
Trigger Inheritance and Overriding in Active

Object Database Systems

Elisa Bertino

1

Giovanna Guerrini

2

Isabella Merlo

2

1

Dipartimento di Scienze dell'Informazione

Universit�a di Milano - Milano, Italy

Via Comelico 39/41 - I20135 Milano, Italy

bertino@dsi.unimi.it

2

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova - Genova, Italy

Via Dodecaneso 35 - I16146 Genova, Italy

fguerrini,merloisag@disi.unige.it

Abstract. An active database is a database in which some operations

are automatically executed when speci�ed events happen and particu-

lar conditions are met. Several systems which support active rules in an

object-oriented data model have been proposed. However, many issues

related to the integration of triggers with object-oriented modeling con-

cepts have been devoted so far limited attention and still need investiga-

tion. In this paper, we discuss the problems related to trigger inheritance

and re�nement in the context of the Chimera active object-oriented data

model.

1 Introduction

The need and the relevance of reactive capabilities as a unifying paradigm for

handling a number of database features and applications are well-established.

An active database system is a database system which automatically performs

certain operations in response to certain events occurring or certain conditions

being satis�ed [8]. Active database systems are centered around the notion of rule.

Rules are syntactic constructs by means of which the reactions of the system are

speci�ed. Active rules, often referred as triggers, are usually de�ned according to

the event-condition-action paradigm.Events are monitored and their occurrences

cause the rule to be triggered; a condition is a declarative formula that must be

satis�ed in order for the action to be executed, whereas the action speci�es what

must be done when the rule is triggered and its condition is true.

Most of the research and development e�orts on active databases and com-

mercial implementations have focused on active capabilities in the context of

relational database systems. Recently, however, there have been several pro-

posals incorporating active rules into object-oriented database systems. The

paradigm shift from the relational model to the object-oriented one warrants

a re-examination of the functionalities as well as the mechanisms by which react-

ive capabilities are incorporated into the object-oriented data model [2]. There

are several factors not present in relational database systems that complicate

the extension of object-oriented database systems to include active behavior.

Among them, let us mention that in object-oriented data models, in contrast

to a �xed number of prede�ned primitive events of the relational model, every

method/message is a potential event. Moreover, issues related to scope, access-

ibility, and visibility of object states with respect to rules should be investigated.

Other important, open issues concern trigger inheritance and overriding. Because

inheritance is a central notion of the object-oriented data model, the de�nition

of a proper approach for rule inheritance is crucial. However, those issues have

been largely neglected by current implementations and research proposals, or

only simplistic solutions are adopted. Those solutions are inadequate to model

the large variety of rule semantics, that arise in practical applications. The ap-

proach taken by the majority of the systems for rule inheritance is to simply

apply all rules, de�ned in a class, to the entire extent of the class, that is, to

all the instances

1

. No rule overriding is supported by those systems. Only few

systems [11, 13] support rule overriding, though in a completely uncontrolled

way. In our opinion, there are several cases in which rule overriding is useful.

However, we believe that rules should not be overridden in a uncontrolled way,

rather they should only be re�ned in subclasses, that is, they can be overridden

provided that (i) the rede�ned rule is triggered each time the overridden one

would do; (ii) the rede�ned rule does at least what the overridden one would do.

In this paper, we examine the issues related to trigger inheritance in the

context of the Chimera active object-oriented data model [7, 12]. Chimera is a

database language integrating an object-oriented data model, a declarative query

language based on deductive rules, and an active rule language for reactive pro-

cessing, developed as part of the ESPRIT Project Idea P6333

2

. Though carried

on with reference to Chimera, our discussion is highly independent from Chimera

and can be applied to other active object-oriented systems. Moreover we think

that Chimera action language with its declarative style in formulating triggers can

be useful at a speci�cation level to formulate triggers and to reason about them.

In particular, we introduce a semantics for active rules in an object-oriented act-

ive system, taking into account rule inheritance and overriding and pointing out

subtle issues such as method selection in trigger actions for inherited triggers.

We introduce the notion of (semantic) trigger re�nement and we establish some

su�cient static conditions ensuring it.

The remainder of the paper is organized a follows. Section 2 presents the

reference active rule language, extending it with the possibility of trigger over-

riding. Section 3 discusses trigger semantics, while Section 4 is deals with trigger

re�nement. Finally, Section 5 concludes the work.

1

An object is a proper instance of a class if this class is the most specialized class in

the inheritance hierarchy to which the object belongs. An object is an instance of a

class if it is a proper instance of this class or a proper instance of any subclass of this

class.

2

A Chimera is a monster of Greek mythology with a lion's head, a goat's body and a

serpent's tail; each of them represents one of the three components of the language.

2 Reference Active Rule Language

As reference rule language we consider a subset

3

of the Chimera active rule

language [6]. Chimera supports set-oriented active rules [16]: rules react to sets

of changes to the database and may perform sets of changes. This approach is

consistent with the rest of Chimera, which supports a set-oriented, declarative

query and update language. In this respect, Chimera is di�erent from most other

active object-oriented databases where rules are triggered by method activations,

and are used to test pre and post conditions for method applications to individual

objects.

Active rules in Chimera are called triggers. Each trigger is targeted to a class

and characterized by �ve components: a name, a class, a set of events

4

, a condi-

tion and a reaction. Events are denoted by the name of the primitive operation

and the schema elements to which the operation is applied. Primitive operations

are object creations, deletions, modi�cations and object migrations in the in-

heritance hierarchy (ISA). Modi�cations refer to speci�c attributes. In addition,

active rules may monitor operation calls (methods), although rule execution re-

mains set-oriented as method execution itself is set-oriented.

In the following de�nitions we make use of a set of class names CN , of a set

of attribute names AN and of a set of operation names MN .

De�nition1. Let c 2 CN be a class name, a 2 AN be an attribute name and

op 2MN be an operation name. A Chimera event has one of the following forms:

create; delete; generalize(c); specialize(c); modify(a); op. 2

The condition is a formula monitoring the execution of the reaction part. It

is a conjunction of atomic formulas and it is interpreted as a predicate calculus

expression over typed variables. Conditions may contain, in addition to conjunc-

tions of atoms, event formulas and references to old state. Event formulas are

particular formulas supported by the declarative language of Chimera, built by

means of the binary predicates occurred. This predicate is used to inspect the

events that have occurred during a transaction. It has two arguments: an event

name and a variable ranging over the OIDs of the objects a�ected by the event.

This variable is bound to OIDs of instances which are receivers of the event. Ref-

erences to old database states are allowed in active rule conditions by the function

old, that can be applied to atomic formulas, indicating that the respective formula

must be evaluated in the state at transaction start

5

.

Chimera atomic formulas can be of four types, being t

1

; t

2

terms [12] and X

a variable: comparison formulas (e.g. t

1

op t

2

, op 2 f<;>;�;�;=;==;==

d

g);

membership formulas (e.g. t

1

in t

2

or t

1

in c where c is a class name); class

3

In particular, we restrict ourselves to targeted, deferred, event-preserving rules

without net e�ect composition.

4

The set has a disjunction semantics (the trigger becomes active if any of its triggering

events occurs).

5

Since we restrict ourselves to event-preserving rules the old state always refers to the

state at transaction start.

formulas (e.g. c(X), where c is a class or type name); event formulas (e.g.

occurred(e;X), where e is an event according to De�nition 1).

Complex formulas (or simply formulas) are obtained from atomic formulas

and negated atomic formulas by means of conjunctions; moreover, atomic for-

mulas may be evaluated on the state at transaction start. Formally, if F is an

atomic comparison or membership formula

6

, then :F and old(F) are (complex)

formulas; if F

1

and F

2

are formulas, then F

1

; F

2

is a (complex) formula, where

the symbol \;" denotes the and logical connective. Each formula is required to

contain exactly one class formula for each variable, specifying the type of the

variable. All variables are assumed to be implicitly quanti�ed. In addition, for-

mulas are required to be range restricted, to avoid formulas that are satis�ed by

an in�nite set of instances.

The reaction is a sequence of database operations, including update prim-

itives, class operations or transactional commands. Condition and action may

share some atomic variables, in which case the action must be executed for every

binding produced by the condition on the shared variables. Moreover, operations

that constitute the action are executed in strict sequence, because each of them

may have side e�ects.

De�nition2. Let c; c

0

2 CN be class names, a 2 AN be an attribute name

and O be an object-denoting variable. Moreover, let op 2 MN be an opera-

tion name and t; t

1

; : : : ; t

n

be terms. A Chimera action has one of the follow-

ing forms: create(c; t; O), delete(c;O), generalize(c; c

0

; O), specialize(c; c

0

; O; t),

modify(c:a;O; t), O:op(t

1

; : : : ; t

n

), rollback. 2

We are now able to give the de�nition of trigger.

De�nition3. A Chimera trigger is a 5-tuple

(Name; Class; Events; Condition; Action)

where:

Name is the trigger identi�er;

Class is the class to which the trigger is targeted;

Events is the set of primitive operations monitored by the trigger, each event

in the set is as speci�ed by De�nition 1;

Condition is a Chimera formula;

Action is a sequence of actions (cfr. De�nition 2);

such that the following conditions are satis�ed:

1. each variable occurring as input parameter of an operation in the Action

must appear in some positive literals of the Condition (safety condition);

2. for each event formula occurred(e;X) in the Condition, e must appear in

Events. 2

6

Class and event formulas cannot be negated nor tested on past database states.

We remark that in Chimera rule events are not parametric and there is no

parameter passing between the event and other rule components. Thus, events

only cause rules to be triggered, but rules are then considered and executed

with no reference to the triggering events. However, the triggering events can be

explicitly bound to variables in rule conditions by means of event formulas.

Example 1. The following is a trigger, de�ned on a class employee, preventing

an employee from being assigned a salary higher than the salary of his manager.

If such a situation occurs, the employee salary is automatically overwritten by

assigning it a salary equal to the manager salary.

Events: create, modify(salary)

Condition: employee(X), X.salary > X.mgr.salary

Action: modify(employee.salary, X, X.mgr.salary)

Another example of Chimera trigger is the following, always on the class employee,

that has the e�ect of specializing each new employee earning more than 40000

by inserting the employee in the class specialEmpl.

Events: create

Condition: employee(X), occurred(create,X), X.salary > 40000

Action: specialize(employee, specialEmpl, X) 4

In order to provide a consistent behavior when multiple triggers are activated

by the same events, it is important that a well-de�ned policy is established. In

Chimera, triggers are ordered according to their priorities. A partial order <

r

is considered on the set of triggers to express trigger priorities. The meaning

of the order is as follows: given two triggers r

1

and r

2

, r

1

<

r

r

2

means that

when r

1

and r

2

are both triggered then r

1

is considered and executed before

r

2

. In our model the approach is to de�ne the priority order on triggers by

combining user-de�ned priorities among triggers in the same class c (<

c

r

), with

the order induced by inheritance relationships among classes. Thus, in Chimera

local priorities, speci�ed by the user for triggers in the same class, are combined

by the system with the order induced by ISA relationships. To privilege the more

speci�c behavior, the reverse ISA ordering is considered as a default for relating

triggers de�ned on di�erent classes, as stated by the following de�nition.

De�nition4. A trigger r

1

has priority over a trigger r

2

(denoted as r

1

<

r

r

2

)

if either:

{ 9 c 2 CN such that r

1

<

c

r

r

2

, or

{ r

2

:Class �

ISA

r

1

:Class. 2

If for each class c the local priority ordering <

c

r

is an order, the priority

ordering <

r

de�ned in De�nition 4 is a (partial) order. Note that the acyclicity of

the local trigger ordering is checked upon trigger de�nition. The default priority

ordering of triggers obtained as in De�nition 4 can be modi�ed by the user in

the subclass de�nition.

2.1 Trigger Overriding

The in
uence of inheritance on triggers has not been deeply investigated in exist-

ing object-oriented database systems. Under some proposals [2, 10, 14], triggers

are always inherited and can never be overridden nor re�ned. Such an approach,

that we refer to as full trigger inheritance, simply means that event types are

propagated across the class inheritance hierarchy. Consider the event of a rule

r, say op(c), characterizing the operation op on a class c. If c has a subclass c

0

,

when an operation op occurs on a proper instance of c

0

rule r is triggered, as

well as any other rule having as event op(c

0

). Thus, inheritance of triggers is

accomplished by applying a trigger to all the instances of the class in which the

trigger is de�ned, rather than only to proper instances of this class.

Full trigger inheritance is, however, not appropriate for all the situations. As

we will see in what follows, there are situations in which trigger overriding is

needed. Moreover, the meaning of the ISA hierarchy is just to de�ne a class in

terms of another class re�ning its attributes, methods and triggers. This way of

reasoning is one of the aspects which has made of the object-oriented approach

a powerful paradigm. Thus, in our opinion, the possibility of rede�ning triggers

in subclasses instead of simply inheriting them is needed in an active object-

oriented system.

In a system supporting trigger inheritance, but not trigger overriding, as in

the full inheritance case, the only way to re�ne the behavior of a trigger in a

subclass is to de�ne in the subclass a trigger on the same events which performs

the re�ned action. However, for this addition to be e�ective, the trigger in the

superclass must have priority over the trigger in the subclass. Thus, upon occur-

rence of the common triggering event on an object belonging to the subclass, both

triggers are activated, but, since the trigger de�ned in the superclass is executed

�rst, the action in the trigger de�ned in the subclass \prevails". However, it is

not always possible to re�ne the behavior of a trigger in a subclass by adding a

new trigger, even by specifying that the subclass trigger has lower priority than

(thus, is executed after) the superclass one. Consider the following example.

Example 2. Consider a class personwith a subclass employee. Suppose, moreover,

that a third class department is de�ned, with an attribute nbr of emp which

maintains the number of employees of the department. Suppose that a trigger

r

1

is de�ned on class person such that, whenever the age of a person is greater

than 100, an object of a class p log whose state refers to the deleted object is

created (the class p log is used for monitoring purposes) and then the object is

deleted. Suppose that a corresponding trigger r

2

is de�ned on class employee,

such that, whenever the age of an employee is greater than 100, an object of a

class e log is created, the value for attribute nbr of emp of the department in

which the employee works is decremented and �nally the employee is deleted.

The two triggers can be expressed in Chimera as follows:

{ trigger r

1

with r

1

:Class = person

Events: modify(age)

Condition: person(X), occurred(modify(age),X), X.age > 100

Action: create(p log, (who:X, age:X.age), O);

delete(person,X)

{ trigger r

2

with r

2

:Class = employee

Events: modify(age)

Condition: employee(X), occurred(modify(age),X), X.age > 100,

department(Y), X.department = Y

Action: create(e log,(who:X,age:X.age,salary:X.salary),O);

modify(department.nbr of emp,Y, Y.nbr of emp-1);

delete(employee,X)

Whenever the age of an employee is set to 101, both r

1

and r

2

are triggered

and, if r

1

<

r

r

2

(as under the default ordering introduced in the previous subsec-

tion), r

1

is executed �rst. The execution of r

1

deletes the involved object, and

then the execution of r

2

does not have any e�ect. Indeed, when r

2

is executed the

object on which the age modi�cation had occurred has already been deleted, thus

it is not possible to access it. As a consequence, that object does not satis�es

trigger r

2

condition. Intuitively trigger r

2

is just the re�nement of r

1

because

it has a behavior similar to that of r

1

but re�ned for subclass employee. In a

system supporting inheritance and trigger overriding, trigger r

2

would be the

re�nement of trigger r

1

, thus for the objects proper instances of employee only

trigger r

2

would be executed giving a correct result. 4

We thus extend Chimera rule language with the possibility of overriding

triggers in subclasses. Trigger overriding is accomplished by de�ning a new

trigger in the subclass with the same name as the inherited trigger. When a

trigger r

1

is overridden by a trigger r

2

such that r

1

:Name = r

2

:Name and

r

2

:Class �

ISA

r

1

:Class, the occurrence of an event e 2 r

1

:Event on objects

belonging to r

2

:Class does not trigger rule r

1

.

3 Semantics

In this section we present a formal semantics for trigger re�nement. The intuitive

idea behind this semantics is the following. When one of the events of an active

rule occurs, the rule is said to be triggered; several rules may be triggered at

the same time. Trigger processing consists of an iterative execution of rule pro-

cessing steps, each of which in turn consists of four phases, called rule activation,

selection, consideration and execution:

{ rule activation consists of determining the triggered rules, that is, the ones

for which any of the triggering events has occurred;

{ rule selection consists of non deterministically choosing one of the triggered

rules at highest priority;

{ rule consideration consists of evaluating the condition, which is a declarative

formula; at this point the selected rule is detriggered;

{ rule execution occurs if the condition is true, that is, produces some bindings;

the execution is performed by sequentially executing the operations in the

reaction part of the rule.

Trigger execution consists of updates, which may in turn trigger other rules.

The rule processing activity is iterated until a state is reached where no rule is

triggered. Clearly, the possibility of in�nite rule processing due to chains of active

rules that trigger each other exists in Chimera; techniques and tools for detecting

the possible sources of non-termination in a rule set have been developed [6].

Remember that we consider a language supporting deferred, event-preserving

rules without net e�ect composition. A transaction in our language is a sequence

of data manipulation commands each of those may trigger some rules. Consid-

ering deferred rules means that for each command the corresponding event is

added to the previous set of collected events, but no rule is executed. Only at

the end of the transaction, corresponding to a commit command, rule processing

is activated, that is, the set of rules, triggered by the set of events occurred dur-

ing the transaction, is computed and on this set rule selection and the following

phases are iterated until no rule is triggered.

3.1 Preliminaries

Before formalizing rule semantics, we need to introduce the preliminary de�ni-

tions of database state, set of bindings and reactive process. In the following we

consider: a set V of values; a set OID of all possible OIDs; a set C of classes; a

set V ar of variables. Moreover, the set Rule denotes the set of rules de�ned for a

database

7

. Finally, given a set S, 2

S

denotes the powerset of S whereas, given a

n-tuple hel

1

; : : : ; el

n

i, �

i

, i 2 [1; n], denotes the projection of the i-th component

el

i

of the tuple.

Database state. We consider a simple and rather standard [1] de�nition of

database state. Our model, like most object-oriented data models, distinguishes

between the schema level, which is time-invariant, and the instance level, which is

time-varying. Informally, the schema level consists of the class de�nitions, that is,

for each class the attributes and the type of the attributes domains, the class hier-

archy (represented through the ISA ordering �

ISA

), a set of method signatures

and the set Rule.

De�nition5. A database state (database for short) is a pair S = (�; �) where:

{ � : C ! 2

OID

is the function which associates with each class the set of

OIDs of its proper instances

8

;

7

Notice that this set of rules is part of the database schema.

8

We remark that �(c) denotes the set of OIDs of those objects for which c is the most

speci�c class in the inheritance hierarchy. In what follows �

�

(c) denotes the whole

extent of a class c, that is, the set of all its instances.

{ for each i 2 OID, object identi�er, �(i) returns the state of the object, that

is, the value of its attributes; if the attributes names are A

1

; : : : ; A

n

and

v

1

; : : : ; v

n

the corresponding values, �(i) = [A

1

: v

1

; : : : ; A

n

: v

n

]

9

. 2

Set of bindings. As we said before, in our language the bindings obtained by

the evaluation of the condition are passed to the action part of the rule. The set

of bindings is the mean by which such variable passing is achieved. Condition and

action parts share some variables, the action must be executed for every binding

generated by the condition on the shared variables. We model a set of bindings

as a set of ground substitutions.

De�nition6. A substitution # is a partial function from V ar to V; # : V ar! V.

A set of bindings B is a set of substitutions f#

1

; : : : ; #

m

g. 2

Given X;Y; Z variables and a set of values V including integers, the following

is an example of substitution: #

1

= fX=5; Y=7; Z=8g.

Intuitively, the set of bindings B = f#

1

; : : : ; #

m

g satisfying a condition C, is

the set of substitutions such that the application of each #

i

(i 2 [1;m]) to C,

denoted as C#

i

, is a ground formula which is true according to �rst order logic.

In what follows, given a substitution # and a set of variables V , let #

jV

denote the restriction of substitution # to variables in V . Moreover, given a set

of substitutions S, let S

jV

= f#

jV

j # 2 Sg.

Reactive process. First we have to establish, given a set of events, which is

the set of rules triggered by the occurrence of events in the set.

De�nition7. Let e be an event as in De�nition 1, c be the class name this event

is related to, and O be the set of OIDs of the objects a�ected by the event, then

the triple he; c; Oi is called event instance. 2

For example, the event corresponding to the action create(c; t; O) is create

and a corresponding event instance is hcreate; c; Oi, where O denotes the set

of the OIDs of the created objects. For the sake of simplicity, we will often use

the word event to denote event instances, when the meaning is clear from the

context.

Since our language supports trigger overriding, given an event instance, es-

tablishing which rules have to be triggered for each OID a�ected by the event is

not trivial. Trigger overriding is accomplished by de�ning a new rule in the sub-

class with the same name as the inherited trigger. Thus, the set of rules triggered

by an event is computed taking into account that for each object the most speci�c

rule is triggered, as formalized by the following de�nition.

De�nition8. A rule r = (N; c;Ev;C;A) is triggered by an event instance e

= he; c

e

; Oi if:

9

To denote the values of single attributes we use the following notation: �(i):A

j

= v

j

,

j 2 [1; n].

1. e 2 Ev, and

2. 9i 2 O such that c = min

�

ISA

f�c j i 2 �

�

(�c) and 9�r = (N; �c;

�

Ev;

�

C;

�

A) 2

Ruleg. 2

De�nition9. Let e = he; c; Oi be an event instance, E be a set of event in-

stances, then react(e) = frjr 2 Rule and r is triggered by eg and react(E) =

S

e2E

react(e). 2

As we said before, given a set of rules, in the rule selection phase we have to

choose one of the triggered rules at highest priority. Since there can be more than

one rule at highest priority, the choice is non deterministic. Function get max

performs a non deterministic choice among the rules at highest priority in a set

of rules.

De�nition10. Let R be a set of rules, function get max : 2

Rule

! Rule is such

that, given R 2 2

Rule

, if get max(R) = r then 6 9 r

0

2 R : r

0

<

r

r. 2

3.2 Trigger Semantics

First of all we introduce semantic functions. Note that in the following we refer to

semantic domains as the set of syntactically well-formed objects, that is, objects

which meet the static constraints and for which the semantics can be de�ned.

De�nition11. Given a set Bind of possible sets of bindings, a set State of

possible database states, a set Event of possible sets of event instances, a set

Cond of possible condition parts of rules, a set Update of possible action parts

of rules

10

, a set Rule of possible rules of the language, as semantic domains, the

semantics of the trigger language is a family of functions de�ned as follows:

C : Cond! ((State � Event)! Bind)

U : Update! ((Bind� State � Event)! (Bind � State �Event))

R : Rule! ((State �Event) ! (State � Event))

P : 2

Rule

! (State ! State). 2

Function C models the condition evaluation; function U models the action

execution, whereas functions P and R model the reactive processing semantics.

As we have said, we consider deferred rules. From a semantic point of view

this means that during the transaction execution events (event instances) are

collected; when the transaction ends two situations can arise:

{ the transaction ends with a rollback command, in this case the resulting state

is the state at the beginning of the transaction;

{ the transaction ends with a commit command, in this case the reactive pro-

cess is activated and all rules triggered by the events occurred during the

transaction must be executed.

10

Update corresponds to the set of well-formed update sequences of the language.

Function P models the semantics of the reactive process associated with a

transaction, by establishing a transformation from the state at the end of the

transaction to the state at the end of the reactive process. Function R models the

evaluation of a rule r which consists of evaluating the condition of r, getting a set

of bindings as result, and executing the action of r on this set of bindings. The

result of the evaluation of a rule is a new database state and a new set of events.

No set of bindings is given as result because bindings in Chimera are local to

rules.

In what follows we specify the semantic functions R and P. Due to space

limitations, we do not present here the formal de�nition of functions C and U

but we only give an idea. We refer the interested reader to [5] for a complete

de�nition of C and U .

Let C be a rule condition (a formula), S be a database state and E be a set

of event instances, then:

C [[C]]SE = B

where each substitution # 2 B is such that C# evaluates to true in state S and

with respect to events in E according to �rst order logic. Due to space limitations

we do not analyze in depth the evaluations of event formulas (against the set of

event instances E) nor the use of the old function in conditions. An analysis can

be found in [5].

Function U performs the semantic evaluation of a sequence of updates, that

is, an action part, u

1

;...;u

n

of a rule. The semantics of update concatenation is

quite intuitive: at each step the �rst update of the sequence is evaluated, such

evaluation gives as result a new set of binding, a new state and a new set of

event instances with respect to which the remainder of the sequence is evaluated.

Formally:

U [[u

1

; : : : ;u

n

]]BSE = U [[u

2

; : : : ;u

n

]] (U [[u

1

]]BSE)

For what concerns the evaluation of a single update, function U is speci�ed

for each di�erent type of atomic update, that is, create, delete, and so on, and

for method calls. Here we only specify, as an example, the semantics of the delete

operation. Given a set of binding B and a variable

�

O, let

�

O

B

be the interpretation

of

�

O in B, that is, the set of OIDs to which

�

O is bounded in B, then:

U [[delete(�c,

�

O)]]BSE = hB; S

0

; E [fhdelete; �c;

�

O

B

igi

where S

0

= h�

0

; �

0

i, and:

�

0

(c) =

�

�(c) n

�

O

B

if c = �c

�(c) if c 6= �c

�

0

(i) =

�

�(i) if i =2

�

O

B

? if i 2

�

O

B

One of the problems arising in de�ning function U is method selection with

respect to inherited triggers. Consider a trigger r de�ned in a class c and invok-

ing in its action an operation op on the object a�ected by the event. Consider

moreover a subclass c

0

of c and suppose that operation op is rede�ned in c

0

. Rule

r is triggered when the event monitored by r occurs both on objects proper in-

stances of c and on objects proper instances of c

0

. Of course, for objects proper

instances of c the method implementation in class c is selected, while for ob-

jects proper instances of c

0

two di�erent options are possible: (i) choose the most

specialized implementation of op (that is, the implementation in class c

0

); (ii)

choose the implementation according to the class where the rule is de�ned (that

is, the implementation in class c). We refer to the �rst and second approach as

object-speci�c method selection and rule-speci�c method selection, respectively.

Our choice is the �rst one, because it is consistent with the object-oriented ap-

proach, in that it respects the principle of exhibiting the most speci�c behavior.

The rule speci�c method selection is not truly consistent with the object-oriented

approach because it refers to the static nature of the objects, that is, the class in

which the trigger is de�ned and not to their dynamic nature, that is, the class

the object is proper instance of. Even though the rule-speci�c method selection is

not coherent with the object-oriented approach, it is used in some active object-

oriented database systems, like Ode [11].

By supporting trigger overriding and object-speci�c method selection, our

execution model is purely object-oriented. For each object a�ected by an event

which triggers a rule r, the most speci�c implementation of r de�ned for that ob-

ject is triggered and, during trigger execution if a method is invoked in the trigger

action, for each considered object the most speci�c method implementation for

that object is chosen.

We now formally de�ne the semantic functions R and P.

De�nition12. Let r = (N; c;Ev;C;A) be a rule, let E be a set of event in-

stances, let S be a database state, and, �nally, let C [[C]]SE = B, then:

R [[r]]SE = hS

0

; E

0

i

where S

0

= �

2

(U [[A]]BSE) and E

0

= �

3

(U [[A]]BSE). 2

The semantics of the reactive process is given by the following de�nition.

De�nition13. Let R be a set of rules, E be a set of event instances, and S be

a database state, P [[R]]SE is de�ned as follows:

P [[R]]SE =

8

<

:

SE if R = ;

P [[R n frg [react(E

0

)]]S

0

E [E

0

if R 6= ;; r = get max(R)

and R [[r]]SE = hS

0

; E

0

i:

2

Note that the recursive de�nition of semantic function P corresponds to the

idea that the reactive process is iterated till a quiescent state is reached. When

there are no more triggered rules, that is R = ;, the reactive process stops and

the current state is returned. The reactive process semantics can then be seen as

the least �xpoint of function P.

To model reactive process activation, at transaction commit, the following

semantics is speci�ed for the commit command:

U [[commit]]BSE = h;;P [[react(E)]]SE; ;i:

Note that since the commit command is the last command of a transaction, the

output values of B and E are set to ; because they are not meaningful.

4 Trigger Re�nement

As we have discussed in Subsection 2.1, in some situations a class must be able to

rede�ne a trigger of one of its superclasses, instead of simply inheriting it. Rule

overriding is supported in some systems such as TriGS [13] and Ode [11], but

no restrictions are imposed on rule overriding, thus a rule may override another

rule on completely di�erent events.

In our model, as in those systems, trigger overriding is directly supported.

However, we believe that trigger rede�nition must be carefully handled and is,

therefore, subject to a number of restrictions. In particular, in order to preserve

trigger semantics, it must be ensured that the trigger in the subclass is executed

at least each time the trigger in the superclass would be executed, and that

what would be executed by the trigger in the superclass is also executed by the

re�ned trigger. In this case we say that the trigger in the subclass is a behavioral

re�nement of the trigger in the superclass.

More speci�cally, a trigger r

2

is a behavioral re�nement of trigger r

1

if the

portion of state manipulated by r

2

includes the portion of state manipulated by

r

1

and if the portion of state modi�ed by both is modi�ed in the same way

11

. To

formally de�ne this notion, we must �rst model the changes made by a trigger

execution

12

. Given a trigger r, let �(r) be the set of classes manipulated by r.

Given a trigger r and a class c, let �

r

(c) be the set of objects deleted from class c

and �

r

(c) the set of objects inserted in class c as a consequence of the execution

of trigger r; moreover, given an OID i and an attribute name A, let �

r

(i):A be

de�ned if and only if the execution of trigger r has modi�ed the value of attribute

A of the object identi�ed by i, and, if de�ned, let it contain the new value of the

attribute.

De�nition14. Trigger r

2

is a behavioral re�nement of trigger r

1

, with r

2

:Name

= r

1

:Name and r

2

:Class �

ISA

r

1

:Class, if �(r

1

) � �(r

2

) and if, for each

database state, the execution of r

1

and r

2

restricted to the objects in r

2

:Class

satis�es the following conditions:

1. 8�c 2 �(r

1

): �

r

1

(�c) � �

r

2

(�c) and �

r

1

(�c) � �

r

2

(�c);

2. 8�c 2 �(r

1

); 8A attribute of �c, 8 oid i instance of �c: if �

r

1

(i):A is de�ned, then

�

r

2

(i):A is de�ned and �

r

1

(i):A = �

r

2

(i):A. 2

11

Note that a trigger executed on an object (set of objects) instance(s) of a class may

manipulate objects of other classes.

12

In [5] we show how these changes can be expressed in terms of trigger semantics.

Unfortunately, trigger re�nement is undecidable. We have, however, devised

some su�cient static conditions ensuring that a trigger r

2

is a re�nement of a

trigger r

1

. These conditions can be checked at trigger de�nition time, so that the

overriding of a trigger in a subclass can be disallowed if the overriding trigger

is not a re�nement of the overridden one. In what follows we illustrate those

conditions, by �rst examining each trigger component separately.

4.1 Events

The re�ned trigger must be activated each time the inherited trigger would be

activated. Thus, we impose the condition that for each event in the event com-

ponent of the inherited trigger, a corresponding event is present in the event

component of the re�ned trigger.

De�nition15. An event set Ev is a re�nement of an event set Ev

0

i� Ev

0

� Ev.

2

4.2 Condition

The basic idea is that the action of the re�ned trigger must be executed each time

the inherited trigger action would be executed, and for each binding for which

the inherited trigger action would be executed. Thus, the condition in the re�ned

trigger must be less selective than the condition in the inherited one (that is,

each binding returned by the condition of the inherited trigger must be returned

by the condition in the re�ned one). In what follows, we formalize this notion.

The bindings produced by the evaluation of the condition are represented as a

set of substitutions, as seen in Section 3. Moreover, we introduce the following

notations:

{ given a trigger r, letBV (r) denote the set of variables appearing in r:Condition

and in r:Action (that is, the variables used for passing bindings);

{ given a formula F , let F

�E

denote the formula obtained by eliminating the

event formulas appearing in F ;

{ given a formula F and two class identi�ers c

1

and c

2

, let F [c

1

=c

2

] denote

the formula obtained from F by substituting each class formula c

1

(X) with

a class formula c

2

(X).

De�nition16. A condition r

2

:Condition is a re�nement of a condition

r

1

:Condition (denoted as r

2

:Condition �

c

r

1

:Condition) i� the following con-

ditions hold

13

:

1. BV (r

1

) � BV (r

2

), and

2. for each event formula occurred(e;X) in r

1

:Condition a corresponding event

formula occurred(e;X) is in r

2

:Condition, and

13

Due to space limitations, we do not consider here the possibility of renaming variables,

which is considered in [5].

3. 8S database state,

C [[r

1

:Condition

�E

[r

1

:Class=r

2

:Class]]]S; � (C [[r

2

:Condition

�E

]]S;)

jBV (r

1

)

2

Condition 3 of De�nition 16 above is the subsumption property, that is

r

2

:Condition

�E

subsumes r

1

:Condition

�E

, restricted to be evaluated on the

same class and to return the same variables. Query subsumption (also called

query containment) has been widely investigated, and algorithms for deciding

subsumption among object-oriented queries have been proposed [9]. Subsump-

tion can be easily extended to handle also predicates on past database states,

as long as the referred past state is the same state in both formulas

14

. Indeed,

old(F) subsumes old(G) if and only if F subsumes G.

Example 3. Given trigger r

2

on class employee and trigger r

1

on class person

such that

{ r

2

:Condition = employee(X),occurred(modify(age),X),X.age > 65,

department(Y),X.department = Y, and

{ r

1

:Condition = person(X),occurred(modify(age),X),X.age > 100

r

2

:Condition is a re�nement of r

1

:Condition, indeed:

1. BV (r

1

) = f X g � BV (r

2

) = f X, Y g;

2. occurred(modify(age),X) is in r

1

:Condition, and

occurred(modify(age),X) is in r

2

:Condition;

3. r

1

:Condition

�E

[r

1

:Class=r

2

:Class] = employee(X), X.age > 100

subsumes r

2

:Condition

�E

= employee(X), X.age > 65, department(Y),

X.department = Y restricted to variable X. 4

4.3 Action

The basic idea is to ensure behavior consistency, that is, the action of the re�ned

trigger must do at least all what the action of the inherited trigger would be. This

means that, for each action in the inherited trigger there must be a corresponding

action in the re�ned one. However, since the action component of a rule can be a

sequence, the corresponding action could be discarded by some complementary

action executed after it in the sequence. Consider as an example the case of an

inherited trigger creating an object in its action, overridden by a trigger whose

action �rstly creates a corresponding object and then deletes it. We consider,

therefore, the net e�ect of the actions in the sequence and we state that for

each action in the inherited trigger there must be a corresponding action in

the net e�ect of the re�ned one. Note that the notion of net e�ect employed

here is purely syntactical and relies only on complementary database operations.

Net e�ect computation consists of composing the e�ects of those actions whose

e�ect was compensated by a subsequent action on the same object. Classical

compensations [10, 16] are performed as follows:

14

Note that this is the case here, since we consider only event preserving rules, for

which the referred past state is the state at transaction start.

{ a sequence of create and delete operations on the same object, possibly with

an arbitrary number of intermediate modify operations on that object, has a

null net e�ect;

{ a sequence of create and several modify operations on the same object has

the net e�ect of a single create operation;

{ a sequence of several modify and a delete operations on the same object has

the net e�ect of a single delete operation on that object;

{ a sequence of several modify operations on the same object has the net e�ect

of a single modify operation on the old object which modi�es it in the newest.

In addition to those classical compensations, we consider also compensations

involving object migrations along the inheritance hierarchy. For the sake of brev-

ity, we omit all rules for computing the net e�ect of a sequence of actions. Given

a sequence of actions A, let Net(A) denote the net e�ect of the sequence. The

net e�ect of the sequence is performed at a syntactic level, by considering com-

pensating actions on the same object-denoting term, contained in the sequence.

Moreover, let �

b

denote the re�nement on update operations (e.g. a create op-

eration on a class c

0

is a re�nement of a create operation on a class c, if c

0

is a

subclass of c)

15

.

De�nition17. A reaction r

2

:Action is a re�nement of a reaction r

1

:Action

(denoted as r

2

:Action �

a

r

1

:Action) if the following conditions hold:

1. Net(r

1

:Action) = a

1

; : : : ; a

n

, Net(r

2

:Action) = a

0

1

; : : : ; a

0

m

and m � n;

2. for each a

i

, i 2 [1; n], inNet(r

1

:Action) a

0

j

, j 2 [1;m], exists inNet(r

2

:Action)

such that a

0

j

�

b

a

i

, that is, a

0

j

is a re�nement of a

i

; let function � : f1; : : : ; ng !

f1; : : : ;mg, such that �(i) = j, model this correspondence;

3. if a

i

precedes a

k

in Net(r

1

:Action), a

0

�(i)

precedes a

0

�(k)

in Net(r

2

:Action).

2

We remark that, since both the determination of basic action re�nement and

the computation of net e�ect only rely on syntactical properties of the trigger

action, action re�nement is decidable.

Example 4. Suppose e log �

ISA

p log and employee �

ISA

person, then

{ r

2

:Action= create(e log, (who:X, age:X.age, salary:X.salary), O)

is a re�nement of

r

1

:Action = create(p log, (who:X, age:X.age), O),

{ r

2

:Action = modify(department.nbr of emp,Y, Y.nbr of emp-1);

delete(employee,X)

is a re�nement of

r

1

:Action = delete(person,X). 4

Note, moreover, that a notion of behavior re�nement is imposed on Chimera

operation overriding, known as behavioral subtyping [4]. Thus, by ensuring that

whenever an operation op is invoked in the action of the inherited trigger, then

15

Due to space limitations, we omit the de�nition of �

b

, which can be found in [5].

operation op is invoked in the action of the re�ned one, we can guarantee that

the action of the rede�ned trigger re�nes the action of the inherited one, because

of behavioral subtyping.

4.4 Restrictions on Trigger Overriding

The following rule summarizes the restrictions on trigger rede�nition.

Rule 1 A trigger r

2

= (N; c;Ev;C;A) can be re�ned in a trigger

r

1

= (N; c

0

; Ev

0

; C

0

; A

0

), with c

0

�

ISA

c if the following conditions are satis�ed:

1. Ev � Ev

0

, that is, Ev

0

is a re�nement of Ev according to De�nition 15;

2. C

0

�

c

C, that is, C

0

is a re�nement of C according to De�nition 16;

3. A

0

�

a

A, that is, A

0

is a re�nement of A according to De�nition 17. �

The following result holds.

Proposition 1 Given two triggers r

1

and r

2

:

{ we can decide whether they meet Rule 1;

{ if r

1

and r

2

meet Rule 1 then r

2

is a behavioral re�nement of r

1

according

to De�nition 14.

5 Conclusions and Future Work

Active object-oriented databases are being extensively researched. Though sev-

eral research projects are being carried on and some prototype systems have been

developed, a relevant issue in integrating triggers with object-oriented modeling

capabilities has been so far neglected, namely trigger inheritance. In this pa-

per, we have analyzed trigger inheritance and overriding in the context of the

Chimera active object language, clarifying how trigger priority is in
uenced by

inheritance, which di�erent method selection policies can be exploited for method

invocations in trigger actions, and under which restrictions triggers can be over-

ridden in subclasses. In the current prototype implementation of Chimera, trigger

overriding is not supported. In [5], we discuss how the existing architecture can

be modi�ed for supporting it.

Our work can be extended along a number of di�erent dimensions. First of

all, our conditions for trigger overriding can be extended to consuming rules, for

which the old state referred by predicates on past database states depends on

the last rule activation, and to triggers with composite events [15]. Moreover,

the in
uence of multiple inheritance and multiple class direct membership [3] on

triggers should be considered. For multiple inheritance, the main issue is how

to order triggers (on the same events) inherited from di�erent superclasses; this

could be achieved by imposing a total order on classes, or by allowing a class to

modify the relative priorities of triggers in its superclasses.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.

2. C. Beeri and T. Milo. A Model for Active Object Oriented Database. In G. M.

Lohman, A. Sernadas, and R. Camps, editors, Proc. Seventeenth Int'l Conf. on

Very Large Data Bases, pages 337{349, 1991.

3. E. Bertino and G. Guerrini. Objects with Multiple Most Speci�c Classes. In

W. Oltho�, editor, Proc. Ninth European Conference on Object-Oriented Program-

ming, LNCS 952, pages 102{126, 1995.

4. E. Bertino, G. Guerrini, and I. Merlo. Reasoning about Set-Oriented Methods in

Object Databases. Submitted for publication, 1996.

5. E. Bertino, G. Guerrini, and I. Merlo. Trigger Inheritance and Overriding in an

Active Object Database System. Technical Report DISI-TR-97-4, Universit�a di

Genova, 1997. Extended version of this paper.

6. S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Active Rule Management in

Chimera. In S. Ceri and J. Widom, editors, Active Database Systems. Morgan-

Kaufmann, 1996.

7. S. Ceri and R. Manthey. Chimera: A Model and Language for active DOOD Sys-

tems. In J. Eder and L. Kalinichenko, editors, Extending Information System Tech-

nology, Proc. Second International East/West Database Workshop, pages 9{21,

1994.

8. S. Ceri and J. Widom. Active Database Systems - Triggers and Rules for Advanced

Database Processing. Morgan-Kaufmann, 1996.

9. E. Chan. Containment and Minimization of Positive Conjunctive Queries in

OODBs. In Proc. of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, pages 202{211, 1992.

10. C. Collet, T. Coupaye, and T. Svensen. Naos: E�cient and Modular Reactive

Capabilities in an Object-Oriented Database System. In Proc. Twentieth Int'l

Conf. on Very Large Data Bases, pages 132{143, 1994.

11. N. Gehani and H. V. Jagadish. Active Database Facilities in Ode. In S. Ceri and

J. Widom, editors, Active Database Systems. Morgan-Kaufmann, 1996.

12. G. Guerrini, E. Bertino, and R. Bal. A Formal De�nition of the Chimera Object-

Oriented Data Model. Journal of Intelligent Information Systems. To Appear.

13. G. Kappel, S. Rausch-Schott, and W. Retschitzegger. Beyond Coupling Modes:

Implementing Active Concepts on Top of a Commercial ooDBMS. In E. Bertino

and S. Urban, editors, Proc. Int'l Symp. on Object-Oriented Methodologies and

Systems, LNCS 858, 1994.

14. C. Medeiros and P. Pfe�er. Object Integrity Using Rules. In P. America, editor,

Proc. Fifth European Conference on Object-Oriented Programming, LNCS 512,

pages 219{230, 1991.

15. R. Meo, G. Psaila, and S. Ceri. Composite Events in Chimera. In P. Apers, editor,

Proc. Fifth Int'l Conf. on Extending Database Technology, LNCS 1057, pages 50{

76, 1996.

16. J. Widom and S. J. Finkelstein. Set-Oriented Production Rule in Relational Data-

base Systems. In H. Garcia-Molina and H.V. Jagadish, editors, Proc. of the ACM

SIGMOD Int'l Conf. on Management of Data, pages 259{270, 1990.

