN , v

i

2

[[ t

i

]]

t

; 8i 2 [1; n]g;

{ [[ temporal(t) ]]

t

= ff j f : T IME !

S

t

0

2T IME

[[ t ]]

t

0

is a partial function

such that 8t

0

if f(t

0

) is de�ned then f(t

0

) 2 [[ t ]]

t

0

g.

2

Given an instant t the extensions of prede�ned basic value types are the ele-

ments of their corresponding domains, the extensions of classes are their explicit

7

According to the usual terminology, an object is a proper instance of a class c, if c is

the most speci�c class, in the inheritance hierarchy, to which the object belongs to.

If an object is a proper instance of a class it is also an instance of all the superclasses

of c.

8

We do not specify the extensions of all structured literals, Date, Time and so on, since

they are the obvious set of values.

9

As speci�ed in the de�nition of the model [4], Bag denotes unordered collections of

elements that may contain duplicates. In the scienti�c literature, such data structures

are sometimes referred to as multisets, thus we denote as multiset( [[t ]]

t

) the possible

multisets whose elements are of type t.



extents at time t, whereas the set of legal values of the collection literal types

are de�ned recursively in terms of the legal values of their component types. The

extension of a temporal type temporal(t) is the set of partial functions from

T IME (i.e, the set of legal values for type TimeStamp) to the union of the sets

of legal values for type t for each instant t

0

in T IME . The value of a variable

of type temporal(t) can thus be represented as a set of pairs (t; f(t)), where f

is a partial function, t is an element of T IME and f(t) is the value of function

f at time t. Usually, the value of a variable of type temporal(t) does not change

at each instant. Therefore, its value can be, more concisely, represented as a

set of pairs fhI

1

; v

1

i, : : :, hI

n

; v

n

ig, where v

1

; : : : ; v

n

are legal values for t, and

I

1

; : : : ; I

n

are time intervals, such that the variable assumes the value v

i

for each

instant in I

i

, i 2 [1; n]. We adopt this representation throughout the paper.

Example 1 Let t be an instant, i

1

and i

2

2 OI such that i

1

, i

2

2 �(Person,t).

{ 10,100 2 [[ Short ]]

t

;

{ fi

1

,i

2

g 2 [[ Set<Person> ]]

t

;

{ h Bob name; fhI

1

,40ig scorei 2 [[ Structfstring name; temporal(Short)

scoreg ]]

t

where:

I

1

.start= h h1995,4,20i, h00,00,00ii

I

1

.end= h h1995,4,25i, h00,00,00i i

Note that the value of type TimeStamp where the second component of the

pair is h00,00,00i denotes the �rst instant of the day corresponding to the

considered date.

3

4 Classes

As we have seen in Section 2 an object type interface or, analogously, a class

interface consists of a set of property (attribute and relationship) speci�cations,

and a set of operation speci�cations.

Each attribute is characterized by its name, its temporal nature and its type.

Each relationship is characterized by its name, its temporal nature, its type

10

and its inverse. T ODMG supports properties of three di�erent temporal kinds:

temporal, immutable and static. A temporal property is a property whose value

11

may change over time, and whose values at di�erent times are recorded in the

database. An immutable property is a property whose value cannot be modi�ed

during the object lifespan, whereas a static property is a property whose value

can change over time, but whose past values are not recorded in the database.

10

Suppose that a relationship is de�ned between two classes C

1

and C

2

, then in C

1

the

type of the relationship is C

2

; similarly, in C

2

, the type of the inverse relationship is

C

1

.

11

In this context by value of a relationship we mean the set of objects involved in the

relationship.



In T ODMG a lifespan is associated with each class, representing the time

interval during which the class has existed. We assume the lifespan of a class to

be contiguous.

De�nition 8 (Class Interface). A class interface is a 6-tuple (c; c type; lifespan;

attr; rel;meth), where:

c 2 CI is the class identi�er;

c type 2 OT T [ CI is the class type;

lifespan 2 (T IME � T IME) is the lifespan of the class;

attr is a set containing an item for each attribute of the class. Each item is a

3-tuple (a name; a nature; a type), where:

a name 2 AN is the attribute name;

a nature 2 ftemporal,static,immutableg is the attribute temporal nature;

a type 2 ODMGST is the attribute domain type;

rel is a set containing an item for each relationship of the class. Each item is a

4-tuple (r name; r nature; r type; r inv), where:

r name 2 RN is the relationship name;

r nature 2 ftemporal,static,immutableg is the relationship temporal

nature;

r type can be of two di�erent categories: r type 2 CI or r type 2 fSet <t>

j t 2 CIg [ fBag <t> j t 2 CIg [ fList <t> j t 2 CIg [ fArray <t> j

t 2 CIg;

r inv is a pair denoting the inverse traversal path of the relationship, that is,

r inv = (r inv name; r inv type) where:

r inv name 2 RN is the inverse relationship name;

r inv type 2 OT T is the inverse relationship domain type;

meth is a set containing an item for each method of the class. Each item is a

pair (m name;m sign), where:

m name 2 MN is the method name;

m sign is the signature of the method, expressed as:

p name

1

: t

1

� : : :� p name

j

: t

j

! t

j+1

� : : :� t

n

where p name

i

and t

i

2 T , i 2 [1; j], denote names and types of in-

put parameters and and t

i

2 T , i 2 [j + 1; n], denote types of output

parameters.

12

2

12

Note that in the ODMG model input parameters have names, whereas output para-

meters do not have names. Moreover note that if n=0 the method has no parameters,

the notation p name

1

: t

1

� : : :� p name

j

: t

j

! void denotes a method with no

output parameters and, similarly, ! t

j+1

� : : :�t

n

denotes a method with no input

parameters.



In T ODMG the distinction between the class identi�er and the class type is

relevant. T ODMG supports two di�erent kinds of object types: atomic object

types and collection object types. For what concerns atomic object types, the type

of the class coincides with the class identi�er.

13

By contrast, the class identi�ers

of a collection object type is the name assigned to it by the user, while its class

type is a type belonging to COT T .

Note that the attr and rel components of the interface constitute the property

speci�cation.

In order to avoid redundancy, we allow only the use of static types in the de�n-

ition of attribute types and relationship domains. For example, we specify a tem-

poral attribute a of type temporal(t) by means of the 3-tuple (a; temporal; t) in-

stead of by (a; temporal; temporal(t)). Given an attribute speci�cation (a; nat; t)

we can easily derive the type t

0

of a. If nat 2 ftemporal; immutableg then

t

0

= temporal(t) if nat 2 ftemporal; immutableg; if nat 2 fstaticg then

t

0

= t. We impose the constraint, on attribute speci�cation, that type t

0

, com-

puted with the method sketched above, must be a legal T ODMG type. For

instance, (a; temporal; Set<temporal(t

00

)>) is an invalid attribute speci�cation

since temporal(Set<temporal(t

00

)>)) is not a legal T ODMG type. The same

considerations hold for relationships.

We consider immutable attributes as a particular kind of temporal ones, that

is, as temporal attributes whose values never change during the object lifespan.

Thus, the value of an immutable attribute is modeled by means of a constant

function from the temporal domain to the set of legal values for the attribute.

Therefore, we can distinguish among temporal, immutable and static attributes.

A temporal attribute is an attribute with a temporal type and whose value is a

function from a temporal domain; an immutable attribute is an attribute with

a temporal type but whose value is a constant function

14

from the temporal

domain; �nally, a static attribute is an attribute with a static type (that is, whose

value is not a function from the temporal domain).

As we have seen in Section 2, a relationship can be between two types, each of

which must have instances that can be referenced by object identi�ers. Moreover

to implement one-to-many and many-to-many relationships the relationship do-

main can be a set, a bag, a list or an array of objects. This is the reason why in

the speci�cation of the component rel of a class, r type can be an object type or

a collection type, whose inner type is an object type.

Similarly to attributes, relationships can be of three di�erent types: tem-

poral, static and immutable. If a relationship r is temporal, we are interested in

recording the entire history of the relationship. This means that, for each object,

we are interested in keeping track of the objects, or the set (bag, list, array) of

objects, which are connected to it through r during each instant of the object

lifespan. We can view the value of a temporal relationship, whose r type is a

type t, as a partial function, r, from T IME to the union of the sets of legal

values for type t, for each instant t

0

in T IME , such that if r(t

0

) is de�ned then

13

We recall that AOT = CI.

14

In both temporal and immutable attributes the function is partial.



r(t

0

) 2 [[ t ]]

t

0

. Thus, the value of a temporal relationship where r type = t is of

type temporal(t), where temporal(t) is a T ODMG legal type. The relationships

teaches and is taught by, introduced in Section 2, are examples of temporal

relationships. Usually a professor teaches di�erent courses in di�erent periods of

his career and it could be useful to keep track of the courses a professor teaches

over time. Static relationships are relationships with a static type. For what con-

cerns this kind of relationships, we are interested only in the current value and

not in recording the past values of the relationship. An example of static relation-

ship is the relationship live in between the classes Person and City. Usually

one is interested in knowing the city where a person actually lives and not in

the cities where the person has lived before. Immutable relationships are a par-

ticular type of temporal relationships. The value of an immutable relationship r,

with r type = t, is a constant function from T IME to type t, that is, the type

of an immutable relationship is temporal(t), but the value is constant for each

time instant. An example of an immutable relationship could be the relationship

son of, relating a person with his parents.

As we have seen in Section 2 supertype information, extent naming and spe-

ci�cation of keys are characteristics of classes. Class characteristics can be de�ned

as follows.

De�nition 9 (Class Characteristics). Let C be a class and let c be its class iden-

ti�er, the characteristics of C are represented as a 3-tuple (super; extent; keys),

where:

super is the set of class names of the direct superclasses of c;

extent is a pair (e name; e set), where:

e name is the extent name;

e set keeps track of the instances in the extent of C over time; it is a value

of type temporal(Set<c>);

keys is a set of pairs (k nature; prop) where:

k nature 2 fabsolute, relativeg;

prop 2 AN [RN .

2

As in the ODMG data model these characteristics are not mandatory for a

class, any of the components of the 3-tuple may be empty.

The class characteristics a�ected by the introduction of temporal features

are extent and keys. Since we do not consider schema modi�cations, the set of

superclasses of a given class C is invariant over time.

Usually, the extent, that is, the set of all the instances of a class, is associ-

ated with each class. In a temporal context the extent of a class can vary over

time. Then, a temporal value extent:e set is associated with each class C rep-

resenting the objects instances of C over time: extent:e set is a value of type

temporal(Set<c>), where c is the identi�er of class C.

In the remainder of the discussion we use function: pe set : CI � T IME !

COT , which takes as argument a class identi�er c and an instant t and returns



the set of oids of objects for which c is the most speci�c type along the inheritance

hierarchy at time t, that is, the set of proper instances of c. If c is the identi�er

of the class, the type of the value returned by pe set is Set <c>.

Let C be the class identi�ed by c. Then, pe set(c; t) � C:extent:e set(t),

8t 2 C:lifespan, since all objects instances of a class at a given instant are

also proper instances of the class at the same instant. Function � (cfr. Table

1), is such that, for each class name c and for each t 2 C:lifespan, �(c; t) =

C:extent:e set(t).

For what concerns keys, each property part of a key can be of two kinds:

absolute or relative. In order to clarify the meaning of these kinds of keys we

have to distinguish between static, immutable and temporal properties.

{ If the property is static and the key is relative, no two instances may have

the same value for the property within the same extent.

{ If the property is temporal or immutable and the key is relative, no two

instances may have the same value for the property within the same extent

for an overlapping period of time.

{ If the property is static, temporal or immutable and the key is absolute, no

two instances may have the same value for the property even if they belong

to di�erent extents and in di�erent time periods.

Example 2 Consider a class Person. Suppose that objects of this class have as

attributes a ssn and a name which are immutable during the object lifetime, an

address whose variations over time are not relevant for the application at hand.

Two temporal relationships spouse and children and two operations marriage

and move belong to the interface, too. The corresponding T ODMG class interface

is:

c = c type = Person

lifespan = [start; now]

attr = f(ssn; immutable; String); (name; immutable; String);

(address; static; String)g

rel = f(spouse; temporal; Person; (spouse; Person));

(children; temporal; Set<Person>; (parents; Person));

(parents; temporal; Set<Person>; (children; Person))g

meth = f(marriage; p : Person! Boolean); (move; newaddress : String!)g

Suppose moreover that Person is a direct subclass of Object. Let i

1

; : : : ;

i

4

2 OI denote instances of type Person. Suppose that two instances of the

class cannot have the same ssn whatever extent is considered, or be married to

the same person in an overlapping period of time. Then, the corresponding class

characteristics are:

super = Object

extent = (person; fh[start; now]; fi

1

; : : : ; i

4

gig

keys = fhabsolute; ssni; hrelative; spouseig

3



According to the previous de�nitions the class speci�cation is de�ned as fol-

lows.

De�nition 10 (Class). A class C is a 3-tuple (int; char; impl) where:

int is the class interface, as speci�ed by De�nition 8;

char are the class characteristics, as speci�ed by De�nition 9;

impl is the class implementation.

2

Note that, due to space limitations, in the paper we do not give any description

of class implementation.An informal de�nition of class implementation in ODMG

can be found in [4]. To simplify the notation, given a class C we denote each

component of its interface with the following dot notation: C:c denotes the class

identi�er,

15

C:lifespan denotes the class lifespan, and so on. The same simpli�ed

notation is used for class characteristics. Note that we can adopt this simpli�ed

notation because each component of a class interface and of a class characteristics

has a distinct name.

We now discuss relationships between a class and its property type. The

identi�er c, of a class C, denotes its corresponding object type. Such object type is

the type of the identi�ers of the objects instances ofC. Suppose that class C has as

attr component the set: fattr

1

; : : : ; attr

n

g, where attr

i

= (a

i

; nat

i

; t

i

), i 2 [1; n]

and as rel component the set: frel

1

; : : : ; rel

�n

g, where rel

i

= (r

i

; nat

i

; d

i

; inv

i

),

i 2 [1; �n]. The following property types can be associated with C.

{ Structural property type. It represents the type of the attributes and relation-

ships of instances of C. It is de�ned by the pair (t attr; t rel) where:

t attr = Structft

0

1

a

1

; : : : ; t

0

n

a

n

gwhere 8i 2 [1; n]: t

0

i

= t

i

, if nat

i

=static;

t

0

i

= temporal(t

i

), if nat

i

2fimmutable,temporalg;

t rel = Structfd

0

1

r

1

; : : : ; d

0

�n

r

�n

g, where 8i 2 [1; �n]: d

0

i

= d

i

, if nat

i

=static;

d

0

i

= temporal(d

i

), if nat

i

2fimmutable,temporalg.

{ Historical property type. It represents the type of the temporal properties of

instances of C. It is de�ned by the pair (t attr; t rel) where:

t attr = Structft

0

k

a

k

; : : : ; t

0

m

a

m

gwhere 1 � k � m � n and fa

k

; : : : ; a

m

g =

fa

i

j a

i

2 fa

1

; : : : ; a

n

g ^ nat

i

2fimmutable,temporalgg;

t rel = Structfd

0

�

k

r

�

k

; : : : ; d

0

�m

r

�m

g, where 1 �

�

k � �m � �n and fr

�

k

; : : : ; r

�m

g =

fr

i

j r

i

2 fr

1

; : : : ; r

�n

g ^ nat

i

2fimmutable,temporalgg.

{ Static property type. It represents the type of the static attributes and rela-

tionships of instances of C. It is de�ned by the pair (t attr; t rel) where:

t attr = Structft

0

j

a

j

; : : : ; t

0

l

a

l

g, where 1 � j � l � n and fa

j

; : : : ; a

l

g =

fa

i

j a

i

2 fa

1

; : : : ; a

n

g ^ nat

i

= staticg;

t rel = Structfd

0

�

j

r

�

j

; : : : ; d

0

�

l

r

�

l

g, where 1 �

�

j �

�

l � �n and fr

�

j

; : : : ; r

�

l

g =

fr

i

j r

i

2 fr

1

; : : : ; r

�n

g ^ nat

i

= staticg.

15

The correct notation would be C:int:c.



The notions of structural, historical and static property types of a class will

be used in the next section to check object consistency. We de�ne three functions:

type, h type, s type: CI ! T � T , taking as argument a class identi�er c, and

returning the structural, the historical and the static property type of the class

identi�ed by c, respectively.

16

5 Objects

T ODMG handles in a uniform way both historical and static objects. An object

is historical if it contains at least one property with a temporal domain, it is static

otherwise. Each object has a lifespan, representing the time interval during which

the object exists. As for class interfaces, we assume the lifespan of an object to

be contiguous. Objects can be instances of di�erent classes during their lifetime,

but we can assume that, for each instant in their lifespan, there exists at least

an interface extent to which they belong to.

17

For example, an employee can be

�red and rehired, but he remains instance of the class person, superclass of the

class employee, till the end of its lifetime. Moreover, for each historical object

the history of the most speci�c class to which it belongs to during its lifespan is

recorded. On the contrary, for each static object, only the class identi�er of the

most speci�c class to which it currently belongs to is maintained.

De�nition 11 (Object). An object o is a 5-tuple (i; lifespan; v; r; class-history),

where:

i 2 OI is the oid of o;

lifespan 2 (T IME � T IME) is the lifespan of o;

v 2 V is a value, containing the values of each attribute of o. It is a struct value

hv

a

1

a

1

; : : : ; v

a

n

a

n

i, where a

1

; : : : ; a

n

2 AN are the names of the attributes of

o and v

a

1

; : : : ; v

a

n

2 V are their corresponding values;

r 2 V is a value, containing the values of each relationship of o. It is a struct value

hv

r

1

r

1

; : : : ; v

r

n

r

n

i, where r

1

; : : : ; r

n

2 RN are the names of the relationships

of o and v

r

1

; : : : ; v

r

n

2 V are their corresponding values;

class-history stores informationabout the most speci�c class to which o belongs

to over time. It is a set fhI

1

; c

1

i; : : : ; hI

n

; c

n

ig, where I

1

; : : : ; I

n

are time

intervals, c

1

; : : : c

n

are class identi�ers, such that c

i

is the class identi�er of

the most speci�c class to which o belongs to in I

i

, i 2 [1; n].

2

If o is static, class-history records only to the most speci�c class to which o

currently belongs.

16

Note that function h type returns a null value when its argument is the identi�er of

a class whose instances are static, whereas function s type returns a null value when

its argument is a class whose instances only have temporal properties.

17

This class is the most general class (in the inheritance hierarchy) the object has ever

belonged to.



Example 3 Suppose that i

1

, : : :, i

7

2 OI and Person 2 CI. The following is

an example of T Chimera object:

i =i

1

lifespan = I where I = ht

1

; t

2

i and:

t

1

= hh1965; 3; 21i; h00; 00; 00ii t

2

= now

v = h fhI; JS65I23ig ssn;

fhI; JohnSmithig name;

"Fifth Avenue 275 NY" address i

r = h fhht

3

; t

2

i; i

2

ig spouse; fhht

4

; t

5

i; fi

3

gi; hht

6

; t

2

i; fi

3

; i

4

gig childreni,

where:

t

3

= hh1990; 5; 14i; h00; 00; 00ii

t

4

= hh1993; 12; 31i; h00; 00; 00ii

t

5

= hh1995; 1; 17i; h23; 59; 59ii

t

6

= hh1995; 1; 18i; h00; 00; 00ii

class-history = fhI; Personig

3

In a temporal context, several temporal constraints must be satis�ed by ob-

ject lifespans. To formalize these constraints we de�ne function o lifespan: OI

! T IME � T IME , that given an oid i returns the lifespan of the object iden-

ti�ed by i. Obviously, information about the historical extent of a class must be

consistent with the class histories of the objects in the database, as stated by the

following invariant.

Invariant 1 8i

0

2 OI; 8c

0

2 CI; 8t 2 T IME, let o be the object such that

o:i = i

0

, C be the class such that C:c = c

0

, then

1. i

0

2 C:e set(t)) t 2 o lifespan(i

0

);

2. (8t 2 I; i

0

2 pe set(c

0

; t)), hI; c

0

i 2 o:class-history.

4

Moreover, the lifespan of an object can be partitioned into a set of intervals,

depending on the object most speci�c class. Indeed, an object can be member of

di�erent classes during its lifetime. Therefore, we introduce function c lifespan:

OI �CI ! T IME�T IME , that given an oid i and a class identi�er c, returns

the interval representing the set of time instants in which i was a member of the

class identi�ed by c.

18

The temporal constraints stated by the following invariant

must be satis�ed.

Invariant 2 8i

0

2 OI; 8c

0

2 CI; 8t 2 T IME, then

1. o lifespan(i

0

) =

S

c2CI

c lifespan(i

0

; c);

2. t 2 c lifespan(i; c

0

) , i 2 C:e set(t), where c

0

= C:c.

19

4

18

Note that c lifespan(i; c) =

S

hI

i

;c

i

i2 o:class�history; c

i

subclass of c

I

i

. Functions

o lifespan and c lifespan are similar to those de�ned in [18].

19

This also implies that t 2 c lifespan(i

0

; c

0

) , i

0

2 [[ c

0

]]

t

.



5.1 Consistency notions

Because of object migrations, the most speci�c class to which an object belongs

to can vary over time. Moreover, an object can be an instance of the same class in

di�erent, not consecutive, time instants. As an example, consider the case of an

employee that is promoted to manager, (manager being a subclass of employee

with some extra attributes, like subordinates and o�cial car). The other case

is the transfer of the manager back to normal employee status. The migration

of an object from a class to another can cause the addition or the deletion of

some attributes from the object. For instance, the promotion of an employee

to the manager status has the e�ect of adding the attributes subordinates and

o�cial car to the corresponding object, while the transfer of the manager back to

the employee status causes dropping the attributes subordinates and o�cial car

from the corresponding object. If the attributes subordinates and o�cial car

are static, they are simply deleted from the object. No track of their existence

is recorded in the object when it migrates to the class employee. If they are

temporal, the values they had when the object migrated to the class manager

are maintained in the object, even if they are not part of the object anymore.

We require that each object must be a consistent instance of all the classes to

which it belongs to. In a context where objects can have both static and temporal

attributes, the notion of consistency assumes a slightly di�erent semantics with

respect to its classical de�nition. Verifying the consistency of an object in a

temporal context requires two steps. First, the set of attributes characterizing the

object for each instant t of its lifespan must be determined. Then, the correctness

of their values must be checked. Note that, if we consider an instant t less than the

current time, we are able to identify only the temporal attributes characterizing

the object at time t, since for static attributes we record only their current values.

Thus, for instants lesser than the current time, it only makes sense to check the

correctness of the values of the temporal and immutable attributes of the objects.

Therefore, we start by introducing the following de�nition.

De�nition 12 (Meaningful Temporal Properties ). Let p be a temporal

20

prop-

erty of an object o. Property p is said to be meaningful for o at time t, if p is

de�ned at time t.

2

We distinguish two kinds of consistency:

{ Historical consistency. The values

21

of the temporal properties of the object

at a given instant are legal values for the temporal properties of the class.

{ Static consistency. The values of the static attributes of the object are legal

values for the static attributes of the class.

20

From now on with temporal property we mean a property which is temporal or

immutable.

21

Given an object o, with value of a relationship we mean the object or the set of

objects in relationship with o.



Consider, for instance, an object o = (i; lifespan; v; r; class-history), such that

v = hv

a

1

a

1

; : : : ; v

a

n

a

n

i and r = hv

r

1

r

1

; : : : ; v

r

n

r

n

i. Therefore, given an instant

t 2 o:lifespan, the following values can be de�ned:

{ Historical value. It is a pair (v attr; v rel), where v attr represents the values

of the temporal attributes meaningful for the object at time t and v rel

represents the values of the temporal relationships meaningful for the object

at time t. Let fa

k

; : : : ; a

m

g, 1 � k � m � n, be the subset of fa

1

; : : : ; a

n

g

consisting of all the names of the temporal attributes meaningful for o at time

t and let fr

j

; : : : ; r

l

g, 1 � j � l � n, be the subset of fr

1

; : : : ; r

n

g consisting

of all the names of the temporal relationships meaningful for o at time t. The

historical value of o at time t is de�ned as (v attr; v rel) where:

v attr = hv

a

k

(t) a

k

; : : : ; v

a

m

(t) a

m

i, where v

i

(t) denotes the value of a

i

at

time t, i 2 [k;m];

v rel = hv

r

j

(t) r

j

; : : : ; v

r

l

(t) r

l

i, where v

r

i

(t) denotes the value of r

i

at time

t, i 2 [j; l].

{ Static value. It is a pair representing the values of the static properties of the

object. Its de�nition is analogous to that of the historical value, considering

static properties instead of temporal ones.

Thus, we de�ne two functions: h state: OI � T IME ! V �V, receiving an

object identi�er and an instant t as input, and returning the historical value of

the object at time t; s state: OI ! V �V, receiving an object identi�er as input,

and returning the static value of the object. Note that when an object consists

only of temporal properties, h state returns a snapshot of the value of the object

properties for a speci�ed time instant.

We are now ready to formally introduce the notions of historical and static

consistency, by making use of functions h type and s type (cfr. Table 1). In the

following, �

i

(he

1

; : : : ; e

n

i) denotes the i-th component of the tuple he

1

; : : : ; e

n

i.

De�nition 13 (Historical Consistency). An object o = (i; lifespan; v; r; class-

history) is an historically consistent instance of a class c

0

at time t i� the following

conditions hold:

{ �

1

(h state(o:i; t)) is a legal value for the attribute speci�cation�

1

(h type(c

0

));

{ �

2

(h state(o:i; t)) is a legal value for the relationship speci�cation�

2

(h type(c

0

)).

2

De�nition 14 (Static Consistency). An object o = (i; lifespan; v; r; class-history)

is a statically consistent instance of a class c

0

, if the following conditions hold:

{ �

1

(s state(o:i; t)) is a legal value for the attribute speci�cation�

1

(s type(c

0

));

{ �

2

(s state(o:i; t)) is a legal value for the relationship speci�cation�

2

(s type(c

0

)).

2

The consistency of an object is checked only with respect to its most speci�c

class, since if an object is consistent with respect to its most speci�c class, it is

also consistent with respect to all its superclasses.



De�nition 15 (Object Consistency). An object o = (i; lifespan; v; r; class-history)

is consistent i� the following conditions hold:

{ For each pair hI; c

0

i in o:class-history, interval I is contained in the lifespan

of the class identi�ed by c

0

, that is, I � C:lifespan, where C is the class such

that C:c = c

0

.

{ For each instant t of the object lifespan, a class c to which the object be-

longs to exists and, vice versa, each instant t such that t 2 I where hI; ci 2

o:class-history belongs to the lifespan of the object:

S

hI;ci2o:class�history

I =

o:lifespan.

22

{ If a temporal property p is meaningful at time t for object o then t 2

o:lifespan.

{ For each pair hI; c

0

i in o:class-history, o is an historically consistent instance

of c

0

, for each instant t 2 I.

{ Let hI; ci be the (unique) element of o:class-history, such that now 2 I.

Object o must be a statically consistent instance of class c.

2

The above de�nition states that each object, for each instant t of its lifespan,

must contain a value for each temporal property of the class to which it belongs

to at time t, and this value must be of the correct type and that each instant t

in which a property is de�ned belongs to the lifespan of the considered object.

Moreover, at the current time also the consistency with respect to the static

properties must be checked. This notion of consistency allows to uniformly handle

both static and historical objects. In the case of static objects, De�nition 15

reduces to the traditional notion of consistency.

6 Related work

Table 2 compares some temporal object-oriented data models proposed in the

literature. Some considered approaches are compared under a di�erent perspect-

ive by Snodgrass [12]. In [12] the emphasis is on temporal object-oriented query

languages, while we consider only data model features. Moreover, in [12] only the

temporal features are compared, disregarding the object-oriented ones, whereas

we consider both.

Concerning the temporal aspects, most models support a linear discrete time

structure,

23

whereas only few of them model a user-de�ned hierarchy of time

types. Two time dimensions are of interest in temporal databases: valid time

(the time a fact was true in reality) and transaction time (the time the fact

was stored in the database). Most models consider only the valid time. Some

approaches associate a timestamp with the whole object state; others associate

a timestamp with each object attribute often regarding the value of a temporal

attribute as a function from a temporal domain to the set of legal values for the

22

Note that since we do not consider objects with multiple most speci�c classes we

have that

T

hI;ci2o:class�history

I = ;.

23

We consider time structure and time dimension as discussed in [12].



attribute. This is also the approach taken in our model. Since the ODMG object

model supports both attributes and relationships, both these kinds of object

properties are extended with time in our model.

Another important characteristic is whether temporal, immutable and non

temporal attributes are supported. A temporal (or historical) attribute is an

attribute whose value may change over time, and whose values at di�erent times

are recorded in the database. An immutable attribute is an attribute whose value

cannot be modi�ed during the object lifetime,

24

whereas a non temporal (or

static) attribute is an attribute whose value can change over time, but whose

past values are not meaningful, and are thus not stored in the database. The

support for static, immutable and temporal attributes has been �rstly proposed

in the T Chimera data model [3, 2]. The main di�erence between T Chimera and

T ODMG are, besides the underlying object data model extended with time, that

T ODMG also supports relationships, which are not supported in T Chimera,

and that T ODMG allows the speci�cation of (relative and absolute) keys.

Finally, some models keep track of the dynamic links between an object and

its most speci�c class. Indeed, an important dynamic aspect of object-oriented

databases is that an object can dynamically change type, by specializing or gen-

eralizing its current one.

[7] [8] [9] [10] [11] [15] [18] [14] Ours

o-o data Oodaplex generic Tigukat MAD generic OSAM* Oodaplex OM ODMG

model

time linear linear user-def. linear linear linear user-def. linear linear

structure discrete discrete discrete discrete discrete discrete discrete

time valid valid valid valid valid valid arbitrary

1

valid valid

dimension + trans. + trans.

values & objects objects objects objects objects objects objects both objects

objects

relationships NO NO NO NO NO NO NO YES YES

what is attr. attr. arbitrary objects attr. objects arbitrary objects attr.

timestamped relat. relat.

temp. attr. funct.

2

funct.

2

sets of atomic lists atomic atomic funct.

2

funct.

2

values pairs valued

3

of tuples valued

3

valued

3

kinds of temp. temp. temp. temp. temp. temp. temp. temp. temp. +

attributes + + + + + + + + imm +

imm. imm. imm. imm. imm. imm. imm. imm. non-temp.

histories of NO YES YES NO NO NO

4

YES YES YES

obj. types

Legenda:

1

One time dimension is considered, it can be transaction or valid time.

2

With funct. we denote functions from a temporal domain.

3

Time is associated with the entire object state.

4

The information can be derived from the histories of object instances.

Table 2. Comparison among temporal object-oriented data models

24

Immutable attributes can be regarded as a particular case of temporal ones, since

their value is a constant function from a temporal domain.



7 Conclusions and future work

In this paper we have presented T ODMG, a temporal extension of the ODMG

object standard data model. T ODMG supports temporal, static and immutable

object properties. We have introduced the notion of temporal type and de�ned

the set of legal values for each type. We have discussed the notion of object

consistency and integrity and we have revised the notion of key in a temporal

framework. A prototype implementation of the proposed model has been imple-

mented on top of the Ode OODBMS [1], in which the histories of temporal object

properties are organized as monotonic B

+

-trees.

We plan to extend this work along several directions. First, we are investigat-

ing a temporal extension of OQL, the ODMG query language. A second relevant

extension is the support for multiple time granularities and calendars. Indeed, in

the current work we have prefered to keep our model of time as simple as possible

and to provide a clear formalism for such model. On the top of this formalism

we plan to investigate the use of multiple granularities and calendars and the

problems related to the data accesses in such framework.

A third direction deals with mechanisms supporting a selective recording of

past values of properties, according to the truth value of conditions associated

with properties. Moreover, we plan to extend this work with time-dependent

implementations. The informal idea of time-dependent implementations is that

each method has a set of implementations, each referring to a di�erent time

interval. A formal treatment of temporal methods in the context of the T Chimera

model can be found in [2].

Finally, we plan to extend our work to comply with the recently published

ODMG 2.0 [5] standard.
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