
Deductive Object Databases

Elisa Bertino

Dipartimento di Scienze

dell'Informazione

Universit�a di Milano (Italy)

bertino@hermes.mc.dsi.unimi.it

Giovanna Guerrini

Dipartimento di Informatica e

Scienze dell'Informazione

Universit�a di Genova (Italy)

guerrini@disi.unige.it

Danilo Montesi

�

Departamento de Informatica

Universidade de Lisboa (Portugal)

danilo@di.fc.ul.pt

Abstract

This paper proposes a new approach to model deductive object databases.

Each object database is described by means of a Datalog language ex-

tended with extensional updates, called U-Datalog. Each object can change

its state and cooperate with other objects. We introduce an extension of U-

Datalog to approach the problem of composition among object databases.

It can be used for modular database design and for cooperation among

databases. The resulting language has a clear semantics for the evolution

of objects and for modeling the transactional behavior of the resulting

database. Finally, we describe some architectural issues of the prototype

which has been developed.

Keywords: Logic languages, object based paradigm, composite databases,

transactional behavior.

1 Introduction

In the last few years the object-oriented paradigm has being widely used in

several areas of computer science, such as programming languages, databases,

software engineering, user interfaces. In particular, the notion of modularity,

which is already widely accepted in the programming language �eld, is an im-

portant notion also in the database �eld. The need for considering federated

databases rather than a centralized one is motivated by several issues. The role

played by databases in Arti�cial Intelligence, when an expert system requires

�

The work of D. Montesi has been partly supported by the ERCIM fellowship Information

and Knowledge Systems.

processing large volumes of data and rules, is one of them. In the speci�c case

of a distributed expert system the distribution of data/rules requires to con-

sider the distribution of the database and thus the development of cooperative

databases. Moreover for some complex application domains (like, e.g. the Com-

puter Integrated Manufacturing applications), the database system is inherently

distributed. Many applications integrating and using data and services of local

database systems [13] are designed and needed. In all cases, the speci�cation

of a federated system presents strong analogies with the speci�cation of com-

posite (database) systems. In [22], such concerns motivate the identi�cation

of \objects" each of them incorporating some knowledge (like facts, rules, and

constraints) and being a unit of design that can be composed with other objects.

In this paper we consider the above problem in the context of deductive

databases. The motivation for this choice is related to the formal model under-

lying deductive databases, which provides a formal behavior and also a compu-

tational model. Note that we will consider an extension to Datalog considering

updates and transactions. The language in which our modules are expressed is in

fact Update Datalog (U-Datalog) [10], an extension of Datalog which allows the

speci�cation of updates in rule bodies. The relevant characteristic of U-Datalog

is that updates are not executed as soon as they are evaluated, rather they are

collected in a set and executed altogether at the end of the refutation process,

if this process succeeds and the set is ground and consistent (i.e. it does not

contain complementary updates on the same fact).

The language we propose in this paper (called Obj-U-Datalog) is based on

the notion of object. Each object is an U-Datalog database. Each object has a

state (a set of facts) and a set of methods. Methods may also contain update

atoms to modify the object state. In such a way we model objects with OIDs,

state, behavior and state evolution. Moreover the computational model of our

language is based on cooperation among objects through message passing. In

a conventional deductive database, in fact, the evaluation of a query may make

use of all facts and rules in the database. In an Obj-U-Datalog database, by

contrast, facts and rules are grouped in objects, and the evaluation of a query

is performed in a speci�c object. During the evaluation process an object may

request the evaluation of a subquery to another object (through a message call),

in such a case the computation moves to another object (we will also say that a

context switch has happened).

Our approach to deductive object databases relates to previous work on log-

ical object databases as follows. Some of these approaches do not consider state

evolution of deductive objects [12, 19, 27, 28, 24, 2, 15, 21, 23]. Others consider

state evolution [5, 16] but objects have the granularity of terms. By contrast

we consider an object with larger granularity, that is a theory, i.e. a set of log-

ical clauses. Moreover many of the considered approaches do not consider the

behavioral component of objects (i.e. the methods). We think that this is an

important issue because it overcomes the dichotomy between data and opera-

tions of the relational model. The approach to deductive object databases of

[11] models objects with a theory granularity, classes and state evolution has no

formal semantics. This is related to control constructs in rules bodies extending

Datalog language with updates. The result of this paper is a clear, formal se-

mantics of cooperating objects expressed as deductive databases preserving the

nice computational model of Datalog language. This allows the re-use of the al-

ready developed techniques for e�cient query evaluation. Moreover in databases

an important issue is to ensure transactional behavior of a set of updates, that

is, all of them are executed or none of them is performed. Thus any collection of

cooperating databases should ensure a transactional behavior. This is the sec-

ond result of this paper, that is the semantics of cooperating databases with a

transactional behavior. A prototype of the language proposed in this paper has

been implemented, via a translation from Obj-U-Datalog to U-Datalog which

\ats" the structure of the database, and an interpretation of the obtained U-

Datalog program with a bottom-up interpreter. In the paper we briey describe

the developed prototype. The remainder of the paper is organized as follows.

Section 2 informally introduces the U-Datalog language and its non-immediate

update semantics. Section 3 introduces the Obj-U-Datalog language, presenting

its syntax. Section 4 de�nes the semantics for the language, while Section 5

describes the prototype of the language that has been implemented. Finally,

Section 6 presents some conclusions and outlines future works.

2 Overview of U-Datalog

A Datalog program consists of a set of base relations (EDB) and a set rules

(IDB). Many extensions to Datalog have been proposed to express updates (see

[1] for a survey). In the following we summarize a new approach based on a

non-immediate update semantics that we will use in order to model deductive

object databases.

U-Datalog is a rule language supporting declarative speci�cation of updates

in program rules. The execution model of U-Datalog consists of two phases, the

marking phase and the update phase [33]. The �rst phase collects the updates

found during the evaluation process, without, however, executing them. During

the second phase the updates are executed altogether only if they are ground

and consistent. If the set is not consistent, or if it contains non-ground updates,

the transaction is aborted and no update in the set is performed. The notion of

consistency is an important one, in that it prevents a set of updates containing

both an insertion and a deletion of the same fact to be executed. By contrast in

DLP [25], LDL [30] and DL [3], updates are executed as soon as they are evalu-

ated. This approach leads to complex semantics and to computations performed

in a sequence of states instead of in a single one. In the following we recall the

language and its informal behavior (see [29] for a complete description).

We consider pairwise disjoint sets of constants �, predicate names � and

variables V . Predicates have a certain arity. A term is either a constant

or a variable. The atoms are expressions of the form p(t

1

; :::; t

n

), where the

t

i

; 1 � i � n, are terms and p is a predicate name. Predicate symbols are

partitioned in two disjoint sets: the extensional predicates (�

EDB

), and the

IDB-predicate symbols (�

IDB

), occurring in the intensional database but not in

the extensional one. The extensional atoms are those built starting from the

extensional predicates. Updates are extensional atoms pre�xed with + or � to

denote respectively insertions or deletions. A rule is an expression of the form

H U

1

; : : : ; U

i

; B

i+1

; : : : ; B

n

; n � 0, where the body U

1

; : : : ; U

i

; B

i+1

; : : : ; B

n

is a sequence of updates and atoms and the head H is an intensional atom. If

n = 0, a rule is also called a fact. in the following,

~

t denotes the tuple t

1

; :::; t

n

,

while

�

A denotes a (possibly empty) conjunction of atoms A

1

; : : : ; A

k

. A substi-

tution is a function � : V ! Term which associate with each variable a term in

Term. It extends to apply to any syntactic object (e.g. term, atom, rules, etc.)

in the usual way. We require rules to be safe. Our notion of safety extends that

in [31]. A rule is safe if each variable in the head appears in a non update atom

in the body.

An extensional database (EDB) is a set of facts. The extensional database is

a time-varying component, so we may denote it with EDB

i

to emphasize that

we consider the extensional database at time i. An intensional database (IDB)

is a �nite set of rules. Atoms and updates which do not contain variables are

called grounds. A transaction is a rule with no head.

Example 2.1 Consider EDB

i

= q(b) and

IDB = p(X) �q(X); q(X):

r(X) +t(X); p(X):

s(X) t(X):

The transaction T

1

= r(X) evaluated in EDB

i

[IDB computes the binding X = b

and collects the updates �q(b);+t(b). Informally the new extensional database

EDB

i+1

= t(b) is the result of the application of these updates to EDB

i

. The

transaction T

2

= s(X) evaluated in EDB

i+1

[IDB computes the binding X = b

and does not compute any update, thus the new extensional database is still

EDB

i+1

. The transaction T

3

= +q(X); s(X) evaluated in EDB

i+1

[IDB com-

putes the binding X = b and collect the update +q(b), thus the new extensional

database is EDB

i+2

= t(b); q(b). The transaction T

4

= +q(X); p(X) computes

the binding X = b, and collects the updates +q(b);�q(b). They are not consistent

and therefore T

4

aborts. �

Transaction can be composed forming a sequence, T

1

; : : : ;T

k

that behaves

as a transaction itself. Note that control is allowed only at transaction level.

For instance, the sequence construct \;" is not allowed in rule bodies. This is

the major di�erence with the already existing approaches to integrate updates

in declarative query languages. Moreover, due to the two phases computation

there is no rollback, that is, updates undo is not needed.

3 Obj-U-Datalog

The deductive database EDB

i

[IDB of Example 2.1 expresses an object where

the EDB part is the object state and the IDB part expresses the methods to

manipulate the state. The deductive capability comes from the logical nature

of the Datalog language. Rules are used to express simple methods which can

query and/or update the object. Other languages uses rules as methods. The

approach proposed by Abiteboul et al. [4] does not consider state evolution.

The approach proposed by Ceri et al. [17], considers state evolution, however

it does not provide a formal semantics due to active rules (e.g., production

rules extended with events) used to express methods. As in th object oriented

paradigm, methods ensure encapsulation and allow cooperation among objects

[32].

An Obj-U-Datalog program consists of a set of object databases, each object

in the program consists of the object state and the methods, that is obj

j

=

hEDB

j

; IDB

j

i. obj

j

is the object identi�er which is de�ned over a �xed domain

of object names OID. The object state is a set of facts, that is a set of ground

atoms. The object state is a time-varying component, so in the following we

may denote with EDB

i

j

the possible states of object obj

j

, i.e. EDB

i

j

denotes

the i-th state of object obj

j

.

De�nition 3.1 A set of methods is a set of rules of the form

H U

1

; : : : ; U

i

; B

i+1

; : : : ; B

w

; obj

1

: B

w+1

; : : : ; obj

p

: B

z

:

where H is an intensional atom, obj

1

: B

w+1

; : : : ; obj

p

: B

z

are labeled condi-

tions, that is they refer to speci�c objects. B

i+1

; : : : ; B

w

(as in Datalog) are

unlabeled conditions, that is they refer to the object itself where the rule is de-

�ned. U

1

; : : : ; U

i

is the update part. To ensure encapsulation the updates refer to

the object itself. The updates (U

1

; : : : ; U

i

) and conditions (B

i+1

; : : : ; B

w

; obj

1

:

B

w+1

; : : : ; obj

p

: B

z

) cannot be both empty.

The intuitive meaning of a rule is: \if B

w+1

is true in obj

1

, : : :, B

z

is true

in obj

p

, B

i+1

; : : : ; B

w

are true in the object where the rule is de�ned and the

updates U

1

; : : : ; U

i

are consistent, then H is true". The notion of consistency

is given informally. Intuitively, the updates +p(X);�p(X), i.e. complementary

updates, are not consistent. The updates +p(Y);�p(X) could be consistent if

the bindings for the variables were for example X = tom; Y = bob. By contrast

with the bindings X = tom; Y = tom, they are not consistent.

Cooperation among objects is supported using labeled atoms in rule bodies.

If the object obj

i

has a rule containing the labeled atom obj

j

: B

s

this means that

object obj

i

cooperates with obj

j

calling the method B

s

. Note that a method call

can involve updates only as side e�ect. This ensures the encapsulation. Thus

a method call is a channel, where we have synchronous communication and

parameter passing through uni�cation. The use of labeled atoms in rules allows

message passing among objects, so we refer to labeled atoms also as message

atoms.

De�nition 3.2 An Obj-U-Datalog program consists of a �xed set of cooperating

objects

O �DB = fobj

1

; obj

2

; : : : ; obj

s

g

where each obj

j

, 1 � j � s, consists of an extensional component EDB

j

, which

is a set of ground facts, called object state, and an intensional component IDB

j

,

which is a set of methods, as in De�nition 3.1.

De�nition 3.3 A transaction has the form

B

1

; : : : ; B

w

; obj

1

: B

w+1

; : : : ; obj

p

: B

z

:

where B

1

; : : : ; B

w

; obj

1

: B

w+1

; : : : ; obj

p

: B

z

are as in De�nition 3.1.

Transactions cannot contain update atoms. However its execution may gen-

erate updates indirectly, because of the invocation of rules with update atoms

in their bodies. We do not allow update atoms in transaction to provide encap-

sulation, i.e., an object state can only be modi�ed through its methods. Note

that a transaction may contain two di�erent kinds of atoms: labeled ones and

unlabeled ones. Unlabeled atoms stand for the request for a refutation of the

atom in any object constituting the database, while labeled atoms are directed

to a speci�c object. Note that the language does not support a strict encapsula-

tion, in that it allows to directly access the attribute values (through queries on

extensional predicates). We only disallow the modi�cation of object attributes

from outside the object. A complex transaction T is a sequence of transactions

T

1

; : : : ;T

k

. It should be clear that a transaction provides di�erent roles: the role

of a query, in that it returns a set of bindings, an update role (even if indirectly,

as seen) with a transactional behavior (all the updates are executed or, in case

of inconsistencies, none of them is performed).

Example 3.1 We assume a collection of cooperating rule based databases. Each

of them can change its state through updates. Consider the following cooperating

databases:

obj

1

= hEDB

1

; IDB

1

i; obj

2

= hEDB

2

; IDB

2

i; obj

3

= hEDB

3

; IDB

3

i

with

EDB

1

= p(a):

q(b):

IDB

1

= k(X) p(X); obj

2

: k(X):

r(X) +p(X); q(X):

m(X) +q(X); k(X):

m(X) obj

3

: s(X); obj

2

: t(X):

EDB

2

= g(a):

IDB

2

= k(X) g(X); obj

3

: s(X):

t(X) +g(X); obj

1

: r(X):

m(X) k(X); obj

1

: k(X):

EDB

3

= s(a):

s(b):

IDB

3

= w(X) obj

1

: m(X); obj

2

: m(X):

n(X) +s(X):

� The transaction m(X) given to the resulting database computes X=b (in obj

1

)

and X=a (both in obj

2

and obj

1

). Note that these answers are the result of

a cooperation among the objects. As side e�ect the insertion of p(b) and

of q(a) is performed in obj

1

, while g(b) is inserted in obj

2

.

� The transaction p(X) computes the binding X=a, as transaction obj

1

: p(X).

By contrast, both obj

2

: p(X) and obj

3

: p(X) fail.

� The transaction t(X) computes X=b and changes the state of obj

1

and obj

2

adding p(b) and g(b) respectively. Note that those updates are performed

in parallel. They do not form a sequence.

� The transaction k(a) is simply true, due to the refutation obtainable both

in obj

1

and in obj

2

.

� The transaction obj

3

: n(X) aborts in that it generates a non ground update

+s(X). �

A labeled condition (obj

j

: k(X)) represents a channel (k) between the rule of

the database where it is de�ned (obj

i

) and the label (obj

j

) of the condition. The

cooperation is provided through the condition and the parameters are passed

through uni�cation [27]. From the above example we can note that there are

three types of (synchronous) cooperation:

� obj

1

,

k

obj

2

. This is a two ways, one-to-one cooperation on the channel

k.

� obj

2

)

r

obj

1

. This is a one way, one-to-one cooperation on the channel r.

� obj

3

)

m

obj

1

; obj

2

. This is a one way, one-to-many cooperation on the

channel m.

Transactions may consider the cooperating databases just as one database,

that is they may span several objects, or they may be explicitly addressed to a

speci�c object. Although, the control is introduced at transaction level, this this

is not inconsistent with the local view of the world encouraged by the object-

oriented paradigm because the state manipulation is allowed just inside methods

expressed through rules bodies. Indeed, with U-Datalog we have moved the con-

trol from rule language to transactional language taking full advantage of this

transactional language in terms of a simple and clear semantics, transactional

behavior and the straightforward application of already existing evaluation tech-

niques to our extended schema.

In the following we provide another example to show the e�ectiveness of our

approach to model real application domains. We do not provide the complete

Obj-U-Datalog code for the example due to space limitations.

Example 3.2 Consider an University o�ce. Suppose that this o�ce is orga-

nized in four separated units:

1. a didactic division

2. a teaching division

3. an administrative division

4. a plans of studies and theses division.

In Obj-U-Datalog we model each division with a module, i.e. an object. The

�rst division handles data about students, i.e. year attended and exams passed.

Suppose that these data are stored respectively in two extensional predicates:

� year(Stud; Y ear) which relates the student with student code Stud to the

Y ear he attends

� exam(Stud;Course;Date;Mark) which records the fact that the student

with student code Stud has passed the exams for Course in Date with

Mark.

Suppose that the following operations must be provided

� modi�cations of the extensional data

� computation of the average mark of a student

� computation of the exams to be done for a student.

These operations are expressed as methods through rules for the intensional pred-

icates mod year, ins ex, average, miss ex. Note that to determine the exams

to be done for a student the object needs to cooperate with the division 4 (plans

of studies) to get the exams in the student plan of studies.

The second division handles data about teachers, i.e. their role and the taught

courses. Suppose that those data are stored respectively in two extensional pred-

icates:

� role(Teach;Role) which relates the teacher with code Teach to its Role,

i.e whether he/she is a researcher, an assistant professor or a professor.

� course(Teach;Course;Role) which records the fact that the teacher with

code Teah teaches Course with a given Role (i.e. as a professor or as a

lecturer).

For this division only the modi�cation operations are needed. These operations

are expressed as methods by rules for the IDB predicates mod role;mod course.

The third division handles administrative data. For each person of interest

for the University it stores name, address, date of birth, and so on. Suppose that

these data are stored in an extensional predicate:

� adm data(Code;Name;Address;Date) which relates the person (either a

student or a teacher) with code Code to its Name, Address and Date of

birth.

Suppose that the following operations must be provided

� modi�cations of the extensional data

� computation of the fee to be paid by each student

� computation of the salary for each teacher.

These operations are expressed as methods through rules for the intensional pred-

icates mod adm, fee, salary. Suppose that the fee to be paid depends on the year

of course, the average and the number of missing exams of the student. Therefore

we need a cooperation with the �rst division (by accessing the attribute year and

invoking the methods average and miss ex). Suppose moreover that the salary

of a teacher depends on the role of the teacher and on the number of courses

he/she teaches. Therefore we need a cooperation with the second division (by

accessing the attributes role and course).

The fourth division handles data about plans of studies and theses. Suppose

that these data are stored respectively in two extensional predicates:

� plan(Stud;Course; Y ear) which stores that the student with student code

Stud has planned to attend Course in Y ear

� thesis(Stud;Course;Advisor) which stores that the student with student

code Stud is doing a thesis on topics related to Course with a given

Advisor.

Suppose that each thesis has a co-advisor, which is determined by the topics of

the thesis and the advisor, and that an operation is needed to determine the co-

advisor. This operation is expressed as a method (intensional predicate co�adv).

We suppose that to implement this method a cooperation with the division which

stores information about courses must be performed, by accessing the attribute

course.

The cooperations among objects in the resulting database are expressed by the

following relations

div

1

)

plan

div

4

div

3

)

year;average;miss ex

div

1

div

3

)

role;course

div

2

div

4

)

course

div

2

�

4 Semantics of Obj-U-Datalog

The semantics of an Obj-U-Datalog program is given in three steps. Before

introducing this semantics we remark that, in our approach, due to the query-

update feature of the language, we are interested in modeling as observable

property of a transaction the following information: the set of answers, the

database state, and the result of the transaction itself (i.e. commit or abort).

To model the transactional behavior we consider a two step computation which

mimics the marking and update phases. The marking phase of a Obj-U-Datalog

program has to model the answers to a given transaction. The answers to the

marking phase are bindings and (hypothetical) updates.

In the marking phase we consider the semantics of the database as a collection

of independent objects. Each object interacts with other objects only through

explicit context switches i.e. requests for the evaluation of a subquery sent to

another object. Note that each object consists of a time-varying component (its

state) and a time-invarying one (its methods). Therefore, the semantics of an

object should be given in a compositional way (as done in [29] for U-Datalog).

We do not consider this level of composition here, because each object regards the

others as single units, being not interested in the subdivision between extensional

and intensional components. In this phase we regard an Obj-U-Datalog program

as a tuple of logic databases. The computation is performed in an object until

an explicit message call moves it to another object. We de�ne a bottom up

semantics for the marking phase, based on a \parallel immediate consequence

operator". This semantics is based on a composite structure for interpretation

in which all the objects in the database are interpreted simultaneously. The

bindings found during the entire computation are independent from the object

in which they are found (i.e. logical variables are instantiated with respect to

the entire database, and the bound ones are kept bound when the computation

moves to another object). By contrast the gathered updates are kept related to

the object that has generated them (on which they have to be performed), so

we keep a tuple of sets of updates to be performed.

The �rst semantic step is related to Obj-U-Datalog as a declarative spec-

i�cation of queries and updates. The updates are not executed, neither the

transactional behavior of a query is considered. The second semantic step, the

update phase, performs the update and provides a transactional behavior to a

query. The update phase receives as input the hypothetical updates computed by

the marking phase and executes them. In addition the result of the transactional

behavior, that is, commit or abort, is provided, altogether with a set of bindings

to model the answers to a query. The third semantic step considers complex

transactions, i.e. sequences of simple transactions. Complex transactions are in

fact de�ned by means of elementary transactions such as update queries and the

sequence constructor. Therefore the semantics of complex transactions must be

de�ned in terms of the semantics of elementary ones.

In the following subsections we de�ne the three step semantics. Each step

uses the semantics de�ned in the previous step as input. The interpretation

given to updates is the same as in U-Datalog [29], and for brevity reason we do

not deal with it.

4.1 Marking Phase Semantics

In this �rst semantic step we consider the cooperation among objects, regarding

an Obj-U-Datalog database as a collection of objects. Each object sees other

objects as a single unit, without distinction between intensional and extensional

components.

A well accepted notion to model the cooperation among modular logic pro-

grams (and therefore, possibly, among modular deductive databases) is the no-

tion of open programs. Open programs were introduced in [12] to model the

composition of logic programs with respect to a set of predicates denoted with

. An open program is a program whose information about the predicates in

the set
 are regarded as incomplete. Predicates in
 can be extended with def-

initions provided from any other program. This notion is a very relevant one in

modular logic programming. However, the cooperation among objects in an ob-

ject database cannot be easily modeled with the compositional semantics of open

programs. This is due to the fact that cooperation among objects is achieved

through explicit messages (i.e. labeled atoms) to enforce the evaluation of the

atom in a speci�ed object. This is the concept of message passing in the object

oriented paradigm, but it is quite di�erent from the notion of composition for

open logic programs. This di�erence is illustrated by the following example.

Example 4.1 Consider the following object database:

obj

1

= k(a):

q(X) obj

2

: k(X):

obj

2

= k(b):

p(X) k(X):

In this database predicate k is a \channel" of the communication between obj

1

and obj

2

. This channel is inherently one-way, i.e. obj

1

uses the clauses for

predicate k de�ned in obj

2

, but not vice versa. With a compositional semantics,

if we consider obj

1

and obj

2

as open programs -with
 = fkg-, both objects see

the clauses for predicate k in the other object. Therefore in this latter case p(a)

is true in obj

2

, while in our intended semantics it is not.

Note however that the inadequacy of the compositional semantics to model

the cooperation among object based on message passing is not only due to the

asymmetricity of cooperation. Consider for instance the case of the following

database:

obj

1

= k(a):

q(X) obj

2

: k(X):

obj

2

= k(b):

p(X) obj

1

: k(X):

In this case the cooperation is symmetric (both obj

1

and obj

2

may use the clauses

for predicate k in the other object). However, also in this case the compositional

semantics does not model the intended meaning of the database. In this case,

in fact, if we consider obj

1

and obj

2

as open programs -with
 = fkg- we have

that both q(a) and q(b) are true in obj

1

and that both p(a) and p(b) are true in

obj

2

. But this is not the intended meaning of the above program. In fact an atom

obj

2

: k(X) requests the computation to move in object obj

2

, seeing no longer

clauses for k in the current object. Therefore the intended meaning for the above

database is that q(b) (but not q(a)) is true in obj

1

and that p(a) (but not p(b))

is true in obj

2

. �

As shown by the above example, the notion of composition among programs

is inherently di�erent from the notion of cooperation through message passing

among objects. Therefore, in order to model the cooperation among objects,

we consider an approach similar to the one introduced for object based logic

programming in [14], for the ObjectLog language. This approach is based on

the use of a composite structure for interpretations in which all the objects are

interpreted simultaneously. In this approach an interpretation for a database

O�DB = obj

1

; : : : ; obj

s

is de�ned as the tuple of sets hI(obj

1

); : : : ; I(obj

s

)iwhere

each I(obj

i

) is a subset of the Herbrand Base B that interprets the associate

object obj

i

. The Herbrand Base we consider is constituted by atoms of the

form H

�

U , with H atom (either intensional or extensional) and

�

U updates.

The presence of the atom H

�

U in the interpretation means that H is true

and that its evaluation causes the execution of

�

U . The notion of Herbrand

Base for U-Datalog has been introduced in [29]. We extend here this approach

to labeled atoms. In the following we will refer to tuples of interpretations as

T-interpretation. Let I be the class of T-interpretations.

Now, given an Obj-U-Datalog database O �DB we de�ne a transformation

T

O�DB

whose �xpoint is the semantics of O�DB. T

O�DB

is de�ned in terms of

the immediate consequence transformation of each of the objects in O�DB. The

basic idea is that of computing the consequences in parallel on T-interpretations.

De�nition 4.1 The operator T

O�DB

: I ! I is de�ned in as follows:

T

O�DB

(I) = hT

obj

1

(I); : : : ; T

obj

s

(I)i

where I 2 I and for each i, 1 � i � s, we have

T

obj

i

(I) = fA

�

U j A

�

U 2 B, 9 clause in obj

i

H U

1

; : : : ; U

m

; B

1

; : : : ; B

n

; obj

k

1

: B

n+1

; : : : ; obj

k

w

: B

n+w

9 � substitution, such that A = H� and

8r = 1 : : :n B

r

�

�

U

r

2 I(obj

i

);

8q = 1 : : :w B

n+q

�

�

U

n+q

2 I(obj

k

q

); and

�

U = obj

i

: U

1

�; : : : ; obj

i

: U

m

�;

�

U

1

; : : : ;

�

U

n

;

�

U

n+1

; : : : ;

�

U

n+w

is consistent g

where a set of updates obj

1

: u

1

1

; : : : ; obj

1

: u

1

n

1

; : : : ; obj

s

: u

s

1

; : : : ; obj

s

: u

s

n

s

is

consistent if it does not contain complementary updates (i.e. +p(

~

X) and �p(

~

X))

labeled by the same object identi�er, i.e. if for all i, 1 � i � s, in u

i

1

; : : : ; u

i

n

i

there are no complementary updates.

The operator de�ned above is continuous and monotonic on the lattice (I;�).

This allows us to de�ne the �xpoint semantics for Obj-U-Datalog programs.

De�nition 4.2 Let O�DB be an Obj-U-Datalog program. The �xpoint seman-

tics F(O �DB) of O �DB is de�ned as F(O �DB) = T

O�DB

" n.

Note that the above �xpoint is reached in a �nite number of steps (n) due

to the �niteness of the domain [20].

Example 4.2 Consider the database O � DB = fobj

1

; obj

2

; obj

3

g of Example

3.1. In the following we show the computation of F(O �DB).

T

0

O�DB

= h f p(a); q(b) g;

f g(a) g;

f s(a); s(b); n(X) obj

3

: +s(X) g i

T

1

O�DB

= h f r(b) obj

1

: +p(b) g [T

0

O�DB

(obj

1

);

f k(a) g [T

0

O�DB

(obj

2

);

T

0

O�DB

(obj

3

) i

T

2

O�DB

= h f k(a) g [T

1

O�DB

(obj

1

);

f t(b) obj

1

: +p(b); obj

2

: +g(b) g [T

1

O�DB

(obj

2

);

T

1

O�DB

(obj

3

) i

T

3

O�DB

= h f m(b) obj

1

: +p(b); obj

2

: +g(b)

m(a) obj

1

: +q(a) g [T

2

O�DB

(obj

1

);

f m(a) g [T

2

O�DB

(obj

2

);

T

2

O�DB

(obj

3

) i

T

4

O�DB

= h T

3

O�DB

(obj

1

);

T

3

O�DB

(obj

2

);

fw(a) obj

1

: +q(a) g [T

3

O�DB

(obj

3

) i

Since no new facts can be derived, T

4

O�DB

= F(O �DB).

The �xpoint semantics of the database is therefore

F(O �DB) = h f p(a); q(b); k(a);

r(b) obj

1

: +p(b)

m(b) obj

1

: +p(b); obj

2

: +g(b)

m(a) obj

1

: +q(a) g;

f g(a); k(a); m(a);

t(b) obj

1

: +p(b); obj

2

: +g(b) g;

f s(a); s(b);

n(X) obj

3

: +s(X)

w(a) obj

1

: +q(a) g i

�

Now we de�ne the semantics of a query T with respect to an Obj-U-Datalog

database O-DB. First we note that database systems use a default set-oriented

semantics, that is, the query-answering process computes a set of answers [18].

We denote with Set(T;O �DB) the set of pairs (bindings and updates) com-

puted as answers to the transaction T . We �rst de�ne the notion for atomic

transaction, then we extend it to conjunction of atomic transactions (i.e. simple

transactions).

Let T be an atom of the form p(

~

t) with

~

t tuple of terms. Then

Set(T;O �DB) = f hb; ûi j

9 an atom A

�

U 2 F(O �DB)

p(

~

t)� = A, � substitution,

b is the set of bindings correspondent to �,

û is the tuple of update sets obtained from

�

U grouping

the updates on the object to which they are related g

where û = hu

1

; : : : ; u

s

i is obtained from

�

U in the following way: for each i,

1 � i � s, u

i

= fua j obj

i

: ua appears in

�

Ug:

Let T be a labeled atom of the form obj

i

: p(

~

t) with

~

t tuple of terms. Then

Set(T;O �DB) = f hb; ûi j

9 an atom A

�

U 2 F(O �DB)(obj

i

)

(i.e. in the interpretation component related to obj

i

)

p(

~

t)� = A, � substitution, and

b is the set of bindings correspondent to �,

û is the tuple of update sets obtained from

�

U grouping

the updates on the object to which they are related g

Let T be a conjunction of atoms A

1

; A

2

then

Set(T;O �DB) = fhb; ûi j

9hb

1

; û

1

i 2 Set(A

1

; O �DB);

9hb

1

; û

2

i 2 Set(A

2

; O �DB);

b = b

1

[b

2

is consistent and

for each i, 1 � i � s, u

i

= u

1

i

[u

2

i

is consistentg.

A set of bindings is consistent if the associated equation system is solvable, i.e.

if the set associates at most a constant to each variable.

Example 4.3 Consider the Obj-U-Datalog database ODB = hobj

1

; obj

2

; obj

3

i

of Example 3.1, whose semantics has been computed in Example 4.2.

� Consider the transaction m(X).

Set(m(X); O�DB) = f h fX = ag; h;; ;; ;i i;

h fX = ag; hf+q(a)g; ;; ;i i;

h fX = bg; hf+p(b)g; f+g(b)g; ;i i g

Note that the �rst solution has been found in obj

2

(that is it belongs to

F(O �DB)(obj

2

)), while the last two are found in obj

1

.

� Consider the transaction obj

2

: m(X).

Set(obj

2

: m(X); O �DB) = fh fX = ag; h;; ;; ;i i g

� Consider the transaction obj

3

: m(X).

Set(obj

3

: m(X); O �DB) = ;

� Consider the transaction r(X); w(Y).

Set(r(X); w(Y); O�DB) = fh fX = b; Y = ag; hf+p(b);+q(a)g; ;; ;i i g

� Consider the transaction obj

3

: n(X).

Set(obj

3

: n(X); O �DB) = fh ;; h;; ;; f+s(X)gi i g �

4.2 Update Phase Semantics

The semantics of the marking phase does not include the execution of the col-

lected updates neither consider the transactional behavior. We now de�ne a

function which takes a set of ground updates, the current extensional compo-

nents of the objects constituting the database and returns the new extensional

components.

De�nition 4.3 Let EDB

i

1

1

; : : : ; EDB

i

s

s

be the current extensional components

of the objects constituting the database and u

1

; : : : ; u

s

is a s-uple of consistent

sets of ground updates. Then the new databases EDB

i

1

+1

1

; : : : ; EDB

i

s

+1

s

are

computed by means of the function � : EC � U ! EC as follows:

�(hEDB

i

1

1

; : : : ; EDB

i

s

s

i; hu

1

; : : : ; u

s

i) = hEDB

i

1

+1

1

; : : : ; EDB

i

s

+1

s

i

where each EDB

i

j

+1

j

, with j = 1 : : : s, is computed from EDB

i

j

j

and u

j

as

(EDB

i

j

j

n fp(

~

t) j �p(

~

t) 2 u

j

g) [fp(

~

t

0

) j +p(

~

t

0

) 2 u

j

g

where EC denotes all the possible s-uples of extensional components (i.e. of sets

of facts) and U denotes all the possible s-uples of updates sets.

Before introducing the update phase semantics we briey recall that we are

interested in modeling as observable property of a transaction the set of an-

swers, the object states and the result of the transaction itself. It is called

Oss = hAns; State;Resi where Ans is the set of answers, State is an s-uple

constituted by the extensional components of objects in the database and Res is

the transactional result, that is, either Commit or Abort. The set of possible ob-

servables Oss is OSS. In the following we de�ne the semantics of a transaction

T with respect to an object database O�DB as a function from observables to

observables.

De�nition 4.4 Let O � DB

i1

be an Obj-U-Datalog database, with EDB

i

the

tuple of current object states and O�IDB the tuple of method sets of objects. The

semantics of a transaction is denoted by the function S

O�IDB

(T) : EC ! OSS.

S

O�IDB

(T)(EDB

i

) =

8

<

:

Oss

i+1

if OK

h;; EDB

i

; Aborti otherwise

where Oss

i+1

= hfb

j

j hb

j

; û

j

i 2 Set(T;O�DB

i

)g; EDB

i+1

; Commiti, EDB

i+1

is computed by means of �(EDB

i

; �u). The condition OK expresses the fact

that all the components of the tuple of sets �u =

S

j

û

j

b

j

are consistent, that is,

there are no complementary ground updates on the same object. û

j

b

j

denotes

the ground updates obtained by substituting the variables in û

j

with the ground

terms associated with the variables in b

j

.

1

Here we denote with O�DB

i

the Obj-U-Datalog database to emphasize that we consider

object states EDB

i

at time i.

Note that, according to the above de�nition, in Obj-U-Datalog the abort of

a transaction may be caused by two di�erent situations. The �rst (which we

may call abort for ungroundness) is related to a transaction that generates a

non-ground set of updates. In this case we are not able to decide what updates

to execute, and therefore we abort the transaction. The second situation (which

we may call abort for inconsistency) is related to a transaction that generates an

update set with complementary updates on the same atom in the same object

(both the insertion and the deletion of the atom). In this case the resulting

object state would depend on the execution order of updates, so we disallow this

situation by aborting the transaction.

Example 4.4 Consider the Obj-U-Datalog database of Example 3.1, whose se-

mantics has been computed in Example 4.2. We consider as starting observable

Oss

i

the one composed by an empty set of bindings, the tuple of the current

object states EDB

i

and Commit. Recall that

EDB

i

= h f p(a); q(b) g; f g(b) g; f s(a); s(b) g i:

Consider the transaction m(X) issued against O�DB

i

. Recall from Example 4.3

that

Set(m(X); O�DB) = f h fX = ag; h;; ;; ;i i;

h fX = ag; hf+q(a)g; ;; ;i i;

h fX = bg; hf+p(b)g; f+g(b)g; ;i i g

Therefore, Oss

i+1

:1 = f fX = ag; fX = bg g

2

. The gathered updates are

�u = hf+p(b);+q(a)g; f+g(b)g; ;i.

Each set in the triple �u is ground and consistent, so Oss

i+1

:3 = Commit. The

resulting object states EDB

i+1

, i.e. Oss

i+1

:2 = �(EDB

i

; �u), are

EDB

i+1

= h f p(a); p(b); q(a); q(b) g; f g(a); g(b) g; f s(a); s(b) g i:

The obtained observable is therefore

Oss

i+1

= hf fX = ag; fX = bg g; EDB

i+1

; Commiti

Now consider the transaction obj

3

: n(X) issued against O �DB

i

. As seen

in Example 4.3

Set(obj

3

: n(X); O�DB) = fh ;; h;; ;; f+s(X)gi i g:

In this case we have

�u = h;; ;; f+s(X)gi

therefore the condition OK is not veri�ed and the transaction aborts (abort for

ungroundness). The resulting observable is h;; EDB

i

; Aborti. �

2

Oss

i

:n denotes the n-th component of the tuple Oss

i

.

4.3 Complex Transactions Semantics

Complex transaction are not modeled by the semantics introduced so far. Note

that, according to the following de�nition, the abort of a simple transaction in

a sequence results in the abort of the entire sequence.

De�nition 4.5 Let O � DB

i

be an Obj-U-Datalog database, with EDB

i

the

tuple of current object states and O�IDB the tuple of method sets of objects. If

T

1

and T

2

are transactions then T

1

;T

2

is a transaction. The semantics of T

1

;T

2

is denoted by the function S

0

O�IDB

(T

1

;T

2

) : OSS ! OSS. Let Oss

i

be such

that Oss

i

:2 = EDB

i

.

S

0

O�IDB

(T

1

;T

2

)(Oss

i

) =

8

<

:

Oss

i+2

if OK

h;; Oss

i

:2; Aborti otherwise

where Oss

i+2

= S

O�IDB

(T

2

)(Oss

i+1

). Oss

i+1

= S

O�IDB

(T

1

)(Oss

i

) represents

the observable of the database after the transaction T

1

and OK expresses the

condition that S

O�IDB

(T

2

)(Oss

i+1

):3 = Commit and S

O�IDB

(T

1

)(Oss

i

):3 =

Commit.

Note that the above semantics does not model the answers to the �rst trans-

action, i.e. T

1

. We choose this approach to avoid keeping the histories of trans-

actions.

Example 4.5 Consider the database of Example 3.1, whose semantics has been

computed in Example 4.2.

� Consider the transaction m(X); w(X). >From Example 4.4 we have

S

O�IDB

(m(X))(EDB

i

) = hf fX = ag; fX = bg g; EDB

i+1

; Commiti

with

EDB

i+1

= h f p(a); p(b); q(a); q(b)g; f g(a); g(b)g; f s(a); s(b)g i

>From the semantics of O �DB

i+1

, we have

Set(w(X); O�DB

i+1

) = f h fX = ag; hf+p(a);+q(a)g; f+g(a)g; ;i i;

h fX = bg; hf+p(b);+q(b)g; f+g(b)g; ;i i g:

Therefore, Oss

i+2

:1 = f fX = ag; fX = bg g. The gathered updates are

�u = hf+p(a);+p(b);+q(a);+q(b)g; f+g(a);+g(b)g; ;i.

Each set in the triple �u is ground and consistent, so Oss

i+2

:3 = Commit.

The resulting object states EDB

i+2

, i.e. Oss

i+2

:2, coincide with the pre-

vious ones EDB

i+1

, because all the atoms in �u to be inserted are already

present in EDB

i+1

and �u contains no deletions. The obtained observable

Oss

i+2

is therefore

S

0

O�IDB

(m(X); w(X))(Oss

i

) = hf fX = ag; fX = bg g; EDB

i+1

; Commiti

� Consider now the sequence m(X); n(X); w(X). As seen in Example 4.4

S

O�IDB

(n(X))(EDB

i

) = h;; EDB

i

; Aborti

so, due to the abort of n(X), the considered transaction also aborts. The

resulting observable is h;; EDB

i

; Aborti: Note therefore that the resulting

states are the ones before the transaction starts. �

5 Architecture of the Prototype

A prototype of the system has been implemented at the University of Genova,

using KBMS1 [26], a knowledge base management system developed in HP lab-

oratories at Bristol. The language of KBMS1, kbProlog, is an extension of Pro-

log with modularization facilities, declarative update operations and persistence

support.

The implementation of the language has been realized in two steps:

� development of a translator from Obj-U-Datalog to U-Datalog

� development of a bottom up interpreter for U-Datalog [8].

The bottom-up interpreter for U-Datalog handles updates with a non-immediate

semantics and provides the transactional behavior. The choice of implementing

Obj-U-Datalog via a translation in U-Datalog is due to the fact that the def-

inition and implementation of Obj-U-Datalog is part of a project which aims

at developing an enhanced database language, equipped with an e�cient im-

plementation. We are currently developing several optimization techniques for

U-Datalog [9] that will lead to an optimized U-Datalog interpreter and therefore

to an optimized Obj-U-Datalog interpreter.

An alternative implementation might realize a \direct" interpreter for Obj-

U-Datalog, adapting one of the several evaluation techniques developed for de-

ductive databases [6] to object deductive databases (so taking into account both

message passing and object state evolution). This is a possible issue for future

investigation.

Our prototype is based on the following steps: i) an Obj-U-Datalog programOP

is translated into a U-Datalog program UP ; ii) each query on such a program

OQ is �rst of all translated in a U-Datalog query UQ, and then executed against

the program UP using the U-Datalog interpreter.

The translation from Obj-U-Datalog to U-Datalog is simple. For each object

obj

i

2 O � DB, for each predicate p of arity n de�ned in obj

i

we have a cor-

responding predicate p of arity n + 1 de�ned in U-Datalog DB. The argument

added to each predicate refers to the object in which the predicate is de�ned.

The extensional component of an object obj

i

, i.e. EDB

i

, is translated as

follows. For each fact in EDB

i

, p(~a), with ~a tuple of constants, we have a fact

p(obj

i

; ~a) in DB. The extensional database of the U-Datalog program consists

of the union of the translation of the extensional components of each object.

The intensional rules are translated as follows. Consider the rule, de�ned in

object obj

i

,

p(

~

X) B

1

(

~

Y

1

); : : : ; B

k

(

~

Y

k

); obj

1

: B

k+1

(

~

Y

k+1

); : : : ; obj

n

: B

k+n

(

~

Y

k+n

):

This rule is translated in the following U-Datalog rule:

p(obj

i

;

~

X) B

1

(obj

i

;

~

Y

1

); : : : ; B

k

(obj

i

;

~

Y

k

); B

k+1

(obj

1

;

~

Y

k+1

); : : : ;

B

k+n

(obj

n

;

~

Y

k+n

):

The intensional database of the U-Datalog program consists of the union of the

translations of all the rules of the intensional component of each object.

Transactions are translated in a very simple way. A transaction is translated

in the conjunction of the translation of (eventually labeled) atoms that constitute

it. A labeled atom obj

i

: p(

~

X) is translated in a U-Datalog atom p(obj

i

;

~

X). An

unlabeled atom p(

~

X) in a transaction, that -as we have seen- is interpreted as a

transaction directed to the whole database, is translated in p(O;

~

X), with O new

variable. Note that in this way we obtain in the solution not only the instances

of p(

~

X) satis�ed by the database, but also the object in which such instances

were found.

Example 5.1 In this example we show the translation in U-Datalog of the Obj-

U-Datalog database of Example 3.1. The database resulting from the translation

is the following.

EDB = p(obj

1

; a): q(obj

1

; b):

g(obj

2

; a):

s(obj

3

; a): s(obj

3

; b):

IDB = k(obj

1

; X) p(obj

1

; X); k(obj

2

; X):

r(obj

1

; X) +p(obj

1

; X); q(obj

1

; X):

m(obj

1

; X) +q(obj

1

; X); k(obj

1

; X):

m(obj

1

; X) s(obj

3

; X); t(obj

2

; X):

k(obj

2

; X) g(obj

2

; X); s(obj

3

; X):

t(obj

2

; X) +g(obj

2

; X); r(obj

1

; X):

m(obj

2

; X) k(obj

2

; X); k(obj

1

; X):

w(obj

3

; X) m(obj

1

; X); m(obj

2

; X):

n(obj

3

; X) +s(obj

3

; X):

The transaction m(X) is translated into the U-Datalog transaction m(O; X), while

the transaction obj

1

: m(X) is translated into m(obj

1

; X). �

Finally, note that if we had not supported general transactions of the form

p(

~

X), the translation of a program would have been even simpler, in that it

su�ces to rename each predicate p de�ned in obj

i

with p

i

-without modifying

its arity- and take as translated program the union of the objects.

6 Conclusions and Future Work

In this paper we have proposed a deductive object based language for databases.

This language may be used for specifying modular cooperating databases in a

deductive framework. This language models communication through message

passing among objects and object state evolution with a transactional behavior.

We propose a direct semantics for the language which captures both the compu-

tation based on message passing and the transactional behavior. Future works

include the extension of the language in order to provide dynamic channels, the

notion of class, inheritance

3

and integrity constraints. Moreover, we want to in-

vestigate transaction optimization. >From the implementation viewpoint we aim

to adapt classical Datalog evaluation techniques to Obj-U-Datalog to implement

a more e�cient Obj-U-Datalog interpreter.

References

[1] S. Abiteboul. Updates, a New Frontier. In M. Gyssens, J.Paredaens, and

D. Van Gucht, editors, Proc. Second Int'l Conf. on Database Theory, volume

326 of Lecture Notes in Computer Science, pages 1{18. Springer-Verlag,

Berlin, 1988.

[2] S. Abiteboul and P. Kanellakis. Object Identity as a Query Language Prim-

itive. In Proc. Int'l ACM Conf. on Management of Data, pages 159{173,

1989.

[3] S. Abiteboul and V. Vianu. Procedural and Declarative Database Update

Languages. In Proc. of the ACM Symposium on Principles of Database

Systems, pages 240{251. ACM, New York, USA, 1988.

[4] S. Abiteboul et al. Methods and Rules. In P. Buneman and S. Jajodia,

editors, Proc. Int'l ACM Conf. on Management of Data, pages 32{41, 1993.

[5] J. M. Andreoli and R. Pareschi. LO and behold! Concurrent Structured

Processes. In N. Meyrowitz, editor, Proc. Int'l Conf. on Object-Oriented

Programming: Systems, Languages, and Applications, pages 1{13, 1990.

[6] F. Bancilhon and R. Ramakrishnan. Performance Evaluation of Data

Intensive Logic Programs. In J. Minker, editor, Foundation of Deduc-

tive Databases and Logic Programming, pages 439{519. Morgan-Kaufmann,

1987.

3

In [7] we have proposed a logical object oriented language for databases, with the notions

of classes ad inheritance, but the semantics for the language has been de�ned indirectly, based

on the semantics of U-Datalog.

[7] E. Bertino, B. Catania, G. Guerrini. An Overview of LOL: A Deductive

Language for Object Bases. Invited paper in A. Makinouchi, editor, Proc.

International Symposium on Next Generation Database Systems, pages 69-

76, 1993.

[8] E. Bertino, B. Catania, G. Guerrini, and D. Montesi. A Bottom-Up Inter-

preter for a Database Language with Updates and Transactions. Submitted

for pubblication, 1993.

[9] E. Bertino, B. Catania, G. Guerrini, and D. Montesi. Transaction Optimiza-

tion in Rule Databases. In J. Widom and S. Chakravarthy, editors, Proc.

Research Issues in Data Engineering - Active Database Systems Workshop,

1994.

[10] E. Bertino, M. Martelli, D. Montesi. Modeling Database Updates with Con-

straint Logic Programming. In Proc. 4th Int'l Workshop on Foundations of

Models and Languages for Data and Objects: Modeling Database Dynamics,

1992.

[11] E. Bertino and D. Montesi. Towards a Logical-Object Oriented Program-

ming Language for Databases. In A. Pirotte, C. Delobel, and G. Gottlob,

editors, Proc. Third Int'l Conf. on Extending Database Technology, pages

168{183, 1992.

[12] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. Contributions to the

Semantics of Open Logic Programs. In Proc. Int'l Conf. on Fifth Generation

Computer Systems, pages 570{580. Institute for New Generation Computer

Technology, 1992.

[13] M. L. Brodie. The Promise of Distributed Computing and the Challanges

of Legacy Systems. In P. M. Gray and R. J. Lucas, editors, Proc. BNCOD

10, volume 618 of Lecture Notes in Computer Science, pages 1{28. Springer-

Verlag, Berlin, 1992.

[14] M. Bugliesi. A Declarative View of Inheritance in Logic Programming. In

K.R. Apt, editor, Proc. Joint Int'l Conf. and Symp. on Logic Programming,

pages 113{127, 1992.

[15] M. Bugliesi, P. Mello, and E. Lamma. Modularity in Logic Programming.

Technical Report P/4/242, CNR, 1993.

[16] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. The Logres

project: Integrating Object-Oriented Data Modelling with a Rule-Based

Programming Paradigm. Technical Report TR 89-039, Politecnico di Mi-

lano, 1989.

[17] S. Ceri, P. Fraternali, D. Montesi, and S. Paraboschi. Active Rule Manage-

ment in Chimera. Technical Report, Unpublished, 1993.

[18] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases.

Springer-Verlag, Berlin, 1990.

[19] B. Freitag. A Deductive Database Language Supporting Modules. In Proc.

Second Int'l Computer Science Conference, 1992.

[20] M. Gabbrielli, R. Giacobazzi, and D. Montesi. Modular Logic Programs on

Finite Domain. GULP Conference on Logic Programming, 663{678, 1993.

[21] S. Greco, N. Leone, and P. Rullo. COMPLEX: An Object-Oriented Logic

Programming System. IEEE Transactions on Knowledge and Data Eng.,

4(4):344{359, August 1990.

[22] R. Jungclaus, G. Saake, and C. Sernadas. Using Active Objects for Query

Processing. In Proc. Object-Oriented Database: Analysis, Design and Con-

struction, 4th IFIP Working Conference DS-4, 1990.

[23] Y. Lou and Z. M. Ozsoyoglu. LLO: An Object-Oriented Deductive Lan-

guage with Methods and Methods Inheritance. In Proc. Int'l ACM Conf.

on Management of Data, pages 198{207, 1991.

[24] P. Mancarella and D. Pedreschi. An Algebra of Logic Programs. In R.A.

Kowalski and K.A. Bowen, editors, Proc. Fifth Int'l Conf. on Logic Pro-

gramming, pages 1006{1023. The MIT Press, Cambridge, Mass., 1988.

[25] S. Manchanda and D. S. Warren. A Logic-based Language for Database

Updates. In J. Minker, editor, Foundation of Deductive Databases and

Logic Programming, pages 363{394. Morgan-Kaufmann, 1987.

[26] J. Mantley, A. Cox, K. Harrison, M. Syrett, and D. Wells. KBMS1 A User

Manual. Information System Centre Hewlett-Packard Laboratories, 1990.

[27] F.G.McCabe. Logic and Objects. PhD thesis, University of London, Novem-

ber 1988.

[28] L. Monteiro and A. Porto. Contextual Logic Programming. In G. Levi and

M. Martelli, editors, Proc. Sixth Int'l Conf. on Logic Programming, pages

284{302. The MIT Press, Cambridge, Mass., 1989.

[29] D. Montesi. A Model for Updates and Transactions in Deductive Databases.

PhD thesis, Dipartimento di Informatica, Universit�a di Pisa, March 1993.

[30] S. Naqvi and S. Tsur. A Logic Language for Data and Knowledge Bases.

Computer Science Press, 1989.

[31] J. D. Ullman. Database and Knowledge-Base Systems. Computer Science

Press, 1989.

[32] P. Wegner. Dimensions of Object-Based Language Design. Proc. Int'l Conf.

on Object-Oriented Programming: Systems, Languages, and Applications,

pages 181{192, 1987.

[33] M. Zloof. Query-by-example: a Data Base Language. IBM Systems Journal,

16(4):324{343, 1977.

