
ArHex: Flexible Composition of Indexes and Similarity Measures for XML

Ismael Sanz, Rafael Berlanga
Universitat Jaume I, Spain
{isanz,berlanga}@uji.es

Marco Mesiti
Università di Milano, Italy

mesiti@dico.unimi.it

Giovanna Guerrini
Università di Genova, Italy

guerrini@disi.unige.it

Abstract

This work-in-progress paper describes the architec-
ture of the ArHeX similarity-oriented XML processing
toolkit [10]. ArHeX is designed to assist in the engineer-
ing of XML similarity-oriented applications, supporting the
design and evaluation of suitable similarity measures and
their associated indexes for a particular application.

1. Introduction

There are many XML database applications that require
some notions of similarity. For example, in the integration
and merging of highly heterogeneous XML databases, in
which there is no common schema, exact approaches are
impractical due to the great (and unpredictable) structural
variations of the diverse sources. Therefore, similarity mea-
sures are required to identify similar information modelled
using different structures or terminologies. Moreover, in
systems handling objects with complex structures (e.g. pro-
tein data, music retrieval systems, or shape databases) there
is a fundamental need of identify similar objects according a
similarity function. These applications usually require care-
fully tailored similarity functions that consider both struc-
ture variations and vocabulary discrepancies occurring in
the collection of documents.

A crucial design issue in the development of these kinds
of similarity-based systems is that a single notion of simi-
larity that “works best” in any situation does not exist. Dif-
ferent users in different contexts may require different sim-
ilarity functions; for instance, a biologist may wish to re-
trieve proteins based on a comparison with a given amino
acid sequence, while another one may issue a query asking
for “malaria antigen” in the associated textual description,
and a third user might combine both kinds of queries. This
leads to the notion ofmulti-similaritysystems [1], which are
designed to support multiple notions of similarity simulta-
neously. These systems require the possibility to combine
different similarity measures depending on the characteris-
tics of the data that need to be handled, coupled with specifi-

cally tailored indexing structures that take the heterogenous
nature of the data into account.

This latter aspect is crucial when handling heterogenous
collections of XML documents because heterogeneity can
occur at many different levels – from changes in the vocabu-
lary used in the tag names to complex document-wide struc-
tural variations. Moreover, retrieval should be performed
efficiently. Thus, similarity measures should be coupled
with specifically tailored indexing structures for their effi-
cient computation. Current proposals in the XML context
[6] are usually tailored for a particular application and are
hardly reusable in other domains.

Starting from these requirements, we are developing the
ArHeX similarity-oriented XML processing toolkit. Key
features of ArHeX are:(i) its ability to support collec-
tions which are heterogeneous at multiple levels of gran-
ularity, (ii) its flexible pattern-based query model, and(iii)
its component-based architecture. These features allow
ArHeX to support multiple user-defined similarity measures
on top of efficient indexes. The following section describes
the features of ArHeX and the techniques it employs.

2 Measure Definition and Composition

A wide variety of similarity measures, both general pur-
pose and specifically tailored, has been proposed for XML
[6] that produces good results in a specific kind of col-
lection. General purpose measures include metric func-
tions such as the Manhattan or Euclidean distances; IR-
like matching coefficients such as the cosine withtf × idf
weighting; entropy-based measures such as the Kullback-
Leibler divergence; and structure-oriented techniques such
as variants of the Tree Edit Distance algorithm. Specific tai-
lored measures include [dire quali sono le misure specifiche
per XML + Xdiff + altri].

These similarity measures are usually obtained through
the composition of several “atomic” measures at a given
granularity levelof the XML hierarchy; for instance, a mea-
sure for complete XML documents is defined by evaluating
the similarity of paths, which in turn requires some criterion
to compare the elements contained in the path. The follow-

1

ing levels can be devised: the whole XML document, sub-
trees (i.e., portions of documents), paths, elements, links,
attributes and textual content (of attributes and data content
elements).

This indicates that it is possible to build frameworks for
the implementation of complex XML similarity measures,
based on a library of basic component functions (imple-
menting the atomic measures). This does not exclude the
employment of ad-hoc measures if necessary. For example,
the designer of a similarity-based application in the domain
of genetics may need to combine a generic text-oriented
function that matches protein names with a highly special-
ized function that matches amino acid sequences.

We have thus defined a formal framework for the defin-
ition and composition of similarity measures relying on the
granularity levels of documents and then specified software
components implementing such functions that can be com-
bined to obtain new measures specific for a given context.

A Formal Specification of Similarity Measures. Let
DOC be a set of XML documents, andG = {DOC,
ELEMENT, ATTRIBUTE, PATH, TREE, CONTENT, LINK }
the granularity levels at which documents inDOC can be
compared. Given a granularity levelγ ∈ G, a mapping
functionmγ can be defined for extracting from a collection
C ⊆ DOC the portions of documents at that granularity
level. For example, the mapping functionsmELEMENT

andmPATH applied on a collectionC ⊆ DOC return the
set of elements (denotedmELEMENT(C)) and paths (denoted
mPATH(C)) occurring inC, respectively. A partial order re-
lation≺G between granularity levels ofG can be defined,
representing the containment relationship between granu-
larity levels; it can be read as “is lower-level than”. For in-
stance,ELEMENT ≺G PATH because the paths inmPATH(C)
are defined in terms of elements inmELEMENT(C).

A similarity measure at a given granularity levelγ can be
defined as a functionfγ : mγ(C)×mγ(C) → [0, 1]. Given
two similarity functionsfγ1andfγ2 , fγ2 may be expressed
in terms offγ1 if γ1 ≺G γ2. For example, an instance of
similarity function for XML paths is

fPATH(p1,p2) =

∑
i,j

fELEMENT (ei, ej)

|p1||p2|

where in the simplest casefELEMENT (ei, ej) = 1 if ei =
ej and 0 otherwise, and|p| denotes the length of pathp.

Measures as Components. In ArHeX, a measure com-
ponent is an implementation of a similarity function at a
given granularity level. According to the definitions above,
a component can depend on one or more lower-level func-
tions, but it is irrelevantwhichconcrete lower-level function
is used, as long as it belongs to the right granularity level.

In addition, every component can be parameterized; for in-
stance, a component that computes similarity at the textual
level may allow the user to choose whether common words
(“stop words”) must be considered.

Using this framework, a large number of functions with
different requirements can be defined for each granular-
ity level. In order to characterize them the partial order-
ing of levels≺G is extended into aprovides/requires hi-
erarchy typically used in software component engineer-
ing [9]. Each measure component is thus tagged with
two extra properties, whose values are chosen from a
predefined set offeatures: the provides property indi-
cates the granularity level1 at which the function operates
(e.g., all node-level functions provide the featurenode-
Match), while the requiresproperty indicates the features
that must be provided by the lower-level functions on
which the function relies. For instance, letCPATH be
a component that implements thefPATH function de-
fined above. Then,provides(CPATH) = {pathMatch}
and requires(CPATH) = {elementMatch}. For the
component to be usable, another component that provides
elementMatch must be available.

The provides/requires hierarchy separates the represen-
tation of the components from the actual similarity function
implemented. This allows us to implement components for
generic operations (usually called “tie components” [9]) by
computing an aggregated value out of the results of other
components. For instance, consider the “weighted sum” tie
componentCWSUM , that can be defined for a set ofn com-
ponents{Ci, . . . , Cn} at the same granularity levelγ and a
set ofn weights{w1 . . . wn|wi ∈ IR}:

parameters(CWSUM) = {{C1 . . . Cn}, {w1 . . . wn}}
provides(CWSUM) =

⋂
i provides(Ci)

requires(CWSUM) =
⋃

i requires(Ci)
fCW SUM

: G×G → [0, 1]

fCW SUM
(o1,, o2) =

∑
i

wi × fCi
(o1, o2)

***marco: ismael controlli le formule messe sopra?? Mi
sarei aspettato che voglio definire una funzione a livello di
path e utilizzo funzioni di similarita’ a livello di element
per cui il require di PATH dovrebbe essere uguale (o con-
tenuto) nel provide di ELEMENT (o viceversa). Ma credo
di sbagliare io da qualche parte.... ***

Fig. 1 shows an instantiation of a multilevel similarity
measure that usesWeightedSum, the ArHeX implementa-
tion of CWSUM . It combines components at the node, la-
bel, and text granularity levels. Note how the components

1marco: mi sembra di capire che il concetto di "granularity level" che
c’e’ qui e’ un po’ diverso da quello presentato prima sulla struttura dei
documenti XML. E’ giusto? Se si bisogna specificare un po’ di piu’ come
e’ fatta questa granularita’.

2

at the node similarity level are computed using a weighted
sum. Edge labels represent the requires/provides hierarchy.
*** mettere maggiori dettagli sulla figura ***

Fig. 1. Component structure of a similarity measure

A Formal Model of Components. We have just shown
how to create components that can be glued together to form
flexible similarity measures. However, the data engineer
needs to answer higher-level questions. For instance: given
a particular component, which other components are avail-
able to fulfill its requirements? Or, is this component sound
(i.e. all of its requirements are correctly fulfilled)? This
is particularly important in collaborative methodologies, in
which sharing components among independently-working
engineers is crucial.

Our approach is to encapsulate all of the required con-
sistency rules in a declarative formalism, using a suitable
Description Logic (DL). DLs provide a set of reasoning
tasks (subsumption, instance checking, relation checking,
concept consistency and knowledge base consistency) ex-
ploited in our context to automate many of the tasks that
must be performed by the data engineer when designing a
multi-similarity system. In addition, sufficiently expressive
DLs provide “inverse functional” roles, which are exactly
equivalent to candidate keys in a database. This is useful

to support the semi-automatic specification of indexes as a
combination of index components.

The mapping between the model previously outlined and
a DL-based representation is straightforward. The rules (A-
Box in DL parlance) can be expressed in terms of the con-
ceptsComponentandFeature, and the rolesprovidesand
requires. The terminological knowledge (T-Box) reflects the
current state of the system. An example of an instance of
RegionEvaluatorComponent used in Fig. 1 is:

RegionEvaluator :Component

(RegionEvaluator, regionMatch) :provides

(RegionEvaluator, nodeMatch) :requires

Complex concepts and terminological rules are built on
top of these instances. For example, the set of all compo-
nents at the “region” granularity level is expressed as

RegionEvaluatorComponent
.=

Component u ∃provides.regionMatch

The DL reasoner automatically classifies the
RegionEvaluator component as an instance of
RegionEvaluatorComponent. Similar rules can be
defined for consistency checking as outlined above.

3 Index Composition

Composition-based system have already been applied in
the context of schema matching (e.g. COMA++ [4]) How-
ever, a purely functional approach where components oper-
ate directly over the actual data is clearly not appropriate in
our large-scale Web data context. To compute these func-
tions efficiently, it is necessary to exploit suitable indexes
on the base XML data. For instance, consider a measure
component for word similarity that usestf × idf weights.
The only way to compute such a measure efficiently in a
large collection is to add the global frequency of each word
to the index information. In ArHeX, this index informa-
tion is calledindex components. ArHeX indexes are built
as a composition of a base XML index plus a set of such
components. This leads us to a second feature-based pro-
vides/requires hierarchy that associates measures to index
components.

*** fare un esempio rispetto a figura 1 ***

4 Issues in Query Processing

The dual hierarchy *** specificare *** leads naturally
to two levels of algebraic optimization. First, note that the
tree obtained by the composition of measure components

3

is just a variant of an expression tree, and therefore famil-
iar expression optimization techniques adapted from com-
piler technology, such as common subexpression elimina-
tion, can be applied on it. Then, using the mapping of mea-
sure components to index components, the resulting expres-
sion is translated to a physical algebra, on which cost-based
optimizations can be performed to obtain an execution plan.

Our flexible measure definition model seems naturally
fitted to a top-k query processor. There has been a lot
of recent work describing approaches for optimizing top-
k queries in an XML context; see for example [7, 8, 11].
Many of these approaches use variants of Fagin’s thresh-
old algorithm, which is suitable for monotonic aggregation
functions [5]. In our context, however, there is no guaran-
tee that the user-defined functions will have this property;
even a simple case like a weighted sum with negative coef-
ficients (used, for example, to penalize certain features) is
non-monotonic.

We are currently evaluating techniques to perform ap-
proximate top-k queries in the presence of non-monotonic
aggregation functions. To avoid evaluating all candidate re-
sults, we are studying sampling techniques to find promis-
ing subsets of the collection in which “good” results are
more probable. Analogous techniques have been used for
related problems in different contexts; see e.g. [2]. Our pre-
liminary experiments show promising results, but many is-
sues still remain open.

5 Summary

In this work-in-progress paper we have addressed the
ArHeX approach to multi-similarity systems. ArHeX sup-
ports a flexible, component-oriented way to define mea-
sures, and Description Logic-based metadata facilities that
help support multiple measures simultaneously. We also
raise the open problem of efficiently evaluating top-k
queries in non-monotonic aggregation functions, of prac-
tical importance in our context.

References

[1] S. Adalı, P. Bonatti, M. L. Sapino, and V. S. Subrah-
manian. A multi-similarity algebra.SIGMOD, 402–
413, 1998.

[2] D. Berleant, L. Xie, and J. Zhang. Statool: A
tool for distribution envelope determination (DEnv),
an interval-based algorithm for arithmetic on random
variables.Reliable Computing, 9(2):91–108, 2003.

[3] T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis. A
methodology for clustering XML documents by struc-
ture. Information Systems, 31(3):187–228, 2006.

[4] H. H. Do and E. Rahm. COMA - A System for Flex-
ible Combination of Schema Matching Approaches.
VLDB, 610–621, 2002.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal Aggre-
gation Algorithms for Middleware.J. Computer and
System Sciences, 66:614–656, 2003.

[6] G. Guerrini, M. Mesiti, and I. Sanz. An Overview of
Similarity Measures for Clustering XML Documents.
Web Data Management Practices: Emerging Tech-
niques and Technologies, 56–78. Idea Group, 2006.

[7] R. Kaushik, R. Krishnamurthy, J. Naughton, and
R. Ramakrishnan. On the integration of structure in-
dexes and inverted lists.SIGMOD, 779-790, 2004.

[8] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivas-
tava. Adaptive Processing of Top-k Queries in XML.
ICDE, 162–173, 2005.

[9] F. Plasil and S. Visnovsky. Behavior Protocols for
Software Components. IEEE Trans. Softw. Eng.,
28(11):1056–1076, 2002.

[10] I. Sanz, M. Mesiti, G. Guerrini, and R. Berlanga.
ArHeX: An approximate Retrieval System for Highly
Heterogeneous XML Document Collections. Demo at
EDBT, LNCS(3896), 1186–1189, 2006.

[11] M. Theobald, G. Weikum, and R. Schenkel. Top-
k Query Evaluation with Probabilistic Guarantees.
VLDB, 648–659, 2004.

4

