
�

�

Abstract

1 Introduction

Giovanna Guerrini Elisa Bertino

Ren�e Bal

A Formal De�nition of the Chimera Object-Oriented

Data Model

guerrini@disi.unige.it bertino@dsi.unimi.it

rene@cs.utwente.nl

The work of G. Guerrini and E. Bertino has been partially supported by the EEC under ESPRIT project 6333

IDEA. Project Esprit IDEA EP6333 participants are: Bull (prime), ECRC, ICRF, INRIA, Politecnico di Milano,

TXT, University of Bonn.

Dipartimento di Informatica e

Scienze dell'Informazione

Universit�a di Genova

Via Dodecaneso, 35 16146 Genova, Italy

Dipartimento di Scienze

dell'Informazione

Universit�a di Milano

Via Comelico, 39 20133 Milano, Italy

Computer Science Department

University of Twente

P.O. Box 217, 7500 AE Enschede

The Netherlands

In this paper we formalize the object-oriented data model of the Chimera language. This

language supports all the common features of object-oriented data models such as object identity,

complex objects and user-de�ned operations, classes, inheritance. Constraints may be de�ned

by means of deductive rules, used also to specify derived attributes. In addition, class attributes,

operations, and constraints that collectively apply to classes are supported.

The main contribution of our work is to de�ne a complete formalmodel for an object-oriented

data model, and to address on a formal basis several issues deriving from the introduction of

rules into an object-oriented data model.

The area of data models has always been a very active research area that has a considerable impact

on data management technologies. Indeed, the evolution of data models has marked the various

generations of database management systems (DBMS). In particular, since the de�nition of the

relational model, research has progressed to develop \new-generation" data models. A number

of research and development directions in the data model area can be devised, among which the

most relevant ones are object-oriented data models [13], deductive data models [21], extended

relational models [48]. Research in those data models and related architectures have resulted in

the development of several products and prototypes, such as the case of object-oriented DBMS

(OODBMS) and extended relational DBMS. In general, although the various models are based on

di�erent concepts, there is now a large convergence towards models including the following features:

complex objects; user-de�ned operations (e.g. methods, stored procedures); type hierarchies and

1

1

1

�

�

�

�

Chimera

Chimera

Objects:

2 Overview of the Chimera Data Model

attributes stored derived

operations built-in user-de�ned

A is monster of Greek mythology with a lion's head, a goat's body, and a serpent's tail; each of them

represents one of the three components of the language.

inheritance; deductive and active rules, triggers. This trend clearly emerges if we look at recent

work, like extensions to incorporate objects modeling capabilities into deductive databases [12],

or to incorporate triggers and constraints into OODBMS [31], or to enhance SQL with object-

orientation capabilities [30].

A system, whose goal is speci�cally the integration of object-oriented, deductive, and active

capabilities, has been developed as part of the ESPRIT Project Idea P6333. The data model of

Idea, called , is an object-oriented, deductive, active data model in that:

it provides all concepts commonly ascribed to object-oriented data models, such as: object

identity, complex objects and user-de�ned operations, classes, inheritance;

it provides capabilities for de�ning deductive rules; deductive rules can be used to de�ne

views and integrity constraints, to formulate queries, to specify methods to compute derived

information;

it supports a powerful language for de�ning triggers.

In this paper, we present a formal de�nition of the Chimera data model. Such de�nition is

quite a challenging task due to the many capabilities provided by Chimera. It is important to note

that there has been a substantial theory work in the area of deductive data models. By contrast,

no comparable amount of theoretical work has been reported in the area of object-oriented data

models. Therefore, the main contribution of our work is to de�ne a complete formal model for

an object-oriented data model, and to address on a formal basis several issues deriving from the

introduction of deductive and active rules into an object-oriented data model. A comparison of our

formal model with other models is presented at the end of the paper.

This paper is focused on selected features of Chimera which speci�cally concern the type/class

systems and their integration with operations. Its main contributions are the formal de�nition

of the notion of schema and class, a precise characterization of type re�nement, giving a set of

typing rules for values, terms and formulas, together with a formal interpretation of the type

system. However, this work does not cover the whole Chimera language; aspects of the language

not modeled in this work are for example triggers and views. In the following sections we explicitly

state the considered limitations, with respect to the generality of the Chimera language.

The remainder of this paper is organized as follows. The next section presents a brief overview

of Chimera and a comparison of Chimera with other relevant systems. Section 3 deals with types

and values, Section 4 with classes and objects. Section 5 deals with inheritance and subtyping,

introducing also the notions of schema and database. The following step is the de�nition of Chimera

rules, that are used to express class implementation. Section 6 is thus devoted to Chimera rules

and their typing. Finally, Section 7 concludes the work, pointing out future work. The proofs of

the results presented in this paper are omitted for brevity, they can be found in [35].

The main concepts of the Chimera data model are summarized as follows.

are described by , which can be or (e.g. de�ned by deductive

rules), and are manipulated by , which can be or . Each object

2

�

�

�

�

�

Values:

Classes and inheritance:

Value types:

Constraints and triggers:

Views:

Objects and Values

primitive complex

explicitly populated implicitly populated population predicate

constrained

unconstrained extended

targeted

untargeted

identity

is equipped with an object identi�er (OID), which is unique within the entire the database,

is generated by the system upon the object creation, and never changes.

both and values are supported. Complex values are built by using

constructors like set, list, record.

objects with similar structure and behavior are grouped in

classes. Classes are organized in inheritance hierarchies. Multiple inheritance is supported.

An object can belong to several classes, even classes not related by inheritance. Classes can

be or . In the second case, a is

associated with the class specifying su�cient and necessary conditions for an object to belong

to the extent of the class. Upon creation of an object, instance of a class, the system may

insert the object in some subclasses of this class if the object veri�es the population predi-

cates of these subclasses. Classes for which such a population predicate is not speci�ed are

said to be explicitly populated. Class-attributes and class-operations are supported, called in

Chimera c-attributes and c-operations respectively. They are not inherited by objects of the

class, rather they are used to characterize classes as objects.

complex values are de�ned as instances of value types. Thus, value types

provide the same function as concrete types commonly found in programming languages. A

value type is , if predicates are associated with the type de�nition specifying the

legal values for the types, it is otherwise. A value type is if its extent

is explicitly de�ned (e.g. the user must specify the values belonging to the type), whereas

the extent of other value types is implicitly de�ned. Therefore, extended value types provide

the equivalent of enumerated domains.

constraints are predicates that must always be veri�ed by the

objects in the database. Triggers are used to specify actions to be executed whenever certain

events and conditions arise. Both constraints and triggers are if they are associated

with a speci�c class, otherwise. Untargeted constraints and triggers usually involve

several classes and therefore they are used to model inter-class constraints and triggers.

are similar to views of the relational model. Basically, a view is a query with which

a name is associated and which is stored into the system catalogs.

We now elaborate on some of the above concepts and present examples to illustrate them. We

refer the reader to [22] for additional details on Chimera.

Chimera supports both values and objects. The main di�erences between those two notions in

Chimera can be characterized as follows. First, objects are abstract, non-symbolic elements of

the application domain; values are symbolic, printable elements. A second important di�erence

is related to the notion of . Objects are described by attributes; however, their identity

does not depend on the attribute values. Changing the values of an object's attributes does not

change the object identity. A primitive value is identi�ed by the value itself, whereas a complex

value is identi�ed by the values of all its components. Therefore, changing a component in a

complex value changes the \identity" of the value. Finally, objects can be manipulated by user-

de�ned operations, whereas values can only be manipulated via the pre-de�ned operations, which

are provided by Chimera.

3

2

2

<

>

<

>

Value types

constraint in-

terface constraint implementation

Chimera provides an insert operation for adding values into extended types. Such operation is not de�ned for

other value types.

define value type complex:

record-of (re-part: integer,

im-part: integer)

define value type dates:

set-of(record-of (day: integer, month: integer, year: integer))

define value type postalCode: integer

constraints improperCode (Code: postalCode)

define implementation for postalCode

constraints

improperCode(Code) Code ;

improperCode(Code) Code

define extended type postalCode: integer

constraints improperCode (Code: postalCode)

define implementation for postalCode

constraints

improperCode(Code) Code ;

improperCode(Code) Code

postal code

Chimera provides a number of constructors for building complex values, including the construc-

tors set, list, and record. Constructors can be applied to: atomic values, complex values, object

references. Therefore, constructors can be nested and a complex value may refer to an object.

A value type de�nition consists of a structure speci�cation, which is mandatory, and a constraint

speci�cation, which is optional. A constraint speci�cation, in turn, consists of the

, that is, the constraint name and the type of results, and of the .

Constraints in Chimera are implemented as deductive rules. Those deductive rules have heads

that may contain atoms with variables. Therefore, upon integrity checking a constraint may return

values. Those return values are the values that have violated the constraint. Therefore, return

values are used as the basis for explanation support in Chimera.

The following examples illustrate value type de�nitions expressed in the Chimera language.

Example (3) illustrates the notion of extended value type.

1.

A value type, structured as a record of two components, is de�ned.

2.

A value type, structured as a set whose elements are records consisting of three components,

is de�ned. This de�nition exempli�es nesting of constructors.

3. (a)

0

9999

(b)

0

9999

In the above example, both de�nitions of `postalCode' have the same implementation for

the constraint with name `improperCode'. Note that when de�nition (3.a) is used, the valid

values are all 4-digit integers in the range (0, 9999). By contrast, when de�nition (3.b) is

used, the valid values are all 4-digit integers in the range (0, 9999) explicitly inserted into

the type extent. Therefore, only the values that are inserted by the users into the extended

type are valid values for this type.

4

3

3

<

<

!

!

Classes

i ii

iii

signature

implementation

extent

Idea provides the Peplom language for this purpose [27].

define class person

attributes name: string(20)

vatCode: string(15)

birthday: date

income: integer

age: integer derived

operations changeIncome(Amount: integer)

constraints tooLowIncome(N: name)

key(V: vatCode)

c-attributes averageAge: integer derived

lifeExpectancy: integer

c-operations changeLifeExpectancy(Delta: integer)

c-constraints invalidLifeExpectancy(I: integer)

define implementation for person

attributes Self.age = X X = 1994 - Self.birthday.year

operations changeIncome(Amount): integer(New),

New = Self.income Amount modify(person.income,Self,New)

constraints tooLowIncome(N) Self.income 5000, N = Self.name

c-attributes Class.averageAge = Y integer(Y), Y = avg(X.age where person(X))

c-operations changeLifeExpectancy(Delta) integer(New), Delta 10,

New = Class.lifeExpectancy Delta

modify(person.lifeExpectancy, Class, New)

c-constraints invalidLifeExpectancy(I)

I Class.averageAge - Class.lifeExpectancy, abs(I) > 5

Therefore, the use of value types, extended value types and constrained value type in Chimera

supports: () domain de�nition through range speci�cation; () domain de�nition through ex-

plicit enumeration; () de�nition of validity conditions for values. A large number of modeling

capabilities for domains can thus be supported.

A class de�nition in Chimera consists of two components: the , specifying all informa-

tion for the use of the instances of the class; the , providing an implementation for

the signature. Furthermore, each class is associated with an collecting all instances of the

class. The signature consists of a number of clauses, including the speci�cation of: attributes, op-

erations, constraints, class-attributes, class-operations, class-constraints, triggers and superclasses.

The signature also speci�es whether the class is implicitly populated or not, and for each attribute

whether the attribute is derived or not. The implementation of a class must specify an implemen-

tation for all derived attributes, derived class-attributes, operations, class-operations, constraints,

class-constraints, and triggers that are speci�ed in the signature. Note that the implementation of

operations may be speci�ed by an update rule, that is a rule with update atoms, or may be external,

implemented in some programming language . The following example shows a class signature and

implementation.

+

+

=

Classes are organized into inheritance hierarchies. The subclass compatibility conditions will be

discussed in the following subsection. The current version of the language does not allow rede�nition

of constraints and triggers in subclasses.

5

4

4

�

�

�

Example 1

2.1 Typing in Chimera

Here, more or less realistically, we suppose that the spouse of a noble is always a noble.

person spouse person

noble person spouse noble

person set-spouse

person spouse noble

P N person N.set-spouse(P)

N P

person noble

covariant

contravariant covariant

Consider a class with an attribute with domain and a class

(subclass of) which re�nes the domain of the attribute in . Suppose

that in class an operation is de�ned, which takes as input a value of type

and assigns that value to attribute . This operation is not rede�ned in class .

Now consider two variables , both declared of type . The expression is

statically type correct but if run-time is instantiated to a noble and to a (not noble) person, it

results in trying to assign a value of type to an attribute whose domain is .

In Chimera, a subclass may rede�ne an inherited feature but the rede�nition is subjected to the

following constraints:

an attribute may be rede�ned in a subclass by specializing (or re�ning) its domain, that is,

replacing its domain by a proper subtype (rede�nition);

an operation may be rede�ned in a subclass by specializing its signature; signature specializa-

tion may be obtained by replacing at least one of the domains of the input parameters with

a proper supertype or at least one of the domains of the output parameters with a proper

subtype (rede�nition for input parameters, rede�nition for output

ones).

These choices clearly have an impact on Chimera policies with respect to type checking. While

the rede�nition of operations does not hinder the type safety of the language, the rede�nition

of attributes must be considered carefully. This covariant rede�nition of attributes (the domain

of an attribute may be specialized in subclasses) reects what is usually needed when creating a

taxonomy of classes; indeed, when specializing a class the designer usually needs to to add new

attributes or to specialize existing ones. The problems arising when attributes are rede�ned in a

covariant way along the inheritance hierarchy has been �rstly recognized by Cardelli [17] and are

shown by the following example.

The approach adopted in Chimera is to consider the domains of attributes as integrity con-

straints, thus checked run-time, rather than dealing with them as type constraints, to be checked

statically. Thus, whenever a value is assigned to an object attribute we dynamically check that the

value is appropriate for the domain.

Of course, there are other possible alternatives for dealing with covariantly rede�ned attributes.

The approach taken by Cardelli in [17] and adopted by Galileo [3] is to syntactically distinguish

among mutable (assignable) and immutable (not assignable) entities and to disallow covariant

rede�nition for mutable entities (immutable entities may receive their value at object creation

only). Thus, all the attributes that must be rede�ned cannot be updated; on the contrary, if an

attribute should change its value during the lifetime of its enclosing object, then it may only be

inherited, but not rede�ned, by subclasses. This solution is obviously not the most adequate for

the database context, in which objects are long-living evolving entities.

Another possible solution to the problem is to limit the context in which subtype substitution

is allowed. A proposal along this way was made by Connor and Morrison [26]; their approach

guarantees static type safety at the expense of limiting the expressiveness of the language and

introducing a lot more of typing information inside the program. Note moreover that in their type

system, type speci�cations are exact.

6

5

�

�

�

2 2

5

O O

T

T

T T

T

Example 2

N P

employee rich-employee

X.salary > 5000 X rich-employee

X.salary 4000 X rich-employee

This is not always true, e.g. if the population predicate makes use of aggregate operators.

Consider a class with a derived subclass with the population

constraint . Consider, moreover, a variable de�ned with type .

If the value of is modi�ed to , can no longer be an instance of the class .

This leads to an inconsistency.

The Ei�el language [43] allows the covariant rede�nition of attributes and catches every attempt

of incorrect assignment at program link time, using an approximate and pessimistic algorithm which

computes an approximation of the possible types of the objects that may be referenced by each

entity at each point of the program where the entity is used. The TDF technique [25] implements a

similar concept, but di�ers in the algorithm used to compute the type sets: TDF adopts a data-ow

technique, while Ei�el's global veri�cation does not take into account the possible ow of control

of the program. Both techniques, though, loose much of their precision when persistent data are

involved, since it is not possible to determine the types of the objects referenced by persistent

variables. In the example, the bindings for variables and may be taken from the extents of

classes manipulated by programs di�erent from the one examined.

The approach of is the closer to ours. , indeed, does not restrict either the assignment

or the covariant rede�nition of attributes and checks the validity of every assignment dynamically,

possibly generating a run-time error. All these approaches to the covariant rede�nition of attributes

are extensively reviewed in [19].

Another feature of the Chimera language that may cause some problem with respect to type

checking is related to derived classes, as shown by the following example.

To avoid such problem, di�erent solutions can be adopted. Two of them, namely

disallowing a variable to be declared with a type corresponding to a derived class;

disallowing updates on the attributes appearing in the population predicate

are conservative solutions. If the population predicate can only be falsi�ed by updates on the object

on which it is evaluated the above solutions can be re�ned by allowing a variable to be declared

with a type corresponding to a derived class but disallowing updates on the attributes appearing

in the population predicate to be applied to that variable. Such an approach prevents, by static

checks, a variable of type from referencing at run-time an object which is not an instance of the

class corresponding to . This approach emphasizes the type checking view.

The solution currently adopted in Chimera is to regard population constraints as other con-

straints and thus to check them run-time. This approach does not ensure that a variable of type

, with corresponding to a derived class, always references a member of the class corresponding

to . Rather a check is performed at run-time to detect whether the variable references an object

that meets the population constraint. If not, an error is raised.

This approach requires some type checking at run-time and thus it is potentially less e�cient.

Note however, that the two above solutions are not mutually exclusive. They can be combined to

obtain a good compromise between semantic richness and e�ciency. For example, a variable can

be allowed to be declared of a type corresponding to a derived class, and updates on the attributes

appearing in the population predicate can also be applied to that variable, but run-time checks for

that variable (and only for that one) must be performed. More sophisticated solutions, based on

ow analysis of application code [25], can also be investigated.

7

6

6

3 Types and Values

CASCADE SETNULL RESTRICT

component object

composite object

2.2 Comparison of Chimera with other Object-Oriented Data Models

We refer to the notion of concrete and abstract types as used in Galileo [3].

To conclude this section, let us mention that the \contravariant for input, covariant for output"

rule for the rede�nition of operation signatures ensures that the new signature may be used every-

where the old one can be used, and guarantees that no type errors occur due to the rede�nition of

operations. There has been a long debate on whether this \contravariant for input" rule, besides

being type safe, is also intuitive to use. The possibility of allowing a covariant rede�nition of input

parameters of operations is currently under investigation in Chimera [19].

Table 1 summarizes some of the di�erences of Chimera with the data models of other OODBMS

and of the ODMG object database standard. In particular, a di�erence among the various systems

is whether the class extents are managed by the system or must be managed by the application. In

the latter case, applications must de�ne \object collections", by using a constructor like the set con-

structor, to group the instances of the same class and must explicitly manage the addition/removal

of objects from these collections. Multiple collections over the same class can be de�ned. The no-

tion of composite object refers to the semantic notion of \part-of" [39]. This notion, only supported

by the Orion system, models the fact that an object (called) is part of another

object (called). This semantic notion may inuence the way certain operations

are performed; for example, the deletion of a composite object may imply the deletion of all its

component objects. We refer the reader to [39] for additional details on composite object models.

A composite object model for Chimera is being developed [34].

In general integrity constraints are not supported. One reason is that they can be implemented

into the method codes. In Chimera a more declarative approach is used by which a declarative

constraint language is provided. Apart from Chimera, the Iris system provides a limited form

of constraint through the use of the key/nonkey quali�ers. Those quali�ers are associated with

attribute de�nitions. For example, if an attribute is de�ned to be a key, all instances of the same

class must have di�erent values for this attribute. Referential integrity is currently not directly

supported in Chimera. However, it can be enforced through the use of triggers. To rely the user

from the burden of explicitly de�ning triggers for enforcing referential integrity in [8] we have

shown how triggers can be automatically derived from declarative speci�cations of actions to be

taken upon violation of referential integrity (the considered actions are those supported by SQL2

[15], i.e. , ,).

We refer the reader to [13] for an extensive discussion about the several variations in object-

oriented data models.

In Chimera both the notion of type and the notion of class are provided. The notion of type in

Chimera is similar to that of concrete (structural) type. The notion of class is similar to that of

an abstract data type coupled with an extent . Note, however, that full encapsulation of object

structures is not enforced in Chimera.

In Chimera each class is related to a type (which we call type of the class) which describes

the structure of the objects belonging to the class. In order to type variables that have to be

instantiated with objects belonging to a given class, we allow the use of a class name as a type.

A value type is a type in the previously introduced meaning, whereas an object type is the type

8

n1

7

3.1 Types

D ; ;D

i c Tn a

OI

CI OI

CI

T N

AN MN

OI CI T N AN

integer real bool character string

Comparison with other OO data models

(1)

(2)

(2) (3)

(4) (1)

(1)

(2)

(3)

(4)

7

Table 1:

corresponding to a class (the class name). We provide a uniform notion of type (regarding class

names as types) to handle in uniform way type checking.

We postulate the existence of a collection of basic domains . . . to which at least the types

, , , and belong. Furthermore, let denote a set of object

identi�ers, and a set of class identi�ers. The elements of are identi�ers of objects, used as a

mean to refer to and distinguish objects in the system. By contrast, contains class identi�ers,

that is, class names. In the following we make use of a set of type names , a set of attribute

names and a set of method names . We assume all the introduced sets to be mutually

disjoint . For easy of reference, Table 2 illustrates the symbols more frequently used in this paper.

For each symbol, the table reports a brief explanation of its meaning.

In the following, we let vary over , over , over and over . The following

9

Chimera GemStone Iris O2 Orion TM Ode Cocoon ODMG

Reference [22, 23] [14] [29] [28] [40] [5] [2] [47] [20]

User-de�ned

value types YES NO NO YES NO YES NO NO YES

Extended

value types YES NO NO NO NO NO NO NO NO

Class extent System User System User System System User System System

Class

features YES YES NO NO YES YES NO NO NO

Composite

objects NO NO NO NO YES NO NO NO NO

Referential

integrity NO YES NO YES NO YES YES YES YES

Multiple

inheritance YES NO YES YES YES YES YES YES YES

Intensionally

de�ned YES NO YES NO NO NO NO NO NO

attributes

Declarative

method YES NO YES NO NO YES NO NO NO

implementation

Integrity

constraints YES NO L.F. NO NO YES YES L.F. NO

Triggers YES NO NO NO NO NO YES NO NO

Views YES NO YES NO NO NO NO YES NO

Legenda: L.F. limited form

Extended value types and views could be simulated in TM by using the module mechanism provided by this

language [5].

Actually, Chimera is being extended with the support for composite objects and referential integrity [34].

Referential integrity is enforced for relationships, but it is not for attributes.

Views in Iris are supported as functions implemented in OSQL which are not associated with a speci�c type.

This assumption is only useful to simplify de�nitions and results, but it is used only at a theoretical level, while

in the language it does not hold. One of the most remarkable characteristics of object-oriented data models is indeed

the independence of each class de�nition from the others.

�

�

0 0

Table 2:

10

Symbol Meaning

structural type

n

T

O

V

i i

�

d

V

V

T

S

MC

i

C

e

C

Notations and terminology

OI CI

T N AN MN

T OT VT

BVT CT ET

V

t

�

�

�

� �

1

1 2 1 2

1 2 1 2

1 2 1 2 1 2

2 1 2 1

2 1 2 1

2 1 2 1 2 1

D ; ;D

V ar V ar T

type T T

struct T T

constr T T

ext T T

T T T T

� c � c c

� T � T T

dom D D

stype c c

c

value i i

v T v T

T T �

o o o o

o o o o o o

ISA c ISA c c

ISA T ISA T T

T T T T

s s s s

MC MC MC MC

C C C C C C

. . . basic domains

, a set of object/class identi�ers

, , a set of type/attribute/method names

, , , the set of Chimera types, object types, value types

, , the set of basic value types, constrained types, extended types

the set of Chimera legal values

, the set of variables and variables of type

() the type obtained from replacing each named type appearing

in it with the type it stands for

() the structural component of the constrained or extended type

() the constraint component of the constrained type

() the extent of the extended type

the most speci�c common supertype of and

() (()) the extent of class

() (()) the extent of the extended type

() the (postulated) non-empty extension of the basic value type

() the type of the state of objects of class

(the of class)

() the state of the object identi�ed by the oid

: the value belongs to type

[[]] the extension of type under the assignment

= objects and are equal by identity

== , == objects and are equal by shallow/deep value equality

(), () the set of the direct/of all the superclasses of class

(), () the set of the direct/of all the supertypes of the value type

is a subtype of

signature is a re�nement of signature

metaclass is a re�nement of metaclass

, class intensionally/extensionally re�nes class

8

2

2

n

n n

n n

1

2

1 1

8

1 1

BVT

f g

OT

CI

OI

VT

� BVT � VT

�

� AN

De�nition 1

De�nition 2

De�nition 3

D ; ;D

O

T

list of T

set of T

T ; ; T a ; ; a

record of a T ; ; a T

Note that the possible labels in record types are attribute names.

(Prede�ned Basic Value Types). The set of prede�ned basic value types is

, that is, it is the collection of all the basic domains.

(Object Types). The set of Chimera object types is de�ned as the set of class

identi�ers .

identi�er, value

(Value Types). The set of Chimera value types is inductively de�ned as follows

the prede�ned basic value types are value types ();

if is a value type or an object type then

- and

-

are value types called (prede�ned) structured value types, respectively indicated as list type and

set type;

if are value types or object types and are distinct labels in , then

-

is a value type called (prede�ned) structured value type, indicated as record type;

de�nitions formalize the various notions of types of the Chimera language.

. . .

In Chimera, class names can be used in de�nitions of types. This is due to the fact that attributes

of types, structured as records, are allowed to have classes as domains. The de�nition of collections,

structured as sets or lists, of instances of classes must be supported in Chimera. Those collections

are used, for example, to store query results.

The following de�nition states that each class name is a (object) type, thus introducing a

uniform notion of type.

The distinction between value and object types is needed in order to distinguish types, whose

instances are object identi�ers in (namely values used to identify objects), from types, whose

instances are pure values. The distinction between objects and values is a rather subtle issue of

object-oriented data models. According to Beeri [7], the di�erence between these two notions can

be characterized as follows: values are used to describe other entities, whereas objects are the

entities being described. That is, the information carried by a value is the value itself, whereas the

relevant information about objects is carried in the relationships they have with other objects and

values. As a consequence, objects have an identi�er and a state, which is a value, representing the

information carried by the object. By contrast, the identi�er of a value is the value itself. Therefore

we may say that value types are types whose instances do not have an explicit identi�er, whereas

object types are types whose instances have explicit identi�ers.

In this respect Chimera is rather similar to the data model [28, 41] which supports both

objects and complex values, where objects are () pairs and values are built using

atomic values, structured values and object identi�ers. The following de�nition introduces Chimera

value types.

()

()

.

(: . . . :)

11

OT VT

T

BVT

Named
Types

Structured
Value Types

VT

2

T Tn Tn

T

Tn T

Tn

� T N

CI

�

T VT

OT

T

CI

Example 3

Example 4

integer

boolean

set-of(character)

list-of(boolean)

record-of(re:real, im:real)

set-of(record-of(day:integer, month:integer, year:integer))

complex dates

complex: record-of(re:real, im:real)

dates: set-of(record-of(day:integer, month:integer, year:integer)).

person

set-of(person)

record-of(n:string, s:person)

person department

person department

if is a value type (either basic or structured) and is a type name in , and is

declared as a name for through a declaration

then is a value type called user-de�ned (named) value type.

The following are Chimera value types

and , introduced by the following type declarations, are (named) value types:

Finally, if belongs to , then

are (structured) value types.

Consider the class names and , both belonging to . Then the

types and are examples of object types, whereas the types

Figure 1: Chimera types

:

According to the above de�nition, the set of prede�ned value types is an in�nite set. Note, however,

that each schema contains only a �nite subset of prede�ned value types, that is, those types that

are named or used somewhere in the schema. Therefore a Chimera schema is always �nite.

The set of Chimera types is thus de�ned as the union of Chimera value types and Chimera

object types . A Chimera type is therefore either a Chimera value type or a Chimera object type.

We provide the notion of type because in some situations we want to talk of \type" disregarding

whether it is a value type or an object type. Figure 1 depicts Chimera types, emphasizing that the

set of object types and the set of value types partition the set of Chimera types, that is, they are

disjoint and their union is the set of Chimera types .

12

2

n n n n1 1 1 1

0

0 0

0 0

0

0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

De�nition 4

Example 5

�

VT VT

T ! T

2 T

2 BVT 2 OT

2 T N

�

Tn T

Tn T

type

type T

T

T

type T

T T T

list of type T T list of T

set of type T T set of T

record of a type T ; ; a type T T record of a T ; ; a T

type T T

T T

T

type type

type

type type

are value types.

Let be a Chimera type. Then

if or

- if -

- if -

- if -

if and it has been de�ned

by a declaration

Consider the following Chimera type de�nitions.

Then

= =

=

= =

.

record-of(name:string, dep:department)

list-of(person)

nat: integer

pos: integer

np-rec: record-of(a:nat, b:pos)

s: set-of(np-rec)

nat pos integer

np-rec record-of(a:integer, b:integer)

s set-of(record-of(a:integer, b:integer)) list-of(np-rec)

list-of(record-of(a:integer, b:integer))

Type names are assigned only to value types, not to object types. The same name cannot be

assigned to two di�erent types. That is, a name introduced by a declaration of the form :

(according to the last item in De�nition 3) cannot be redeclared as : . This condition ensures

that the function , de�ned below, is really a function, that is, the value type associated with a

name is unique. Note that named types, basic value types and structured value types are disjoint

sets, and they partition the set of Chimera value types. Each type in , indeed, is either a

named type, or a basic value type, or a structured type. As we will discuss in Section 5 inheritance

relationships link named types and basic value types or named types and structured value types.

By contrast, object types and value types constitute disjoint inheritance hierarchies.

Named value types are introduced in Chimera as a mean to bind a type name to a value

type. This mechanism is useful for future references to the, possibly structured, type and for type

renaming. Note, however, that a name is assigned to a type only to simplify references to that

type and that we have complete equivalence and substitutability of the type with respect to the

name. Therefore, we disregard type names when considering type equivalence and compatibility.

For this purpose, a (total) function : is de�ned, that for each type , returns the type

obtained from by substituting each type name with the value type identi�ed by the name. This

function only a�ects value types. However, it has been de�ned on all types because object types

may be components of value types.

() =

(()) = ()

(()) = ()

(: () . . . : ()) = (: . . . :)

()

:

The function has been de�ned by induction on the type structure of by recursively substituting

each type name in a value type with the value type identi�ed by the name (also as component of

structured types) and to deal also with named types de�ned in terms of other named types.

() ()

()

() ()

13

2

2 T N 2 VT

f

 g

�

CT

CT � T N � VT � T

Tn T

R Tn T

R

Tn T R

Tn struct Tn

T

constr Tn R

R

R

<

>

R

3.1.1 Constrained Types

De�nition 5

Example 6

constraint

postalCode integer

improperCode(Code) Code

improperCode(Code) Code

postalCode integer constraint postalCode

constrained types

(Constrained User-de�ned Types). If is a type name, is a value

type, is a set of Chimera rules and is declared as a name for the type whose structure is

and whose constraint is , by a declaration

then is a constrained user-de�ned type. In the following denotes the value type

(which is the structural component of the type, describing the structure of type elements) and

denotes the set of rules .

Consider the type name , the basic value type and the following

set of rules:

Then the type declaration : de�nes to be a con-

strained value type.

In addition to user-de�ned value types introduced as synonyms for (and abbreviations of) prede�ned

types, Chimera provides the possibility of de�ning types denoting a proper subset of the set of

values of a user-de�ned value type. In such cases, types are restricted by means of constraints

expressing conditions on the values of the types. Types, de�ned by restriction on other types, are

called . A constrained user-de�ned value type is a named type for which not only

a structure but also a constraint is speci�ed. Constraints associated with constrained types are

expressed as Chimera rules, whose de�nition is presented in Section 6. Intuitively, a Chimera rule

is a deductive rule containing in its head an atom built using predicate symbols and whose body

consists of a conjunction of atoms or negated atoms. Atoms are built using predicate symbols.

A number of prede�ned predicate symbols exist in Chimera, including the equality and set/list

membership. Rules are implicitly universally quanti�ed as in Datalog. Rules used to express

constraints for a constrained type have a constraint atom in their head, where a constraint atom is

an atom built applying a constraint name to a single argument whose type is the value type itself.

:

()

()

Rules in express a condition that must not be veri�ed by the values of the type. Constraints in

Chimera are indeed expressed in denial form. Therefore, they state what should not be the case

for any legal database state, rather than expressing invariant conditions of the database. In case

of constraint violation, the parameter(s) of the constraint are bound to values characterizing the

\violated" instance of the constraint.

0

9999

Let denote the set of constrained user-de�ned types. Constrained user-de�ned value type are

a special case of named types. Indeed, with a type name not only a value type is associated but

also a constraint which expresses restrictions on the value type. Thus

.

Note that, unlike named value types, constrained types are not equivalent to the type structure

assigned to the name, rather they are a proper subtype of that type. Indeed the set of values

of a constrained type is a subset of the set of values of the type structure assigned to that type.

14

9

9

2 CT

De�nition 6

3.2 Extended Types

f �

 �

 � g

f

 g

2 T N 2 VT

type type T type struct T

T

struct

constr

struct

constr

type

ET T S

T T S ET

The function of De�nition 4 is easily extended to constrained types by de�ning () = (())

whenever .

i

ii

(Extended Value Type). Let be a type name, be a value type,

be a set of values of type and and be associated with by a declaration

record-of(day:integer, month:integer, year:integer)

date

date record-of(day:integer, month:integer, year:integer)

date improperDate(Date) day 0

improperDate(Date) day > 31

improperDate(Date) month 0

improperDate(Date) month > 12

improperDate(Date) year 0

record-of(day:integer, month:integer,

year:integer) date

summerdate

summerdate date

summerdate improperSDate(SDate) month < 6

improperSDate(SDate) month > 8

summerdate date

Thus, when talking of constrained types the complete substitutability of the type with respect to

the name is lost. By contrast, a constrained type is a subtype of the value type that describes its

structure, in that all the legal values of the former are also legal values for the latter. Consider for

example the value type

.

Now consider the constrained type , such that

() =

() =

Obviously, each date is a legal value for the value type

, but the converse is not true. Thus is a subtype of that type.

Similarly, if we consider the constrained type , speci�ed as

() =

() =

then is a subtype of .

Therefore, a partial ordering on value types exists such that unconstrained value types are not

comparable under the ordering. By contrast, each constrained type is related to an unconstrained

type (of which it is smaller) which is the type that describes its structure (the type returned by

the function). We formalize these notions in Section 5 when de�ning an ordering on types.

In addition to prede�ned and user-de�ned value types, Chimera provides the notion of extended

type. The notion of extended value type can be characterized as follows. Prede�ned and user-

de�ned value types are considered as \abstract domains" in Chimera, in the sense that the set of

instances of the type is never made explicit. An explicit enumeration of the individual instances

of the type is not possible. By contrast, extended value types are used to control the extent of a

user-de�ned value type by enumerating its values. When de�ning a extended value type not only

a value type with the same name and de�nition is generated, but also the storage for an explicit

extent is allocated. Thus extended value types are a notion rather similar to that of enumeration

types of programming languages (e.g. Pascal) but with two di�erences: () in a extended value

type not only the explicit enumeration is provided but also a value type that speci�es the structure

of values of the (explicit) extent; () the extent of a extended value type is not �xed, rather it can

be modi�ed. Constraints may be de�ned on extended value types as well, thus restricting their

explicit extents.

15

TN

Unconstrained
Named Types

Constrained
Named Types

Constrained
Extended Types

Unconstrained
ExtendedTypes

2

Example 7 2 T N

f g

2 T N

f g

�

ET

ET � T N � VT � T

T N

ET T S

ET T ET

struct ET T

ext ET S

ET

S

S

S

S

S

C

ET S

C

ET v ET

S v S

ET

ext

colour string

green, blue, red, yellow colour string ext colour

realpostalcode postalcode

5574, 7982, 6827, 1343 realpostalcode

postalcode ext realpostalcode

add drop

drop

then is a extended value type. If type is a constrained type, then is said constrained, it is

said unconstrained otherwise. In the following denotes the value type (which is the

type describing the structure of class elements) and denotes the set which maintains the

explicit, time-varying extent of class .

Consider the type name , the basic value type and the set =

. Then the type declaration : de�nes

as a (unconstrained) extended value type.

Consider now the type name , the value type of Example

6 and the set = . Then the type declaration :

de�nes as a (constrained) extended value type.

value classes

Figure 2: Chimera named types

:

()

()

Let denote the set of extended value types. The inclusion relationships

hold. Extended value types are types rather than classes, though they have an explicitly enumerated

collection of instances, that is, an explicit extent, since their instances are values, and not objects.

They may indeed be seen also as a sort of enumeration types.

The partitioning of Chimera named value types is depicted in Figure 2. Note that the sets

of constrained extended value types, unconstrained extended value types, constrained value types

and unconstrained value types are disjoint sets, but, however, inheritance relationships can exist

between types in di�erent sets, as we will discuss in Section 5.

Note that the extent of a extended value type is not a �xed set, rather it can be updated

by means of and operations. Therefore, a extended value type could be regarded as a

class (cf. Section 4.1) in that it consists of a type, an explicit extent and two prede�ned update

operations. This is the reason why extended types are called in Chimera [22]. However,

user-de�ned methods, triggers and other features of object classes are not supported for extended

value types. This is the reason why we have preferred to refer to them as types.

The operation on extended value types, though well handled at a theoretical level, poses

implementation problems. Indeed it must be regarded as a schema update. Consider a class

having as domain for an attribute a extended value type with which an extent is associated.

Upon each object creation in class the correctness of the attribute value is checked with respect

to the extended value type . A value is correct for the attribute, having as domain , if

it is a member of . If value is then dropped from , the attribute value is no more legal. As

a consequence, after any drop operation on the the extent of , the legality of attribute values

must be checked or we may have an inconsistent database.

16

0 0

0

0 0

0

n n

j j j n j n

De�nition 7

10

1 2 1 2 2

1 1 2

11

1 2 1 2 2

1

T T T T T T

T type T type T type T

T T T T T T

T

3.3 Most Speci�c Common Supertypes

colour string

realpostalcode postalcode

1 1

(1) (1) () ()

1 2

1 2 1 2

1 2 1 1 2

1 2 1 2 1 2 1 2

1 2

1 2 1 2 1 2

1 2

10

1 2 1 2 1 2

1 2

11

8 2 ET 2 VT nET

f g ! f g

t t T � T ! T

T

t

� t

� t t 2 T N

2 CT [ET 2 CT [ET

� t 2 CT [ET 2 T 8

)

� t 2 OT 2 OT 8

)

ET T ET

T ext ET

T

struct ET

ET ; struct ET

record of a T ; ; a T

record of a T ; ; a T

j ; ; n ; ; n

T T

T T T T

T T T T T

T T type T type T T ; T T T

T = T =

T T T T ; T T T T T T

T T T T

T T T T ; T T T T T T

T T T T

We remark that may coincide with (or with), if is a supertype of (respectively, if is a supertype

of). We also remark that () = () = () holds.

We remark that may coincide with (or with), if is a superclass of (respectively, if is a superclass

of).

most speci�c common supertype (mscst)

mscst

(Most Speci�c Common Supertype). Let and be two types in , then the most

speci�c common supertype between and , denoted as , is de�ned as follows:

whenever ;

whenever and at least a type between and is

not extended and unconstrained, that is either or ;

whenever , and is a supertype of and , and (

supertype of and subtype of) ;

whenever and is a superclass of and , and (

superclass of and subclass of) ;

Note that we have ISA relationships when considering extended value types, as well. Indeed, if

a extended value type is de�ned in terms of a value type , then all the elements of are

elements of , while the converse is not true (unless () coincides with the whole extension of

type). Thus, the extended value type is a subtype of the value type which speci�es its structure,

that is (). Referring to the example above, is a subtype of the type , while

is a subtype of the type .

We remark that we cannot de�ne extended value types in terms of extended value types, that

is, () , thus ISA relationships among extended value types do not

hold.

In this section we introduce the notion of , which will be

used when de�ning legal values for types. This notion is introduced because, when regarding class

names as types and when considering constrained types and extended value types, type extensions

are not disjoint due to ISA relationships among classes and among types. Therefore, two di�erent

types may have a common supertype. In such a case, values, instances of those types, can be

regarded as values of the , and therefore these values are compatible.

First of all, we address the issue of type equality. Two types are equal either if they are identical

or if they are record types obtained by permuting their �elds. Indeed, the order of �elds in record

types is immaterial. Therefore the value type

- (: . . . :)

is equal to the type

- (: . . . :)

where : 1 . . . 1 . . . is a bijective function. Two named types are equal only if they

have the same name.

Intuitively, the most speci�c common supertype of a set of types is the smallest type being a

supertype of all types in the set. The operator is a partial function, : returning

the most speci�c common supertype between two types.

= =

= () ()

=

=

17

person

employee student

graduate under-
graduate

2

n

n n

n

n

n

n

Example 8

0 0 0 0

0 0 0 0

0 00 0 00 0

0 00 00

1 2

1 2

1

1

2

2

1 2

1 2

1

1

2

2

1 2 1

1 1

1 1

1

2 1

1

1 2

� t t

� t t

� t t t

� t

� t

� t

� t

� t

� t

� t

� t

� t

� t

� t

� t �

Figure 3: Inheritance hierarchy on object types of Example 8

= () = () = ()

= () = () = ()

= (: . . . :) = (: . . . :

) = (: . . . :)

18

T T set of T T T set of T T set of T

T T list of T T T list of T T list of T

T T record of a T T ; ; a T T T record of a T ; ; a

T T record of a T ; ; a T

T T

- whenever - , - ;

- whenever - , - ;

- whenever -

, - ;

is unde�ned otherwise.

Consider a class with a subclass and a subclass . Suppose

that the class has two subclasses: and . The inheritance hierar-

chy is illustrated in Figure 3. Consider the constrained types , and

and the extended value type introduced in the previous subsections. Their rela-

tionships are depicted in Figure 4. Then:

= ;

= ;

= ;

= ;

is unde�ned;

= ;

=

= ;

=

provided the type declaration

;

=

= ;

= ;

= .

person employee student

student undergraduate graduate

postalcode date summerdate

realpostalcode

employee person person

employee student person

graduate undergraduate student

graduate employee person

char integer

set-of(person) set-of(employee) set-of(person)

record-of(a:person, b:employee) record-of(a:employee, b:person)

record-of(a:person, b:person)

empl-rec record-of(a:string, b:person) record-of(a:string, b:person)

empl-rec : record-of(a:string, b:employee)

record-of (day:integer, month:integer, year:integer) date

record-of(day:integer, month:integer, year:integer)

summerdate date date

realpostalcode postalcode postalcode

integer

postalcode

real-

postalcode

record-of(day:int,month:int,year:int)

date

summerdate

12

12

o

c o c

i

o

c c

c c

c c

3.4 Values

t

V

OI

2 OI

OT

instance

member

homogeneous

heterogeneous

person employee

employee person

As we discuss in the following, and according to the usual terminology, an object is an of a class if that

class is the most speci�c one -in the inheritance hierarchy- to which the object belongs. Whenever an object is an

instance of a class then is also a of all the superclasses of .

Figure 4: ISA relationships among value types of Example 8

The most speci�c common supertype operator de�ned above has the property of being an as-

sociative operator. This allows to easily generalize this notion (introduced for pairs of types) to

arbitrary sets of types.

As we will see in what follows, the most speci�c common supertype is the least upper bound

(lub) of a set of types according to the ordering on types based on inheritance relationships among

types (cf. Section 5).

We remark that our lub construction is not based only upon typing aspects, rather it takes

the user-de�ned ISA hierarchy into account. That is, in Chimera it is not possible to compute the

lub of two classes having comparable underlying types, but belonging to di�erent class hierarchies.

This is quite di�erent from most well-known systems, especially those systems developing a class

taxonomy in the context of knowledge representation systems [44]. However, we think that it is

not correct to allow these kinds of situations, where values which are not related to each other

(only have the same underlying type) are treated as . Furthermore, we must take the

user-de�ned ISA hierarchy into account to determine which methods are applicable. Thus, the lub

construction in Chimera is stricter than the lub construction in other well-known systems.

In this subsection we introduce the set of Chimera legal values, and their corresponding types.

First of all we introduce the set of Chimera legal values , and for each legal value we specify the

type of which it is an instance. Note that a value may be an instance of di�erent types.

Concerning the de�nition of legal values, it is important to note that in Chimera oids in

are handled as values. Indeed, an object identi�er stands for (i.e., it is a reference to) an

object , so it is a value of an object type in . More precisely, the oids of objects that belong

to a class are legal values for the object type . Furthermore, since an object, instance of a class

, is a member of all the superclasses of , for a given class we consider as legal values of the

corresponding object type, all the oids of objects that belong either to the class or to one of its

subclasses. For example, consider a class with a subclass , the oid of an object of

class is a legal value for the object type .

By contrast, when considering value types, the extensions of all the prede�ned basic value

types are assumed to be disjoint. However, when a structured value type has as a component

type an object type , the oid of an object, instance of a subclass of , is a legal value of this

component. In this sense we deal with \ " structures. Consider for example the type

19

2

Z

V

OI

f g ! f g

n n

j j j n j n

De�nition 8

13

1 1

(1) (1) () ()

a v ; ; a v

a v ; ; a v j ; ; n ; ; n

1

2 1 2

1 1

1

1

1 1

1

1

1 1

1 1

1 1

13

V O

V

O

i

i

i i

i

n n

n

n

n n

n

n

n i i n

n n

n n

f g

ET !

ET

CI !

CI

CI

BVT

f g

V

� 2 BVT 2

� 2 OI 2 OT 2

� 2 T

� �

f g

� �

� � � � 2 AN

set-of(person) person employee

person employee

set-of(person)

integer

bool

We recall that for records we have the permutability of �elds, that is, a value (: . . . :) is identical to

a value (: . . . :) with : 1 . . . 1 . . . bijective function.

i

i i ; i

�

� � ; �

�

�

c

� c c

D

dom D

true; false

D v dom D v

D

i c c i � c

null T T

v ; ; v n T ; ; T

T T ; ; T

v ; ; v

set of T

v ; ; v n T ; ; T

T T ; ; T

v ; ; v

list of T

v ; ; v n v i n T a ; ; a

a v ; ; a v

record of a T ; ; a T

value assignment

oid assignment

(Values). The set of legal Chimera values is de�ned as follows:

for each prede�ned basic value type if then is a (basic) value of

value type (the extensions of the prede�ned basic value types are postulated);

is a (basic) value of object type , , whenever ;

is a (basic) value of type for each type ;

let , be values of types , respectively, such that a de�ned most speci�c

common supertype among exists, then

is a (structured) value of value type - , called set value;

let , be values of types , respectively, such that a de�ned most speci�c

common supertype among exists, then

is a (structured) value of value type - , called list value;

if , are values, and each () has type , and are

distinct labels, then

is a (structured) value of value type - , called record value .

, being a class with a subclass . Let be the oid of an instance

of class and the oid of an object of class . Then is a legal value for the

type .

Let us consider a function assigning an extent to each extended type and to each class.

Actually is a pair of functions () such that

: 2

assigns a set of values to each extended value type in (), and

: 2

assigns a set of object identi�ers to each class in (). Thus, if is a class name in

, () is the set of the identi�ers of objects belonging to , both as instances and as members.

For each prede�ned basic value type in we postulate a non-empty extension, denoted

by () . For example the extension of the basic value type is the set of integer

numbers , while the extension of the basic value type is the set containing the two boolean

values, that is, .

()

()

. . . 0 . . .

. . .

. . .

()

. . . 0 . . .

. . .

[. . .]

()

. . . 0 1 . . .

(: . . . :)

(: . . . :)

20

14

15

Example 9

1 2 3 1

2 3

1

2 3

14

15

OI

�

�

� f g

�

�

� f g

�

� f g �

2 OI

CI ! VT

OI ! V

8 2 OI 2)

i ; i ; i i

i ; i

true false

true; false; false; true

i

i ; i

i

c i c

i c i

c i

c

stype stype

value value

i ; i � c value i stype c

We formally de�ne this function in section 4.1 after having introduced the de�nition of classes.

We formally de�ne this function in section 4.2 after having introduced the de�nition of objects.

Provided that are oids in , such that belongs to the extent of class

and belongs to the extent of class , examples of Chimera values are the

following.

, , are values of type ;

and are values of type ;

is a value of type ;

is a value of type ;

is a value of type ;

is a value of type

;

) is a value of type ;

is a value of type .

self

department person

1 27 342 integer

boolean

'a', 'k', 'z' set-of(character)

list-of(boolean)

(re: 8.24, im: 2.18) record-of(re:real, im:real)

(day:8, mont:10, year:1969), (day:5, mont:10, year:1988)

set-of(record-of(day:integer, month:integer, year:integer))

(name:'john', dep: record-of(name:string, dep:department)

set-of(person)

[]

According to the above de�nition, and similarly to most object-oriented data models, oids are

values. Indeed they are the values able to uniquely identify objects. References among objects and

object sharing are supported by object identi�ers. The state of an object, which is a value, may

indeed contain object identi�ers, representing references to other objects, as components.

In order to ensure the correctness of the database, oids must be correctly typed. Indeed, if

an oid is the value of an object attribute, the oid must meet the type requirements expressed by

the attribute domain. Therefore, the oid must denote an object member of the class speci�ed as

attribute domain. By contrast, oids, unlike other values, cannot be directly manipulated by the

users. This is the reason why oids are not included in terms (see De�nition 33). Indeed oids cannot

appear in expressions written by the user, that is constraints, queries or updates, because they

cannot be explicitly used. Rather, only object variables, including special variables like , may

appear in constraints, queries or updates. Therefore, no need arises of typing an oid when typing

an expression (see Section 6.1). Oids can only be bound to variables through queries or retrieved

by path expressions through navigation.

Finally note that in the above de�nition, the condition is imposed that an oid is a legal value

for an object type , only if belongs to the extent of . However, due to Invariant 1 stated in

Section 4.2, if an oid identi�es an object belonging to a class , that is, if belongs to the

extent of , the state of the object identi�ed by is a legal value of the type which describes the

structural component of class . This condition is formally stated as follows.

Let be a function, de�ned as : , that given a class name returns the type

of the states of class instances . Let be a function, de�ned as : , that given

an oid returns the state (that is, a structured value) of the object identi�ed by the oid . Then,

() () is a legal value for ().

Therefore, the membership to the extent of a class ensures the structural consistency of the object

with respect to the class.

De�nition 8, besides de�ning the set of Chimera legal values, implicitly states typing rules for

values. The following de�nition explicitly states the typing rules implicit in De�nition 8.

21

2

�

F

F

1

=1

1

=1

1 1 1 1

1

[[]]

1

De�nition 9

De�nition 10

i

i

i

i i

n

n

i

i

i i

n

n

i

i

i i

n n n n

n

V O

�

�

�

i � i i i

�

�

T S

� n i �

2 T

2

2 BVT

2

2 OI 2 CI

� �

f g

� �

� �

2 AN

� 2 8 2 T

� 8 2 BVT

� 2 OT

�

� f j � 2 8 � � g

null T

T

v dom D

v D

D

i � c

i c

i ; c

v T i n

v ; ; v set of T

T T

v T i n

v ; ; v list of T

T T

v T i n

a v ; ; a v record of a T ; ; a T

a ; ; a

� � ; �

� T T

�

T T

�

null T T

D dom D D dom D

c c � c

set of T S

list of T v ; ; v n ; v T i; i n

(Typing Rules for Values). The Chimera typing rules for values are the following.

-

-

-

(Type Interpretation). denotes the extension of the type under the assign-

ment , de�ned as follows:

, ;

= , (is postulated);

if , ;

- , where denotes the power set of the set ;

- ;

:

()

:

()

:

: (1)

. . . : ()

=

: (1)

[. . .] : ()

=

: (1)

(: . . . :) : (: . . . :)

. . .

Note that the above typing rules do not determine a unique type for each value. In Section 6.1

we deal with typing of Chimera expressions, giving typing rules for Chimera terms and addressing

the problem of assigning a unique type to an object in order to correctly handle late binding at

run-time.

The above typing rules are used to check whether a database state is structurally consistent, that

is, if the state of each object meets the requirements of the structural part of its class de�nition. In

case of a named type as domain, the compatibility of the value is checked �rst of all with respect to

the value type describing its structure; then, in case of constrained types the constraint is checked,

while in case of extended types the membership to the explicit extent is checked. These concepts

are formalized by De�nition 10 which exactly de�nes the set of legal values of each type.

We de�ne now the extension, that is, the set of legal values, of each type. The extension of a

type is used, in our model, to represent the denotational semantics of the type, that is, the set of

values that may be legal instances of the type. The extension of a type depends on the explicit

extent for such types, like extended value types and classes, that have one. To model these extents

we consider function = () introduced above. To make explicit that the interpretation of

types can only be given under an assignment , we denote with [[]] the extension of the type

under the assignment .

[[]]

[[]]

[[]] () ()

[[]] = ()

[[()]] = 2 2

[[()]] = [. . .] 0 [[]] 1

22

0

2

0 0

S

S

0

2

0

16

1

17

18

()

pos

pos pos

� n i �

�

c c ISA c

�

f j 2 8 � � g

f j 2 g �

[

Lemma 1

Theorem 1

1 1 1 1

16

17

18

1 2 1 2

n n � n n i i i �

� �

� �

�

�

c subclasses of c

�

�

� f j 2 AN 2 8 �

� g

� 2 T N n CT [ET

� f j 2 g 2 CT

� 2 ET

f j 2 g � [

�

t � �

2

T n T N

2 2 T nT N

T

6 ;

list of T v ; ; n v v T i; i n

constr Tn R v constr Tn v

R

value i i � c

stype c stype c

record of a T ; ; a T a v ; ; a v a ; v T i;

i n

Tn type Tn Tn

Tn v v struct Tn ; v constr Tn Tn

ET ET � ET

value i i � c stype c stype c

ET

� ET struct ET

T T T T T T T

T v

v T

v T T

T v

v

Tn

type Tn

T

-

;

if ;

meets if ;

if , .

For a correct instantiation of an object type, the following constraint has to be veri�ed

.

For a correct instantiation of an extended value type , we require that

.

If then and .

(Soundness of typing rules for values). Let be the type deduced for a value

according to rules in De�nition 9, then .

Note that lists are a particular case of records in which labels are the positions in the list. So we may have stated

[[- ()]] = (1 : . . . :) [[]] 1 .

Since () is expressed in denial form by a set of rules , meets () if falsi�es the bodies of

all the rules in .

Equivalently, if we make use of the function ISA de�ned in Section 5 we can state () ()

[[()]]

s.t.

[[()]] .

[[(: . . . :)]] = (: . . . :) [[]] 1

[[]] = [[()]] ()

[[]] = [[()]] ()

[[]] = ()

() () [[()]] [[()]]

() [[()]]

Informally, the extensions of prede�ned basic value types are postulated, the extension of classes

and of extended types is de�ned as their explicit extent, while the extension of structured types

is de�ned quite intuitively in terms of the extension of the component types. The extension of

a constrained value type is the set of the legal values for the type which describes the structure

restricted to those that meet the population constraint. In fact some elements belonging to the

extension of the type describing the structure may not meet the formula. In addition, we impose

some restrictions on value and object assignments, that is, the values (respectively, the objects)

must be compatible with the structure of the extended type (respectively, the class).

= [[]] [[]] [[]] [[]]

[[]]

The previous theorem states the soundness of our typing rules. Our typing rules for values are not

complete. More precisely, they are complete with respect to . That is, we never deduce for

a value a named type. The result that holds is that if [[]] and , then according to

typing rules in De�nition 9 we deduce type for . By contrast, the completeness with respect to

the set of all types does not hold. As an example we may consider the named type , de�ned

as the set of natural numbers. According to our typing rules, it does not exist a value for which

we deduce type , whereas, obviously, [[]] = . To get a complete type system, we must add

rules that allow to deduce named types for values, but in such a way we may deduce several types

for a value, because whenever a named type is deduced also the corresponding structural type is

deduced, and a most speci�c type among the deduced ones does not exist (they are equivalent in

that they have the same extension).

Our solution is to keep an incomplete (with respect to named types) type system, and, when

the domain for an attribute is a named type , we check that the value for the attribute is a legal

value for (), and, as an additional constraint (that is, not related to typing), we require that

the value belongs to the type interpretation [[]] .

23

4.1 Classes

De�nition 11

{

{

{

4 Classes and Objects

� 2 CI

� 2 f g

�

2 AN

2 T

2 f g

�

C

C id; pop; struct; beh; constr; state;mc

id

pop ext; der

struct

a name; a dom; a type

a name

a dom

a type ext; der

beh

op name; op sign

metaclass

(Class Signature). A class is a tuple

where

is the class identi�er;

indicates whether the class is derived;

contains the information about the structure of the instances of the class, and it is a

set, containing an item for each attribute of the class, of triples

where

is the attribute name,

is the attribute domain,

is the attribute type, that is, whether it is extensional or derived;

contains the information about the behavior of the instances of the class, and it is a set,

containing an item for each method of the class, of pairs

The signature of a class provides all the information for the use of the class and its instances. For

each class, we maintain structural, behavioral and constraint information. The signature must also

specify whether the class is explicitly populated or derived. For the structural part of a class, the

signature must contain name and domain of each attribute, and whether the attribute is extensional

or derived. For the behavioral part of a class the signature must contain name, input and output

parameters of each method. The signature must contain similar information for the structure and

behavior of the class itself, that is, information about class-attributes and class-methods. The

signature must �nally contain for each class the signature of constraints, both those related to

class instances and those related to the class itself. In this work we do not consider the trigger

component of a class.

In the following we associate each class both with its proper extent, that is the set of objects

belonging to the class as instances, and with its global extent, that is the set of objects belonging

to the class as members. Note that the global extent can be derived as the union of the global

extents of all the subclasses of the considered one. Proper and global extents coincide for classes

with no subclasses.

To provide a uniform modeling of instance features and class features we introduce the notion

of . A metaclass is a special class, whose unique instance is a class. By introducing

this concept we model in a uniform way attributes and c-attributes, operations and c-operations,

constraints and c-constraints. A class is seen as an instance of the corresponding metaclass exactly

in the same way an object is seen as an instance of a class.

= ()

()

()

24

2

T c

OI

0

0

19

20

k

k

k

k

n n

n

O

O

1

1

19

1

1

20

1 1

1

{

{

{

{

Example 10

2 MN

� � !

T

�

2

� �

T

� 2 V

�

�

CI !

f

g

f ! g

f g

�

person

name, string vatCode, string birthday, date

income, integer age, integer

changeIncome integer person

tooLowIncome string

averageAge 35 lifeExpentancy 80

m-person

op name

op sign

T T T

T ; ; T T

constr

con name; con sign

con name

con sign

T T

T ; ; T

state

C

C

a v ; ; a v ; extent E; proper extent PE

a ; ; a C E PE

C

mc C C

extent proper extent

PE E E PE C

�

c � c C:state:extent C C:id c

c

S S

id

pop ext

struct

beh

constr

state ; ; extent S; proper extent S

mc

. . .

. . .

()

�

. . .

. . .

(: . . . : : :)

. . .

The attributes and - in the class state, denote the global and the proper extent

of the class, respectively; therefore (= if is a leaf class in the inheritance

hierarchy). The oid assignment : 2 , introduced in Section 3.1, is such that, for each

class name , () = , where is the (unique) class such that = (that is,

the class identi�ed by).

=

=

=

= (:)

= (:)

= (: : : :)

25

Note that we have made the assumption that the method always has a result parameter. In case of methods

without result parameter, we may suppose that the method returns the object on which it has been executed. In

such a case the domain of output parameter will be the class on which the method is de�ned.

Note that the input parameter of the constraint is always an object of the class on which the method is de�ned.

where

is the method name,

is the signature of the method, expressed as

with and types in , representing, respectively, domains of input parameters

and the output one of the method ;

contains the information about the constraints on the instances of the class, and it is

a set, containing an item for each constraint of the class, of pairs

where

is the constraint name,

is the signature of the constraint, expressed as

with types in , representing domains of the output parameter of the constraint ;

is a value containing the values for the class attributes plus two set values, one con-

taining all the objects belonging to as instances and one containing all the objects belonging

to as members; it is a record value of the form

-

where are the attribute names of the c-attributes of ; and are the sets of

identi�ers of objects belonging to class ;

is the identi�er of the metaclass corresponding to class , that is, the class of which is

instance.

An example of Chimera class is the following, where and denote two oid sets.

(, ext), (, ext), (, ext),

(, ext), (, der)

-

= .

2

21

n n n

n n

c C C:id

1 1 1

1 1

21

De�nition 12

f g

CI ! VT

2 CI 2 VT

� 2 CI

�

�

�

person

name string vatCode string birthday date income integer age integer

We denote with the identi�er of the class (),that is, its corresponding object type.

C C

C

C

struct a ; T ; at ; ; a ; T ; at C

record of a T ; ; a T

stype C stype

c t

stype C C c C:id c

stype

; ; ; ;

C id; pop; struct; beh; constr; state;mc

id; pop; struct; beh; constr;mc

C MC

MC C

MC id; struct; beh; constr

id

struct C

struct

extent set

of c proper ext set of c

beh C

beh

constr C

constr

structural type

de�nitional component

(Metaclass). A metaclass corresponding to a class is a tuple

where:

is the identi�er of the metaclass;

contains the information about the structure of the class , that is, its class attributes,

and it is exactly like in De�nition 11, considering class attributes instead of the instance

ones, except for containing two additional extensional attributes: with domain -

and - with domain - ;

contains the information about the behavior of the class , that is, its class methods, and

it is exactly like in De�nition 11, considering class operations instead of instance ones;

contains the information about the constraints of the class , that is, its class con-

straints, and it is exactly like in De�nition 11, considering class constraints instead of

instance ones.

The identi�er of a class denotes the object type corresponding to . Such object type is the type

of the identi�ers of the objects of class . A value type is implicitly associated with each class,

representing the type of values that constitute the state of the class instances. Indeed, if a class

has as the set () . . . () , then each object instance of must have as

state a value of (record) type

- (: . . . :).

This type, which describes the structure of the objects of the class, is the of

the class, and it is denoted by (). The function : , informally introduced

in Section 3.4, is simply the function that given an identi�er returns obtained as

() where is the class identi�ed by , that is, the (unique) class such that = . For

example, referring to the class of Example 10, () is

(: : : : :).

The of a class = () is

()

that is, its state-independent components.

For each class , a metaclass is introduced, de�ned as follows. Each metaclass has a

unique instance, that is, the class to which it corresponds. We remark that metaclasses in Chimera

are di�erent from metaclasses in other object-oriented models and languages, such as Smalltalk, in

that they are not classes, and, thus, they cannot be instantiated multiple times. Note, however,

that the notion of metaclass supported could be easily generalized by enriching the language with

primitives for creating metaclasses and instantiating them.

= ()

() ()

26

1 n

n

n

22

1

1

22

f

g

f ! � g

f g �

�

�

�

!

Example 11

4.1.1 Class Implementation

id

struct

beh

constr

c

c ; ; c

; ; ;

c ; ; c c c

op name condition op code

The metaclass corresponding to class of Example 10 is the following.

=

(, ext), (, ext),

(extent : , ext), (proper-extent : , ext)

.

person

m-person

averageAge, integer lifeExpentancy, integer

set-of(person) set-of(person)

changeLifeExpentancy integer m person

invalidLifeExpantancy integer

non abstract X c X not X in c not X in c

Actually, in Chimera the operation implementation may be de�ned in an external programming language, but we

do not consider here this case because it heavily depends on the external language which is used. Thus, we consider

here only implementations expressed in the Chimera language itself.

=

= (:)

= (:)

Finally, note that Chimera does not directly support the notion of abstract class. However,

abstract classes can be modeled in Chimera by de�ning a class for which an integrity constraint is

de�ned stating that the proper extent of the class must be empty. With an abstract class , with

proper subclasses . . . the following integrity constraint will be associated:

() () . . .

This approach, however, requires that all the subclasses . . . of are known at the time is

de�ned.

In addition to a signature, classes have an implementation. Roughly speaking, the signature of a

class is the de�nition of all the names and domains associated with that class, whereas the imple-

mentation provides the speci�cation of the meaning of each concept associated with a class. We do

not consider here active rules, thus our implementations are expressed by means of deductive (pas-

sive) rules or, in case of method implementation, of update operations constrained by a declarative

formula. In a Chimera class implementation:

(derived) attributes and c-attributes are implemented by means of deductive rules specifying

the computation of values by means of a declarative expression;

constraints and c-constraints are implemented by means of deductive rules associating with a

parameterized constraint name a condition that should not hold in any state of the database;

the implementation of an operation or c-operation is an expression of the form

- : -

where the condition is any declarative expression of Chimera, specifying a declarative control

upon operation execution, while the operation code is a sequence of update primitives, object

creation and deletion, object migration from one class to another, state changes, and extended

value type modi�cations .

Apart from implementing individual concepts such as attributes or constraints by means of

rules, the extent of a class may be de�ned by means of deductive rules as well, that is, the class

may be populated by means of rules referring to other classes from which the objects of the newly

created class are chosen. Population rules as well as implementations of attributes, constraints,

operations (both at class and instance levels) constitute the class implementation.

27

2

2

n n n

1

1

1 1 1

1

4.2 Objects

De�nition 13

De�nition 14

Example 12

�

�

�

�

� 2 OI

� 2 V

� 2 CI

2

2 OI

2 CI

�

2 AN OI ! V

2 OI 2 V

C id; pop; struct; beh; constr; state;mc

C

pop der

struct

constr

beh

o i; v; c

i o

v o

c o C

i C:state:proper extent C:id c

i

i ;

v v

a v ; ; a v a ; ; a value

i v o i; v; c

value i

person

name: `john smith' vatCode: `666FF' birthday: (day:8, month:10, year:1969)

income: 5000 age: 25 person

name: `john smith' vatCode: `666FF'

birthday: (day:8, month:10, year:1969) income: 5000 age: 25

(Class Implementation). Given a Chimera class signature

an implementation for consists of a set of deductive rules, specifying

a population implementation, if ;

an attribute implementation for each derived attribute in ;

a constraint implementation for each constraint in ;

an operation implementation for each operation in .

(Objects). An object is a triple

where

is the object identi�er of ;

is a value, called state of ;

is the most speci�c class to which belongs, that is, being the class such that

- , .

An example of Chimera object is the following, provided that and

.

, , ,

, ,

= ()

=

Note that c-attribute, c-constraint and c-operation implementations constitute the metaclass im-

plementation.

We impose some conditions to ensure that a class implementation is consistent with the related

class signature. Intuitively, an implementation for each feature speci�ed in the signature must

be provided. In addition, type compatibility must be ensured between the types de�ned in the

signature and those returned by the implementation. We deal with these issues in Section 6.1.2,

after having introduced declarative expressions and their typing.

= ()

=

((

))

Note that the state of an object is a value of a record value type. That is, has the form

(: . . . :) with The function : that we have informally

introduced in Section 3.4, for each simply returns such that = () is an object

in the database. Referring to the example above

() = (, ,

, ,)

28

c

�

23

24

23

24

o C o

C

struct beh

o i; v; c c

create

specialize

generalize

instance

instance

structural consistency

This notion will be formally de�ned in Section 5.

This ensures also the consistency with respect to all the superclasses of class .

An object is an of a class if this class is the most speci�c class in the hierarchy to

which the object belongs. Whenever an object is an instance of a class then is also a member

of all the superclasses of . The most speci�c class to which an object belongs is not necessarily

the one in which the object has been created (the �rst argument of the operation). This is

due to the following reasons:

1. the object may have migrated to another class, by an explicit migration operation (

or);

2. the object may have been inserted in a more speci�c (derived) class, whose population pred-

icate is satis�ed by the object.

In Chimera, an object does not necessarily belong to a unique most speci�c class. This is due

to two reasons. First of all, an object may be created as an instance of a class and then specialized

in two di�erent subclasses of the original class. Second, if an object is explicitly inserted in a class,

which has two derived subclasses whose population predicates are not disjoint, and the object meets

both the predicates, then the object is an instance of both these subclasses, that are not related by

the subclass relationship. However, when considering objects with several most specialized classes

new problems arise, because an object does no more have a single most speci�c class, rather it has

a set of them. In such a case, an object takes the union of the features of all the classes to which

it belongs. Conicts among di�erent de�nitions may however arise. Therefore, the need arises to

assign a \preferred" class to each object; for example to choose which implementation to use for

methods with the same name and di�erent implementations. Thus, we leave this issue, which has

been dealt with in [10], out from this speci�cation of the model. We only mention that, to ensure

that an object does not have a set of most speci�c classes, such insertions and specializations that

would add a second most speci�c class to the object must be disallowed. For example, if an object

inserted in a class would be inserted in two di�erent derived subclasses of the class, not related in

the ISA hierarchy, being the population predicates of both the subclasses satis�ed by the inserted

object, then the insertion must be rejected. Note that a static analysis of population de�nition

to ensure the disjointness of the set of objects that would satisfy the predicates, is not feasible.

Similarly, a specialization towards a class which is not a subclass of the current most speci�c class

of an object, must be disallowed.

To unify the notion of object and class we can use a unique de�nition of , de�ned as a 7-

tuple with the components of De�nition 11. Objects may then be seen as particular instances, with

empty and , because they cannot be further instantiated. Moreover they are instances of

classes, whereas classes are instances of metaclasses, which are not instances (in fact they do not

have a state and a \class" to which belong). Along this way, we may consider a unique kind of

Chimera \entity", being an object an entity with a state but without speci�cation part, a class an

entity with both a state and a speci�cation part, and a metaclass an entity without state, but only

with a speci�cation component.

As we will see in Section 5.4 each object must be a consistent instance of all the classes to

which it belongs. Therefore an object = () must be a consistent instance of class . We

distinguish two kinds of consistency:

if the instance respects the structure of the class in which it is de�ned,

that is, if the object state is a (record) value whose type is the type of the structural component

of the class;

29

2

2

2

�

�

8 2

0 0

0

0

0

0 0 0 0

1

1 2 1 2 1 2 1 2

oid-uniqueness

De�nition 15

De�nition 16

De�nition 17

Invariant 1

Example 13

De�nition 18

o i; v; c

c v stype c

o i; v; c

c o

C C:id c

o i; v; c c o

c

o i; v; c c

value i

stype

; ; ; ;

: < ; :

: < :

i; v; c i ; v ; c i v

o ; o o :i o :i o :v o :v o :c o :c

person

name: `john smith' vatCode: `666FF'

birthday: (day:8, month:10, year:1969) income: 5000 age: 25

person

name string vatCode string birthday date income integer age integer

tooLowIncome

tooLowIncome N Self income 5000 N Self name

Self income 5000 Self income 5000

if the instance satis�es the constraints of the class in which it is de�ned.

= ()

()

The above de�nition states that the state of each object must contain a value for each attribute

of the class, and that this value must be of the correct type, that is, it must meet the domain

speci�cation.

= ()

= ()

= ()

() = (

)

() =

(: : : : :)

() =

=

An object () is said to (or to) an object () if appears in . A �nite

set of objects OBJ is consistent if the set is closed under the \depend-on" relation, that is, if for

each object in the set all objects referred by it belong to the set. This property is also known as

of the set. Intuitively speaking, this notion states that because identi�ers are

pointers to objects there must be no in the set. In addition, for a set of objects to

be consistent, the property of oid-uniqueness must be ensured. The following de�nition formalizes

these concepts.

= = =

30

constraint consistency

(Structural Consistency). An object is a structurally consistent instance

of a class if is a legal (record) value for the type .

(Constraint Consistency). An object is a constraint consistent instance

of a class if falsi�es all the bodies of rules implementing the constraints in the constr component

of , where is .

(Consistency). An object is a consistent instance of a class if is

both a structural and constraint consistent instance of .

An object must be a consistent instance of class .

Consider the object of Example 12 and class of Example 10.

, ,

, ,

is a legal value of

,

thus structural consistency holds.

Furthermore, if the implementation for the constraint is speci�ed by the following

rule

the atom is falsi�ed by the object (since), thus constraint

consistency holds as well.

depend on refer to

referential integrity

dangling pointers

(Consistent set of objects). A (�nite) set of objects OBJ is consistent if and only

if

1.

OBJ, if , then and ;

0

2

2

2

referential integrity

8 2 � f j 2 g

OI

� f g

�

� f g

� f g

f g f g

�

Example 14

De�nition 19

De�nition 20

Example 15

1 1 3 4

2 2 1

3 3

4 4 2

1 2 3 4 1 2

3 4

1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2

1 2 1 2

o OBJ ref o i o i; v; c ; o OBJ

o i; v; c ref o v

o i ; i ; i ;

o i ; i ;

o i ;

o i ; i ;

OBJ o ; o ; o ; o OBJ o ; o

i i

null

o i ; v ; c o i ; v ; c

o o i i v v c c

o i ; v ; c o i ; v ; c

o o v v

stype stype

(name:`Alan Ford', children: person

(name:`computer science', chief: department

(name:`Susan Ford', children: person

(name:`Bill Ford', children: department : student

person company

person company record-of(name:string, address:string)

2.

, .

where, given an object , denotes the set of identi�ers in appearing in .

Consider the following objects

;

;

),);

, .

The set is a consistent set of objects. By contrast, is not a

consistent set of objects, because the references and are \dangling".

equality by identity

equality by value

shallow equality

deep equality

(Equality by Identity). Two objects and are equal

by identity (denoted by) if and only if (and obviously , and because

of oid-uniqueness).

(Shallow Value Equality). Two objects and are

equal by value under shallow equality (denoted by) if and only if . This implies

both the equality of the attribute values and the equality of the attribute names.

Consider a database containing a class and a class , obviously not

related in the inheritance hierarchy. Let

= = .

Consider the objects

() ^ = () ^

= () ()

= ())

= ())

= (

= ())

= =

Referential integrity is preserved in Chimera by allowing the deletion of referenced objects and

removing all the references to deleted objects. This removal is performed setting to each

reference to the object, if it were the value for an atomic attribute. By contrast, if the object

identi�er were a component of a set or list-valued attribute, then the reference is removed from the

set/list.

We consider now the notion of object equality. In value-based systems there is no need to

distinguish between identical objects and equal objects, since the two notions are the same. By

contrast, object-oriented systems need to distinguish them as there is a sharp distinction between

values and objects. Classically [32], there are two fundamentally di�erent notions of equality that

are supported by object-oriented systems: (meaning that the two denoted

objects are the same object) and (meaning that the two denoted objects have

the same attribute values, but not necessary the same identi�er). The latter form of equality

can be further re�ned in two ways: considers the equality of all direct attributes

(possibly represented by means of object identi�ers) of an object, while also considers

the equality of the attributes of objects which are recursively reached by means of oid references.

The following de�nitions formally state these concepts.

= () = ()

= = = =

= () = ()

== =

Note that shallow value equality does not even require that the two objects are instances of classes

related in the inheritance hierarchy, provided that the objects have the same attributes.

() ()

31

�

2

m m

m m

m m

n n

v v ; ; v v v ; ; n v

a

0 0

0 0

� � � �

� � � �

� � �

1 1

1 1

1 1

25

26

1 1

27

28

De�nition 21

Example 16

1 1

2 2

1 2

25

1 1

1

1 1

1 1 1 1

26

27

28

1 1 3 4

i i

n i i i i n

n i i

n n i i i i

i i i i n n n n

i i i

�

�

�

V ! V

2 V

�

� 2 2 BVT

� f g f g � f g � f g

f g

� �

f g � f g f g

�

2 OI

� V OI

� AN

�

� 2 OI

� f g

name Ford address Austin person

name Ford address Austin company

(name:`Alan Ford', children: person

o i ; ; ;

o i ; ; ;

o o

v v

null null

v dom D D v v v

v v ; ; v v v ; ; v m n v ; ; v v ; ; v

v ; ; v v v

v a v ; ; a v v a v ; ; a v m n

a ; v ; ; a ; v a ; v ; ; a ; v a ; v ; ; a ; v

a ; v v

v

i

o i; v; c span graph o

V E;E

v V E

v V E v v i

v a v ve a

ve ve ve o :v o :i i

V E VE

o i ; i ; i ;

This is due to the fact that when considering deep value equality, oids are not considered in the test, rather they

are expanded into their corresponding values.

The case = [. . .] is handled similarly, regarding as (1 : . . . :), that is, as a record value with

natural labels.

This de�nition assumes that list values are seen as record values with natural labels.

Or as a component of the set which is the value for .

;

.

and are equal by value under shallow equality.

�̂

(Span Graph) . The span graph of an object (denoted as ,

is a directed graph such that

vertices are values in , not containing identi�ers in as components;

edges are labeled by attribute names in .

The graph is de�ned as follows:

is a vertex in ;

if a vertex exists in , has been obtained from a value , and appears in

as the value for an attribute , then an edge from to with label is added to the

graph. is obtained from the value , where is and . If such a vertex is

not in , then the vertex is added to .

Consider the following objects:

;

= ((: ` : `))

= ((: ` : `))

Before introducing deep value equality, we introduce the notion of span graph of an object. Intu-

itively the span graph of an object is the graph obtained by recursively replacing each oid-reference

in the object value with the state of the object referenced by it. Note that this operation results

in a graph, instead of a tree, because of the possibility of circular references among objects.

We introduce an operator^: , which given a value cuts o� the �elds of the value which

are oids . The operator is inductively de�ned in the following way. Given a value , ^ is

^

= ;

if (), with , that is, is a basic value, then ^ = ;

if = . . . then ^ = ^ . . . ^ where , and is

obtained from . . . removing those 's for which ^ is unde�ned;

if = (: . . . :) then ^ = (: ^ . . . : ^) where , and

() . . . () () . . . () is obtained from () . . . ()

removing those pairs () for which ^ is unde�ned ;

^ is unde�ned otherwise.

Note that according to this de�nition , , is unde�ned.

= () ())

()

^

^ ^

^ ^

^ =

= ())

32

(name:’Bill Ford’, children: { })

(name:’computer science’)

department

chief

(name:’Alan Ford’)

children

(name:’Susan Ford’, children: {})

children

d

2

CI

�

� f g

� f g

�

CI !

De�nition 22

5 Inheritance

4

2 2 1

3 3

4 4 2

4

1 1 1 1 2 2 2 2

1 2 1 2

o

o i ; i ;

o i ; ;

o i ; ; i ;

o

o i ; v ; c o i ; v ; c

o o span graph o span graph o

ISA

(name:`computer science', chief: department

(name:`Susan Ford', children: person

(name:`Bill Ford', children: department student

;

;

.

The span graph of object is shown in Figure 5.

(Deep Value Equality). Two objects and are equal by

value under deep equality (denoted by) if and only if ,

where the equality of two graphs is the equality of their vertices and the equality of their edges.

Figure 5: Span graph of object of Example 16

= ())

= ())

= (:))

We are now able to give the de�nition of deep value equality.

= () = ()

== () = ()

Clearly equality by identity implies equality by value, and, among equalities by value, shallow

equality implies deep equality. Indeed, shallow equality requires that all the objects referred by the

two compared objects are exactly the same. Deep equality, by contrast, (recursively) requires the

equality of the states of the objects referred by the two compared objects. Thus, because of oid

uniqueness, shallow equality implies deep equality.

When we consider equalities among typed expression, we may specialize these notions of equal-

ities to compare only the components of the states related to the type assigned to the expression.

In such a way, we consider di�erent kinds of equality. However, we do not elaborate on this issue

here.

Inheritance relationships among classes are described by an ISA hierarchy established by the user.

This ISA hierarchy represents which classes are subclasses of (inherit from) other classes. This

information is expressed as a function

: 2

33

person

employee student

graduate
under-

graduate
stud-
emp

0

(

()c ISA c

Example 17

� CI

�

�

2

� 0

�

�

�

�

� �

2 CI

CI !

; ;

[

;

f g

f g

f g

f g

;

f g

f g

f g

f g �

c ISA c c

ISA

ISA

ISA c

ISA c

ISA c

ISA

ISA

ISA

ISA ;

ISA ISA

ISA ISA

ISA ISA

ISA ISA

ISA ; ;

ISA ISA ;

Referring to the inheritance hierarchy depicted in Figure 6 the ISA relationships are

the following:

.

covariance rule

contravariance rule

domain

re�nement

person

employee person

student person

stud-emp employee student

graduate under-graduate student

person person

employee employee person

student student person

stud-emp employee student person

graduate under-graduate student person

Figure 6: Inheritance hierarchy of Example 17

such that for each , () is the set of the (direct) superclasses of . The function

: 2 is the transitive closure of the subclass relationship, that is, it returns all the

superclasses (also the indirect ones) of a given class.

Function is de�ned as follows:

() =

if () =

() otherwise

() =

() =

() =

() =

() = () =

() = () =

() = () =

() = () =

() =

() = () =

A set of conditions must be satis�ed by two classes related by the ISA relationship. These condi-

tions are related to the fact that each subclass must contain all attributes, operations, constraints

(both on the class as well on the instance level) of all its superclasses. Apart from the inherited

concepts, additional features can be introduced in a subclass. Inherited concepts may be rede�ned

(overwritten) in a subclass de�nition under a number of restrictions. Indeed, in Chimera the re-

de�nition of the signature of an attribute is possible by specializing, that is, re�ning, the domain

of the attribute. The rede�nition of the signature of an operation must verify the

for result parameters and the for the input ones. Therefore, result parameter

domains may be specialized, whereas input parameter domains may be generalized, in the subclass

signature of the operation. The implementation of an attribute or an operation may be rede�ned

as well, introducing a di�erent implementation of the respective concept, which \overrides" the

inherited de�nition. The rede�nition of derived and extensional attributes is not allowed if a de-

rived attribute becomes extensional or vice-versa. We also require that the extent of a subclass is

a subset of the extent of all its superclasses.

First of all we need to de�ne an ordering on types, to formally de�ne notions such as

. Besides the ISA ordering on classes, and thus on object types, another ordering must

34

2

De�nition 23

Example 18

5.1 Subtype Relationship

V

V

V

V

V

V

V

V

T

T

V

T

T

n

n

n

n

i

T

i

V

V

V

V

V

� �

� 0 0

�

�

0 0 0 0

0 0 0 0

0 0 00 00

00 0

�

�

�

�

�

1 2 2 1 2 1

1 2

1 2

1 2

1 2 1 2

1 2

2

2

1

1 2 1

2

2

1

1 2 1

1 1

1

2 1

1

VT ! VT

� 2 CT

� 2 ET

� ; 2 VT n CT [ET

2)

�

2 T �

�

� 2

� 2

� 2 VT n CT [ET

� �

� �

�

� � �

f

g f

g

f g

f g

f g

f g

f g

ISA

T ISA T struct T

T ISA T struct T

ISA T T

ISA ISA ISA

T ISA T type T type T

T ; T T T T T

T T

T ISA T

T ISA T

T T T ; T

type T type T

T set of T T set of T T T

T list of T T list of T T T

T record of a T ; ; a T T record of a T ; ; a T i

i n T T

ISA ; ;

ISA ; ;

ISA

ISA

ISA ;

person, student, employee, stud-emp, graduate,

under-graduate date,

summerdate, postalcode, realpostalcode, colour

date record-of day integer month integer year integer

summerdate date, record-of day integer month integer year integer

colour string

postalcode integer

realpostalcode postalcode integer

(Subtypes). Given , is a subtype of (denoted as) if and

only if one of the following conditions holds:

;

;

;

and are non extended unconstrained value types (that is,) and

;

- , - and ;

- , - and ;

- , - and for each ,

, .

Consider the set of object types

with the ISA hierarchy of Example 17. Consider the set of named types

such that

=

=

.

Then, the following subtype relationships hold:

be considered, namely the ordering on value types due to constrained value types and to extended

value types. Consider the function

:

that, given a constrained value type or an extended value type returns the (possibly constrained)

value type in terms of which it has been de�ned (which is its parent in the ISA hierarchy). Formally

if is a constrained type, then () = ()

if is an extended type, then () = ()

() = otherwise, that is, if ()

Let denote the transitive closure of the relationship. We remark that our

hierarchy is such that () () = ().

The subtype relationship is de�ned as follows. Note that the subtype relationship for basic

types is the identity.

=

()

()

()

() = ()

= () = ()

= () = ()

= (: . . . :) = (: . . . :)

1

() (: : :)

() (: : :)

() =

() =

() =

35

Theorem 2

0 0

� � � �

0

0

0

0 0

0

1 2

1 2

1 2

1 2

1 2

1 2 1 2 1

2

1 1

2 2 1 2

T T

T T

T

T

T

T T

T

TS T TS

T

T

T T

T T T

� �

� �

�

�

� �

T � �

T �

� T 2 T � 8 2

f g f g

f g f g

�

f g

T �

t

� � �

� 8 � � �

t

t 8

)

f g

list of list of list of

;

TS TS T T T T TS

C

lub T

TS T T T

lub

lub

;

T T T

T T T T T

T T T T T T T T

c c c c

c c c c

c c

T T T T T T T T T

T T T

e c

e c e ; e

- - -

.

least upper bound

If , then the following conditions hold:

and (that is, is an upper bound);

such that and , (that is, is the least among the upper

bounds).

graduate student person

stud-emp student person

summerdate date

date record-of(day:integer, month:integer, year:integer)

record-of(a:colour, b:postalcode) record-of(a:string, b:integer)

employee person person employee student

graduate employee graduate undergraduate

student person

graduate undergraduate student

person

() () ()

The set of types with the ordering is a poset. Indeed is a partial order: it can be

easily checked that it is reexive, antisymmetric and transitive. Given the poset () and a set

we may consider the upper bound of (the type such that).

Intuitively an upper bound of a set of classes is a class superclass of all the classes in the set.

Consider for instance the hierarchy of Example 8, depicted in Figure 3. The upper bound of the

set , is , as the upper bound of the set , and of

the set , . By contrast, the set , has two upper

bounds: and . This can be easily generalized to structured types with object types

as components.

We may consider the notion of () in our poset. An upper bound for a

set is the least upper bound if and only if for all upper bounds , holds. Therefore,

the of a set of types is the most speci�c among the supertypes of the types in the set. Referring

to the above example the of , is , since it is more speci�c

than . The following theorem states that the most speci�c common supertype of a set of

types de�ned in De�nition 7 is the least upper bound of the set considering the poset ().

=

Note however that the lub does not always exist, nor it is always unique. As a simple example,

the lub of two types without common supertypes does not exist (this follows immediately from

De�nition 7). Furthermore, it is possible that the lub is not unique. Consider for example the

following situation. Let and be two classes not related by the ISA hierarchy, and and be

two classes both subclasses of both and (this situation is illustrated in Figure 7). Then

would be either or . We may construct a new type being the required (unique) lub, but this

would imply to add a new class into the class hierarchy. Thus, we must look for a (already de�ned)

lub class, which, indeed, may not be unique. We have stated (cf. De�nition 7) that the lub only

exists if it is unique, that is,

= whenever is a superclass of and and (superclass of and

superclass of).

Alternatively, we may have said that the lub exists, but, to avoid a type error, the user should

explicitly state what the lub must be. Suppose indeed to have an expression of type and

an expression of type . According to our decision, the set expression is not legal.

Alternatively, we may allow the user to use explicit conversion function to handle these kinds of

situations.

Finally, the following result holds, relating the ordering on types to type extensions de�ned in

Subsection 3.4.

36

c c’

c2c1

2

1 1 1

2 2 2

T

T

T T T

k

k

S

i

T i T

S

MC

k k k

k k k

j j j

0 0 0 0

0 0

0 0

0 0 0 0 0 0

00 00 00 00 00 00

00 00 00

5.2 Signature Re�nement

5.3 Subclasses

1 2 1 2

1

1

1 2

1

2

1 2

1 1 1 1 1 2 2 2 2 2

2 1 2 1

1

1 1 1

2

1 1 1

1 2

Theorem 3

De�nition 24

Example 19

De�nition 25

� �

�

f g

f g

� � �

�

� � ! � � !

�

� � � �

� � !

� � !

� �

�

� f g

f g

� �

T T T T

struct constr <

struct constr <

s T T T s T T T

s s s s i

i k T T T T

s s

s

s

s s

MC id ; struct ; beh ; constr MC id ; struct ; beh ; constr

MC MC MC MC

struct a ; T ; at ; ; a ; T ; at

struct a ; T ; at ; ; a ; T ; at

i k a ; T ; at j k

geq5

geq5 integer geq5 imprgeq5 X X 5

geq7 geq7 integer geq7 imprgeq7 X X 7

geq5 integer geq7 integer geq5 geq7

geq7 geq5

person employee postalcode summerdate

graduate stud-emp realpostalcode date

mscst

If , then holds.

covariance rule

contravariance rule

(Signature Re�nement). Let and

be two signatures. We say that is a re�nement of , denoted by if and only if for each ,

, and .

Referring to the ordering of Example 18, given and de�ned as follows

then holds.

Given ,

metaclasses, precedes (denoted as) if and only if all the following

conditions hold:

and for each exists, , such that

Figure 7: Inheritance hierarchy showing non-uniqueness

[[]] [[]]

We have no result on the converse of Theorem 3, because the ordering on type we consider

keeps into account only the ISA relationships explicit in type de�nitions, but it does not consider

those implicit in type constraints. Indeed, consider for example a constrained type such

that () = and () = () , and a constrained type

such that () = and () = () . Then, both

and hold, while and are not related in the

ordering. By contrast [[]] [[]] , being each integer number greater or equal to 7 an

integer number greater or equal to 5.

An ordering among signatures is now imposed in the following way. Note that we consider covari-

ance for output parameter and contravariance for input ones. Specialization of domains of output

parameters of operations can therefore be done by replacing the domain with a proper subtype

(). By contrast, input parameters of operations can be re�ned by replacing the

domain with a proper supertype ().

= . . . = . . .

1

=

=

Based on the ordering among types, we de�ne an ordering on classes to ensure that the user-de�ned

ISA hierarchy meets the compatibility conditions. Firstly, we de�ne an ordering among metaclasses,

imposing compatibility conditions in re�nement of class features.

= () = ()

= () . . . ()

= () . . . ()

= 1 . . . () 1

37

2

1 1

2 2

1 1

2 2

1 1 1

2 2 2

1 1

2 2

29

{

{

{

{

{

{

{

De�nition 26

{

{

{

{

{

�

� f g

f g

� �

�

� f g

f g

� �

�

� f g

f g

� �

�

� f g

f g

� �

�

1

1 1

2

1 1

1 2

1

1 1

2

1 1

1 2

29

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 1

2 1

1

1 1 1

2

1 1 1

1 2

1

1 1

2

1 1

1 2

i j

j

T

i

i j

h h

h h

j j

i j

j

S

i

h h

h h

j j

i j

i j

i

C

k k k

k k k

j j j

i j

j

T

i

i j

h h

h h

j j

i j

j

S

i

The issue of constraint (and trigger) re�nement in Chimera is currently under investigation [11].

0 00

00 0

0 00

0 0 0 0

00 00 00 00

00 00

0 00

00 0

0 0 0 0

00 00 00 00

00 00

0 00

0 00

0 0 0 0 0 0

00 00 00 00 00 00

00 00 00

0 00

00 0

0 00

0 0 0 0

00 00 00 00

00 00

0 00

00 0

a a

T T

at at

beh m ; s ; ; m ; s

beh m ; s ; ; m ; s

i h m ; s j h

m m

s s

constr con ; s ; ; con ; s

constr con ; s ; ; con ; s

i h con ; s j h

con con

s s

C id ; pop ; struct ; beh ; constr ; state ;mc

C id ; pop ; struct ; beh ; constr ; state ;mc C C

C C

struct a ; T ; at ; ; a ; T ; at

struct a ; T ; at ; ; a ; T ; at

i k a ; T ; at j k

a a

T T

at at

beh m ; s ; ; m ; s

beh m ; s ; ; m ; s

i h m ; s j h

m m

s s

=

=

= () . . . ()

= () . . . ()

= 1 . . . () 1

=

= () . . . ()

= () . . . ()

= 1 . . . () 1

=

=

We are now able to introduce the ordering among classes. First of all we introduce two di�erent

orderings on classes, one considering the time-invariant component of a class (that is, its de�nitional

component) and the other considering the time-varying one (that is, its state and extension). To

express compatibility conditions we take into account both orderings.

= ()

= ()

= () . . . ()

= () . . . ()

= 1 . . . () 1

=

=

= () . . . ()

= () . . . ()

= 1 . . . () 1

=

38

,

,that is, the domain of the attribute may be re�ned in a subtype of the domain

in the superclass,

, that is, the type of the attribute may not be changed from extensional to

derived nor vice-versa;

and for each exists, , such that

,

, that is, the signature of the operation is a re�nement of the signature in the

superclass;

and for each exists, , such that

,

, that is, we do not consider constraint re�nement .

(Intensional Ordering). Given ,

and classes, precedes in the intensional

ordering (denoted as) if and only if all the following conditions hold:

and for each exists, , such that

,

, that is, the domain of the attribute may be re�ned in a subtype of the domain

in the superclass,

, that is, the type of the attribute may not be changed from extensional to

derived nor vice-versa;

and for each exists, , such that

,

, that is, the signature of the operation is a re�nement of the signature in the

superclass;

2

2

1 1

2 2

0 0 0 0

00 00 00 00

00 00

0 00

0 00

h h

h h

j j

i j

i j

MC

MC

i

C

e

C

i

C

e

C

{

{

Example 20

De�nition 27

� f g

f g

� �

� �

f

g

f ! g

f g

f

g

f ! g

f

g

� � �

� �

� �

1

1 1

2

1 1

1 2

2 1

1 2

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 1

2 1 2 1

constr con ; s ; ; con ; s

constr con ; s ; ; con ; s

i h con ; s j h

con con

s s

mc mc

pop pop

id

pop ext

struct

beh

constr

mc

id

pop der

struct

beh

constr

mc

C id ; pop ; struct ; beh ; constr ; state ;mc

C id ; pop ; struct ; beh ; constr ; state ;mc C C

C C state :extent state :extent

person

person

name, string birthday, date spouse, person

income, integer age, integer

changeIncome integer person

tooLowIncome string

m-person

employee

employee

name, string birthday, date spouse, employee

income, integer age, integer empnr, integer

manager, employee dependents, set-of(employee)

changeIncome integer employee

tooLowIncome string

exceedMgrSalary integer

m-employee

m-employee m-person employee person

and for each exists, , such that

,

,that is, we do not consider constraint re�nement

, that is, we impose the same rules for the re�nement of class features, as for

re�nement of instance features.

Consider class de�ned as follows

(, ext), (, ext), (, ext),

(, ext), (, der)

=

and the following class

(, ext), (, ext), (, ext),

(, ext), (, der), (, ext),

(, ext), (, ext)

=

Then, provided that , .

(Extensional Ordering). Given ,

and classes, precedes in the extensional

ordering (denoted as) if and only if , that is, the set objects

members of the subclass is included in the set of the members of the superclass.

= () . . . ()

= () . . . ()

= 1 . . . () 1

=

=

Note that we have imposed no conditions on and , thus an extensional class may have a

derived subclass, but also the converse may hold.

=

=

=

= (:)

= :)

=

=

=

= (:)

= :

:

= ()

= ()

Note that, as we will see in Section 5.4, in each consistent database the ISA hierarchy must be

consistent with the orderings and . We thus require that the ISA speci�cation (the subclass

relationship) does not contradict the de�ned orderings. This consistency must be ensured at two

di�erent levels: the intensional and the extensional ones. At the intensional level (schema level) the

ordering on classes imposed by the ISA hierarchy is required to be consistent with the intensional

ordering on classes. Therefore, each subclass must contain all the features of the superclasses,

possibly re�ned. At the extensional level (instance level), the ordering on classes imposed by the

39

2

2

2

�

�

� 0 0 �

�

�

�

�

�

0 0

i

C

e

C

i

C

e

C

i

C

e

C

i

C

e

C

i

C

e

C

1 2 2 1 1 2

2 1 2 1

1 2 2

1 1 2 2 1 2

1

1 2 2 1 1 2 1 2

2 1 2 1

1 2 1 2 1 2 1

2

De�nition 28

De�nition 29

Example 21

De�nition 30

Example 22

C C ! C

f j 2 g

8 2 C 2) �

8 2 C 2

) �

8 2 C 2) � ^ �

2 C � � 2

�

� � �

� 2

� C

9 2 2

f g

f g

f g �

C

;

�

ISA

ISA

ISA C C C :id ISA C:id

C ; C C ISA C C C

C C C C

C ;C C

ISA C C C C C C

C

C ;C C ISA C C C C C

C C C C

C ;C C C C C C =

ISA C

:extent :extent

= ISA

CS

CS C

CS C CS C ISA C

C ISA C

person male student

student male

student male student male student male

student male male student

person, employee, stud-emp stud-emp

person, student, graduate graduate

person, student, employee

person

(Well-de�ned Inheritance Relationship). An inheritance relationship ISA is said

to be intensionally-well-de�ned if , , that is, if whenever a

class is a subclass of a class then precedes in the intensional ordering.

An inheritance relationship ISA is said to be extensionally-well-de�ned if ,

, that is, if whenever a class is a subclass of a class then precedes

in the extensional ordering.

An inheritance relationship ISA is said to be well-de�ned if it is both intensionally-well-de�ned

and extensionally-well-de�ned, namely, if ,

that is, if whenever a class is a subclass of a class then precedes both in the extensional

and in the extensional ordering.

(Most Speci�c Class). Given a set of classes , a class is a most speci�c

class in if / such that .

Consider the inheritance hierarchy of Example 17. The most speci�c class of the set

is the class . Similarly, the most speci�c class of the

set is the class . By contrast, a unique most speci�c

class in the set does not exist.

(Root Class). A class is a root if .

Referring to the inheritance hierarchy of Example 17 the only root class is .

ISA hierarchy is required to be consistent with the extensional ordering on classes. Intuitively an

ISA relationship is well-de�ned if it is consistent with the compatibility conditions stated above.

In what follows, for simplicity of notation, we apply function to classes, instead of to class

identi�ers. Let us denote with the set of all classes. Then, : is simply de�ned as

() = () .

This mapping is very intuitive due to the one-to-one correspondence between classes and class

names.

()

()

()

By contrast, two classes may exist such that and , but

(). Consider indeed the case of a class with two subclasses and

which simply inherit structure and behavior (both at the instance and at the class level) without

adding nor re�ning anything. The two classes have therefore identical structure and behavior. So we

have (and also the vice-versa). Suppose that all students are male, then we have

and therefore . In this case

and , while ().

We are now able to formally state the notion of most speci�c class in a set of classes, which we

have already informally introduced. The most speci�c classes in a set are those which do not

have a subclass in the set.

()

We point out that in Chimera a common superclass of all the classes in does not exist. Therefore

the hierarchy is actually a DAG, consisting of a number of connected components whose roots are

the classes without superclasses, which we call root classes.

() =

40

2

30

VT

� �

1 2 1 2

1

1

1

1

30

m i i i

i

m

m i j

n

Cl

5.4 Schema and Database

Invariant 2

De�nition 31

De�nition 32

\ 6 ;

C

H H

\ ;

6 � �

AN T N

MN CI

� � VT

�

� � MC

� T N ! VT T N

� !

C

C C ISA C ISA C

C ; ; C Ext i ; ;m C C :state:extent

C

; ; m

C ; ; C Ext Ext

i; j i j i; j m

D ; ;D

V T; Cl;MCl; type; ISA

V T

Cl

MCl

type

ISA Cl Cl

S S

OBJ; �; cval

is a denumerable in�nite set of value types, implicitly de�ned starting from primitive domains, class names

and attribute names according to De�nition 3.

Let be the root classes of the ISA relationship then for

each with , .

(Schema). Given a set of attribute names, a set of type names, a set

of method names, a set of class identi�ers and a collection of basic domains ,

a Chimera schema is a tuple

where

is a (�nite) set of value types;

is a �nite set of de�nitional components of classes;

is a �nite set of metaclasses;

is a total function on ;

is a total function on for which the following holds:

a) ISA is a DAG;

b) ISA is int-well-de�ned.

All class and metaclass names are distinct and for each class the corresponding metaclass must

exist.

(Database). Let be a Chimera schema. A Chimera database over is a tuple

where

In Chimera multiple inheritance is supported. However the constraint is imposed that for multiple

inheritance a common ancestor must exist. Therefore a class can be de�ned as a subclass of

classes and only if () () = .

Furthermore, since we consider objects which are instances of a unique class, the sets of oids

in di�erent hierarchies, that is, hierarchies with di�erent roots, are disjoint. Consider a set of root

classes . . . , then , = 1 . . . , denotes the extension of () which

is the extent of the entire hierarchy rooted at . Note that we may think at as partitioned in

. . . ,that is, into distinct hierarchies.

. . . =

= 1

We are now able to integrate the notions of values, types, objects, classes and inheritance we have

dealt with in the previous sections. Chimera, as most object-oriented data models, distinguishes

between the schema level (the time-invariant component) and the instance level (the time-varying

one).

. . .

()

:

: 2

()

41

V

2

S

S

31

0 0

0 0

31

()

()

V

OI

2

0

2

0

De�nition 33

6 Declarative Expressions

V

O

�

c s:t: c ISA c

�

�

c c ISA c

T

T

�

�

ET !

CI !

� ! V 8 2

8 2

8 2

f j 2 g � [

8 2

�

8 2

n

8 2

2

8 2 8 2

2 T

� 2

is the set of values de�ned starting from basic values and object identi�ers, according to De�nition 8.

OBJ

�

�

�

cval cval Cl C Cl cval C

stype C:mc cval C

o i; v; c OBJ c Cl:id

C Cl c C:id

value i i � c stype c stype c

ET V T

� ET struct ET

C Cl c C:id

cval C :extent � c

cval C :proper extent � c � c

o OBJ o i; v; c C Cl C:id c

i cval C :proper extent

C Cl i cval C :proper extent o i; v; c

C:id c

ISA

V ar T

Self Class

Term

x V ar

: 2

: 2

: ()

()

= ()

=

() () [[()]] [[()]]

() [[()]]

=

() = ()

() = () ()

= () =

()

() = ()

=

In this section we introduce Chimera rules, which are a mean to express declarative conditions on

a database. They are used to express constraints and to specify the implementation of di�erent

class features. We consider a set of variables for each type of the language, to which

the special variables and belong, used for denoting, respectively the object/the class

on which the rule is being executed.

42

is a consistent set of objects;

is a pair of functions

, value assignment ,

, oid assignment

which handle class extents;

is a total function such that is a legal value for

, that is, the function assigns values to class attributes of ;

such that:

(i) , must belong to ;

(ii) , such that

;

(iii) , extended value type,

;

(iv) , ,

and

-

s.t.

;

(v) , if , and is the class in such that

- ;

(vi) , - , if , then

;

(vii) Invariant 1 must hold;

(viii) is ext-well-de�ned;

(ix) Invariant 2 must hold.

(Terms). The set of Chimera terms is inductively de�ned as follows:

each variable is a (atomic) term;

2

n

n n

n n

n n n n

Example 23

1

1 1

1 1

1 1 1 1

`bob', `john', `sue'

person.averageAge

person

�

� � f g

� �

� � 2 AN

� 2 AN

�

� 2 CI 2 AN

�

� f g

�

�

�

�

�

2 2 CI 2 AN �

ED ; ; ED null

t ; ; t n t ; ; t

t ; ; t n t ; ; t

t ; ; t n a ; ; a a t ; ; a t

t a t:a

t n t:n

c a c:a

X

true;X

a X; b true; c

X:name

true;X :

X V ar a; b; c; name; averageAge

each basic value (constant) in , and the value are (atomic) terms;

let , be terms, then is a (complex) term;

let , be terms, then is a (complex) term;

let , be terms, and be distinct labels, then

is a (complex) term;

let be a term, a label, then is a (complex) term;

let be a term, a natural number, then is a (complex) term;

let be a class name, a label, then is a (complex) term.

The following are Chimera terms:

;

;

;

;

;

;

where , , .

. . .

. . . 0 . . .

. . . 0 [. . .]

. . . 0 . . . (: . . . :)

In addition to terms introduced by the de�nition above, Chimera supports a set of quite standard

prede�ned operators that can be used to build terms. These prede�ned operators include arithmetic

operators, set operators, list operators and aggregates on sets/lists.

[]

(: : : 1627)

[] 1

According to the above de�nition, values (except oids) are terms, path expressions (built making

use of the dot notation) are terms. In addition we consider a number of terms obtained using

classical prede�ned operators for integers, reals, lists, sets. Of course there are type constraints

for the applicability of such operators; we deal with typing of terms, making explicit the type of

terms to which operators may be applied, in Section 6.1.1. Obviously, not all the terms obtained

applying the operators on any two terms are correct terms.

We remark that oids, though values, are not included in terms. This is due to the fact that we

do not allow oids to be manipulated explicitly by the user. Indeed in Chimera oids are a sort of

system feature, not accessible by the user. In a user expression (such as a Chimera formula) the

user may bind a variable to an oid, and then \access" the object denoted by this variable. We have

indeed included in terms a typed set of variables, containing also variables of object types, that is

variables denoting objects.

Method invocation (both at instance and at class level) are not included in terms because

typically methods have side-e�ect and so they are not admitted in formulas (which are declarative

expressions). Finally, we do not consider here complex aggregate operators, which in Chimera may

be used to build terms.

43

2

d

n n

32

33

1 2 1 2

1 2 1 2

32

1 1

33

De�nition 34

Example 24

�

2 f � � g

�

2 CI 2 ET

�

�

�

�

f g

�

�

�

Comparison Formulas

Membership Formulas

Class Formulas

Constraint Formulas

X.name = 'john'

employee

person(X)

date((day:8, month:10, year:1969))

tooLowIncome(X)

invalidLifeExpentancy(Y)

<

in

t ; t op <;>; ; ; ; ; t op t

t ; t t in t

t c c

t in c

t c c t

t ; ; t con con t ; t

X Y

X Z

Self:age >

X in Self:dependents

; in X:dates

Y:manager in

We will see in detail later how these formulas are used.

In this formula we test for shallow value equality, while in the previous one we test for identity.

Like terms, formulas are either atomic or complex. Atomic formulas are composed of a predicate

symbol and a list of parameter terms. Predicate symbols are in a set �. � consists of a number

of special prede�ned relations including comparison predicates, such as or ==, and membership

predicates (). Class and type names, seen as unary predicate symbols, are included in �. Finally,

� contains constraint names.

= == ==

()

. . . � (. . .)

=

==

18

1 2

44

(Atomic Formulas). Chimera atomic formulas are de�ned as follows:

if are terms and is a prede�ned predicate, then

is a comparison atomic formula;

if are terms, then is a membership atomic formula;

if is a term and is a class name, or is a extended value type name, then

is a membership atomic formula;

if is a term and is a class (or type) name, then is a class formula ;

if are terms and is a constraint symbol in , then is a constraint

formula.

The following are Chimera formulas

comparison formulas

membership formulas

class formulas

constraint formulas

.

0 0

34

2

2

34

1 2 1 2

F F

F F F F

:

: <

Head

Body

<

�

� :

� ^

� ^

� ^ : ^ �

�

�

�

�

�

�

Class formulas cannot be negated.

De�nition 35

Example 25

De�nition 36

Example 26

person X X profession engineer

person X X in student X income 6000

engineer(X) employee(X), X.profession = `engineer'

Self.salary = 20000 engineer(Self), Self.age 35

Y in Self.children person(Self), person(Y), Y.father=Self

(Formulas). Formulas are inductively de�ned as follows:

all atomic formulas are formulas;

if is an atomic comparison, membership or constraint formula , then is a (complex)

formula;

if and are formulas, then is a (complex) formula.

Examples of Chimera formulas are the following:

;

.

(Rules). A Chimera rule is an expression of the form

Head Body

where

is an atomic formula;

is an arbitrary formula;

each variable in the head occurs in the body.

Examples of Chimera rules are the following:

de�ning the population of a derived subclass;

de�ning the implementation of a derived attribute;

de�ning the implementation of a derived set attribute;

Complex formulas (or simply formulas) are obtained from atomic formulas and negated atomic

formulas by means of conjunctions. All variables are assumed to be implicitly quanti�ed as in

Datalog.

() =

()

We require that each formula contains exactly one class formula for each variable. This requirement

is motivated in Section 6.1.1. In addition, we require formulas to be range restricted [22], to avoid

formulas that are satis�ed by an in�nite set of instances.

Chimera rules are means for de�ning constraints, derived attributes (and views). By means of

rules we may de�ne the extent of a subclass by �ltering out certain objects from the superclass and

may de�ne the value of an attribute intensionally, that is, without enumerating the value for every

instance separately.

45

T

T

c

c

6.1 Typing Issues

�

�

�

6

2

2 CI

^

2

2

2

2

6.1.1 Typing of Terms and Formulas

Theorem 4

<

<

t Term t null

T t

X V ar X T

c X c

X c

X X

c X c X � c

X c

X

T X V ar T X

X T

c X X V ar

Self c Self V ar

improperDate(Date) Date.day 0

tooLowIncome(N) Self.income 50000, N = Self.name

in

in

de�ning a constraint;

de�ning a constraint.

For each term in , , the typing rules in Table 3 determine a unique

type for .

Chimera rules must satisfy certain strati�cation and safety conditions [22].

In this subsection we deal with the typing of declarative expressions. We �rst present rules for typing

terms and formulas, making explicit type requirements we impose on such constructs. Subtyping

is based on the well-known ideas of Cardelli object-oriented type system [6, 16, 17, 18], exploited

in [4] for de�ning a type system for a deductive query language for the TM data model. This

kind of typing is performed assuming that for each variable a type is known, thus we explicitly

investigate this issue. Finally, we examine the class implementation and establish some criteria for

the consistency of an implementation with respect to a signature.

Table 3 presents the term typing rules. Typing rules for terms built with prede�ned operators are

not presented here due to space limitations. They can be found in [35]. The following result holds.

=

Table 4 speci�es some conditions that must be satis�ed for the correct application of predicates

in � to terms. Therefore, the following conditions exactly specify Chimera legal formulas. As far as

class formulas are concerned we do not specify any type constraint for the application of class/type

predicates because class formulas are the mean to specify the type of a variable. We only require

that class formulas are applied to variables.

The above typing rules are based on the existence of a basis, that is, of a set of statements of

the form , where is a variable and is a type. Other typing rules make use of this

basis. In the following we examine how these bases are obtained.

When writing a Chimera formula, we must explicitly state the type of each variable used in the

expression. This is accomplished in Chimera by using class formulas. Indeed, in Chimera we use

class formulas as a typing mechanism. A class formula has the form () where is a class

name and is a variable. The meaning of this formula is to assign the type corresponding to to

variable and to state that the objects, to which may be instantiated, must be members of the

class identi�ed by . This formula may be seen as a shorthand for the expression : ()

where : is a type declaration, and is the membership predicate. Class formulas are built

from class or type names representing unary predicate symbols. Thus, to state that a variable is

of type (that is) we add to our expression the class formula (). Note that this has

also the e�ect to state that [[]] , thus providing a domain for the evaluation of the expression.

For each type declaration () we add to the basis, and, to properly type the

pseudovariable , if a rule appears in the context of a class we add to the basis.

46

0 0

N

N

F

F

s s

s

1

=1

1

=1

1 1 1 1

1

1 1

1 1

1 1

1 1

X T

X T

X X T

T X

X

X T T

T

T T

X

X X

X

T

X

Chimera term typing rules

static type

dynamic type

Late binding

2 T

2

2

2 BVT

� �

f g

� �

� �

2 AN

2

2 T N

2 T N

2

2 CI

2 CI 2 C

T

i

i

i

i i

n

n

i

i

i i

n

n

i

i

i i

n n n n

n

n n

i i

n n

i i

n n

i i

n n

i i

:

:

()

:

: (1)

. . . : - ()

=

: (1)

[. . .] : - ()

=

: (1)

(: . . . :) : - (: . . . :)

. . .

: - (: . . . :)

:

= 1 . . .

: - ()

:

: () = - (: . . . :)

:

= 1 . . .

: () = - ()

:

: () = - (: . . . :)

:

= 1 . . .

= = () = - (: . . . :)

:

= 1 . . .

null T

T

X V ar

X T

t dom D

t D

D

t T i n

t ; ; t set of T

T T

v T i n

t ; ; t list of T

T T

t T i n

a t ; ; a t record of a T ; ; a T

a ; ; a

t record of a T ; ; a T

t:a T

i n

t list of T

t:n T

n

t Tn; Tn ; type Tn record of a T ; ; a T

t:a T

i n

t Tn; Tn ; type Tn list of T

t:n T

n

t c; c ; stype c record of a T ; ; a T

t:a T

i n

c ; C ; C:id c; C:mc c ; stype c record of a T ; ; a T

c:a T

i n

Table 3:

The scope of a type assignment for a variable is that of an expression (a formula). Each Chimera

formula must contain a class formula for each variable. Thus, each variable is associated with a

unique type, with respect to which type checking is performed. Declaring a variable of type

inuences type checking in that the only features available for are those of type . That is, type

checking of the expression, in which appears, is done regarding as a term of type . We say

that is the of variable , because it is the type with respect to which the static type

checking of the expression containing is done.

At execution time variable is instantiated with a value of type . Note that when is

an object type, the variable is instantiated with the identi�er of an object member of the class

identi�ed by . This means that the variable may also be instantiated with the identi�er of an

object instance of a subclass of that class. In this case, we say that is the

of variable . The dynamic type is the type used for choosing the appropriate attribute/method

de�nition to be used on the object denoted by . indeed requires that on we use the

most speci�c implementation for the object on which is instantiated, that is, the implementation

of . Note that the chosen implementation is always the implementation provided by the most

speci�c class of the object, independently from the type declared for variable .

47

1 n

S

d

T

T

!

integer real character string2 f g 2 f � �g

t

2 OT t

2 OT t

t

t

t

t

2 CI

2 OT t

2 ET

2 VT t

2 2 T

Chimera formula typing rules

6.1.2 Rule Typing

employee X person(X), X.profession=`employee'

employee person

1 2

1 2

1 1 2 2

1 2

1 2

1 1 2 2

1 2

1 2 1 2

1 1 2 2

1 2

1 2 1 2

1 1 2 2

1 2

1 2

1 1 2 2

1 2

1 2

1 1 2 2

1 2

1 2

1 1 2 2

1 2

1 2

Self:a term body

term in Self:a body

Self

constraint formula body

constraint formula con t ; ; t

op name condition op code

:

: :

=

is de�ned

: :

==

is de�ned

: :

==

is de�ned

: : - ()

is de�ned

: : - ()

is de�ned

: - () : - ()

is de�ned

: - () : - ()

is de�ned

:

, is de�ned

:

, is de�ned

()

=

t ; t T

t op t

T ; ; ; ; op <;>; ;

t T ; t T

t t

T T

t T ; t T

t t

T ; T ; T T

t T ; t T

t t

T ; T ; T T

t T ; t set of T

t in t

T T

t T ; t list of T

t in t

T T

t set of T ; t set of T

t in t

T T

t list of T ; t list of T

t in t

T T

t T; c

t in c

T T c

t T; ET

t in ET

T T ET

X V ar; T

T X

V ar V ar

Table 4:

We now examine with a greater detail the rules that constitute a class implementation. As far as

population implementation is concerned, it consists of a set of rules whose heads are class formulas

on the class name whose population is being de�ned. For example

()

is a rule de�ning the population of the class , subclass of .

An attribute implementation is a set of rules of one of the following forms

=

where is the pseudovariable used for denoting the object on which the rule is being executed.

A constraint implementation is a set of rules of the form

where is a constraint name applied to a list of parameters, that is (. . .).

An operation implementation is an expression of the form

- : -

48

2

35

35

MN

!

! �

De�nition 37

Example 27

Self.age = X X = 1994 - Self.birthday.year

tooLowIncome(N) Self.income 5000, N = Self.name

changeIncome(Amount): integer(New), New = Self.income Amount

modify(person.income,Self,New)

op name condition

op code

condition

class formula body

equality formula body

membership formula body

constraint formula body

op name condition op code

<

C

class formula

equality formula

Self:a term

a

membership formula

term in Self:a

Note that the formula that constitutes the condition in an operation implementation may not have class formulas

for variables identifying input parameters of the operations, since these variables are already typed by the operation

signature.

A class implementation is a set of rules, each having one of the following forms

1.

expressing the population of the class;

2.

expressing the implementation of a derived attribute;

3.

expressing the implementation of a derived set valued attribute;

4.

expressing a constraint

plus a set of operation implementations, namely expressions of the form

5. - - .

The following is an example of class implementation.

where - is the operation name in applied to a list of parameters, is a Chimera

formula, and - is a sequence of update operations. We do not examine in detail the syntax of

update operations, nor we deal with typing issues related to those constructs, because it is beyond

the scope of this paper. We only require that for operation input parameters each parameter is

used in according to the type declared for it , while for operation output parameters

the type of the term returned as output may be a subtype of the type declared as return type in

the operation signature.

:

+

As already stated, a number of conditions must be veri�ed by a set of rules of this form to be a cor-

rect implementation for a class . These conditions are as follows. First of all, the implementation

must contain at least a rule for each class feature. Moreover,

1. the must denote the class whose implementation is being de�ned;

2. must be of the form

=

with derived attribute for the class whose implementation is being de�ned;

3. must be of the form

49

36

36

1

1

1

1

Example 28

�

�

�

�

! � �

� � !

�

!

!

T

T

a a

T

a a

n i

i i T

c

i

c c

n

o o

n

o

o o

n

o

T

o

We may insert in a derived class only elements extracted from one of its superclasses.

a

constraint formula

: op name

c X X T c T

Self:a term term

T T T T

a

term in Self:a term

T set of T T T

a

con t ; ; t t

T i ; ; n T T

con c T T

T T T condition

T ; ; T

T

T T T

pop ext struct

Self

type

Self

age, integer

Self.age = X X = 1994 - Self.birthday.year

person person Self.birthday

date date record-of(day:integer, month:integer, year:integer)

Self.birthday.year integer 1994 integer

1994 - Self.birthday.year integer X

integer age

changeIncome: integer person

changeIncome(Amount): integer(New), New=Self.income Amount

modify(person.income,Self,New)

person

Amount integer

Consider the class signature of Example 10 and the class implementation of Example

27. Since , no population implementation is provided. The only derived attribute in

is (, der), whose implementation is speci�ed by the rule

.

Since denotes the object on which the rule is executed, it is implicitly typed to the class to which

the rule belongs, in that case class . Thus, according to signature,

has type , and, since = ,

the term has type . Since also the value has type ,

the term has type too. Thus, variable has then type

,which is exactly the type declared for attribute .

As far as operation implementation is concerned, operation

is implemented by the expression

where the implicit output parameter is , of type , while the condition is well-typed for

input parameter of type .

with derived attribute for the class whose implementation is being de�ned;

4. must be constructed with a constraint of the class, applied to a number

of parameters corresponding to that declared in the signature.

For operation implementation (5) we require that - corresponds to an operation of the

class, applied to a number of parameters corresponding to those declared in the signature.

Conditions 1|4 above, however, are not su�cient to guarantee that the set of rules provides a

correct implementation for a class because they do not take into account type compatibility. Thus

we have the following additional conditions related to typing of rules:

1. if the head of the rule is (), and the type declared for in rule body is , then

must hold ;

2. if the head of the rule is = and the type deduced for , starting from the type

declaration in rule body, is , then must hold, where is the domain speci�ed for

attribute in the class signature;

3. if the head of the rule is and the type deduced for , starting from the

type declaration in rule body, is , then - () must hold, where is the domain

speci�ed for attribute in the class signature;

4. if the head of the rule is (. . .) and the type deduced for each , starting from the

type declaration in rule body, is , = 1 . . . , then must hold, where the signature

for constraint in the class signature is . . . ;

5. if the operation signature is . . . , then type checking of is done

taking . . . as types for input parameters (for which class formulas may be missing),

while the type deduced for the output parameter, starting from the type declaration in rule

body, is a subtype of , that is must holds.

=

()

+

50

37

37

!

�

<

Self

(1) (1)

(1)

7 Conclusions

Comparison with other formal models for OO databases

tooLowIncome:person string

tooLowIncome(N) Self.income 5000, N=Self.name

person Self.income integer Self.name string

N string

We remark that in models supporting both the notion of type and that of class, the two notions seldom have the

same meaning in di�erent models.

Finally, consider the constraint , implemented by the rule

.

Since has type , has type , while has type .

Thus, the formula in the rule body is well typed and has type , coherently with the constraint

signature.

[1, 41] [46] [38] [51] [42] Our model

Complex Objects Partially YES Partially YES YES YES

Inheritance Single Multiple No Single Multiple Multiple

Classes & Types Types only Both Sorts only Both Both Both

Relations NO NO YES NO NO NO

Schema - Instance YES YES YES YES YES YES

Levels

Feature YES NO NO Attributes YES YES

Re�nement only

Type System NO NO NO NO NO YES

Class Features NO NO NO NO NO YES

Named Types NO NO NO NO NO YES

Legenda: Partially denotes the non-complete orthogonality in applying constructors to arbitrary values

In this paper we have presented a formal de�nition of the the Chimera data model. Table 5 provides

a comparison among formal models for object-oriented databases so far proposed. In particular,

we have compared the formal models under the following aspects: whether complex objects are

supported; whether the model supports single or multiple inheritance; whether the model supports

both the notions of type and class ; whether relations are included in the model (thus coupling an

object model with a value-oriented one); whether typing issues are covered. Most models originate

from the work of Beeri [7], which has been the �rst to clarify several issues on object-oriented

data models. Furthermore, some proposals formalize a core object-oriented data model as a basis

for addressing other issues, such as particular forms of integrity constraints in [46], a behavior

speci�cation in [38], an algebra and communication issues in [42]. Also the model developed in [51]

may be seen as a basis for the development of an algebra [50]. Thus, those formal models do not

adequately cover all features of a real object-oriented data model.

Other formal models for object-oriented databases have been developed that we have not con-

sidered in the comparison. However, most of them are concerned with a speci�c aspect and only

consider a partial view. In [3] type hierarchies and subtyping problems are considered, but other

aspects are not covered. In [49] a simple object model is formally speci�ed as a basis for addressing

query issues. [33] and [45] are mainly concerned with the speci�cation of object behavior.

Table 5:

This comparison points out that our model covers a number of modeling features not covered

by other models, since we consider a very rich and complex object-oriented data models, and

51

References

Acknowledgments

Foundations of Databases

Proc. ACM-SIGMOD Int'l Conf. on Management of Data

ACM Transactions on Database Systems

Proc. Third Int'l Conf. on Deductive and Object-Oriented

Databases

Proc. Seventh European Conference on Object-Oriented

Programming

Theoretical Computer

Science

Proc. First

Int'l Conf. on Deductive and Object-Oriented Databases

we have developed a type system for the language. We would like to point out, moreover, that,

though the Chimera model is a quite complex model, most of the features it supports are rather

similar to features supported by modern object-relational DBMSs, like, for instance, DB2 [24] and

Illustra [37]. In particular, those data models support: user-de�ned value types (primitive type

extension in ORDBMSs); classes; triggers and integrity constraints. In addition, Chimera supports

deductive rules, which allow to express constrained types, derived attributes, and views. However,

these features are orthogonal, and thus non-redundant, with respect to the features listed above,

supported by ORDBMSs.

The work may be extended along several ways. A formal de�nition of a view mechanism

for Chimera is presented in [36] while a temporal extension of the object-oriented data model

presented in this paper has been developed [9]. We are currently investigating the problem of

trigger and constraint rede�nition in the context of object-oriented data models [11]. From the

typing viewpoint, we are going to extend our work considering typing of queries and transactions

(including also method invocations) and typing of programs (API). We may also consider a kind

of type inference, allowing variables in Chimera formulas to be indirectly typed using information

in their signature de�nition.

We wish to thank Stefano Ceri, Letizia Tanca and all the IDEA group at Politecnico di Milano for

helpful discussions on the subject of this paper. Claudio Bettini provides us with some insights on

knowledge representation systems.

[1] S. Abiteboul, R. Hull, and V. Vianu. . Chapter 21: Object Databases.

Addison-Wesley, 1995.

[2] R. Agrawal and N. Gehani. ODE (Object Database and Environment): The Language and the

Data Model. In , Portland, Oregon,

1989, pages 36-45.

[3] A. Albano, L. Cardelli, and R. Orsini. Galileo: A Strongly-Typed, Interactive Conceptual

Language. , 10(2):230{260, June 1985.

[4] R. Bal and H. Balsters. A Deductive and Typed Object-Oriented Language. In S. Tsur,

S. Ceri, and K. Tanaka, editors,

, Lecture Notes in Computer Science 760, pages 340{359, 1993.

[5] H. Balsters, R. A. de By, and R. Zicari. Typed Sets as a Basis for Object-Oriented Database

Schemas. In O. Nierstrasz, editor,

, Lecture Notes in Computer Science 707, 1993.

[6] H. Balsters and M. Fokkinga. Subtyping can have a Simple Semantics.

, 87:81{96, September 1991.

[7] C. Beeri. Formal Models for Object Oriented Databases. In W. Kim et al., editor,

, pages 370{395, 1989.

52

Theory and Practice of Object Systems

Proc. Ninth European Conference on Object-Oriented Programming

Proc. Eighth European Conference on Object-Oriented Programming

Object-Oriented Database Systems - Concepts and Architecture

Object-Oriented Concepts, Databases, and Applications

SQL - The Standard Handbook

Information and Computation

Proc. First Int'l Conf. on Extending Database Technology

Computing Surveys

The Object Database Standard: ODMG-93

Logic Programming and Databases

Ex-

tending Information System Techology - Second International East-West Database Workshop

[8] E. Bertino, C. Cascella, and G.Guerrini. Composite Object Handling Through Triggers. Tech-

nical Report, Dipartimento di Informatica e Scienze dell'Informazione, Universit�a di Genova,

1997.

[9] E. Bertino, E. Ferrari, G. Guerrini. T Chimera: A Temporal Object-Oriented Data Model.

To Appear in , John Wiley & Sons. 1997.

[10] E. Bertino and G. Guerrini. Objects with Multiple Most Speci�c Classes. In W. Oltho�,

editor, , Lecture Notes in

Computer Science 952, pages 102{126, 1995.

[11] E. Bertino, G. Guerrini, and I. Merlo. Trigger Inheritance and Overriding in an Active Object

Database System. Technical Report, Dipartimento di Informatica e Scienze dell'Informazione,

Universit�a di Genova. Submitted for publication, 1997.

[12] E. Bertino, G. Guerrini, and D. Montesi. Deductive Object Databases. In M. Tokoro and

R. Pareschi, editors, , Lec-

ture Notes in Computer Science 821, pages 213{235, 1994.

[13] E. Bertino and L.D. Martino. .

Addison-Wesley, 1993.

[14] R. Breitl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams, and

M. Williams. The GemStone Data Management System. In W. Kim and F. H. Lochovsky, edi-

tors, , pages 283{308. Addison-Wesley,

1989.

[15] S.J. Cannan and G.A.M. Otten. . McGraw-Hill, 1992.

[16] L. Cardelli. A Semantics of Multiple Inheritance. ,76:138{164,

1988.

[17] L. Cardelli. Types for Data Oriented Languages. In J. W. Schmidt, S. Ceri, and M. Missiko�,

editors, , Lecture Notes in Computer

Science 303, pages 1{15, 1988.

[18] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction and Polimorphism.

, 17:471{522, 1985.

[19] F. Cattaneo. Type-safe Covariant Rede�nition in the Chimera Type System. Technical Report,

Politecnico di Milano, October 1995.

[20] R. Cattel. . Morgan-Kaufmann, 1996.

[21] S. Ceri, G. Gottlob, and L. Tanca. . Springer-Verlag, Berlin,

1990.

[22] S. Ceri and R. Manthey. Consolidated Speci�cation of Chimera. Technical Report,

IDEA.DE.2P.006.01, November 1993.

[23] S. Ceri and R. Manthey. Chimera: A Model and Language for active DOOD Systems. In

,

Lecture Notes in Computer Science, pages 9{21, 1994.

53

2

Using the New DB2 - IBM's Object-Relational Database System

Proc. Fifteenth Australian Computer

Science Conference

IEEE Transactions on Knowledge and Data Engineering

Object-Oriented Concepts, Databases, and Applications

Proc.

First International Conference on Information and Knowledge Management (CIKM)

Proc.

Seventeenth Int'l Conf. on Very Large Data Bases

Smalltalk-80: The Language and its Implementation

Next Generation System

Technology

Theory and Practice of Object Systems

Illustra User's Guide

Proc. of the ACM SIGMOD Int'l Conf. on Management of Data

Object-Oriented Concepts, Databases, and Applications

[24] D. Chamberlin. . Morgan-

Kaufmann, 1996.

[25] A. Coen Porisini, L. Lavazza, and R. Zicari. Static Type Checking of Object-Oriented

Databases. Technical Report 91-060, Politecnico di Milano, October 1991.

[26] R. Connor and R. Morrison. Subtyping without Tears. In

, pages 209{225, 1992.

[27] P. Dechamboux, M. Lopez, and C. Roncancio. The Data Model of the Peplom DBPL. Technical

report, IDEA.WP.1B.001, October 1992.

[28] O. Deux et al. The Story of 0 . ,

2(1):91{108, 1990.

[29] D. H. Fishman et al. Overview of the Iris DBMS. In W. Kim and F. H. Lochovsky, editors,

, pages 219{250. Addison-Wesley, 1989.

[30] L. J. Gallagher. Object SQL: Language Extensions for Object Data Management. In

, Balti-

more, Maryland, November 1992.

[31] N. Gehani and H. Jagadish. Ode as an Active Database: Constraints and Triggers. In

, pages 327{336, 1991.

[32] A. Goldberg and D. Robson. . Addison-

Wesley, 1983.

[33] G. Gottlob, G. Kappel, and M. Schre. Semantics of Object-Oriented Data Models - The

Evolving Algebra Approach. In J. W. Schmidt and A. Stogny, editors,

, Lecture Notes in Computer Science 504, pages 144{160, 1991.

[34] G. Guerrini. An Active and Deductive Object-Oriented Data Model. PhD Thesis in Prepara-

tion, Universit�a di Genova, 1997.

[35] G. Guerrini, E. Bertino, and R. Bal. A Formal De�nition of the Chimera Object-Oriented

Data Model. Extended version of this paper, 1995.

[36] G. Guerrini, E. Bertino, B. Catania, J. Garcia-Molina. A Formal Model of Views for Object-

Oriented Database Systems. To Appear in , John Wiley

& Sons. 1997.

[37] , release 2.1. Oakland, CA: Illustra Information Technologies.

[38] A. Kemper and G. Moerkotte. A Formal model for Object-Oriented Databases: The First

Step. Technical report, University of Karlsruhe, 1991.

[39] W. Kim, E. Bertino, and J. Garza. Composite Objects Revisited. In J. Cli�ord, B. Lindsay,

and D. Maier, editors, , 1989.

[40] W. Kim et al. Features of the ORION Object-Oriented Database System. In W. Kim and

F. H. Lochovsky, editors, , pages 251{

282. Addison-Wesley, 1989.

54

2

Advances in Database Programming Languages

A Formal Approach to Structure, Algebra and Communication of Complex Objects

Ei�el: The Language

TIGUKAT: A Uniform Behavioral Objectbase Managent System

Acta

Cybernetica

Proc. Third International Conference on Database Theory

IEEE Trans-

actions on Knowledge and Data Engineering

ACM Transactions on Information Systems

[41] C. Lecluse, P. Richard, and F. Velez. 0 , an Object-Oriented Data Model. In F. Bancilhon and

P. Buneman, editors, , pages 257{276. Addison-

Wesley, 1990.

[42] L. Liu. .

PhD thesis, Katholieke Universiteit Brabant Tilburg, November 1992.

[43] B. Meyer. . Prenctice Hall Internal - Object-Oriented Series, Second

Edition, 1992.

[44] C. Peltason, A. Schmiedel, C. Kindermann, and J. Quantz. The BACK System Revisited.

Technical Report KIT - Report 75, Technische Universitat Berlin, 1989.

[45] R. J. Peters. . PhD thesis,

Department of Computing Science, University of Alberta, April 1994.

[46] K. D. Schewe and B. Thalheim. Fundamental Concepts of Object Oriented Databases.

, 11(1-2):49{83, 1993.

[47] M. Scholl and H. Schek. A Relational Object Model. In S. Abiteboul and P.C. Kanellakis,

editors, , pages 89{105, 1990.

[48] M. Stonebraker, L. Rowe, and M. Hirohama. The Implementation of Postgres.

, 2(1):125{142, 1990.

[49] D. Straube and M. Ozsu. Queries and Query Processing in Object-Oriented Database Systems.

, 8(4):387{430, October 1990.

[50] G. Vossen and K. U. Witt. FASTFOOD: A Formal Algebra over Sets and Tuples for the FOOD

Object-Oriented Data Model. Technical report, Arbeitsgruppe Informatik, Justus Liebig Uni-

versitat, Giessen, August 1991. TR n. 9103.

[51] G. Vossen and K. U. Witt. Objectbase Schemata and Objectbases in the FOOD Model.

Technical report, Arbeitsgruppe Informatik, Justus Liebig Universitat, Giessen, June 1991.

TR n. 9101.

55

