DiX eminator: a Profile-based Selective Dissemination
System for XML Documents

1

Elisa Bertino' Giovanna Guerrini® Marco Mesiti®

1" Computer Sciences Department
Purdue University, USA
bertino@cs.purdue.edu
2 Dipartimento di Informatica
Universita di Pisa, Italy
guerrini@disi.unige.it
3 Dipartimento di Informatica e Comunicazione
Universita degli Studi di Milano, Italy
mesiti@dico.unimi.it

Abstract. Current approaches for the selective dissemination of XML docu-
ments are not suitable for an automatic adaptation of user profiles to her cur-
rent preferences because either they rely on user preferences specified by filling
up forms or they require to process a high number of documents. In this paper
we present the architecture of DiX'eminator, a selective dissemination system for
XML documents based on profiles. Profiles, represented through XML Schema,
concisely represent the kind of documents a user subscribing the service is inter-
ested in. Profiles are used for filtering out irrelevant documents relying on user
preferences. Moreover, profiles are kept up to date taking into account the docu-
ments the user effectively accesses or refuses.

1 Introduction

As the amount of XML data available on the Web and the number of pervasive appli-
cations making use of these data increase, systems that support selective dissemination
of information (SDI systems) are more and more popular [1,4, 8, 10, 13]. A selective
dissemination system manages user profiles as well as streams of incoming documents.
For each incoming document, the system searches for the set of user profiles that match
it in order to identify the users to whom the document should be broadcasted. Users
can set their preferences when they connect the first time to the system (by filling up a
form) or the preferences can be dynamically discovered by monitoring the documents
users frequently access. A key capability of an SDI system is the effective filtering of
a continuous stream of XML documents according to user preferences. Another key
capability is the adaptability of user profiles to new preferences. It is not reasonable,
indeed, to assume that user preferences do not change.

In this paper we present the architecture of DiXeminator, a selective dissemination
system for XML documents based on user profiles. Our system receives a continuous
stream of XML documents and, by matching them against the user profiles, filters out
the users that are not interested in the documents. Then, documents are broadcasted only

to interested users. Moreover, the system collects user feedbacks to keep the profiles up
to date.

A key characteristic of DiXeminator is that user profiles are modeled as XML
Schemas [12]. By means of an XML Schema it is possible to concisely represent the set
of documents relevant for a user. A document, which is valid with respect to the XML
Schema, perfectly adheres to the conditions the user specifies to select the documents
she is interested in. Moreover, a user profile can specify constraints on the values of
data content elements. Since users can be interested in documents of different types,
a user profile is often specified as a set of subschemas, each one of them representing
a type of documents. Figure 1 reports an example of profile. The profile contains two
subschema. The first one represents documents dealing with books, whereas the second
one represents documents containing Sigmod record publications.

The user profile can initially be specified by the user or automatically inferred from
documents the user previously deemed valuable, by means of document clustering and
schema extraction techniques [7, 10]. Actually, the two approaches can be combined
in order to obtain more coincise representations. Schema extraction techniques can
be adopted to identify patterns/templates of documents and clustering techniques can
be employed to group together similar patterns/templates. Finally, from each group an
XML Schema can be determined that concisely represents the documents from which
it has been extracted.

Incoming streams of documents are matched against the user profiles in order to
establish the users to whom the documents should be broadcasted. Whenever a user
accepts the document, because she locally stores the received document or sends a pos-
itive feedback to DiXeminator, or rejects it, because she discards the received document
or sends a negative feedback, structural and content information are extracted from the
document and exploited for enhancing the user profile. Moreover, DiX eminator moni-
tors the Web navigation of its users in order to determine the new kinds of documents
they are interested in. This information, gathered by the user feedbacks and the moni-
tors, is used for updating the user profiles accordingly.

The presence of a huge amount of users, together with a high number of kinds of
documents they could be interested in, introduces however scalability issues. Therefore,
a mechanism for grouping together users interested in the same kind of documents is
required along with query capabilities for efficiently selecting only the user profiles that
can effectively match the document to be broadcasted. DiXeminator addresses these
issues by introducing the concept of profile types and their hierarchical organization that
allows us to easily identify the users that are interested in the same sets of documents.

DiXeminator takes advantage of previous work we have carried out for estimating
the structural similarity between an XML document and a DTD [2]. The measure is
employed for computing the degree of relevance of the document with respect to the
DTD. Moreover, it takes also advantage of our work on the evolution of DTD structure
relying on documents classified against it [3, 5]. DiXeminator takes finally advantage
of other approaches developed for the selective dissemination of text documents [1, 4,
8, 10, 13]. The most similar approach is the one proposed by Stanoi et al. [10]. Such an
approach integrates profile inference with data dissemination and exploits the structured
content of XML documents. Profiles are inferred by clustering documents previously

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="BookStore">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Book" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Title" type="xsd:string"/>
<xsd:element name="Author" type="myAuthor" maxOccurs="5"/>
<xsd:element name="Date" type="xsd:string"/>
<xsd:element name="ISBN" type="xsd:string"/>
<xsd:element name="Publisher" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="SigmodRecord">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="issue" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType> <xsd:sequence>
<xsd:element name="volume" type="xsd:string"/>
<xsd:element name="number" type="xsd:string"/>
<xsd:element name="article" maxOccurs="unbounded">
<xsd:complexType> <xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="initPage" type="xsd:string"/>
<xsd:element name="lastPage" type="xsd:string"/>
</xsd:sequence> </xsd:complexType>
</xsd:element>
</xsd:sequence> </xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:simpleType name="myAthor">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="Serge Abiteboul"/>
<xsd:enumeration value="Stefano Ceri"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

Figure 1: An example of profile

deemed valuable by the user according to a similarity measure that takes into account
document structure. However, the similarity is accepted and measured at nodes, and
then weights combined taking the structure into account. The document structures are
required to coincide exactly, and no partial structural matches are allowed. By contrast,
our approach uses an intensional representation of the documents the user is interested
in. Moreover, it supports both approximate structural and content matches, and uses a
hierarchy of profile types in order to minimize the number of matches to be executed.

The remainder of this paper is organized as follows. Next section introduces the
representation of documents, profiles and profile types. Section 3 deals with the main
components of the architecture of DiX'eminator. Section 4 concludes the paper and
outlines future research directions.

2 Documents, Profiles and Profile Types

In this section we briefly discuss our tree representation for documents and profiles.
Then, we introduce profile types and their hierarchical organization. This hierarchical
organization is really relevant in order to face the scalability issues of Dix’eminator.

2.1 Documents and Profiles

Documents and profiles are represented as labeled trees. The tree representation is ex-
ploited when matching a document against a profile and for the evolution of profile
structures. Formal definitions and properties of this representation can be found in [2,
5]. In the tree representation of a document, internal nodes represent elements, whereas
leaves represent data content elements.

Figure 1 shows an example of profile. Note that, the profile contains the specifica-
tion of two kinds of documents: bookStore and SigmodRecord documents. In the
tree representation of a profile, internal nodes represent either element types, operators
used for binding together elements (sequence, all, choice, ecc..) or operators specify-
ing whether elements or groups of elements are optional or repeatable. Specifically, the
operators that can be used for labeling internal nodes of a profile are {AND, ALL, OR,
[n, m] }. The AND operator represents a sequence of elements, the ALL operator repre-
sents a set of elements for which the order is not relevant, the OR operator represents an
alternative of elements (exactly one of the alternatives must be selected). The notation
[n, m] is used for representing the number of repetitions or the optionality of elements.
In particular, [0, 1] denotes optional elements, [0, n] denotes repeatable optional el-
ements, [1, n] denotes repeatable mandatory elements (that is, at least an occurrence
should be present). Leaves of a profile, by contrast, represent basic types (integer, string,
boolean,...) or specific constraints on the content of data content elements. The possibil-
ity XML Schema offers for restricting the set of valid values for data content elements
by means of facets [12] is exploited in DiX'eminator for specifying simple constraints
on the profile about the documents the user is interested in.

Example 1. Consider the profile in Figure 1. The profile specifies that the user is in-
terested in any sigmod record publication and only in the books which author is either
Serge Abiteboul or Stefano Ceri. As future work, we plan to introduce new kinds of
constraints for specifying typical information retrieval operators. A

2.2 Hierarchy of Profile Types

Consider the following situation. Two XML Schemas can be used for representing the
same kind of information but they do not have the same structure. Therefore, when
we have to broadcast a document of such a kind we need to match it against the two
schemas. Consider also the situation in which two users present a profile with the same
structure. The same degree of relevance is computed for the two users.

In order to deal with the previous situations (that is, group together XML Schemas
representing the same kind of information and apply the filtering algorithm only once on
the same profile) we introduce profile types. A profile type is a triple (id, profiles, users).

Figure 2: Hierarchy of profile types

The id component is a meta level description of the profile type. In the current stage of
development it corresponds to the name of the outermost element of an XML Schema
(e.g. BookStore, cdStore considering the profile in Figure 1).! The profiles com-
ponent is the set of profiles that belong to the same description. For example, if we wish
to model the profile type cdStore, the profile component contains the XML Schemas
that are used for modeling CDs. Finally, the users component is a set of DiX'eminator
users.

Profile types are organized in a hierarchy. Given two profile types, 71 = (idy, Py, Uy)
and Ty = (ida, Py, Us), Ty is a subtype of T, if and only if ids is considered as a more
specific meta level description of a profile type than id;, and Uy C U;. A dummy root
node, called top, is present. The set of users associated with top is the entire set of
users subscribing DiXeminator.

Example 2. Figure 2 shows an example of hierarchy. Suppose the profile in Figure 1 is
associated with user Bob. Since Bob is interested in book St ore and SigmodRecord
profile types, his identifier is contained in the corresponding nodes of the hierarchy and
in all the ancestor nodes (till the root t op). A

3 DiXeminator Architecture

Figure 3 reports the main components of the architecture of DiXeminator. Rectangles
denote the main functional components of the system, cylinders denote data stores,
thick arrows denote the profile flow. Document flow is represented by means of the big
arrow that pass through the filtering component. We remark that documents are consid-
ered only once by the filtering component. This component is in charge of determining
the users interested in a document and of extracting structural and content information
that will be exploited in the following phases of profile evolution. The information that
is exchanged among components is thus a summary of the document structure and con-
tent. This is very important because it makes the system more efficient. In the remainder
of the section we provide details of the main components of the architecture.

! In a future development the meta level description could be an RDF [11] description that allows
us to better describe profiles.

DiXeminator
Filtering Recording Check
Component |7000, | Component |Prendet
B
oo 2
o !
Profile Newprofile | Fyolution
Manager Component
Profile Type|
hierarchy

Figure 3: Architecture of DiX'eminator

3.1 Filtering Component

The filtering component is the most important component of the system because it is in
charge of processing the incoming stream of documents and of broadcasting them to the
interested users. This is the only component that works on line, thus it should perform
its tasks efficiently.

Figure 4 reports the F'ilter procedure, which is the main procedure of this compo-
nent. Given a document d this procedure selects the profiles and broadcasts them to the
interested users. Such a procedure exploits different functions. The ProfileFor function,
which belongs to the ProfileManager component, selects profiles that, once matched
against d, could return a positive degree of relevance. The function compares the tag ¢
of the root of d with the profile types contained in the hierarchy. The comparison is not
a simple syntactic match, but we consider the possibility that ¢ is syntactically (relying
on an edit distance function [9]) or semantically (relying on a Thesaurus [6]) similar
to the description of the profile type. For all the identified matches the corresponding
profiles are grouped together and returned.

The M atch function evaluates the relevance degree of document d with respect to a
profile p; (one of those profiles returned by function Pro fileFor). This function eval-
uates the degree of relevance of the document with respect to the profile by evaluating
the similarity between the two structures. The value Sp that function Match returns
is the ratio between the common features and the common and divergent features iden-
tified between the two structures. This evaluation takes into account both the level in
which the common and divergent features are detected and the possibility that tags are
syntactically or semantically similar. Details of function M atch can be found in [2, 5].

Moreover, function M atch returns the profile p; which is the profile p; with some
structural and content information extracted from d. If the degree of relevance is above

Procedure Filter(d : X M Ldocument)

begin
{p1,...,pn} =ProfileManager.ProfileFor(d);
for i = 1ton do
begin

let (Sp, p;) = Match(d, p;); /*degree of relevance of d against p;*/

if (Sp > o) begin
{u1,...,um} =ProfileManager.UserFor(p;);
broadcast(d, {w1, ..., um});
RecordingComponent.FeedBackWaitingQueue(p;);

end

end
end

Figure 4: The F'ilter procedure

the fixed threshold, it means that there are users interested in this document, otherwise
the document is discarded because it is irrelevant for the user. This threshold, which is
a number between 0 and 1, is specified by the user and indicates the strength of desired
similarity between her profile and the document to be delivered.

By means of the User F'or function, the users presenting the profile p; are detected
and the document is distributed to them. The feedbackW aitingQueue function is then
invoked on profile p;. This function inserts p; in a queue waiting for a user feedback.
The feedback along with the extracted information are used for subsequent evolutions.

3.2 Recording Component

The recording component is in charge of receiving a profile with the extracted data
from a document d and making it persistent when the user sends a positive feedback.
The profile is, thus, extended with auxiliary data structures recording the information
made persistent that will be exploited for the evolution phase. Such data structures are
associated with each node of the profile. The profile with the auxiliary data structures
is called extended profile.

In each element of the profile we store information about the elements with the
same tag found in that position in the hierarchical structure of the document. In par-
ticular, for elements that do not perfectly match the constraints imposed by the profile
specification we store the frequency of each subelement, the frequency in which group
of subelements appears together, the subelements that are not required in the profile,
and the subelement of the profile that are missing. These kinds of information will be
considered in the evolution phase to determine the new structure of the profile.

Two approaches can be followed for handling profiles and extracted data when we
are waiting for user feedbacks. First, the extracted data are made persistent immediately
and, in case of negative feedback, removed from the extended profile. Second, the pro-
file is left unchanged and when the positive feedback arrives it is made persistent. In
both cases, a queue of profiles waiting for feedbacks should be maintained. We decided
to follow the second approach because it does not require to analyze again the document
from which we extracted the information. However, we plan to experimentally validate
our choice because if negative feedbacks are rarely returned, the first approach could be
more efficient.

a
AND

a
b f 4 a b b , [0,2]
b Che C feo £ £
string string I/m l l string '
string .. string string

(a) (b) (© (d)

Figure 5: (a) Profile before evolution, (b,c) documents matched against (a), (d) Profile
after evolution

3.3 Check Component

The check component is responsible for determining whether the evolution phase should
be activated. Specifically, we decided to trigger the evolution phase for a profile when,
among the documents matched against that profile, the percentage of non relevant docu-
ments, and the percentage of non relevant elements in the documents, are above a fixed
threshold (which is initially set by the system and then tuned by user feedbacks). Thus,
we compute the sum of the percentage of non relevant elements for each document,
normalized by the number of examined documents. Let Docp be the set of all docu-
ments matched against P and 7 be a fixed activation threshold, the evolution phase for
a profile P is triggered when:

Z #{ele element in D non relevant for P}
DeDocp #{ele element in D}

#Docp

>T

3.4 Evolution Component

The evolution component is responsible for generating a new set of profiles and is able
to work at different granularities, ranging from a very coarse granularity, regenerat-
ing the whole profile, to a very fine granularity, regenerating the structure of a single
element of a subschema of a profile. Making use of the information recorded in the
recording phase, some association rules are extracted that represent relationships be-
tween presence/absence of subelements of an element. Based on such rules and on
some heuristics and parameters we have identified, the new profile is generated.

The evolve function of the evolution component is responsible for generating a new
set of profiles and works at different granularities, ranging from a very coarse granular-
ity, regenerating the whole profile, to a very fine granularity, regenerating the structure
of a single element in the profile. By making use of the information collected in the
recording phase, some association rules are extracted that represent relationships be-
tween presence/absence of subelements of an element. Based on such rules and on
some heuristics we have identified, the new profile is generated. Details of the approach
are reported in [3, 5]. The following example presents the intuition of our approach.

Example 3. Suppose the profile P in Figure 5(a) has been specified for a user and doc-
uments similar to those reported in Figure 5(b,c) have been matched against it. From
such documents the following considerations can be pointed out:

— element c in P is specified as mandatory with only one occurrence whereas in the
matched documents it can be optional (see Figure 5(c)) or can appear more than
once (see Figure 5(b));

— element f is not specified in P and when it is present it always appears twice;

— the presence of element c implies the presence of element b, the presence of ele-
ment £ implies the presence of element b, the presence of ¢ implies the absence of
element £, the presence of element £ implies the absence of element c;

— element d required in P is not present in any documents matched against it.

By means of the policies developed in [3, 5] we can conclude that: element d can be
eliminated from the specification of P; element c can be repeated an arbitrary number
of times and it is an alternative of element £ which in turn can be repeated twice.
Therefore, the new profile in Figure 5(d) is generated. A

3.5 Profile Manager

The profile manager plays a central role in our architecture. This component is in charge
of handling user information, profiles, the profile types and their hierarchical organiza-
tion. This manager directly interacts with the database management system in which
such data are stored. The profile manager should minimize the interaction with the
database management system in order to improve the performance of DiXeminator.

Whenever the filtering component requires profiles to match against an incoming
document, the profile manager has to identify the profiles that could return a positive
degree of relevance by consulting the hierarchy of profile types. Specifically, the profile
manager retrieves the profile types whose identifier match against the document root
(by means of function ProfileFor introduced in Section 3.1). This approach allows
us to filter out profile types (and thus profiles) that should not match the document with
a high degree of relevance. Moreover, by considering the hierarchical organization of
the profile types, the profile manager easily identifies only once the users to whom the
document should be broadcasted.

Another activity of the profile manager is to handle profile updates. Whenever a
profile is updated from the evolution component, the profile manager modifies the cor-
responding profile stored in the database and also maintains up to date the hierarchy of
profile types. Moreover, if a user is not interested anymore in a profile type, the pro-
file manager eliminates her identifier from the profile type and from all the descendant
profile types.

4 Concluding Remarks

In this paper we presented the architecture of DiX'eminator, a new selective dissemina-
tion system for XML documents based on user profiles. We wish to remark that users
of a DiXeminator system can be other DiX'eminators. That is, DiX'eminators can be

composed in order to redirect documents from a DiXeminator with high level filters to
other DiXeminators with more specific filters.

The proposed system can lead to further research directions. Currently, profiles are
XML Schemas representing the document types the user is interested in. We plan to
extend the system in order to handle profiles that contain only relevant portions of doc-
uments the users are interested in. In this way the presence of certain elements in a
document can be exploited as a characteristic of the kind of document, thus improving
the performance of the system. Another research direction concerns the development of
an index structure for improving the retrieval of user profiles that should be used for fil-
tering. A further research direction concerns the extension of XML Schema formalism
in order to represent information retrieval operators for expressing some sophisticated
constraints on data content elements. A final research direction concerns the integration
of an access control mechanism into the DiXeminator system. In this way, the filtering
process takes into account the privileges the users have on the documents.

References

1. R. A. Baeza-Yates and G. Navarro. Integrating contents and structure in text retrieval. SIG-
MOD Record, 25(1):67-79, 1996.

2. E. Bertino, G. Guerrini, and M. Mesiti. A Matching Algorithm for Measuring the Struc-
tural Similarity between an XML Document and a DTD and its Applications. Information
Systems, 29(1):23—-46, 2004.

3. E. Bertino, G. Guerrini, M. Mesiti, and L. Tosetto. Evolving a Set of DTDs According to a
Dynamic Set of XML Documents. In EDBT 2002 Workshop Revised Papers, LNCS(2490),
pages 45-66, 2002.

4. M. Franklin and S. Zdonik. “Data in Your Face”: Push Technology in Perspective. In Proc.
of Int’l Conf. on Management of Data, pages 516-519, 1998.

5. M. Mesiti. A Structural Similarity Measure for XML Documents: Theory and Applications.
PhD thesis, University of Genova, Italy, 2002.

6. A. Miller. WordNet: A Lexical Database for English. Communications of the ACM,
38(11):39-41, November 1995.

7. A.Nierman and H. Jagadish. Evaluating Structural Similarity in XML Documents. In Proc.
of the 5th Int’l Workshop on the Web and Databases, 2002.

8. J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient Matching for Web-based
Publish/Subscribe Systems. In Proc. of Int’l Conf. Cooperative Information Systems,
LNCS(1901), pages 162—173, 2000.

9. S. V. Rice, H. Bunke, and T. A. Nartker. Classes of Cost Functions for String Edit Distance.
Algorithmica, 18(2):271-280, 1997.

10. I. Stanoi, G. Mihaila, and S. Padmanabhan. A Framework for the Selective Dissemination of
XML Documents based on Inferred User Profiles. In Proc. of 19th IEEE Int’l Conf. on Data
Engineering, 2003.

11. W3C. Resource Description Framework, 2004.

12. W3C. XML Schema, 2001.

13. T. Yan and H. Garcia-Molina. The Sift Information Dissemination System. 7TODS,
24(4):529-565, 1999.

