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Active database systems [0] provide active rules that execute actions in re-

sponse to speci�c events. An active rule is a syntactical construct to de�ne the

reaction of the system and is usually speci�ed by means of the

(ECA) paradigm: events are monitored and their occurrence activates

(triggers) the rule, a condition is a declarative formula that must be satis�ed

in order to execute the action; an action is a sequence of database operations

(possibly causing state changes). The introduction of active rules in a DBMS

This paper describes the implementation of active rules in the Chimera object-

oriented database system. The Chimera active rule language is very rich, since

it provides alternative semantics for active rules and combines several innovative

features. We show how a run-time support for that active rule language is designed

and implemented through the necessary data structures, functional components and

algorithms. The paper also compares Chimera active rule implementation with other

active database system implementations.
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set-oriented

is important mainly for integrity constraint enforcement, for view materializa-

tion, for auditing and security issues and for di�erent kinds of knowledge base

processing. Thus, active databases are di�erent from traditional databases

(passive ones) in which the only operations performed (queries or updates)

are those explicitly requested from the applications or the users. This view

leads to see the active features as an orthogonal dimension in database design

and implementation. Indeed, research on active databases has begun on the

relational model, but active rules may be added to a database independently

from the underlying data model. Several systems supporting active rules in an

object-oriented data model have indeed been proposed [0,0,0,0,0,0] and some

prototypes have been developed. Unfortunately, to the best of our knowledge,

there is no detailed description about the design and implementation of active

rules in object-oriented databases.

The aim of this paper is to describe the design and implementation of the

active rule language of Chimera [0,0] through data structures, functional com-

ponents and basic algorithms. Since Chimera relies on an object-oriented data

model, this paper provides a new insight on the design and implementation

of active object-oriented database systems. Chimera integrates an object-

oriented data model, a declarative query language based on deductive rules

and an active rule language for reactive processing [0]. The reactive compo-

nent constitutes the most innovative and challenging feature of Chimera. This

is the reason to consider only the design and implementation of this part.

Chimera supports the usual active rules computation [0]: they

react to sets of changes to the database and may perform sets of changes. In

most active object-oriented databases, active rules are associated with objects

through methods. Rules are triggered by method activations and are used as

devices for testing pre and post-conditions for methods applications to indi-

vidual object instances. The Chimera approach is substantially di�erent: it

uses set-oriented active rules, activated as the e�ect of several, logically in-

distinguishable events a�ecting multiple objects. This approach is consistent

with the rest of Chimera which supports a set-oriented declarative query and

update language. Moreover, active rules in Chimera have several innovative

features; indeed, they support: optional composition of event e�ects, when the

same object is the target of multiple operations; di�erent models for process-

ing events; di�erent activation times; mechanisms for accessing intermediate

states of a�ected objects during transaction execution. The above features are

orthogonal to each other and are combined for the �rst time in the Chimera

language allowing di�erent semantics to be speci�ed for di�erent active rules.

In this paper we describe how Chimera active rules have been implemented in

the Chimera prototype developed at Politecnico di Milano, on top of the AL-

GRES extended relational database environment [0]. The prototype is focused

on the integration of object-orientation and active behavior, thus it deals with

compilation and implementation of triggers and the development of a run-
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2 Chimera Active Rule Language

A block is an execution unit, that can be either a transaction unit in usual

processing, or an active rule in reactive processing.

time component to provide the support for trigger execution. In this paper

we describe the structures to be maintained and the main operations to be

performed in order to support all the features of Chimera active rule language,

thus we report the methods and the techniques that allow e�cient implemen-

tation of the combined novel aspects of the Chimera active rule language. The

main advantage of the described architecture is that it allows to handle event

consumption and preservation, event composition, evaluation of event formu-

las and of formulas on past database states in a very e�cient way. This has

been obtained thanks to the synchronization of the structures handling dif-

ferent information through a transaction-level timestamping mechanism, and

thanks to appropriate auxiliary index structures. In particular, the event tree

allows a very fast detection of the rules triggered by the occurrence of an

event, and a fast composition of event e�ects.

The contribution of the paper is then that of describing an architecture for

implementing set-oriented active rules on an object-oriented database system.

The richness of the Chimera active rule language causes that architecture to

cover most of the features supported by other active rule languages. The pro-

posed architecture brings some similarities with the ones developed for other

set-oriented active rule languages, namely Starbust [0] and NAOS [0]. How-

ever, as we will discuss in detail in Section 7 it extends them, since the Chimera

language is richer, and it has some advantages over them, mainly due to the

maintenance of an explicit event base, synchronized with other structures by

means of the timestamping mechanism and appropriately indexed, rather than

of the transition/delta tables employed in those systems.

The remainder of the paper is organized as follows. Section 2 introduces

Chimera active rule language. Section 3 presents the overall architecture of

the rule processor, Section 4 explains how information is recorded and coordi-

nated during block execution . Rule selection and execution are described in

Section 5. Section 6 illustrates the described implementation through an ex-

ample. Section 7 provides a comparison with other active system implementa-

tions taking into account the di�erences among the underlying rule languages.

Finally, Section 8 concludes the work.

In this section we describe the syntax and the execution model of active rules

in Chimera.
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Example 1

2.1 Language

targeted

untargeted

Events

triggered

Given a class containing an attribute examples

of events are

, ,

In triggers targeted to class those events are shortened as ,

, , respectively.

define [TriggerOptions] trigger TriggerName [for ClassName]

events TriggerEvents

condition ConditionFormula

actions Actions

[PriorityOptions]

employee salary

create(employee) modify(employee.salary) query(employee.salary)

employee create

modify(salary) query(salary)

Active rules in Chimera are called triggers. Each trigger consists of four com-

ponents: events, condition, actions and priority. Moreover each trigger is char-

acterized by trigger options de�ning the processing and the event consumption

modes. The de�nition of a trigger is:

Active rules may be de�ned in the context of a single class, in which case

they are called rules, or in the context of multiple classes, in which

case they are called rules. Targeted triggers use only the concepts

de�ned in the class they refer to and are included in the signature of the

class. This notion is relevant for schema design and modularization, but there

is little syntactic di�erence and no semantic di�erence between targeted and

untargeted triggers. In the following we discuss in details the trigger compo-

nents.

Events de�ne the conditions under which an active rule is . Such con-

ditions can be update operations or queries. In case of events as update op-

erations performed over instances of object classes, events are denoted by the

name of the update operation and the target (class name, possibly attribute

name) of the operation. Primitive update operations available in Chimera are

object creation (both temporary and persistent), deletion, update, object mi-

gration in inheritance hierarchies and their change of persistence status. In

case of events as queries performed over object classes, events are denoted by

the name of the target of the query (either a class or an attribute of a class).
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Example 2

holds create, delete

modify

specialize generalize

employee

employee

occured(create,X), X.salary > 4000

X employee

salary

holds(modify(salary),X), X.salary > 4000

X employee

salary

Currently the predicate only applies to the primitives and

, which are the most signi�cant. However, other update primitives of Chimera,

such as and , could be considered for net e�ect as well.

Condition

event formulas old states

occurred holds

event instance

occurred holds

create delete

modify

create modify

modify delete

Referring to class of Example 1 above, an example of

condition, in a trigger targeted to class , is the following

The formula is satis�ed by those objects created as members of class

whose (current) value for attribute is greater than 4000.

By contrast, a condition of the form

is satis�ed by those objects of class not a�ected by creations or

deletions, whose attribute has been modi�ed and (currently) has a value

greater than 4000.

The condition is a formula that serves the purpose of monitoring the execution

of the reaction part. Condition of triggers may contain, in addition to conjunc-

tion of atoms, and references to . Event formulas are

particular formulas supported by the declarative language of Chimera, built by

means of the binary predicates and . Syntactically, these predi-

cates have two arguments: an event name and a variable name. The variable

appearing as second argument of the event formula ranges over the objects of

the class a�ected by the event, and it becomes bound to the identi�ers (OIDs)

of objects which were subject to the event; each OID bound by the computa-

tion of an event formula is called an . The distinction between

predicates and is that in the former case all events which origi-

nally caused rule triggering are bound, while in the latter case some events are

excluded: precisely, those events whose e�ect was compensated by subsequent

events on the same object, thus computing the net e�ect of event instances.

Compensations are performed as follows :

{ a sequence of and primitives on the same object, possibly with

an arbitrary number of intermediate primitives on that object, has

a null net e�ect;

{ a sequence of and several primitives on the same object has

the net e�ect of a single create operation;

{ a sequence of several and a primitive on the same object has

the net e�ect of a single delete operation on that object.
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Example 3

Example 4

employee

employee

occured(create,X), old(X.salary) > 4000

X employee

salary

employee

employee

occured(modify(salary),X), integer(Y), integer(Z),

Y = X.salary - old(X.salary), Y > 5000,

Z = old(X.salary) + 5000

modify(employee.salary),X,Z)

X

Z salary

PriorityOptions

old

Referring to class of Example 1 above, the condition,

in a trigger targeted to class ,

is satis�ed by those objects created as members of class whose past

value for attribute was greater than 4000.

Actions

Referring to class of Example 1 above, consider a trig-

ger targeted to class , with condition

and action

The action is executed on all objects bound to variable by the condition, and

the corresponding value of variable is assigned to their attribute.

Priority

References to past database states are allowed in active rule conditions by

the function , that can be applied to atomic formulas, indicating that the

respective formula is to be evaluated in a previous database state. The chosen

state depends on event consumption mode (see below). If the rule is event-

preserving then the old state refers to the state prior to the transaction start.

If the rule is event-consuming, then the old state is the one produced by the

last rule execution; if the rule has never been executed during the transaction,

then the old state refers to the state prior to the transaction start.

The action is a sequence of database operations, including update or display

primitives, class operations or transactional commands. Condition and action

may share some atomic variables, in which case the action must be executed

for every binding produced by the condition on the shared variables. Moreover,

operations that constitute the action are executed in strict sequence, because

each of them may have side e�ects.

An ordering among rules can be speci�ed in the clause of

the trigger de�nition, to control run-time trigger. Priorities can be speci�ed

as follows:
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after TriggerList

before TriggerList

Processing Mode

Event Consumption Mode

processing

mode event consumption mode

immediate deferred

consumed

preserved

{ through a statement , specifying the list of triggers after

which the trigger being de�ned must be executed (that is, listing triggers

with higher priorities);

{ through a statement , specifying the list of triggers

before which the trigger being de�ned must be executed (that is, listing

triggers with lower priorities).

Such speci�cations de�ne a partial order on triggers, acyclicity of the prece-

dence relation between triggers is checked when a new trigger is de�ned.

We have seen that a trigger has options which allows to de�ne the

and the . Let us see them in details.

For each trigger a processing mode is speci�ed. The

processing mode of a trigger may be or . Immediate triggers

are processed at the end of the transaction unit or reaction in which triggering

occurs. Deferred triggers are processed at the end of the transaction (after the

commit command). Default for processing mode is set to deferred. Note that

Chimera does not support detriggering of triggered deferred rules because

of net e�ect of events, as Starbust [0] or NAOS [0]. Thus, once triggered, a

deferred rule is always executed at the end of the transaction. Chimera net

e�ect, therefore, only a�ects the bindings returned from event formulas in rule

conditions, while Starbust and NAOS one also a�ects the triggering of rules.

Two distinct event consumption modes are

possible for each trigger; this feature is relevant when a given trigger is con-

sidered multiple times in the context of the same transaction. Events can be

after the consideration of a rule, therefore, each event instance is

considered by a rule only for the �rst execution, and then disregarded. Alter-

natively, events can be , i.e., all events since the transaction start are

considered at each rule consideration. Default for event consumption mode is

set to consuming.

The notions of immediate/deferred and event consuming/preserving are or-

thogonal and they are motivated by speci�c applications. The large number

of alternatives for triggers is motivated by their wide spectrum of applications.

Event consuming deferred rules (with the use of net e�ect) are suited for check-

ing static integrity constraints at transaction commit, allowing the database

to be invalid at intermediate states of the transaction. Event preserving rules

are required for checking of dynamic integrity constraints, event preservation

is required to avoid sequences of events collectively leading to the violation
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Example 5

of the constraint, but not individually. Immediate rules are required for view

materialization or data derivation (changes to basic data are propagated im-

mediately to derived data) or to check integrity constraints that cannot be

violated even at intermediate states. Events without net-e�ect composition

are required by triggers used for book-keeping.

8

employee

name salary mgr specialEm

ployee employee R1

define immediate trigger immAdjustSalary for employee

events create

modify(salary)

condition Self.salary > Self.mgr.salary

actions modify(employee.salary,Self,Self.mgr.salary)

R2

define immediate trigger recordAccesses for employee

events query(salary)

condition occurred(query(salary),X),

old(X.salary) > 40000

actions recQueried(X)

after immAdjustSalary

recQueried(X) X

40000

R3

define trigger spEmp for employee

events create

condition holds(create,X),

X.salary > 40000

actions specialize(employee,specialEmployee,X)

specialEployee

Assume the current database has a class , with at-

tributes , and . Suppose moreover that a subclass

of is de�ned. Consider the following targeted trigger

The trigger is immediate and event consuming, it does not employ neither

event formulas nor references to old states in its condition. The e�ect of this

trigger is to disallow (also at intermediate states) that an employee earns more

than its manager.

Now consider the following targeted trigger

The trigger is immediate and event consuming, it employs an event formula

and a reference to an old state in its condition. The e�ect of this trigger is

to invoke the execution of the procedure for each employee

which earns more than and whose salary has been accessed.

Finally consider the following targeted trigger

The trigger is deferred and event consuming, it employs an event formula

in its condition. The e�ect of this trigger is to specialize by inserting in the

class each employee inserted (and not deleted) during the



Example 6

40000

monitorSalary

define event-preserving trigger modifySpecialEmp for employee

events modify(salary)

condition occurred(modify(salary),X), integer(Y),

Y = X.salary - old(X.salary), Y > 5000

actions monitorSalary(X,Y).

select (X where employee(X), X.dept = 13),

modify(employee.salary, X, X.salary + 100);

X

transaction which earns more than . This specialization is performed at

transaction commit.

Referring to the classes of Example 5, consider the following trig-

ger, that selects all employees who get, in the course of the transaction, a high

salary raise (possibly caused by small salary raises due to individual modify

operations). Note that the rule is event-preserving, therefore all modi�cations

since the transaction start are accumulated at each rule consideration; fur-

ther, note that the condition part evaluates the salary di�erence between the

state before transaction execution and the new state determined at active rule

processing time. The reaction consists in calling the procedure .

2.2 Execution Model

Finally, the following example shows the usefulness of event-preserving trig-

gers.

Further details about the Chimera active rule language can be found in [0,0].

Before introducing the execution model we specify that in Chimera a transac-

tion is a sequence of calls to the query and update primitives. Query primitives

are used either to display the content of the database or to provide bindings to

variables. Transaction units, which we refer to as transaction lines, de�ne the

scope of variables. Thus, a Chimera transaction is a sequence of transaction

lines, appropriately delimited. Each transaction line contains itself queries and

update primitives; it may contain as well procedure invocations. Transaction

lines de�ne the scope of variables which are shared by di�erent operations and

play a relevant role in �xing the semantics of database triggers, as described

below. An example of transaction line is:

In the transaction line above, is bound by the execution of the select op-

eration to a set of OIDs, and these identify the employees whose salary is

modi�ed. Note that the condition-action sequence of an active rule is very

similar to a query-modify sequence in a transaction line. Thus triggers may

be regarded as transaction lines from the execution viewpoint.
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3 Architecture of the Active Rule Processor

trig-

gered

rule selection

rule consideration

rule execution

quiescent state

all �nal state

savepoint

savepoint

When one of the events of an active rule occurs, the rule is said to be

; several rules may be triggered at the same time. Trigger processing time

depends on the trigger processing mode: at the end of the transaction line or

at transaction commit. Although initiated at di�erent times, rule processing

of immediate and deferred triggers is conducted in the same way as an itera-

tive execution of rule processing steps, each of which in turn consists of three

phases, called rule selection, consideration and execution.

{ consists in choosing non-deterministically one of the rules at

highest priority;

{ consists in the evaluation of the condition, which is a

declarative formula; at this point the selected rule becomes untriggered;

{ occurs if the condition is true or produces some bindings, and

it is performed by sequentially executing the operations in the reaction part

of the rule.

Trigger execution consists of queries and updates, which may in turn trigger

other rules; rule processing continues until no more rule is triggered. Clearly,

the possibility of in�nite rule processing due to chains of active rules that

trigger each other exists in Chimera. Whenever a transaction unit is com-

pleted, active rule processing is applied to immediate triggers until a �xpoint

is reached (called a with respect to immediate triggers); at

commit time, active rule processing is applied to triggers until a

is reached. The transactional command forces rule processing over

all triggers (including deferred ones); rule processing started by a

command produces an intermediate transaction state which is quiescent with

respect to all triggers.

In this section we present the overall architecture of the active rule processor

in the Chimera prototype developed at Politecnico di Milano. The prototype

is built on the ALGRES environment [0] but it is highly independent from

ALGRES, being thus portable to any other target system. Therefore AL-

GRES features are encapsulated through the de�nition of a Virtual Interface

of Chimera (VICHI) which supports a set of services. An overall description

of the prototype may be found in [0,0,0], while details on the components of

the processors are presented in the following sections.

Figure 1 introduces the overall architecture for reactive processing, showing

both data structures and functional components. We denote with rectangles

the structural components and with ovals the functional components of the

architecture. Plain arrows represent information 
ow, while dashed arrows

10



Support

Triggered

Rules

Block

Executor

Occurred 

Events

Logs database

Trigger

ALGRES
block

C++

ALGRES

C++

Handler

Event

5
4

3

1 - 9

2

10

12

8
7

11

6

3

3

logging on demand

old

Occurred Events:

Triggered Rules:

Log:

old

Block Executor:

Fig. 1. Reactive processing architecture

Each class has associated a log including all the attributes of the class. To improve

e�ciency, we have developed a mechanism that enables logging

for a class only if there is a rule with an predicate referencing objects of that

class.

represent control 
ow among modules. An incoming plain arrow to a data

structure represents writing of information into the data structure, while an

outgoing plain arrow from a data structure represents reading of information

from it.

The data maintained by the rule processor are:

{ This is a global event base which records all the event

instances relevant to a particular transaction.

{ This table keeps track of the triggered rules and records

the evolution of event processing for each individual rule. Actually, the table

has an entry for each de�ned rule and it also maintains general information

about rules, duplicating, for e�ciency reasons, information stored in the

rule catalog in the database.

{ This is a structure de�ned only for those classes on which at least one

rule containing an predicate is de�ned; Logs maintain all past states of

objects of that class .

The three main functional components are:

{ It retrieves the correct ALGRES block and invokes an AL-
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4

4

Event Handler:

Trigger Support:

commit save-

point

occurred holds

edge 1

edge 2

edge 3

edge 4

edge 5

edge 6

edge

7 edge 8

edge 9

edge 10

edge 11 edge 12

This allows ALGRES to execute the condition part of a rule without executing

the corresponding action.

GRES Executor for processing the relevant compiled code. Each transaction

line corresponds to a single ALGRES block, while the compilation of a rule

produces a pair of blocks, one corresponding to the condition and the other

one to the action .

{ It is responsible of event handling, that is of appropriately

storing the events occurred during block execution in the Occurred Events

table and for evaluating on this table event formulas. It is activated at the

end of each block execution for storing the occurred events, and at the

beginning of the evaluation of rule conditions containing event formulas.

{ It is responsible for selecting the next rule for considera-

tion and for managing all the dynamic information on rules. It is activated

at the end of each transaction unit execution as well as at or

evaluation; it stops when there are no more rules to be selected for

consideration (a quiescent or �nal state has been reached).

In the following we brie
y illustrate the interactions among reactive processing

components, referring to the numbers that label edges in Figure 1. For each

transaction line in the transaction, the Block Executor executes it and then

the Event Handler is activated ( ), for properly updating the Occurred

Events table storing the events occurred during the execution of the block.

As we will see in a greater detail later, when the Event Handler inserts the

occurred events in the table ( ) it contemporaneously determines the

rules triggered by the events, which are passed (as a return value) to the

Block Executor. Now the Trigger Support is activated ( ) and it �lls

the Triggered Rules table according to the triggered rules that are passed to it

( ). Then, the Trigger Support selects from the Triggered Rules structure

a triggered rule to be executed thus detriggering the rule ( ). Now, the

Block Executor is invoked to execute the ALGRES blocks corresponding to

the selected rule condition and action in compiled form ( ). During the

evaluation of rule condition the Block Executor may access the database (

), it may access the log for evaluating formulas on past states ( ), and

it may moreover temporarily call the Event Handler ( ) to access the

Occurred Events structure when evaluating event formulas ( /

predicates) ( ); after this evaluation, the Event Handler returns the

control to the Block Executor together with a set of bindings. Then, if the

condition is satis�ed, the action is executed. The execution of the action may

cause update to the database ( ) and to logs ( ), since Chimera

transactions and rules are compiled in such a way that the execution of the

compiled code appropriately logs object states, if the executed updates are on

classes requiring logging. After executing the rule, the Block Executor calls

the Event Handler to store the occurred events passing to it the occurred

events and the related oids; the Occurred Events structure is thus updated

12



4 Information Recording

commit savepoint

in
ection point

by the Event Handler as a consequence of any update in rule action. Then,

the control returns to the Trigger Support (together with the identi�ers of

the rules triggered by the events occurred), the Triggered Rules structure is

updated and the previously described steps are iterated till there is a triggered

rule. When a quiescent state is reached, the Trigger Support stops and control

returns to the Block Executor which executes the next transaction line.

The above described steps refer to immediate trigger processing. In case the

transaction line under consideration contains the or the com-

mand, no new events are generated but the Trigger Support is activated in a

di�erent modality, so that all the deferred rules in the Triggered Rules table

are eligible for execution.

The information that should be maintained during the life of a transaction in

order to support the semantics of triggers in Chimera regard three entities:

Logs, Occurred Events and Triggered Rules. The Logs hold a partial di�er-

ence between the database instance at begin transaction and the current one.

The Occurred Events structure records the events that have occurred since

the transaction started. Finally, the Triggered Rules structure records infor-

mation about the execution state of the rules triggered as a reaction to events.

The use of a transaction-level timestamp seems a natural way to achieve the

necessary synchronization between objects, events and rules in order to guar-

antee the correct implementation of the di�erent semantic features of triggers.

Our (logical) timestamp is an integer that is set to zero at the beginning of

the transaction and is increased by one after each event occurrence (update

operation or query). The timestamp mechanism should satisfy the following

conditions:

{ Event timestamps have no duplicates, and are assigned in sequential order.

At each update or query the timestamp is increased and the same timestamp

is assigned to all the event instances involved (an event may involve di�erent

OIDs if the operation is set oriented).

{ Rule timestamps denote the last of the rule, that is, the last

consideration of the rule, meaning that the events having a smaller or equal

timestamp have already been considered in previous evaluations of the rule.

In the case of event-consuming rules, timestamps have a non-default value,

while for event-preserving rules the timestamp always denotes the beginning

of the transaction.

{ Object timestamps are included in Logs but not in the class extension.

They denote the event that has transformed that particular object instance

in an old state of the object, thus forcing its logging. They are the mean for

13



Example 7

create(employee, "John Smith", 37000, null, Oid);

0 1

create(employee) 1

old

consuming

old

holds

occurred

Consider a transaction containing as �rst transaction line the

following:

The timestamp is set to at begin transaction and it is set to at the execution

of that transaction line. A event timestamped by is then

stored in the Occurred Event structure.

accessing an old state of objects in the evaluation of a rule condition. It is

possible to have di�erent objects having the same timestamp.

This timestamping mechanism is a very relevant component of our implemen-

tation since it allows to handle, in a conceptually simple yet e�cient way,

many semantic features of Chimera triggers. The semantic features of triggers

that can be implemented by means of the timestamping mechanism include

event consumption, determination of rule in
ection points, access to past ver-

sions of object state (evaluation of the predicates) and evaluation of event

formulas. Event consuming rules are implemented by updating the rule times-

tamp at condition evaluation time. Rule timestamp is set to the successor of

the last event timestamp, then the considered events. By contrast,

event preserving rules always have a null timestamp, so that at each evaluation

the rule considers all events occurred during the transaction. In this way the

rule timestamp can be viewed as a pointer to the Occurred Events structure,

pointing to the �rst candidate event for rule condition evaluation.

An predicate occurring in a rule condition is evaluated by looking at the

Log for the appropriate class and then �nding the last entry for the given OID

having a timestamp less than or equal to that of the rule. As a particular case,

if the rule is event preserving, the old state is the entry in the Log with the

lowest timestamp for the given OID. Indeed, the old state of an object is not

univocally determined but depends on the rule that evaluates it. Thus, for

properly evaluating an old state of an object in rule conditions, when logging

the state a timestamp is included to distinguish among di�erent instances of

the object that may exist in the Log.

As far as event formulas are concerned, a predicate requires the eval-

uation of the net e�ect from the last in
ection point of the rule, looking at

the Occurred Events structure to determine the composite e�ect of the events

having a timestamp greater than that of the rule. In case of event preserv-

ing rules the evaluation of the net e�ect on the entire structure is performed.

Analogously an predicate requires to get the rule in
ection point

timestamp and then to scan the Occurred Events structure considering only

events having a timestamp greater than that of the rule. In case of event

preserving rules the entire structure is scanned.
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Operation

Class At-

tribute/NewClass

TimeStamp

Oid

Rp Rc

create(employee)

0

Rc

1 Rp 0

Rp

1

Rp

0

0 Rc

create(employee)

1

modify query

Consider an event-preserving rule and an event-consuming rule , both

triggered by the event . At begin transaction both rules are

associated with timestamp . after the completion of the �rst transaction line

both rules are triggered. Once selected for consideration, the timestamp of

is set to , whereas the timestamp of does not vary, i.e. it remains .

This means that will be triggered at each reactive processing activation

in the transaction, since there is (at least) one event, whose timestamp is

that triggered it and it must consider. This also means that predicates in

conditions will be evaluated referring to the state before transaction start

(that is, log instances timestamped by ), and that, during the evaluation of

event formulas, all events occurred in the transactions are considered (since

all of them have timestamps greater than ). By contrast, rule is triggered

again only if another event occurs. In its (eventual) sub-

sequent condition evaluation event formulas and predicates will refer to

the database state at time .

4.1 Data Structures

Occurred Events

old

old

As a further remark, we point out that in our active database prototype

we have no internal mechanism for detecting and automatically propagat-

ing events into the event base; therefore we need to explicitly program such

event manipulations. Updating the event base with generalization hierarchies

is particularly critical, because events at given levels of the hierarchy may

propagate at di�erent levels. We have chosen of performing the analysis and

generation of event instances by means of code that is generated at compile

time (an alternative solution, probably less e�cient, would be to propagate

event instances at run time).

In the following we brie
y describe the main features of the data structures

constituting the active rule processor. A pictorial description of those struc-

tures, illustrating their �elds, is presented in Figure 2.

This structure has the role of event base. The structure has the following

�elds. It stores the event type in the �elds (the update/query

operation), (the class over which the operation is performed),

(the individual attribute over which the operation acts,

in case of or operations, or the new assigned class in case of ob-

ject migration operations). Moreover it has a �eld for storing the

at which the event occurred and a �eld for the of the object involved in

the event. The structure has an entry for each event instance. The structure

15
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Fig. 2. Fields of the main data structures

Occurred Events

Triggered Rules

Class C Log

Event Tree

RuleId

TimeStamp

Priority

Processing Consump-

tion Flag

Operation Class Attribute TimeStamp Oid

RuleId TimeStamp Priority Processing Consumption Flag

Oid A A TimeStamp

EventType TimeStamp RuleList

is completely handled by the Event Handler and it is accessed for evaluating

predicates and in rule conditions (on explicit request from the

Rule Executor). It is a strictly increasing data structure: only insertions are

applied to it, no entry is modi�ed and no entry is deleted until the end of the

transaction. The structure lifetime is a transaction.

This structure stores information about the triggered rules to be processed.

This information is stored in the following �elds. is the rule iden-

ti�er of the rule (considered unique in the entire database). is

the timestamp of the last in
ection point of the rule (always if the rule is

preserving). is the priority level of the rule, used for selecting the

rule to execute; is the rule processing mode, while

is the rule consumption mode. Moreover a is used to determine

the rules to be processed, in fact the triggered rules data structure contains all

the rules that have been triggered, but those with 
ag have already been

processed. When a rule is triggered, it is inserted with 
ag in the triggered

rules data structure. If an entry for the rule is already present in the structure

the entry is not duplicated, but if the entry has 
ag its 
ag is switched to

16
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old
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old

, because the rule is re-triggered. When a rule is selected for execution, after

condition evaluation the rule is detriggered so its 
ag is switched to (at

this time we perform also timestamp updating). The structure (whose lifetime

is a transaction) is completely handled by the Trigger Support. No deletions

of entries are performed, but only updates and insertions. It is used for storing

information about the triggered rules to be processed and relating each rule

which has been triggered at least one time in the transaction with the times-

tamp of its last in
ection point. Moreover, it duplicates, for e�ciency reasons,

some of the static information about rules stored in the rule data dictionary.

We remark that the data structure contains at most an entry for each rule

of the database. We have chosen to store all the rules that have been trig-

gered in the transaction instead of only the triggered rules that have not yet

been processed. This choice is due to the fact that, to properly evaluate event

formulas, we need to store the timestamp of the last in
ection point of each

consuming rule which has been triggered at least one time in the transaction.

An e�cient access to the Triggered Rules table is got through the use of an

hash table whose key is the rule identi�er. Moreover, a queue structure on this

table is also used, to get the rules ordered by priority.

Logs are used to maintain information about the past states of the database.

They are used only for keeping old object states, needed for the evaluation of

predicates in active rule conditions, as a consequence the log is not a log in

the usual database sense: it does not keep trace of all database updates, but

only of those relevant to this evaluation (the state changing ones). We recall

that to improve e�ciency we consider the development of a

mechanism that enables logging for a class only if there is a rule with an

predicate referencing objects of that class. The active rules compiler maintain

a table with the classes that should be logged. The update primitives compiler

generates, for the modify primitives, the code to implement logging subject

to the existence of an entry for the given class in the table of classes to be

logged. This is a sort of parametric approach because the addition of a rule

with an old predicate over a class automatically enables logging for the class

without requiring recompilation of the update primitives associated with the

class. The structure maintains the information in the following �elds. is

the object identi�er of the object, , . . . , are the attributes of the class to

which the log refers, the correspondent �elds store the old state of the object,

is the timestamp of the event that produced the logging. Note

that as a Log contains the di�erence between the initial data base instance

and the current one, it is clear that at begin transaction it should be empty

and at end transaction it is no longer meaningful. The structure is updated

17



Example 8

create(employee) modify(employee,salary) query(employee,

salary) delete(employee)

old

Event Tree

event tree

Consider the triggers of Example 5. The events that triggers some

rules are , ,

. Then, in principle, an event needs not to be

stored, since it does not trigger any rule. However, since this event a�ects

by the Block Executor during usual as well as reactive processing. Logs are

strictly increasing data structures to which only insertions are applied. They

are accessed by the Block Executor for evaluating rule conditions depending

on states.

To get an e�cient determination of the triggered rules from the set of occurred

events an , that is, a tree of event types, is also maintained by

the Event Handler. This tree is initialized at the beginning of the session by

inserting the event types triggering some rules, while it is updated as soon

as events of new event types occur during the session. The event tree is the

structure that allows a fast access both to the Occurred Events table and to

the Triggered Rules table. Indeed, through the entry in the tree for a given

event type we know the last event occurrence for the event type and which

rules must be activated on the occurrence of an event with this type.

When the Block Executor has completed the block execution, calls the Event

Handler to store the events that have occurred during block execution. Then

these events must be inserted in the table. Thus, for each individual event, the

corresponding event type is searched for in the event tree. After this search

we get all the rules triggered by the event and we also get the timestamp of

the last occurrence of an event with the considered event type and thus we are

able to keep the events of the same type linked. Linking the events of the same

type in a list ordered on the event timestamp allows a fast evaluation of event

formulas. This fast evaluation is performed through a reverse scanning of the

list. The information on the last occurrence of an event with the speci�ed event

type is updated to take into account the last occurred event. If the search for

the event type in the tree fails, then no events with the considered event type

have occurred during the session. Since the tree has been initialized with all the

event types triggering rules, we know that such an event does not trigger any

rule. However, the event might be used in the evaluation of event formulas

in some rule condition. This happens because Chimera permits the use of

event formulas on any arbitrary event, without restricting event formulas to

triggering events. Thus, we currently store all events; a possible optimization

consists in collecting the information about predicates used in event formulas

and inserting these event types into the event tree upon initialization, then

we can log only the events whose types belong to the event tree.

18
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5 Rule Selection and Execution

Trigger Support

while

do

if

then

endif

enddo

holds(create,X) R3

modify(employee,mgr)

In this section we outline the main steps of reactive processing specifying the

execution model of rules in our prototype.

The overall activity of run time support in the context of reactive processing

19

the evaluation of predicate in trigger condition, since it

can nullify the e�ect of a creation, it needs to be stored. By contrast, an event

needs not to be stored, since it is not employed in any

trigger conditions, nor it modi�es the net e�ect of events employed in trigger

conditions.

5.1 Rule Selection

1: update Triggered Rules;

a rule exists in Triggered Rules s.t. its is

2: select a rule with max in Triggered Rules;

3: update the entry for in Triggered Rules setting = and,

if is consuming, = current timestamp;

4: call the Block Executor to execute rule condition;

the Block Executor returns a non empty set of bindings

(i.e., the condition evaluation succeeded)

5: call the Block Executor to execute rule action on the bindings ;

6: update Triggered Rules

Fig. 3. Trigger Support activity



6 ;

5

5

savepoint

immediate

ON

immediate

before after

Processing Mode

Flag

Processing Mode
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B execute r;B;R

r B

R

We remark that this search is trivial since it makes use of the queue structure on

the Triggered Rules table.

is outlined by the cycle in Figure 3. The cycle in Figure 3 is to be applied in

the case of reactive processing started at transaction commit or at a ,

when all triggered rules have to be considered. In the case of reactive processing

started at the end of a transaction line (when only immediate rules are to be

considered) the operations done by run time support are similar, but Step 2

is done only among rules with = , and the

cycle is done while a rule exists in Triggered Rules s.t. its is and its

is .

During rule selection (Step 2), when looking for a rule with the greatest pri-

ority , if two or more rules with equal priority are found, the choice of which

of them to execute is taken non deterministically according to [0]. The rule

priorities that the Trigger Support gets, together with all other information

about rules, when it fetches the rule data dictionary, are static priorities.

These priorities are computed starting from the graph that represents the rule

partial ordering derived from / clauses in rule de�nitions. These

priorities are translated into a total order (integer numbers) which is nonde-

terministically chosen by the Trigger Support. This total order is obviously

consistent with the partial one derived from class de�nitions. The user may

however require to the Trigger Support to recompute rule priorities starting

from the partial ordering graph, so as to enable the user to indicate which of

the rules with the same priority should be executed �rst.

Moreover, note that:

{ Step 1 is needed to keep into account events occurred during usual process-

ing, between di�erent activations of reactive processing;

{ Step 2 is e�ciently handled through the use of the priority queue that keeps

the Triggered Rules structure ordered by priority;

{ Step 4 is performed by a call ( ) with rule id of the se-

lected rule, its timestamp and set of bindings satisfying the condition,

returned by the Block Executor;

{ Step 5 is executed only if the evaluation of the rule condition produced at

least a binding (that is, = ); it is performed by a call ( )

with rule identi�er, set of bindings on which the rule must be executed,

set of triggered rules returned by the Block Executor; this call also results

in getting the set of events occurred during the execution of rule action to

be properly added to the Occurred Events structure by the Event Handler.

Steps 1 and 6, that is, the Triggered Rules structure updating, are performed

by the Trigger Support by simply inserting the rules returned from the Event

Handler after any Occurred Events structure updating. Indeed, as a conse-

quence of the insertion of events in the Occurred Events structure the set of

20
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procedure update triggered rules(R)

for

if then

else

if then

endif

endif

endfor

procedure re trigger preserving

for do

if then

endif

endfor

each

is not in Triggered Rules

1: insert in Triggered Rules the tuple

. , , . , . , . ,

the entry in Triggered Rules for . has =

2: set the �eld for this entry to

each in Triggered Rules

=

set the �eld of 's entry in Triggered Rules to

Fig. 4. Updating the Triggered Rules structure

rules triggered by the occurrence of that event is determined and passed to

the Trigger Support. This allows an e�cient determination of triggered rules

since the Trigger Support avoids to examine the Occurred Events data struc-

ture, the rule data dictionary and the current version of the Triggered Rules

data structure, to determine for each rule whether some triggering events have

occurred. Thus, the event tree avoids running through all the rules to �nd the

ones to be triggered when an event occurs.

Let us examine that in more detail. We have seen in Section 4 that the entry
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5.2 Rule Execution
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ON

ON

occurred(create(employee),X)

holds(create(employee),X)

X

R

update triggered rules R

re trigger preserving

evaluate r; ts;B

B execute r;B;R

R

in the event tree for a given event type contains the rules triggered by that

event type. Thus, those rules are passed to Trigger Support to be inserted

in the Triggered Rules structure. Moreover, to properly handle preserving

rules (which must reconsider all events occurred since the beginning of the

transaction), at each reactive processing activation (Step 1) we set the

of all the preserving rules already in the Triggered Rules structure to ,

without searching for any event in the Occurred Events structure. In fact, if a

preserving rule has been triggered once in a transaction, it is always triggered

in the transaction, and at each reactive processing activation it has to be

evaluated.

Thus, let denote the set of rules passed to the Trigger Support by the Event

Handler (thus, the rules -either consuming or preserving- triggered by events

occurred in the last transaction unit). Then, the updating of the Triggered

Rules structure is performed by the procedure ( ) shown

in Figure 4. In that procedure, case 1 corresponds to a rule that has not yet

been triggered in the transaction, while case 2 corresponds to a rule that has

already been triggered in the transaction, but that has already been processed.

The rule is thus re-triggered and needs to be processed again. Note that rules

are always inserted in the Triggered Rules table with a null timestamp, to

model the fact that they have not yet been considered during the transac-

tion. In Step 1, besides executing that procedure, the Trigger Support sets to

the 
ag of each preserving rule already in the Triggered Rules structure,

to re-trigger each preserving rule that has been triggered at least once in the

transaction. To do that, it executes procedure of Figure

4.

The Block Executor must handle two speci�c requests from the Trigger Sup-

port, that is ( ), for evaluating a rule condition, returning in

the set of bindings satisfying the condition, and ( ), for ex-

ecuting a rule action, returning in the set of rules triggered by the exe-

cution of the rule action. The �rst request is handled as follows. If the con-

dition contains an event formulas, (i.e. or

) the Block Executor �rst of all calls for a ser-

vice from the Event Handler, which evaluates the formula by simply accessing

the Occurred Events data structure; the Event Handler returns to the Block

Executor a set of bindings for the variable . In case of simple event formulas

( predicate) the OID set returned simply includes the identi�ers of

objects on which a non consumed event of the speci�ed type has occurred. In

case of event formulas with net e�ect ( predicate) the set is computed

by di�erence between OID sets (the set of OIDs for which a non consumed

22



execute r;B;R

Rule Data Dictionary

6 An Illustrative Example

X.salary > 500

old(X.salary) > 500

RuleId Events Consumption Processing Priority

R1 create(employee) consuming immediate 3

modify(employee,salary)

R2 query(employee,salary) consuming immediate 2

R3 create(employee) consuming deferred 1

event of the speci�ed type has occurred minus the set of OIDs for which a

non consumed event with a \complementary" event type has happened). The

returned OIDs are a subset of those selected from the Occurred Event ta-

ble. This evaluation is very fast, since it is performed by accessing only main

memory structures. In particular, the list of events of a given type is reversely

scanned starting from the last one, referenced from the Event Tree. Further-

more, the early evaluation of event formulas allows to immediately suspend

the evaluation of the condition if the OID set returned by the Event Handler

is empty.

Formulas on the current state (i.e. ) are handled by the Block

Executor simply evaluating a query on the database, while formulas on old

states (i.e. ) are handled by the Block Executor ac-

cessing the appropriate logs and, if the rule is consuming, making use of the

timestamp of the last rule in
ection point; if the object to which the formula

refers has not yet been modi�ed within the transaction, its old state coincides

with the current one, thus the database is accessed.

As far as the request ( ) is concerned, let us remark that the

Block Executor, after completing the execution of each block (with the only

exception of rule conditions, that do not generate event) activates the Event

Handler to store the set of events occurred when executing the block. The

Occurred Event structure is thus appropriately �lled. Moreover, as a result

of that updating, the set of rules triggered by the occurred events is also

determined (as seen in Section 5.1) and passed, as a return value, to the Block

Executor.

Let us consider the rules of Example 5. The information computed at rule

compilation time and recorded in the rule data dictionary is the following:
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Event Tree

EventType TimeStamp RuleList

Code

Oid Name Salary

Manager Operation Class

TimeStamp Oid

Event Type

TimeStamp = 1

create(employee) 0 R1, R3

modify(employee,salary) 0 R1

query(employee,salary) 0 R2

R2

employee

begin transaction

create(employee, "John Smith", 37000, null, Oid);

select(X where employee(X), X.salary > 35000),

create(employee, "Paul Young", 45000, X, Oid')

commit

;

14 39

employee 14 John Smith

37000 null create

employee 1 14

create(employee)

R1 R3

Note that we have omitted the �eld , which, for each rule, contains a

pointer to the compiled rule body ALGRES code. Note that a partial order

among rules has been deduced from the priority declarations and the default

of assigning a greater priority to an immediate rule over a deferred one. Note,

moreover, that at rule compiling time and transaction compiling time, event

types are appropriately codi�ed, assigning them an identi�er. However, for the

sake of clarity, in the example, we do not consider codi�ed event types but

explicit ones.

Moreover, the Event Tree index is initialized to contain the following entries:

Finally, since rule contains an predicate, updates to the objects of class

will be logged in an Employee Log.

Suppose that the following transaction is executed:

where \ " is the syntactical delimiter of transaction lines. Suppose moreover

that the new generated oids are respectively and . The transaction con-

sists of two transaction lines. Now let us look how the di�erent components

of the architecture evolve when executing the transaction.

After the execution of the �rst transaction line the database relation for class

contains a tuple with = , = , =

and = and a tuple with = ,

= , = and = is inserted in Occurred Events.

Moreover, the entry with = in the Event

Tree is updated setting and the rules and are returned

to the Trigger Support.
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Flag TimeS-

tamp

R1

R1

OFF

1

employee

Triggered Rules

Employee

Occurred Events

RuleId TimeStamp Priority Processing Consumption Flag

Oid Name Salary Manager

Operation Class Attribute TimeStamp Oid

R1 0 3 immediate consuming ON

R3 0 1 deferred consuming ON

14 John Smith 37000 null

39 Paul Young 45000 14

create employee 1 14

query employee salary 2 14

create employee 3 39

At this point reactive processing starts. The Triggered Rules structure, empty

at transaction beginning, is updated inserting those rules and thus becoming:

Only immediate rules must be considered, therefore the only rule which can be

selected for execution is . Its condition is evaluated, accessing the database,

but the evaluation fails. The entry corresponding to rule in the Triggered

Rules data structure is updated setting its �eld to and its

�eld to , then reactive processing stops.

The second transaction line is then executed,the database relation for class

becomes:

while the Occurred Events structure becomes:

and the entries of the Event Tree index are updated as follows:
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Flag TimeStamp

Event Tree

Triggered Rules

Employee

1 3

create(employee)

R1 R3 R2

R1 R2

R1 R2

R1 R1

R1

OFF 3

R1

R1

employee

EventType TimeStamp RuleList

RuleId TimeStamp Priority Processing Consumption Flag

Oid Name Salary Manager

create(employee) 3 R1, R3

modify(employee,salary) 0 R1

query(employee,salary) 2 R2

R1 1 3 immediate consuming ON

R3 0 1 deferred consuming ON

R2 0 2 immediate consuming ON

14 John Smith 37000 null

39 Paul Young 37000 14

Note that events timestamped by and are linked, since they form the

list of events of type occurred since the beginning of the

transaction. Finally, rules , and are returned to the Trigger Support.

At this point another transaction line has been executed and reactive process-

ing starts. The Triggered Rules structure is updated as follows:

i.e., rule is retriggered, while rule is triggered for the �rst time in the

transaction.

Only immediate rules must be considered, so rules and can be selected

for execution. Rule has greater priority and therefore it is selected. Rule

condition is evaluated and the entry corresponding to in the Triggered Rules

structure is updated setting to its �eld and to its ,

i.e., rule is detriggered.

Rule condition holds, so its action is executed, modifying the employee

salary. The database relation for class is updated as follows:
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old

Employee Log

Triggered Rules

Triggered Rules

Operation Class At-

tribute TimeStamp Oid

EventType

TimeStamp

Flag TimeStamp

employee

employee R2

modify employee

salary 4 39

modify(employee,salary)

4 R1

R1

OFF

4

R1 R2

Oid Name Salary Manager TimeStamp

RuleId TimeStamp Priority Processing Consumption Flag

RuleId TimeStamp Priority Processing Consumption Flag

39 Paul Young 45000 14 4

R1 3 3 immediate consuming ON

R3 0 1 deferred consuming ON

R2 0 2 immediate consuming ON

R1 4 3 immediate consuming OFF

R3 0 1 deferred consuming ON

R2 4 2 immediate consuming OFF

Moreover the Log for class is �lled in the following way (we recall

that class requires logging since rule makes use in its condition

of an predicate on an attribute of that class).

Moreover, a tuple with = , = ,

= , = and = is added to the Occurred

Events structure, the entry for = in

the Event Tree is updated setting the to and rule is returned

to the Trigger Support.

The Triggered Rules structure is updated as follows:

Rule is selected again, its condition is evaluated, and its tuple in the Trig-

gered Rules structure gets its �eld to and its �eld to

.

condition does not hold, thus rule is selected for execution and its

condition evaluated. The Triggered Rules structure becomes:
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Triggered Rules

7 Comparisons with other Active System Implementations

RuleId TimeStamp Priority Processing Consumption Flag

R1 4 3 immediate consuming OFF

R3 4 1 deferred consuming OFF

R2 4 2 immediate consuming OFF

occurred(query(salary),X)

X = 14 old(14.salary

0 R2

R2

14

salary 37000

commit

R3

holds(create,X)

0

R3

X = 14 X = 39 14 salary 37000 39

salary 37000

In evaluating the condition, is evaluated on Oc-

curred Events and produces the binding . The predicate )

is thus evaluated on the state with timestamp = (which corresponds to

in
ection point; rule is indeed being considered for the �rst time in the

transaction). Object has not been modi�ed during the transaction. There-

fore, its old state coincides with the current one, and the value for the attribute

is . Thus, the condition does not hold.

No immediate rules are now triggered. Therefore reactive processing stops and

is executed. Reactive processing is activated again and all rules are

to be considered. The only triggered rule is so it is selected and its condi-

tion evaluated. The predicate is evaluated on the Occurred

Events structure, considering all events having a timestamp greater than

(which is the timestamp of in
ection point). The evaluation produces the

bindings and . Object has = and object

has = , thus condition evaluation fails. The Triggered Rules

structure is updated as follows:

There are no more triggered rules, thus reactive processing stops. The Oc-

curred Events, Triggered Rules and Logs structures are emptied.

In this section we compare the described implementation for Chimera ac-

tive rules with the implementation of reactive features in well-known active

database systems (for a comparison among some of these systems see [0]).

Most of the active database systems implemented are based on the relational

model. Thus, we �rst consider implementations of relational active database

systems. The rule systems considered are Starbust [0], Postgres [0] and Ariel

[0]. Our comparison can only be \parametric" with respect to the data model

since it takes into account the di�erences among the rule languages. Then we
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7.1 Relational Active System Implementations

consider object-oriented active database systems. The systems considered are

Ode [0], NAOS [0], TriGS [0], REACH [0], Sentinel[0].

Starbust rule system supports only deferred consuming rules with net e�ect

computation. Rule language allows to refer to transition tables, which main-

tain tuples inserted, deleted or updated during the transaction. Such tables

do not maintain the complete history of the transaction, but only its net ef-

fect. Like in Chimera, rules are related to their last consideration time. The

transition tables of each rule consider the operations of the transaction that

are subsequent to the last rule consideration. Note that net e�ect in Starbust

is quite di�erent from the one of Chimera. Starbust net e�ect indeed a�ects

the triggering of rules, while Chimera one only a�ects the bindings returned

from event formulas in rule conditions. Starbust implementation is based on a

Transition log, which records all the operations occurred during the transac-

tion that are relevant to rules. This structure is used for net e�ect computation

and to build transition tables for each rules.

The main di�erences between Chimera and Starbust architectures are con-

cerned with events and log handling. A �rst di�erence relies in the decoupling

of the information that Starbust stores in the Transition Log in two Chimera

structures, i.e. the event base and the logs. This decoupling is motivated by

several reasons. First of all, in Chimera the event base (Occurred Events)

stores only the object identi�ers of the objects involved in the event (event

instances), not the entire state. Past object states are saved, only if they may

be accessed through an old predicate, in the appropriate log. Thus, Chimera

allows a more compact technique to store information, due to OID exploita-

tion. Note however that Starbust consider a static analysis technique of rules

to detect what to store in Transition Log (deduced from triggering events and

transition table references). In Chimera, by contrast, we store in logs only

necessary states, but all events are stored in the event base. This is due to the

fact that event formulas are not restricted to triggering events. However, we

are currently investigating the possible bene�ts of storing only the potentially

relevant events. The choice of relevant events can be done through static anal-

ysis. In Starbust the Transition Log is used both to determine the triggered

rules and to build the transition tables. The �rst operation is performed in

Chimera on the event base. In Chimera this operation is much simpler and

is performed very e�ciently by making use of the event tree. By contrast, in

Starbust one must deduce from the Transition Log if there is an event which

is relevant for the rule, which has not yet been consumed and whose e�ect has

not been invalidated by another event. In Starbust transition tables are built

from the Transition Log at run-time, extracting a tuple at a time, and com-
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puting the net e�ects of operations performed after the last rule consideration.

By contrast, in Chimera old predicates are evaluated by simply searching a

tuple in the appropriate log.

Postgres rule system is tuple-oriented instead of set-oriented as Chimera and

Starbust. Rules are all (super)immediate, that is, after each single operation

rules are activated. Rules are all consuming (each rule considers all events a

single time) and obviously no net e�ect is performed. There is no parameter

passing between condition and action (they are always executed on a single

tuple at a time), but each time an individual tuple is accessed, updated, in-

serted or deleted a CURRENT tuple and a NEW tuple are present in the

system, thus it is possible to refer to them in the condition (which is evalu-

ated on the CURRENT tuple). In Postgres two alternative implementations of

rules are provided: tuple-level marking and query rewriting. The idea behind

marking is to place markers on all tuples for which rules apply; if a marker

is encountered during execution then the rule processor is called. Markers

must be maintained through modi�cations. By contrast, query rewriting is a

static rewriting of queries to keep into account rule activations caused by the

query; a query is then transformed in a set of queries by means of a rewriting

algorithm. Both these approaches are heavily di�erent from Chimera imple-

mentation, because of the deep di�erences between the languages.

In Ariel implementation the emphasis is placed on e�cient testing of rule

conditions. Ariel rule language is characterized by an optional event speci�ca-

tion, that is, Ariel supports both event based and pattern based conditions.

In Ariel a notion of transition is de�ned, where a transition is a sequence of

operations enclosed in a do-end block. Rules are all activated at the end of

each block, and net e�ect of events is always performed. It is allowed in rule

condition to refer to the state prior the transition start (thus the previous

state is �xed for all rules). Being the speci�cation of events optional, Ariel

provides an e�cient evaluation of pattern based conditions. This evaluation

is handled using a discrimination network. Also event detection is performed

on this network. In Ariel the Chimera distinct phases of verifying if a rule is

triggered and evaluating a rule condition are thus merged in a single

phase; Chimera event handling and triggered rule handling mechanisms have

therefore no equivalent in Ariel implementation. Chimera does not exploit

discrimination networks. However, the determination of the triggered rules is

a very fast operation, thanks to the event tree structure. The evaluation of

event formulas in rule condition is very fast, too. Event formulas may in some

cases be produced automatically from events and class formulas in order to

optimize the evaluation of conditions, the early evaluation of event formulas

indeed restrict the number of instances on which the condition must be evalu-

ated. Moreover, thanks to the set-oriented nature of active rules, optimization

techniques for the condition part of rules are identical to those used for the

query primitive.

30



6

6

true false

7.2 Object-Oriented active System Implementations

mask

Snoop

Note that there is a substantial di�erence between Ode rule language and

Chimera rule language: in Chimera, once a rule has been triggered, it is executed

once, no matter how many triggering events have occurred. This is due to the set-

oriented nature of Chimera.

Coming to active object-oriented database systems implementations, the em-

phasis in most of them is placed on e�cient event composition. In particular,

in Ode [0] composite events are detected by means of extended �nite state

machines, in Sentinel [0] event graphs are exploited, and in SAMOS [0] they

make use of Petri nets, while REACH [0] detects composite events in parallel

with the normal application 
ow.

Ode [0,0] is an active object-oriented database system developed at AT&T Bell

Labs. Ode supports instance-oriented triggers based in the E-A paradigm, in

which the condition can be (optionally) speci�ed as a in the composite

event. Moreover, it supports a powerful language for composing events [0].

In Ode implementation [0] event expressions are compiled into �nite state

machines (FSMs). FMSs are extended to handle masks by using mask states

which evaluate predicates to produce the pseudo-events and . Event

posting is achieved by rewriting invocations of methods that have associated

events (through the use of wrapper functions). The run-time trigger informa-

tion are stored in a persistent data structure (events from di�erent transactions

can be composed). For each trigger and for each object the trigger was acti-

vated for the current state of the trigger FSM is stored. Moreover, an index

is kept that maps an object to all the triggers active on that object (that index

is used when posting events).

Sentinel [0] is an active OODBMS being developed at University of Florida in a

follow-on project to HiPAC. Sentinel supports an expressive event speci�cation

language (called [0,0]). Sentinel has been implemented [0] by extending

the Open OODB object-oriented DBMS. The implementation of an e�cient

mechanism for composite event detection is the main concern of that project.

In Sentinel, primitive events are signaled by adding a notify procedure call in

the wrapper method; event parameters are also collected at that stage. Each

application has a local composite event detector, to which all primitive events

are signaled. Composite events are detected by making use of an event graph

[0]. Events are composed only within transactions. The overall architecture

of Ode and Sentinel is quite similar. Both use a pre-processor to modify the

user code to post events, and both support a similar set of composite events.

However, Sentinel currently supports only local composite events, while Ode

supports global composite events (composite events whose constituent basic

events may span more than one application and more than one transaction).
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Thus, in Ode they store the trigger state in the database, while in Sentinel

they store the corresponding structures in transient program memory.

Like Sentinel, the REACH project [0] is a follow-on project to HiPAC. The

goal of that project is to develop an active object system that provides a

mediation framework for heterogeneous data repositories. The REACH sys-

tem is implemented [0] on top of the Open OODB commercial object-oriented

DBMS. The goal of that implementation is to detect composite events in

parallel with the normal application 
ow, while in the previously described

approaches event posting is combined with composite event detection. How-

ever, they have been forced to some restrictions: composite events cannot be

used in triggers that must be executed immediately after the composite event

occurs. All the systems examined till now are focused on e�cient composite

event detection and are thus not easily comparable to Chimera, which, in its

current version, only supports primitive events. An extension of Chimera to

support composite events is presented in [0]. In that work, it is shown how

the architecture described in this paper can be easily extended to support

composite event detection.

TriGS [0] is an active object system proposing an event speci�cation mecha-

nism not only for de�ning the points in time for rule triggering, but also the

points in time for condition evaluation and action execution. TriGS has been

implemented on top of the commercial OODBMS GemStone. Referring to the

classi�cation of alternative architectures for active database systems proposed

by [0] TriGS is based on a layered architecture, while all the other active

object-oriented systems we consider here are based on an integrated architec-

ture. In the TriGS architecture there are four main components: the event

detector (which detects and signals events), the rule scheduler (which deter-

mines and schedules for execution triggered rules), the condition evaluator and

the action executor. Events are generated (as in Ode and in Sentinel) by using

method wrappers. In TriGS, they store a rule base indexed on the trigger-

ing event. This allows a fast determination of the triggered rules, comparable

to the one obtained in Chimera by using the event tree structure. Finally, in

TriGS an auxiliary structure is supported to allow for method overriding, with

a trigger lookup mechanism. We remark, indeed, that TriGS is the only active

object-oriented system supporting rule overriding. Currently, rule overriding

is not supported in Chimera. However, a proposal for adding rule overriding

to Chimera is described in [0]. That work also sketches how the architecture

described in this paper should be modi�ed if trigger overriding were supported.

NAOS [0] integrates active rules in the O object-oriented database system.

Two kinds of rules are considered: immediate rules which have an instance-

oriented semantics and deferred rules which have a set-oriented semantics. Im-

mediate and deferred rules have di�erent execution cycles. Each rule execution

is associated with a delta structure containing data related to the triggering
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8 Conclusions

operation. For deferred rules, both in determining which rules have to be ex-

ecuted and in building the corresponding delta structures, the net e�ect of

the sequence of operations constituting the triggering transaction is consid-

ered. The net e�ect in NAOS is thus analogous to Starbust one, that, unlike

Chimera one, may result in detriggering of rules. NAOS has been implemented

by extending the O system. Rule compilation results in O C methods for rule

condition and action and in an O object which stores the static features of

rules. These objects are stored in persistent O lists, ordered by priority of the

corresponding rules. Thus, with the use of clusters and indexes, rules can be

e�ciently selected. Moreover, to minimize the accesses to the object manager,

a C++ snapshot of rule de�nitions is maintained, too. That snapshot has

the same role of the partial duplication of rule static information we have in

Chimera Triggered Rules structure. A subscription mechanism is employed to

detect only events relevant for the rules in the schema. As discussed in Section

4 that approach would be much more complicated in Chimera, since Chimera

permits the use of event formulas on any arbitrary event, without restricting

event formulas to triggering events. In NAOS, to get an e�cient selection of

the triggered rules a hierarchy of event types is maintained, such that in each

object representing an event type there is an ordered list of rules which can

be triggered by this event type (that is, rules are indexed on the triggering

event). That structure has the same role of Chimera event tree.

In this paper we have described an implementation of Chimera active rules.

The Chimera prototype based on the described architecture has been com-

pleted. The implementation is quite complex because of the richness of the

Chimera active rule language which supports the speci�cation of di�erent rule

semantics with respect to rule processing mode, consumption and composi-

tion of events. However, we have shown that the proposed implementation

handles in a very simple way such a complex language. This simplicity mainly

comes from the introduction of an explicit event base, synchronized with other

structures by means of the timestamping mechanism. Moreover, the proposed

architecture has a number of advantages, including its easy extensibility for

concurrent transaction processing, the possibility of explanation support, para-

metricity with respect to di�erent rule semantics. In particular, concurrent

transactions can be handled by our architecture provided that a global times-

tamping mechanism can be supported [0]. Explanation support is obtained

thanks to the presence of an explicit event base and to the timestamping

mechanism which relates event occurrence and consequent rule activations.

Finally, parametricity has been obtained because of the very rich nature of

the Chimera language, that forced us to design an architecture suitable to
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