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1 INTRODUCTION

This document de�nes Chimera, the conceptual interface of IDEA. It constitutes a re-

vised version of the �rst speci�cation of Chimera, issued in June 1993 [1]. The major

di�erences between the two speci�cations have been summarized in a short supplemen-

tary document [2]. Chimera consists of a conceptual model (also calledChimeraModel,

short: CM), providing object-oriented modelling facilities, and of a conceptual language

(also called Chimera Language, short: CL), providing data de�nitions, declarative

queries, procedural primitives for database manipulation, as well as various forms of

rules and constraints. Thus, Chimera supports object-oriented, deductive, and active

database features.

Chimera has been designed in such a way, that it can either serve as an interface to a

stand-alone database system or as a database sublanguage embedded in various proce-

dural host languages, such as, e.g., Prolog, C, C++, or Peplom. In the former case, we

refer to CL as the language of a \user-friendly interface" (short: UFI), whereas in the

latter case CL can be viewed as an \application programming interface" (short: API).

CL syntax will be identical in both modes, except for a few of its basic query primitives.

Due to the diversity of programming environments present in the IDEA consortium, as-

pects of procedural, general-purpose programming have been omitted from CL as far as

possible. This issue has been left to the respective programming language into which

Chimera is going to be embedded by the respective partners. Certain basic linguistic

decisions in CL, such as primitive value types, syntax of primitive values, conventions for

distinguishing variables, constants or functors, and so on, may vary from one embedding

to the other due to the particular conventions of the host language. In this document we

provide a \default" syntax (see Appendix 1) that should be followed as closely as possi-

ble in order to ensure a high degree of compatibility between various implementations of

Chimera.

The style of this document is mostly informal, based on textual de�nitions and charac-

teristic examples rather than on formal de�nitions. It has been the goal of the authors of

this document to provide a de�nition which is complete, unambiguous and clear. How-

ever, any informal de�nition of a language will necessarily be limited in its degree of

precision. Therefore this document will probably not be suited as an ultimate reference

for all questions concerning Chimera. Moreover, there are several aspects of Chimera

that de�nitely require more careful and intensive consideration in the future. This is

particularly the case for active rules, to be re�ned within WP2, T2 (reactive processing).

The Conclusion Section summarizes the major changes proposed in this document, and

proposes some considerations about Chimera's interaction with Peplom.

2 OVERVIEW OF CM

This initial section of the CM description is intended to provide a \bird eye's view" of the

concepts to be found in CM together with an outline of the rationale behind the general
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design choices made. Each of the main concepts of Chimera is brie
y introduced and the

relationships between the individual parts of the model are sketched. In the subsequent

three sections, each of the concepts in turn will be discussed in depth, data de�nition

primitives of CL will be introduced, and representative examples will be provided.

2.1 Objects and Values

CM is an object-oriented data model. Objects are abstractions of real world entities

(such as persons, companies, or machines). Every entity of an application domain that is

to be represented in a database should be modeled as an object. Objects are distinguished

from each other by means of unique object identi�ers (OIDs).

Attributes are functions mapping an object to a uniquely de�ned value. Any seman-

tically meaningful information about a particular object has to be associated with that

object by means of one of its attributes. Attribute values of an object may change over

time, without changing the identity of that object. The collection of all attribute values

associated with an object is called the state of that object. The state of an object is

represented in Chimera as a record of attributes.

Objects can be manipulated by means of operations, de�ned and implemented by the

designer of a particular application according to needs. An operation is essentially one of

the procedural primitives o�ered by Chimera (see Section ??) or a procedure written in

the procedural host language of the environment in which Chimera is embedded. Rather

than identifying Chimera operations and procedures one to one, a level of indirection has

been introduced: operations are related to procedures by means of \guarded" declarations

(see Section ??). When invoking an operation, the corresponding procedural code is

executed only, if the \guard" (a declarative condition) is satis�ed in the state of the

database reached when the call is processed. In this way, operations are clearly separated

from procedures conceptually, and control over operation invocations is assigned to the

Chimera run-time system.

A value can be either atomic or structured. Atomic values are atomic, printable symbols,

such as numbers or strings, or OIDs (i.e., references to objects). Structured values are

built from atomic values by recursively applying one of the prede�ned constructors for

sets, lists, or records. Chimera provides a number of prede�ned operators applicable

to values, such as arithmetic operators (e.g., *, +, or sqrt) applicable to numbers, or

selectors (like head and tail), applicable to constructs.

Objects are the essential components of a database, representing real world entities that

are characteristic for the respective application domain. In contrast, values cannot be

described by means of attributes and cannot be manipulated by means of operations.

Values serve as a means of describing objects, but are not essential components of a

database.
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2.2 Types and Classes

Chimera supports both the notion of type and of class, with a one-to-one relationship

between them

1

. Whereas the notion of \type" emphasizes the structural and behavioural

similarity of objects, the notion of \class" emphasizes membership of these objects in a

common set of instances. In Chimera, most types remain implicit, while classes are

de�ned, populated, and deleted explicitly, thus underlining the database character of

Chimera: the main purpose of the language and the model is to provide an interface to

a persistent store of collections of elements of the same type.

All objects of a Chimera application must belong to an object class. Classes must

be de�ned �rst, and then objects may be inserted into classes; type de�nitions (i.e.,

de�nitions of structure and behavior) are inferred automatically from class de�nitions.

Whereas attributes as introduced in the previous subsection associate values with individ-

ual objects, Chimera provides a means for associating values with entire classes as well.

Class attributes are functions mapping an entire class to a unique value. Examples

of possible class attributes are cardinalities or statistical values such as average age or

average salary for a class of person objects. Analogously, class operations manipulate

an entire class rather than individual instances.

Object classes may be recursively specialized into subclasses, resulting in a taxonomic

hierarchy of arbitrary depth. Multiple superclasses are possible, but multiple inheritance

is subject to restrictions (see Section ??). A subclass inherits all attributes and opera-

tions from its superclasses, but may rede�ne their implementation. Moreover, a subclass

may introduce additional attributes which are applicable to the objects in that subclass

only. Subclass de�nitions are acceptable only if the corresponding (implicit) types are

compatible. We will introduce a sophisticated set of subtyping conditions to be satis�ed

whenever a class is de�ned as being subclass of another class.

Values are organized by means of types and classes as well. Most atomic values, such as

integers, reals, or characters, are prede�ned and provide a (possibly in�nite) \pool" of

possible atomic symbols. These values cannot be manipulated by the database user, i.e.,

they cannot be inserted or deleted. Therefore, we do not regard concepts like integer or

string as classes of Chimera, but as types only. Similarly, structured values are described

by means of type constructors (record, set, and list) applied to value types. Structured

value types also provide a (possibly in�nite) \pool" of structured values. Once a type is

de�ned, it is available in Chimera (for reuse in other object descriptions).

However, Chimera users may introduce user-de�ned collections of values, called value

classes. These are populated explicitly, by means of insert operations, according to the

needs of applications. In analogy to object classes, value classes are associated with a

unique, but implicit type; they do not have attributes or operations. Value classes are

used in Chimera as active domains: whenever the attribute of an object has a type

which corresponds to a value class, the only allowed attribute values for that object must

1

This major design decision in Chimera has been motivated by our wish of controlling the complexity

of the model and especially of achieving maximal compatibility of Chimera with Peplom, the database

programming language of IDEA.
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belong to the value class.

2.3 Object Identi�ers and Object References

In order to be able to express object-valued attributes as well as operations and con-

straints accepting objects as parameters, Chimera explicitly distinguishes between ob-

jects and object identi�ers. Object identi�ers are concrete symbols referencing a partic-

ular (abstract) object, but are not identical with that object. Thus, an object-valued

attribute, e.g., managers of employees (being employees themselves) is in fact \OID-

valued". OIDs do not carry any meaning, but serve purely as internal surrogates. They

are generated and manipulated by system software and cannot be retrieved by database

users. In addition to OIDs, users of a Chimera application may, however, de�ne their

own external names for individual objects of particular interest.

This design choice leads naturally to an object sharing semantics for object-valued at-

tributes (in which multiple objects may reference one and the same object by means

of di�erent attributes), rather than a copy semantics (in which objects referred to by

attributes of a given object would have to be copied in the state of that object).

2.4 Targeted and Untargeted De�nitions

A schema de�nition in CL is a collection of targeted and untargeted de�nitions. Each

type or class de�nition is a target, that is, a unit of abstraction and modularization.

Features (such as attributes and operations) which are de�ned in the context of a given

target have a scope that is limited to that target. Thus, targets enable a modular

design and some degree of information hiding that is typical of object-oriented design

(this is further supported by the separation between the de�nitions of signatures and

implementations of each target, see later).

However, some information in the schema cannot be targeted; for instance, views com-

bining information from several classes, or triggers a�ecting multiple classes, or con-

straints relating the state of objects from several classes. Therefore, some de�nitions

cannot be expressed in the context of types and classes; these are called untargeted

de�nitions.

Given that targeted de�nitions are usually easier to understand, control, and evolve, a

good design principle for Chimera applications is to choose an appropriate collection of

targets, so that most of the de�nitions in the schema can be targeted.

2.5 Derived Attributes, Derived Classes, Views

Passive rules of the CL language may be used for deriving information, as it is normally

done in deductive databases. Passive rules can be applied in the following situations:
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� A subset of attributes, called derived attributes, can have values which are

de�ned bymeans of rules instead of individual update operations over time. Derived

attributes are part of the object's state.

� In the context of hierarchies of object classes, populations of some subclasses, called

derived classes, may also be de�ned by means of passive rules, which generate

the subclass population implicitly when certain properties of the superclass hold.

� Finally, untargeted views are always de�ned by means of passive rules which com-

bine information from one or more classes of Chimera. Each view is introduced

independently of a particular type or class de�nition and is \implemented" by one

or more passive rules.

2.6 Constraints and Triggers

In addition to the basic structural and behavioural concepts of attributes and operations,

Chimera provides two more concepts: constraints and triggers. Both concepts can be

either targeted or untargeted.

Constraints are a means of restricting the contents of the database. Constraints consist

of conditions (expressed in CL). They have a name, and they may have output parame-

ters. In case of a violation of a constraint, these output parameters return values speci�c

to the cause of the particular violation. Constraints that are targeted to a particular class

may either restrict the extent of the respective class or restrict the set of legal values of

its attributes; some constraints may be targeted to value types. Untargeted constraints

restrict the set of legal database states and usually relate two or more classes.

Triggers are a means of introducing speci�c reactions to particular events relevant to

the database. Such events are currently restricted to database speci�c operations (i.e.

queries and updates), operation calls, and constraint violations. Other events could be

time-related or external events

2

. Reactions are calls to procedures written in either CL or

the embedding host language. The execution of reactions is subject to conditions on the

database state reached whenever an event is monitored; further, triggers are prioritized,

so that when several of them can be �red a partial order is imposed. Triggers are named

like constraints, but do not have parameters. A trigger that refers to a single class in each

of its components (i.e., event, condition, and reaction part) can be introduced together

with the de�nition of that particular class, as a targeted concept. All other triggers have

to be introduced individually. Triggers are synonymously referred to as active rules

within this document, because both notions are commonly used in the active database

community, and in order to emphasize there relationship with passive rules (the former

being imperative, the latter declarative speci�cations of certain autonomously initiated

behaviour of the database system).

2

The exact nature of all events supported in Chimera will be investigated in more detail in WP2 T2

(reactive processing).
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2.7 Signature and Implementation

When de�ning a new class, all attributes and operations of the new class have to be

speci�ed together with the corresponding domains (i.e., the class from which the attribute

values or the operation parameters have to come). In addition, names and parameters of

those constraints and triggers targeted to the particular class have to be introduced. The

entirety of these name and domain de�nitions makes up the signature of the respective

class.

Concepts introduced and \typed" in the signature of a class, then have to be \imple-

mented". There are di�erent ways of implementing a concept, depending on its particular

nature. Classes can be populated either by explicit, individual creation of all instances,

or by implicitly and collectively de�ning their instances by means of passive rules. The

same applies in principle for attributes and class attributes: attribute values can either be

introduced individually during object creation, or collectively by means of passive rules.

Constraints (and class constraints) are always implemented by passive rules. Operations

are implemented by means of a \guarded procedure body", as mentioned earlier. Finally

triggers are implemented by active rules. The association of attributes, classes, con-

straints, operations, and triggers with the expressions implementing them is performed

after the respective signatures have been introduced. The entirety of these concept de�-

nitions is called the implementation of the respective class.

Both signature and implementation are considered part of the class de�nition. However,

CL provides di�erent data de�nition operations for introducing signature and implemen-

tation, in order to re
ect that implementations are usually introduced after signatures

have been de�ned.

3 VALUES

In Chimera, values play a purely descriptive role: they are regarded as a means of

describing objects, but are not intended to represent main entities of interest in a speci�c

application domain themselves. As opposed to objects, values are not abstractions, but

concrete symbols or structures composed from symbols. Values cannot be described

by attributes, as opposed to objects. Consequently, there is no need to change their

\state" by means of operations and no need for an \identity" to be preserved under

state changes. A value represents itself wherever it occurs. Values can occur as attribute

values of objects and as parameter values of operations and constraints.

Object identi�ers are concrete symbols referencing a particular (abstract) object. Con-

sequently, we include object identi�ers into the set of possible values. Values can be

classi�ed as follows:

� atomic values

{ object identi�ers
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{ symbols

� structured values

{ sets

{ lists

{ records

Atomic values are regarded as simple, undecomposable items. All atomic values are

prede�ned in Chimera, i.e., users cannot create new values. This is reasonable as nor-

mally the collection of printable symbols is determined by the programming environment

and/or the host language of a particular implementation anyway, and is not at the dis-

posal of users or application designers. We assume that there is a �nite, but practically

unlimited stock of object identi�ers prede�ned by the system. Thus creating a new

object means choosing one of the possible OIDs (automatically, of course) rather than

generating a new OID.

Structured values are complex terms composed by applying set, list, or record construc-

tors to atomic values or (recursively) to structured values. Thus, nested structures of

arbitrary depth can be obtained. The individual components of a structured value can

be accessed by special operators, such as prede�ned, structure-speci�c functors like head

and tail of a list, or user-de�ned selectors in a record.

3.1 Prede�ned Value Types

All symbols that may appear in any Chimera expression belong to one of the six prede-

�ned basic value types of Chimera:

� oid

� integer

� real

� boolean, i.e. the values ftrue, falseg.

� char

� string or string(n), where n is a number denoting the �xed length of a string.

Oid denotes the generic type of all possible object identi�ers and depends on the con-

ventions chosen for the particular implementations of Chimera. In contrast to the other

prede�ned value types, oid cannot be directly used in the de�nition of a type or a class,

where it is instead possible to indicate the name of an object class. Such an object class

will however be represented by means of oids; implicitly, all object identi�ers assigned
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to objects of a given class constitute a value type with the same name as the respective

object class.

Other prede�ned types (such as byte streams for representing images or text) may be

supported, but at least the six types listed above are suggested as a kind of \minimal"

set of basic types in every implementation of the interface. The exact de�nition of the

respective basic value type will be left to the individual implementations, in order to

avoid any mismatch between the basic types of the particular host language and those

of the version of Chimera embedded into it.

The special value null is a polymorphic element of every value type used to indicate an

unknown element of the respective type.

For any value type T, prede�ned or user-de�ned, we assume that the type of all �nite

sets and the type of all �nite lists of T-values are available as structured value types,

too. This is automatically the case without requiring any explicit de�nition by the user.

Analogously, a potentially unlimited stock of �nite record types composed from already

introduced component types and from freely chosen labels is at the disposal of users

without any prior de�nition. These \prede�ned" structured value types are recursively

de�ned as follows:

� If T is a value type, then set-of(T) and list-of(T) are structured value types.

� If L

1

; L

2

; ::L

n

are distinct names and T

1

; T

2

; ::T

n

are value types (not necessarily

distinct), then record-of(L

1

: T

1

; L

2

: T

2

; ::L

n

: T

n

)

is a structured value type, where L

i

: T

i

is the i-th component of the record type,

L

i

is the label and T

i

is the type of the component.

For record types, some or even all labels can be omitted. In this case the unlabelled

components are assumed to be implicitly labelled by their relative position, i.e., an

implicit label L

i

= i is assumed. Examples of legal structured value types are:

set-of(integer)

list-of(boolean)

record-of(re:real, im:real)

record-of(integer,integer)

set-of(record-of(day:integer, month:integer, year:integer))

3.2 User-de�ned Value Types

Apart from using the prede�ned value types o�ered by Chimera, designers of a particu-

lar application schema may introduce application-speci�c names for certain value types.

Such a desire will probably arise for record types more frequently than for set or list

types. Examples are complex for denoting records of two real values representing com-

plex numbers or date for denoting records of three integers representing dates according
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to some ordering convention of day, month, and year. Such user-de�ned names are in-

troduced in CL by means of type de�nitions, introducing a new name and associating

it with a prede�ned value type:

define value type complex:

record-of(re-part:integer, im-part:integer)

end

define value type date:

record-of(day:integer, month:integer, year:integer)

end

In case of complex numbers, the newly de�ned type name complex has been introduced as

a synonym for (and an abbreviation of) the prede�ned record type, in particular �xing

a certain set of labels indicating the meaning of the respective component within the

respective application domain. In the other example, date is actually intended to denote

a proper subtype of the type of all possible records of three integers. In order to cope with

situations like this, user-de�ned value types may be restricted by means of constraints

on the respective type. Constraints are named and may be parametrized.

Name and parameter domains of a constraint are de�ned as part of the type de�nition

to which it applies. The actual conditions expressing the restrictions are introduced by

means of passive rules in a separate implementation de�nition. Format and syntax

of these de�nitions in CL is identical for value and object types and will be discussed in

more detail in connection with object classes in the next section; however, note that the

only parameter of constraints de�ned over value types is exactly the name of the value

type. For the example, a constrained de�nition for type date is as follows:

define value type date:

record-of(day:integer, month:integer, year:integer)

constraints improperDate(Date: date)

end

define implementation for date

constraints improperDate(Date) <- Date.day < 0;

improperDate(Date) <- Date.day > 31;

improperDate(Date) <- Date.month < 0;

improperDate(Date) <- Date.month > 12;

improperDate(Date) <- Date.year < 0;

improperDate(Date) <- Date.day = 31,

Date.month in {2,4,6,9,11};

improperDate(Date) <- Date.day = 30,

Date.month = 2;

improperDate(Date) <- Date.day = 29, Date.month = 2,

not (Date.year mod 4)=0;

end
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If an attribute is de�ned as ranging over a user-de�ned object class O, this means that

the actual values taken by this attribute are the OIDs of the objects in O (i.e., values)

rather than the entire objects as such. As an example of a user-de�ned value type which

includes an object type in its de�nition, consider the assignment record combining a

project, a start date and a termination date, where project denotes an object class:

define value type assignment:

record-of(task:project, startDate:date, terminationDate:date)

end

This value type can be used in the context of object class de�nitions, for instance for

de�ning the attribute yearActivities as a list of assignments.

3.3 User-De�ned Value Classes

Prede�ned and user-de�ned value types are considered as \abstract domains" in Chimera,

in the sense that the set of instances of the type is never made explicit. For such value

types, only the existence of a suitable routine for type checking is assumed. However,

neither in the database nor somewhere inside the system an explicit enumeration of the

individual instances of the type is assumed.

In case users would like to control the extent of a user-de�ned value type by enumerating

its values, a value class instead of a value type has to be de�ned. By doing so, a value

type with the same name and de�nition is automatically generated, but in addition stor-

age for an explicit extent is allocated. As an example of a value class populated explicitly

(and possibly incrementally over time) by means of individual insertions, consider postal

codes of cities:

define value class postalCode:integer end

Constraints may be de�ned on value classes as well, thus restricting their explicit extent

rather than their implicitly assumed range of instances. For instance, postal codes in

Germany are restricted to being integers consisting of four digits, where only certain such

combinations have been actually assigned to cities, towns and villages in the country.

This situation is modeled as:

define value class postalCode:integer

constraints improperCode(Code: postalCode)

end

define implementation for postalCode

constraints improperCode(Code) <- Code < 0 ;

improperCode(Code) <- Code > 9999

end
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Having de�ned postalCode as a value class rather than a value type has the following

e�ect: only those four-digit integers explicitly introduced by subsequent insertions will

be accepted as legal values for postalCode, rather than all possible positive integers below

10000.

Note that the de�nition of a value class with integrity constraints is separated into two

components, a signature and an implementation, too.

4 OBJECTS

Objects are abstractions, internally represented by means of an immutable object identi-

�er (OID) assigned to the object automatically at object creation time. The characteristic

property of objects is to have a state that may change over time due to the application

of operations to the objects. The state of an object is a record consisting of all attribute

values of that particular object, labelled by the respective attribute names. Operations

applicable to an object are the only means of expressing state changes. Chimera of-

fers generic update operations applicable to every object, but more speci�c operations,

usually combining several individual occurrences of generic update operations, may be

speci�ed.

Each object is assigned to a class at creation time, but may be inserted into any subclass

or backed to a more general superclass of its initial class during its lifetime without

changing its identity. CL o�ers generic procedures for creating and deleting objects

(with persistent or temporary lifetime; see below) as well as for moving and removing

existing objects from classes which are related by means of a generalization hierarchy.

Moving an object from one class C to another class which is neither a subclass nor a

superclass of C is not possible.

Besides this explicit assignment to one class, each object implicitly belongs to all super-

classes of its class due to the semantics of subclassing essentially based on subsetting.

Objects in a subclass inherit all attributes, operations, and constraints de�ned for any

of its superclasses. The possibility of rede�ning inherited concepts exists. Details on

inheritance will be elaborated below as well.

The class of an object implicitly determines its type, comprising all the state-independent

components of the class de�nition, such as, e.g., attributes, attribute domains, operations,

constraints and so on. Object types are automatically derived from class de�nitions.

4.1 Object Classes

When de�ning an object class, all concepts related to individual instances of that class

(attributes, operations, and constraints) have to be introduced simultaneously. In ad-

dition, several concepts related to the entire class (but not to individual instances) are

introduced as well (namely class attributes, class operations, class constraints and trig-
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gers). Finally, all superclass relationships between the newly de�ned class and previously

de�ned classes have to be stated at class de�nition time. Thus, object classes are the

principal targets for developing schemas in Chimera.

As already indicated in the section on values, in CL the de�nition of the signature of a

class (i.e., of all names and domains associated with that class) and the de�nition of the

implementation of the concepts associated with the class are introduced separately.

This choice seems to be appropriate if taking a certain incrementality during the design

of an application schema into account. Once a class has been entirely de�ned (i.e., both

signature and implementation of all components of the signature have been introduced),

no further modi�cations of the class de�nition are accepted. That means that for the

time being Chimera does not o�er any means for incremental schema evolution. Instead,

complete rede�nition of the entire object class is necessary when a component of its

original de�nition is to be modi�ed or if new components are to be added.

4.1.1 Signatures

As mentioned above, signatures of all concepts associated with an object class are in-

troduced together with the name of the new class (causing an automatic generation of

a type with the same name). In this paragraph, we discuss the format of object class

de�nitions. Each object class de�nition consists of eight parts introducing:

� Superclasses (all direct superclasses of the newly de�ned class);

� Attributes (of individual instances of the class);

� Operations (causing changes of states of individual objects);

� Constraints (conditions restricting attribute values of individual objects);

� C-attributes (associating values with the entire class rather than with individual

instances);

� C-operations (changing the state of c-attributes without a�ecting instance at-

tributes);

� C-constraints (restricting the extent of the entire class without a�ecting individual

instances);

� Triggers (establishing reactions to arbitrary events a�ecting class members).

If any of these eight components is missing in a class de�nition, the respective part is

considered empty (e.g., attributes, but no c-attributes). Each of the components consists

of a set of signatures of the concepts belonging to the respective category:

� The superclasses part consists of a set of object class names.
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� The attributes part consists of a set of attribute signatures, each being a pair:

attribute name: domain

where domain is the value type from which the attribute may take its values.

� The operations part consists of a set of operation signatures of the form:

operation name ( list of parameters )

where the list of parameters may be empty and each parameter is a triple:

role parameter name: domain name

Role may be either in (for input parameters) or out (for output parameters). Pa-

rameter names have to start with an uppercase letter because they correspond to

variables in the implementation of operations.

� The constraints part consists of a set of constraint signatures of the form:

constraint name (list of output parameters)

where output parameters may be missing; each output parameter is a pair:

parameter name: domain name

� The c-attributes, c-operations, and c-constraints parts are structured in an analo-

gous way as the attributes, operations, and constraints parts.

� The triggers part consists of a set of (unparametrized) trigger names.

Parameters for operations are fairly conventional, whereas parameters for constraints

require some further explanation. Constraint evaluation binds the named output pa-

rameters whenever the constraint is not satis�ed. Parameters can be used, e.g. in the

context of explanation support (Task 3 of WP2), for reporting of conditions which cause

the constraints' violation; they can also be used in the context of transactions, when

constraint evaluation can be explicitly requested, to allow for an early identi�cation of

potential violations. Some output parameters of constraints may have object attributes

as domains; these parameters have the same value type as the respective attribute.

Beyond user-de�ned constraints, Chimera supports some generic constraints which

are extensively used. Two generic constraints are targeted (i.e., expressed in the context

of a class de�nition); they are introduced by the keywords key and notnull. Intuitively,

keys denote sets of attributes whose \collective" value cannot be identical in two distinct

objects belonging to the same class; notnull attributes cannot assume the polymorphic

value null, they must instead assume a di�erent legal value for their type. Key attributes

must not be structured by means of sets or lists.
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The following is a �rst representative example of an object class de�nition. It has been

written in a syntactic style that is used in the UFI mode of Chimera, where we expect a

window-based interface or a screen editor to be available which is sensitive to a multi-line,

indentation-based style of arranging input. For embedding a similar de�nition into code

of the API, a sequential style based on braces and separators rather than line feeds and

indentation has to be used.

define object class person

attributes name:string(20)

birthday:date

vatCode:string(15)

age:integer

income:integer

profession:string(10)

operations changeIncome(in Amount:integer)

constraints tooLowIncome(N:name)

key(V:vatCode)

c-attributes averageAge:integer

lifeExpectancy:integer

c-operations changeLifeExpectancy(in Delta:integer,

out NewValue:integer)

c-constraints invalidLifeExpectancy(I:integer)

end

define object class employee

superclasses person

attributes emplNr:integer

mgr:employee

salary:integer

dependents:set-of(employee)

constraints exceedsMgrSalary(Nr:emplNr)

c-attributes maximumSalary:integer

triggers adjustSalary

end

4.1.2 Implementation De�nitions

Once each concept associated with an object class has been introduced by means of a

signature de�nition, the individual concepts can be implemented. The term implemen-

tation stands for speci�cation of the meaning of the respective concept by means of

passive or active rules, or by operation implementation. A �rst rough classi�cation of

the di�erent means of implementation is obtained from the following scheme:

� Attributes and c-attributes are implemented by means of passive rules specifying

the values of the respective attribute by means of a declarative expression. If so,
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the attribute is called a derived attribute. Otherwise the attribute is called

extensional, and attribute values of individual objects have to be inserted or

modi�ed by means of individual operations.

� Constraints and c-constraints are implemented by means of passive rules associating

with a parametrized constraint name a condition that should not hold in any state

of the database (thus constraints in Chimera are formulated negatively, stating

what should not be the case for any legal database state, rather than expressing

invariant conditions of the database). When an update turns the value of any such

condition to true (i.e., when the positive version of the resp. constraint would be

violated), the parameters of this constraint are bound to values characterizing the

\violated " instance of the constraint. The implementation of generic constraints

does not need to be indicated (although, for uniformity reasons, their semantics

could be explained by giving them a generic implementation).

� The implementation of an operation or c-operation in Chimera is an expression

of the form:

Operation-name: Condition -> Operation-Code

Operations are explicitly activated by means of an operation call. At calling time,

all input parameters of the operation must be bound to a value (either a constant or

a variable binding). After the end of the operation execution, all output parameters

are guaranteed to be bound to a value (possibly null), too. The condition is any

declarative expression of Chimera. It guarantees declarative control (\guard") upon

operation execution, speci�ed inside Chimera. The operation code is a transaction

line of Chimera (see Section ??); in particular, it can be an arbitrary sequence (or

pipeline) of calls to procedures (either one of the procedural primitives of Chimera

or written in the host language) executed as reaction to the operation invocation.

� Triggers are implemented by active rules specifying triggering events, conditions,

and reactions; in addition, triggers may include priorities indicating in which order

the triggers should be �red.

Apart from implementing individual concepts such as attributes or constraints by means

of rules, the extent of a class may be de�ned by means of passive rules as well, i.e.,

the class may be populated by means of rules referring to other classes from which

the objects of the newly de�ned class are chosen. Such rule de�ned classes are called

derived as well. Class population by means of rules is only possible when a subclass is

de�ned by specializing its superclasses (e.g., employee being a person whose profession is

\employee")

3

. Instead, a superclass is always, implicitly populated from its subclasses

(e.g., person is populated from teacher, student, and secretary).

3

If a population is derived, updates to the attribute values used in the derivation rule may cause

insertions or deletions of objects into the derived class. Therefore, the updates mentioned above should

be carefully performed.
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Population rules as well as implementations of attributes, constraints, operations, c-

attributes, c-constraints, and c-operations are introduced altogether in an implemen-

tation de�nition. Only trigger implementations are introduced individually, as there

are too many separate components of a trigger for being included in a joint de�nition of

all implementations. An implementation de�nition in CL consists of seven parts (each

one may be missing):

� A population implementation, consisting of a set of passive rules de�ning the class

extent.

� An attributes implementation, consisting of a set of passive rules de�ning values of

derived attributes.

� A constraints implementation, consisting of a set of passive rules de�ning all con-

straints.

� An operation implementation, consisting of a set of implementations de�ning each

operation.

� Analogous parts de�ning c-attributes, c-constraints, and c-operations.

The exact syntax of trigger de�nitions will be introduced later in this document within

a separate section entirely devoted to triggers and their execution (see Section ??). As

representative example of an implementation de�nition we continue de�ning the person

and employee classes, the signature of which has already been introduced above:

define implementation for person

attributes Self.age=X <- X=1993 - Self.birthday.year

operations changeIncome(Amount):

integer(New),New=Self.income+Amount ->

modify(person.income,Self,New)

constraints tooLowIncome(N) <-

Self.income<500000, N=Self.name

c-attributes Class.averageAge=Y <-

integer(Y), Y=avg(X.age where person(X))

c-operations changeLifeExpectancy(Delta,New):

integer(New), Delta<10,

New=Class.lifeExpectancy + Delta ->

modify(person.lifeExpectancy,Class,New)

c-constraints invalidLifeExpectancy(I) <-

I = Class.averageAge - Class.lifeExpectancy,

abs(I) > 5

end

define implementation for employee

population employee(X) <- person(X), X.profession="employee"
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attributes X in Self.dependents <- employee(X), X.mgr=Self;

X in Self.dependents <- employee(X), employee(Y),

Y.mgr=Self, X in Y.dependents

constraints exceedsMgrSalary(Nr) <-

Self.salary>Self.mgr.salary, Nr=Self.emplNr

end

define trigger adjustSalary for employee

events create;

modify(salary)

condition Self.salary>Self.mgr.salary

actions modify(employee.salary,Self,Self.mgr.salary)

end

In these implementations, the special variables Self and Class represent the particular

object and the particular class, resp., to which the attributes or class attributes apply.

The fact that an attribute or c-attribute is derived has to be declared in the signature of

the resp. attribute; similarly, a derived object class has to be de�ned as derived. In our

example, the complete signature de�nitions must therefore be changed as follows:

define object class person

attributes ...

age:integer, derived

...

c-attributes averageAge:integer, derived

...

end

define object class employee, derived

attributes ...

dependents:set-of(employee), derived

...

end

4.2 Subtypes, Subclasses and Inheritance

In Chimera, an object class can be declared as subclass of one or more already existing

object classes when introducing the class. By doing so, an implicit subtype relationship is

induced on the object types automatically generated from the respective class de�nitions.

For user-de�ned value types (and classes), however, a subtype relationship with one of

the prede�ned types is always introduced in the de�nition of the respective type, but no

further means for creating hierarchies of user-de�ned value types is provided.

By applying type constructors to user-de�ned subtypes of the basic prede�ned types, a
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more sophisticated notion of subtype for values is induced, which also forms the basis

of rede�nition of attributes and operations of objects. Therefore we formally de�ne this

important notion at the beginning of this section:

� If a user-de�ned value type T has been introduced by means of a type de�nition of

the form de�ne value type T:T

1

or de�ne value class T:T

1

, then T is a subtype of

T

1

.

� If T is a subtype of T

1

, then set-of(T) is a subtype of set-of(T

1

).

� If T is a subtype of T

1

, then list-of(T) is a subtype of list-of(T

1

).

� If T = record-of(l

1

: T

1

; l

2

: T

2

; : : : ; l

n

: T

n

) is a record-type, then every record type

record-of(l

1

: D

1

; l

2

: D

2

; : : : ; l

n

: D

n

) is a subtype of T for which every component

type D

i

is either identical with or a subtype of the corresponding component type

T

i

.

The basic policy for de�ning subclass relationships between object classes can be sum-

marized as follows:

� The extent of a subclass is a subset of the extent of all its superclasses.

� The attributes, operations, constraints (both on the class as well as the instance

level), and triggers de�ned on a superclass apply to all its subclasses as well.

� Apart from the inherited concepts for each subclass additional attributes, opera-

tions, constraints, and triggers applicable to single instances of the subclass or to

the suclass as a whole can be introduced.

� Inherited concepts may be rede�ned (or overwritten) in a subclass de�nition subject

to a number of restrictions, which will be discussed below.

� An object may belong to more than one most speci�c subclass within a subclass

hierarchy, e.g., a person may at the same time belong to subclasses male and

employee, even though the two subclasses are uncomparable with respect to the

subclass relationship. In CL expressions referring to objects in the intersection of

such most speci�c, but unrelated subclasses, one of them has to be distinguished for

type checking purposes, and determines which implementation of shared attributes

is to be applied.

� Multiple inheritance of C from classes C1; C2; ::Cn is allowed, provided that there

exists a superclass CS as common ancestor of C1; C2; ::Cn. Con
icts due to names

of attributes, operations, constraints and triggers which are inherited by C from

multiple superclasses have to be resolved by pre�xing the inherited concept with

the name of the intended superclass.
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For an illustration of these basic assumptions concerning subclassing and inheritance,

consider the subclass relationship between employee and person introduced in the pre-

vious sections. The state of each instance of employee consists of ten components: the

six attributes name, birthday, vatCode, age, income, profession are inherited from the

superclass person, the four attributes emplNr, mgr, salary, dependents are applicable

to employees only, but not to persons in general. In the same manner, three class at-

tributes are applicable to the subclass employee, two inherited from person - averageAge

and lifeExpectancy - one specially de�ned for the employee class - maximumSalary. All

operations and constraints de�ned for person are applicable to employee too.

4.2.1 Rede�nition of Inherited Concepts

An inherited concept can be rede�ned in a subclass de�nition of CL in the following

ways:

1. The signature of an attribute or an operation can be rede�ned by specializing (or

re�ning) the domain of the attribute or of one or more parameters of the opera-

tion, respectively. Specialization of domains of attributes or result parameters of

operations can be done by replacing the domain de�ned in the superclass de�nition

(which always is a value type) by a proper subtype of this domain (covariance

rule). Input parameters of operations can instead be re�ned by replacing the do-

main de�ned in the superclass de�nition by a proper supertype of this domain

(contravariance rule)

4

. A rede�ned signature is indicated by adding a quali�er

rede�ned to the respective component of the subclass de�nition. Note that both

extensional and derived attributes can be rede�ned, but they cannot be rede�ned

so that a derived attribute becomes extensional or viceversa.

2. The implementation of an attribute or an operation can be rede�ned by introducing

a di�erent implementation of the respective concept, which \overrides" the inher-

ited de�nition. Rede�nition of implementation can be combined with or without

rede�nition of the signature. Implementation rede�nition has to be performed by

means of a special rede�ne statement, in very much the same way as implementa-

tions have to be de�ned after signatures have been introduced.

As an example for rede�nition consider a further re�nement of the person-employee ex-

ample. A subclass �atEmployee of employee is introduced which rede�nes both signature

and implementation of the attribute dependents as well as the signature of the attribute

mgr:

4

The use of contravariance for the re�nement of input parameters of operations is assumed here

mostly for compatibility with Peplom, where it is motivated by the need of safe compile-time checking

of programs; however, it is not clear at this stage of development of the IDEA project whether this

motivation holds for Chimera programs. Therefore, the (more natural) alternative of using covariance

for input parameters of operations as well could be reconsidered in future versions of Chimera and/or

in testbeds.
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define object class fiatEmployee

superclasses employee

attributes mgr: fiatEmployee, redefined

dependents: set-of(fiatEmployee), redefined

tax: integer

end

redefine implementation for fiatEmployee

attributes X in Self.dependents <-

fiatEmployee(X), X.mgr=Self

X in Self.dependents <-

fiatEmployee(X), fiatEmployee(Y),

Y.mrg=Self, X in Y.dependents

end

Rede�nition of constraints and triggers is currently not allowed in Chimera

5

.

4.3 Lifetime of Objects

Chimera is a database sublanguage. Therefore objects in Chimera are normally expected

to be persistent, i.e., to remain reachable in persistent store after the termination of

an interactive session and to disappear only on explicit request from the database user.

However, Chimera objects may also be temporary, in which case they are not entered

to persistent store, but are automatically deleted at the end of a session. The following

items summarize Chimera's policy concerning lifetime of objects:

1. Object classes may include both persistent and temporary instances. Thus, the

granularity of persistence is the object level.

2. The lifetime of an object is determined at object creation time. There are two

di�erent creation procedures in CL: create generates persistent objects, create tmp

generates temporary objects.

3. A temporary object may become persistent by applying the CL procedure

make persistent; however, persistent objects cannot become temporary.

4. All objects referenced (by means of attributes) from persistent objects are auto-

matically made persistent at the moment the reference is established.

5. An object belonging to several classes has the same lifetime in all its classes.

5

Rede�nition of constraints is intellectually challenging, as it enables to introduce exception mecha-

nisms; it is not clear, however, whether this semantics is the most desired for Chimera. Rede�nition of

triggers requires to identify rede�nition rules for each component (event, condition, action, and priorities

as de�ned by means of a partial order, see below); this issue will be further analyzed in the context of

WP2 T2 (reactive processing).
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6. Temporary objects are automatically deleted at the end of a session.

7. The lifetime of an object can be queried by means of an additional, system-

generated attribute pstatus applicable to objects of any class. At object creation

time, the value of pstatus is automatically initialized by the system to either per-

sistent or temporary.

For a detailed de�nition of the various procedures mentioned in this section refer to the

CL description in Section ??.

4.4 External Names

In Chimera each object can be associated with a unique system-wide external name,

which can be used syntactically instead of OID variables. Such names are associated with

an OID by means of a bijective \name" function name(OID,Name) which is introduced

in a separate name de�nition.

assign name(X,stefano)

where X is bound to an OID. External names cannot be changed during the lifetime of

the object.

The introduction of external names is motivated by the resulting user-friendly style of

addressing individual objects. The execution of the statements

create(person,[name:"Stefano Ceri",wife:teresa],X),

assign name(X,stefano)

will �rst create

6

a person with name \Stefano Ceri" returning a new OID X where teresa

is an already existing external name and the name stefano is created by means of the

define name statement.

Each class is implicitly associated with a system-wide external name (which is the class

name), so that this name can be used for accessing class attributes.

person.averageAge

Thus external names provide a solution to the problem of referencing class attributes,

operations, and constraints, syntactically homogeneous with the handling of properties

of individual class instances.

6

The create statement will be de�ned in Section ??
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5 UNTARGETED CONSTRAINTS, VIEWS, AND

TRIGGERS

We have already seen that constraints and triggers can be targeted and untargeted.

Targeted constraints and triggers can be considered as local to the class (or type) in which

they are de�ned. Untargeted constraints and triggers, as well as views, can be considered

as global, and de�ne \interactions" among classes. Signature and implementation of

untargeted concepts are given by means of a unique de�nition.

5.1 Untargeted Constraints

Untargeted constraints are global contraints which must be satis�ed by the whole

database. As with targeted constraints, they can have output parameters (used to report

the instance responsible for the integrity violation after their execution) and may not be

re�ned. One example of such a constraint, connecting object classes person and car,

expressed in CL, is:

define constraint tooLowLiability(Name: person.name,

Plate: car.plate,

Liability: integer)

tooLowLiability(Name, Plate, Liability) <-

person(X), car(Y), X = Y.owner,

Name = X.name, Plate = Y.plate,

Liability = Y.insuranceLiability*0.7,

Liability < 500000

end

The output parameters are the person's name Name, the car's license plate Car, and the

car's liability Liability such that the person owns the car and the car's insurance liability

is too low. Note that, in the context of untargeted contraints, attribute names used for

output parameters must be pre�xed by the name of the class to which they belong.

Among untargeted constraints, Chimera supports another generic constraint which

correlates attribute values of di�erent classes. This constraint is introduced by the key-

word inverse, as follows:

define constraint inverse(X:c1.a1,Y:c2.a2) end

Inverse attributes relate pairs of extensional, object-valued attributes a1 and a2, de�ned

respectively for the two classes c1 and c2, such that a1 maps objects of c1 to objects of

c2 (a1's type is c2 or set-of(c2)), a2 maps objects of c2 to objects of c1 (a2's type is c1

or set-of(c1)), and a1 is the inverse mapping of a2. One example of inverse constraint is:
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define constraint inverse(L1:car.owner,L2:person.car) end

This constraint has the following intuitive semantics: for each mapping from a car to

its owner established by the owner attribute, there must be a mapping from a person

to his/her owned car, established by the car attribute, and vice versa. This requires a

careful management of insert, delete, and update operations, that is not further discussed

in this document. The implementation of this constraint does not need to be de�ned.

5.2 Untargeted Views

Views are used in order to build derived concepts from concepts already present in the

database (thereby playing the role of presenting information in a \format" that is most

suited to a particular user or user group)

7

. Each view has a signature given by a

user-de�ned value type and an implementation given by a collection of passive rules.

As example of a view, consider the case of an object class person with attributes spouse

and sex:

define object class person

attributes spouse: person

sex: string(10)

end

Then, it is possible to de�ne a view marriage on person relating two married persons, as

follows:

define view marriage: record-of(husband:person,wife:person)

marriage((husband:X,wife:Y)) <- X.spouse=Y, X.sex=male

end

Views can be considered as \prede�ned queries", expressed by means of passive rules,

whose de�nition is included in the schema of a Chimera database

8

.

5.3 Untargeted Triggers

Triggers are means of introducing speci�c reactions to particular events relevant to the

database. Untargeted triggers can be seen as global triggers which must react to particular

events relevant to the whole database. Trigger de�nition will be discussed in more detail

in section ??.

7

For the time being, we are not discussing authorization and protection mechanisms in Chimera; it

is expected that views be used for that purpose as well.

8

The possibility of materializing views (i.e., of evaluating and maintaing their extent) is left to the

Chimera compiler as an optimization.
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As an example of an untargeted trigger expressed in CL, consider the situation where

employee objects are members of departments, they have a salary, and a department

has allocated a given budget for salary. We require that the budget for salary at a

department remains greater than (or equal to) the sum of all employee salaries allocated

at that department. To do so, a trigger raiseBudget is de�ned, which monitors events

like inserting employees, changing their salary, changing their allocation, or changing the

department's budget. The trigger's condition is true whenever there is a violation of the

above requirement. The action consists in setting the department's budget equal to the

sum of the salaries of the employees in the department:

define trigger raiseBudget

events create(employee)

modify(employee.salary)

modify(dept.members)

modify(dept.salaryBudget)

condition dept(D), integer(I),

I=sum(E.salary where employee(E), E in D.members),

I>D.salaryBudget

actions modify(dept.salaryBudget,D,I)

after employee.adjustSalary

end

This trigger has a lower priority than the other trigger adjustSalary, de�ned in the con-

text of the employee class; therefore, if both are triggered at the same time, adjustSalary

should be considered �rst, possibly performing \local" adjustments of salaries in the con-

text of the employee class, and raiseBudget should only be considered when adjustSalary

is no longer triggered.

Note that the above trigger can be informally called an active constraint; it reacts to the

violation of the following constraint:

define constraint budgetViolation(D:dept, I:integer)

budgetViolation(D,I) <- I=sum(E.salary where employee(E),

E in D.members),

I > D.salaryBudget

end

Note that the trigger raiseBudget satis�es the following requirements w.r.t. the constraint

budgetViolation:

� It includes as events all the state changes that may lead to a violation of the

constraint.

� Its condition corresponds to the body of the passive rule implementing the con-

straint.
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� Its action produces a state where the constraint is satis�ed.

One of the future research activities inside WP2, T2 (reactive processing) concerns the

management of \passive" constraints by means of active constraints expressed in the

form of triggers.

6 OVERVIEW OF CL

CL serves two main purposes:

� De�nition of implementations of schema components (expressed by means of passive

rules, active rules, and operation implementations).

� Manipulation of data by means of queries updates and transactions (expressed by

means of either the UFI, or the API interface).

This section provides a \bird eye's view" of the concepts to be found in CL together

with an outline of the rationale behind the general design choices made. In the subse-

quent sections, each of the concepts in turn will be discussed in-depth and representative

examples will be provided.

6.1 Declarative Expressions

Cl is a logic-based language, supporting declarative queries, declarative rules for data

de�nition (called passive rules) as well as declarative conditions for controlling imperative

(active) rules and imperative operations. Logical languages are classically composed of

two main syntactic categories: terms and formulas. Terms denote individuals in the

respective domain of interpretation of the language. In the Chimera context this means

that a CL term denotes either a value or an object. Formulas express propositions about

individuals, being either true or false.

Terms are atomic or complex. Atomic terms include constants and variables; complex

terms include functional terms built from constructors (set, list, record) or evaluable

terms built by means of functions available in Chimera (attributes, selectors, prede�ned

operators).

Formulas are either atomic, or complex as well. Atomic formulas are composed of a

predicate symbol and a list of parameter terms; they include class, type, event, constraint,

membership, and comparison formulas. Complex formulas are constructed from atomic

formulas by means of connectives expressing conjunction and negation.

Formulas are evaluated over a database state according to the classical assumptions of

�rst-order semantics, which we do not elaborate on in this document, but take for granted.
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In order to avoid syntactically valid formulas which denote in�nite set of instances, we

impose that formulas be range-restricted. When compared to other Datalog-like logic

languages, CL o�ers a richer collection of mechanisms for building terms and formulas;

these however enable to implement and use all the features available through CM, which

is a rich object-oriented data model.

6.2 Passive Rules

Passive rules are one of the key concepts of CL. They are used for declaratively de�ning

class instances or attribute values, and for the implementation of views and constraints.

A passive rule is an expression of the form:

Head <- Body

where the head is an atomic formula, the body is an arbitrary formula, and each variable

in the head occurs in the body. Rules are strati�ed with respect to sets and negation,

thereby ensuring that the computation of their �xpoint converges to a unique, minimal

model. These limitations do not allow us to express certain semantics by means of rules

(for instance, we exclude locally strati�ed rules); moreover, our choice for a \standard"

semantics for strati�ed rules excludes the possibility of choosing other semantics for more

general rules, such as in
ationary semantics. However, our design choice is motivated

by the fact that strati�ed rules satisfy the requirements of most applications and have a

more intuitive meaning compared to nonstrati�ed rules.

6.3 Procedural Expressions

CL does not aim at being a full-
edged programming language. However, there is the

need for expressing certain database-related imperative actions under the control of the

database system, and thus for incorporating a certain degree of procedural syntax into

CL.

Procedural expressions in CL are composed of primitive database statements, i.e., of

updates, queries and operation calls. The only general means of forming more complex

statements is to build chains of primitive statements. Due to the database nature of

these primitives, CL provides two di�erent chaining operators: one for passing sets of

variable bindings from one component statement to the other (the sequence operator)

and one for passing individual bindings (the pipe operator). In addition, the UFI mode

of interaction provides two syntactic variants which express iteration over sets of objects

either explicitly or implicitly.
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6.4 Queries, Updates, and Transactions

Chimera supports rather conventional notions of query, update, and transaction.

Queries in Chimera are either submitted from a user-friendly interface (UFI) or from

an application program interface (API). Queries supported from in UFI mode include

display and �nd; queries supported from an API include select and next.

In essence, all four query primitives are very similar; each of them consists of a Chimera

formula F and a target list T. In all cases, the formula F is evaluated over the current

state of the database, returning either individual bindings to the variables in T (in the

case of �nd and next) or the set of all the bindings to these variables (in the case of display

and select). Thus, the rationale of query primitives is to provide both tuple-oriented and

set-oriented access from both kinds of interfaces.

Updates in Chimera support object creation and deletion, object migration from one

class to another, state change or change of persistency status of objects, and value class

population and modi�cation. This collection of primitives enables all possible class and

persistency updates which can be envisioned in Chimera, with the only exception of

turning an object from persistent to temporary.

Finally, Chimera supports a conventional notion of transaction, where user-controlled

commit and rollback primitives allow to either atomically execute all changes de�ned

inside the transaction boundaries, or to restore the transaction's initial state.

6.5 Active Rules and Operation Implementations

Similarly to the way how passive rules serve as a declarative means of implementing

certain Chimera concepts, there are two categories of imperative constructs for imple-

menting other concepts in Chimera as well. In early versions of Chimera there was just

one uniform such mechanism, called active rule, used to implement both triggers and op-

erations. Due to the rather strong di�erences in syntax and semantics, we now call only

those constructs implementing triggers an active rule, whereas operations are de�ned by

means of an operation implementation.

Both categories of constructs contain a procedural CL expression as their \body", ex-

pressing a sequence of database actions that are to be executed. In both cases, trigger as

well as operation, this execution only takes place, if a certain declarative (pre-)condition

is satis�ed over the current state of the database. The di�erence between the two cate-

gories of constructs is the style of invocation. In case of operations, an explicit invocation

(operation call) is required and control is locally transferred from one operation call to

the next. In case of triggers, invocation is implicit, controlled by a system component

monitoring actions and determining appropriate reactions. Triggers have a rather com-

plex semantics and will thus be explained in more detail in a separate section ??. The

semantics of operation calls is a rather straightforward one and has already been dicussed

in Section ??.
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7 DECLARATIVE EXPRESSIONS

Declarative expressions are ubiquituous in Chimera:

� Every query in CL essentially is a declarative formula.

� The body of every passive rule (used for implementing derived classes and attributes

as well as constraints) is a declarative formula.

� The condition part of every active rule is a declarative formula.

� The condition part of every operation implementation is a declarative formula, too.

In the following sections, we will introduce the various constituents of declarative Chimera

expressions in detail.

7.1 Terms

Terms in a logical language can be classi�ed into four main categories:

� atomic terms

{ constants

{ variables

� complex terms

{ constructs

{ evaluable terms

In this section, we introduce syntax and semantics of the di�erent categories of terms.

Constants in CL are prede�ned atomic values of Chimera coming from the six basic

value types of CM: oid, integer and real numbers, characters and strings of the respective

host language, the Boolean values true and false, and the polymorphic null value null.

They denote themselves.

Variables in CL are denoted by variable names; in Chimera (as in many other logic

programming languages), variable names are �nite alphanumeric strings beginning with

an uppercase letter. All variables must be declared by means of class or type formulas

(see below).

A variable X declared in a class formula c(X) ranges over the extent of the class c, i.e.,

X can be instantiated during the evaluation of the formula containing X by instances of

ESPRIT Project 6333 Page 30



Intelligent Database Environment for Advanced Applications

IDEA

the class c only. Variables ranging over value classes are bound to individual values; vari-

ables ranging over object classes are conceptually bound to individual objects; internally,

object-valued variables are bound to OIDs. A variable X declared in a type formula t(X)

ranges over the (possibly in�nite) set of allowed values for that type.

As objects are abstractions, users may never access the bindings of object-valued variables

at the interface level, but may only use such variables for expressing relationships between

objects inside a formula. When users want to retrieve information about individual

objects, they should instead retrieve the values of particular attributes which uniquely

characterize it. In particular, attributes constituting a key have such a property.

Constructs in a logical language are functional terms built from constructor functions,

i.e., functions mapping a list of terms to a new, complex term containing each of the

argument terms as its components. According to the three di�erent type constructors of

CM there are three di�erent term constructors in CL:

� Set terms are constructed using curly brackets f and g.

If t

1

; :::; t

n

are terms, then ft

1

; :::; t

n

g denotes the set consisting of the terms denoted

by the t

i

.

� List terms are constructed using square brackets [ and ].

If t

1

; :::; t

n

are terms, then [t

1

; :::; t

n

] denotes the list consisting of the terms denoted

by the t

i

in the speci�ed order.

� Records are constructed from round brackets ( and ) and colons : separating the

label of each component from the respective component entry.

If t

1

; :::; t

n

are terms and l

1

; :::; l

n

are labels, then

(l

1

: t

1

; :::; l

n

: t

n

) denotes the record with components l

i

: t

i

.

Constructs may only occur as values of attributes or as parameters of operations de�ned

over a structured value domain, e.g.:

X.divisors = {2,3,4,6}.

Y.pay = (amount:2500, unit:"ECU")

Y.birthday = (day:20, month:7, year:1953)

Y.birthday.month = 3

T.authorList = ["Ceri","Gottlob","Tanca"]

Evaluable terms are constructed from an evaluable function symbol and a list of pa-

rameters, which are terms again. Evaluable functions return a value which is in one

way or the other related to their input parameters, but does not have to be composed

from these input parameters (as is the case for constructors). Evaluable functions are

represented in CL by �nite, alphanumeric strings starting with a small letter, or they are

special symbols representing a particular prede�ned operator on values (such as + or �).

There are three kinds of evaluable functions in CL:
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� attributes

� selectors

� operators

Attributes are unary functions applied in post�x dot notation, as shown in the above

example where the left hand side of each of the �ve equations constitutes an attribute

term

9

.

Selectors are also unary functions, accessing individual components of a structured

value. Individual components of a record are normally accessed by means of the cor-

responding label. If for a particular component no explicit label has been introduced,

implicit labelling by integers indicating the relative position of the respective component

within the record is assumed. For illustration, let the variable T stand for the complex

term (empl: "Smith", salary: 100000, 1992). Then T.empl denotes the string "Smith",

T.salary denotes the number 100000, and T.3 denotes the (unlabeled) third component

value 1992. Individual components of list terms are accessible by means of integer selec-

tors indicating relative positions as well, e.g., [a,b,c].2 denotes the character b. Attributes

and selectors are both written in post�x notation, because the state of every object is

regarded as a record, the labels of which are the individual attributes of the object class

in the order they have been introduced in the respective class de�nition.

Operators are prede�ned functions of various arities applying to values. The following

prede�ned operators ought to be supported by every Chimera implementation:

� Arithmetic operators: addition (+), subtraction (-), multiplication (*), division (/).

� Aggregate operators applicable to sets and lists (in some cases restricted to integer

and real elements): min, max, sum, count, avg.

� Set operators: union(+), di�erence(-), intersection(*).

� List operators: concatenation (//), head (hd), tail (tl).

Additional operators may be provided by individual implementations. Examples of evalu-

able terms composed from operators are:

X.age + 3

(X.salary.amount * X.salary.unit.exchangeToEcu) * 12

count(X.authors)

hd([a,b,c,d]) // tl(X)

X.friends + Y.friends

9

Attribute terms can be applied recursively, yielding to path expressions.
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In addition to the aggregate operators de�ned above, CL supports also more complex

aggregate operators, obtained by applying an aggregate operator (avg, sum, min, max,

count) to pairs (T where F), where T is a term and F is a formula (see Section ?? below).

T and F share common variables C in such a way that these variables must not occur

outside the aggregate complex function operator, and any variable in T must also occur in

F. F may have additional variables A. Such operators have the following semantics: they

are applied to the multiset of bindings of the variables C for each distinct binding of the

variables A computed by evaluating the formula F; the variables A must either be bound

before the evaluation of the aggregate function or occur within a positive subformula of

F to be bound by the evaluation. A null value is returned if the evaluation of F fails.

Examples are:

avg(X.age where person(X))

sum(X.salary where X in Y.members)

sum(X.salary where employee(X), manager(Y),

Y.name = "Mauricio Lopez",

X in Y.dependents)

(note that the variable Y in the second example is bound before the evaluation of the

aggregate function, see the active constraint in Section 5.3; in the third example, instead,

the variable Y is bound by the evaluation). These complex operators enable aggregate

computations on multisets of values arbitrarily extracted from sets of objects belonging to

the same class, and are similar to aggregate functions evaluated on relational attributes,

supported by relational query languages.

External names are CL terms, too. They can be viewed as parameterless functions,

denoting oids. Thus every occurrence of an external name within a declarative CL

expression ought to be viewed as functional term, too.

Finally, CL supports a special function choose(S1,N,S2) which should be evaluated with

the �rst argument S1 bound to a set of elements of arbitrary type T and with the second

argument N bound to an integer; the third argument S2 is bound by the evaluation to

a set of at most N elements of type T , nondeterministically chosen among the elements

of S1.

7.2 Formulas

Like terms, formulas of a logical language are either atomic or complex. Atomic formulas

are composed of a predicate symbol and a list of parameter terms. Predicates are either

�nite, alphanumeric strings starting with a small letter (like function symbols) or special

characters such as < or == representing special prede�ned relations. There are �ve kinds

of atomic formulas in CL:

� Class or type formulas, built from class or type names (including view names)

representing unary predicate symbols, e.g., person(X), marriage((X,Y)), or com-
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plex((re:X,im:Y)). These formulas are used for declaring the type of a variable

within a complex formula.

� Constraint formulas, built from constraint names representing predicate sym-

bols, e.g., tooLowIncome(X). These formulas are used in the head of passive rules

which implement constraints (see below).

� Event formulas declaratively referring to the parameters of an event observed.

Event formulas can be used within the condition part of an active rule only and

are explained in more detail in the section on triggers ??.

� Comparisons built from prede�ned, binary predicate symbols <, <=, >, >= and

the two equality symbols = and ==, e.g., 2 < 3.

� Membership formulas built from the prede�ned, binary predicate symbol in used

for accessing elements of a set or list term, e.g., X in f2,3,4g or Y in X.children or

Y in [56,45].

A second form of membership formula is o�ered for expressing the fact that a value or

an object belongs to multiple classes. For doing so, a class name can be used on the

right-hand side of the \in" operator instead of a set or list term, e.g., X in employee.

The meaning of such formula is the same as that of the corresponding class formula,

e.g., employee(X), with the exception that membership formulas do not establish types

for variables. Such membership formula is applied when an object may belong to more

than one most speci�c subclass within a subclass hierarchy, e.g., when we want to select

persons which at the same time belong to subclasses male and employee and we like to

use employee as the unique type:

employee(X),X in male, X.salary=5

In the above example, X is is of type employee, and any property (attribute, operation,

constraint) of employee can therefore be referenced through X.

Classically, there are two fundamentally di�erent notions of equality that are supported

by object-oriented systems:

� Equality by identity means that two compared terms, ranging over an object

class, denote the same object. Equality by identity is possible only between terms

which range over the same class or over two classes related by inheritance.

� Equality by value means that two compared terms denote objects with the same

attribute values (but not necessarily the same OIDs); this form of equality can be

further re�ned in two ways:

{ Shallow equality considers all direct attributes (including those represented

by means of OIDs) of an object which are either directly de�ned on the re-

spective class or inherited from superclasses.
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{ Deep equality considers, in addition to the above attributes, all attributes

of objects which are recursively reached by means of OID-based references.

In CL, the equality symbol = denotes identity, whereas the symbol == denotes shallow

equality. Deep equality comparisons have to be expressed explicitly on a case by case

basis by means of formulas. As an example, assume the following object class de�nitions:

define object class person

attributes name:string(20)

spouse:person

end

define object class student

superclasses person

end

Then, the following three examples impose identity, shallow equality, and deep equality

on two variables X and Y ranging over student and person, resp.:

student(X), person(Y), X=Y

student(X), person(Y), X==Y

student(X), person(Y), X==Y, X.spouse.name=Y.spouse.name

(Note: the above examples use compound conjunctive formulas, see below).

Complex formulas are constructed from atomic formulas or negated atomic formulas by

means of conjunction, expressed by the \," connective; quanti�ers remain implicit, i.e.,

all variables are assumed to be implicitly quanti�ed in the same way as in Datalog

10

.

It is well-known that certain syntactically valid formulas may be satis�ed by an in�nite

set of instances. As in�nite answers to queries (or in�nite extensions of rule-de�ned

classes) are semantically useless, the usual way out is to identify a decidable subset of all

possible formulas which is guaranteed to be satis�ed by �nite sets of instances if applied

to a �nite database; such formulas are called range-restricted. All valid CL formulas

must be range-restricted.

Before introducing range-restricted formulas we de�ne the notion of a range-restricted

variable for which it is guaranteed that it can only be bound to a �nite set of values.

A variable X is range-restricted in an arbitrary formula F, if

� X occurs in at least one class, constraint, or event formula of F,

10

Use of explicit quanti�ers and/or disjunction is envisioned as one of the directions for extending

Chimera.
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� or X occurs in any equation X=T or T=X in F where T is a ground term, or where

all variables in T are range-restricted in F

(if T is an aggregate term agg (T1 where F1) all local variables of T must be range-

restricted in F1 and all global variables range-restricted in F),

� or X occurs in any membership formula (X in S) in F where S is a ground set or

all variables in S are range-restricted in F.

The variable X is range-restricted in each of the following atomic formulas:

X = 1

X in {1,2,3}

X in Self.dependents

X = sum(E.salary where E in D.members)

(provided D and Self, resp., are bound somewhere in the syntactic context, too.)

A formula F is range-restricted i� all variables of F are range-restricted in F. The following

are examples of range-restricted formulas:

integer(X), X in {1,2,3}

employee(X), employee(Y), not X=Y, X.salary>Y.salary

employee(X), real(Y), Y=0.8*X.gross-salary

employee(X), integer(Z), integer(W), Z=X.salary, W=Z+500

employee(X), modified(employee.salary,Y), X.salary<0.5*Y.salary

whereas the following is not range-restricted:

employee(X), integer(Y), X.salary>Y

Some variables may be range-restricted by their signature de�nition, e.g.:

define view marriage: record-of(husband:person,wife:person) as

{marriage((husband:X,wife:Y)) <- X.spouse=Y, X.sex=male}

end

In this case, class formulas person(X) and person(Y) are implicitly added to the formula

in the rule's body; an explicit repetition of the above class formulas could, however,

improve the rule's readability (especially if signatures and implementations are separately

de�ned).

Note that the special variables Self and Class are implicitly range-restricted.

An important restriction imposed on complex formulas is that for every variable there

may be at most one type/class formula in order to retain assignment of a unique type

for each variable, thus facilitating type checking. Thus, a formula like:
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male(X), employee(X), X.age>45

is illegal and has to be reformulated by means of a membership formula replacing one of

the two class formulas, e.g.,

male(X), X in employee, X.age>45.

8 PASSIVE RULES

A passive rule is an expression of the form:

Head <- Body

Where:

� The head is an atomic formula.

� The body is an arbitrary formula.

� Each variable in the head occurs in the body.

Passive rules are means for de�ning the extent of a subclass by \�ltering" out certain

objects from the superclass based on a declarative condition and for de�ning the value

of an attribute intentionally, i.e. without enumerating every instance separately; these

rules are targeted to speci�c classes

11

. Furthermore, passive rules are the (only) means

of de�ning views and constraints.

Examples of passive rules are:

� for a subclass:

engineer(X) <- employee(X), X.profession="engineer"

� for a view:

works-for((X,Y)) <- employee(X), employee(Y),

Y=X.department.boss

11

Note that attributes de�ned by the list constructor cannot be implemented by means of passive rules,

because declarative expressions in the body of passive rules cannot determine the order of elements in

a list.
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� for attributes:

Self.salary=200000 <- engineer(Self), Self.age < 35

Y in Self.children <- person(Self), person(Y),

Y.father=Self

Any concept may be de�ned by several rules, expressing di�erent cases of the overall

de�nition. This multi-case form allows incremental de�nition of a concept, as in:

X.salary=20000 <- engineer(X), X.age < 35;

X.salary=25000 <- engineer(X), X.age >= 35;

X.salary=50000 <- manager(X), leads((X,Y)), group(Y);

X.salary=60000 <- manager(X), leads((X,Y)), department(Y)

where \leads" is considered as a binary view.

8.1 Strati�cation and Safety

For each set of rules recursively referring to each other, we impose the restriction that

this rule set has to be strati�ed with respect to both negation and sets.

Intuitively, in a strati�ed rule set no recursive cycle may involve negation or sets. An

example of a rule set with strati�ed negation is:

Y in X.descendants <- person(X), Y in X.children

Y in X.descendants <- person(X), Z in X.children,

Y in Z.descendants

Y in X.non-descendants <- person(X), person(Y),

not (Y in X.descendants)

An example of a rule set with strati�ed use of sets is:

Y in X.descendants <- person(X), Y in X.children

Y in X.descendants <- person(X), Z in X.children,

Y in Z.descendants

X.number-Desc = N <- person(X),

N = card(X.descendants)

In addition to strati�cation, we expect each set of rules to be safe. In a safe rule, every

variable in the head of the rule occurs in at least one positive atomic sub-formula of the
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rule body, thus guaranteeing that bindings for variables can be computed from those

data sets addressed in the respective rule only. In addition, we expect the rule bodies to

be range-restricted, guaranteeing that variables local to the rule body can be properly

evaluated, too. An example of an unsafe rule is:

male(X) <- not female(X)

Such a rule would imply that every value or object not belonging to the class female

belongs to the (derived) class male. This is, of course, semantically unintended and is

due to a missing speci�cation of the range of X. The above example rule could be turned

into a safe one by explicitly restricting X to range over class person only:

male(X) <- person(X), not female(X).

This form of safeness is called local, as it can be decided by analyzing rules one by one

independently of each other.

Passive rules de�ning attributes, constraints, or class instances are targeted to the re-

spective class. A special variable Self is implicitly ranging over the instances of the target

class. The following rules de�ne two derived attributes using the Self device:

� Salary is computed from the gross-salary;

� Manages includes the set of employees which are recursively (i.e. directly or indi-

rectly) managed by one employee.

define object class employee

attributes name: string(20)

gross-salary: integer, derived

dependents: set-of(employee)

salary: real

manages: set-of(employee), derived

end

define implementation for employee

attributes Y = Self.salary <- real(Y), Y=0.8*Self.gross-salary;

Y in Self.manages <- employee(Y), Y in Self.dependents;

Y in Self.manages <- employee(Z), Z in Self.dependents,

employee(Y), Y in Z.manages

end

Similarly, a special variable Class is implicitly ranging over a target class, to be used in

the de�nition of derived c-attributes. The following rule de�nes a derived class attribute

(the average age for the person class) by using the Class device:
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define object class person

....

c-attributes averageAge: integer

....

end

define implementation for person

....

c-attributes Class.averageAge=Y <- integer(Y),

Y=avg(X.age where person(X))

....

end

Beyond the limitations on passive rules (such as range-restriction of formulas, safety of

passive rules, strati�cation of passive rule sets), rules de�ning implementations must be

type-compatible with the signatures they refer to. Therefore:

� The head of a passive rule used in the implementation of either an attribute, a con-

straint, the population of a class, or a view must be compatible with its respective

signature. In particular:

{ In the case of an attribute, the head consists of either an equality or a mem-

bership formula where one of the terms is the respective attribute term, so

that bindings are generated for that attribute.

{ In the case of object class population, view or constraint de�nition, the head

is a class or constraint formula, respectively.

� Event formulas mentioned in triggers which are targeted to a class can refer only

to query or update primitives of that class.

9 QUERIES

In Chimera, two di�erent sets of query primitives are provided, one for each of the

two interaction modes mentioned earlier. In the UFI mode, queries are issued through

a user-friendly stand-alone interface, probably a window-based tool interacting with a

Chimera interpreter directly. In the APImode, Chimera queries are considered as special

procedure calls embedded into an application programming language of a particular

Chimera implementation.

In essence, all four query primitives are very similar in syntax. Each of them consists of

a Chimera formula F and a target list T, listing variables and selector terms. The basic

semantic policy is that formula F is evaluated over the current state of the database,

returning either individual bindings to the T-variables or a set of all bindings that can

be found (or computed).

ESPRIT Project 6333 Page 40



Intelligent Database Environment for Advanced Applications

IDEA

9.1 UFI Queries

The UFI queries allow to display the content of the database or to extract information

into temporary variables.

9.1.1 Display

The display operation is a set-oriented query primitive in the user-friendly interface.

A call display(T where F) causes all bindings to T resulting from evaluation of F to be

displayed in a suitable style on the screen (the respective style of display being left to

the individual implementation of the UFI). An example is:

display(X.name where marriage((husband:X,wife:Y)), Y.name="Teresa")

A display is executed by �rst evaluating the formula F, resulting in the computation of a

set of bindings for the variables occurring in F. The target list T refers to some of these

variables; however, when variables assume OID values, the target list cannot refer to

them directly, but it must instead include the projection of the corresponding objects on

suitable attributes or attribute components; these projections should not include OIDs

12

.

The answer actually displayed by a query can be a multi-set of instances of the target

list, rather than a set. As an example consider the query:

display(X.name,Y.make where person(X), car(Y), Y.owner=X)

If a certain person owns more than one car of the same make, the same pair [Name,Make]

will be displayed twice.

Some variables occurring in F may not appear in T, e.g. the variable Y in the following

example:

display(X.name, Z where person(X), car(Y),

string(Z), Y.owner=X, Z=Y.make).

In this case the variable(s) missing in the target list are assumed to be implicitly existen-

tially quanti�ed; this means that an implicit grouping is applied when constructing the

answer. In the example, each pair [Name, Make] would appear only once, independent of

the number of Y instances associated with the same X and Z. The possibility of omitting

12

We recall that OIDs cannot be printed, as they carry internal information which is not relevant to

users; hence the above restriction. A possible alternative, considered by some object-oriented databases,

is to design a key attribute as the one that should be printed instead of the OID; this solution is currently

left as an option for testbeds.
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variables from the target list allows to display the result of computation of aggregate

functions, e.g., the following query displays for each employee the average salary of his

dependents:

display(X.name,Y where employee(X), integer(Y),

Y=avg(Z.salary where employee(Z),

Z in X.dependents))

It is also possible to display the target list according to user-controlled ordering, by means

of an additional parameter introduced by the keyword order-by. The parameter consists

of a sequence of ordering clauses of the form:

ascending(T1)

descending(T2)

Where T1, T2 are variables or terms evaluable for each variable binding extracted after

the evaluation of F such that their lexicographical order is well de�ned (of course, they

cannot be OIDs); for example:

display(X.name,X.age where person(X),X.age>18

order-by ascending(X.name),descending(X.age))

9.1.2 Select

In addition to the display primitive, the UFI interface supports also a select primitive,

which is used to extract individual bindings into atomic temporary variables. A call

select(T where F) causes bindings to T resulting from evaluation of F to be associated to

the variables which are named in T; this enables their use in subsequent primitives which

are submitted from the UFI (primarily update primitives, see Section ??). Examples of

select are:

select(X where employee(X), X.salary<5000)

select(X,Y where person(X), car(Y), Y.owner=X)

The evaluation of a select primitive is identical to the evaluation of a display: the formula

F is evaluated, resulting in the computation of bindings for the variables occurring in

F; next, the target list is computed from these bindings. However, the target list may

include OID values in this case. Variables which are named in the target list become

visible in the UFI and can be used in building transactions; this will be further explained

in Section ??.

An additional style is possible for the UFI, motivated by the wish of making the implicit

iteration over bindings produced by the select statement more explicit. In this case,
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a foreach operation is introduced, which de�nes the scope and iteration of variables

extracted into the target list. The syntactic format of this query primitive is foreach(T

where F) do S, where S is a sequence of procedure calls which may use variables in the

target list T as input parameters. This is equivalent to specifying select(T where F) and

then listing the procedure calls S. The rationale of allowing both styles will be further

discussed in Section ??. An example is:

foreach(X where postalCode(X),X<999) do delete(postalCode,X)

where �rst all bindings for X (i.e., values to be deleted) are obtained by evaluating the

formula F (i.e., all values less than 999) and only then the deletion of the respective

postal codes is performed.

Two variants of the select primitive allow to extract collective bindings into structured

temporary variables, built by means of set or list constructors, respectively. Such struc-

tured temporary variables are introduced by the keywords into-set or into-list respec-

tively, which are followed by a variable name; that variable name can be used in the UFI

transaction in order to refer to the collection of extracted bindings. For instance, in:

select(X into-set S where employee(X), X.salary<5000)

select(X into-list L where employee(X), X.salary<5000

order-by ascending(X.salary))

Variable S denotes in the UFI the set of extracted employees, while variable L denotes

the list of extracted employees in ascending salary order.

9.2 API Queries

In the embedded version of CL, queries result in answers to be returned as bindings to

program variables of the embedding host language program. The passing of results to

program variables is done by means of an assignment statement of the host language

(which we express in this text for illustration purpose in the classical := style with-

out �xing any particular syntactic solution this way). Thus, Chimera queries will be

expressions of the host language evaluated on the right hand side of the assignment.

Set-oriented queries are expressed by means of the select function, to be used in an

assignment to a set-valued variable S: S := select(T where F) or list-valued variable

L: L := select(T where F order-by O). The types of the program variables have to be

compatible with the types obtained as set/list of the target list record T in this case.

Individual solutions are obtained using a cursor mechanism expressed by an assignment

of the form next(T into V where F) or next(T into V where F order-by S) using the

Chimera next function; this function must also return an error condition which becomes

true when the cursor is emptied, in a manner that is speci�c to the particular embedding
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into a \host" programming language. The type of the program variable V has to be

compatible with the type of the target list T in this case; thus, T must contain attributes

which do not include set or list constructors.

The following two examples illustrate the use of select or next queries. In the �rst case,

the type system of the \host" programming language (e.g. Peplom) supports sets, with

no impedance mismatch with Chimera; thus, S is a set variable directly assigned to the

result of the select query:

S := select(X.name,X.empNum where employee(X),X.mgr.name="Jean-Marie")

The second example illustrates a possible API for the \C" programming language

13

,

where the function next returns a negative error code when the cursor is emptied; a

suitable \C" structure V is assigned to the bindings produced for T after each next call,

until the cursor is emptied.

struct V-type

{ char name(20);

int num;

} V;

while (true)

{

int I;

I=next(X.name,X.empNum into V

where employee(X),X.mgr.name="Jean-Marie"

order-by ascending(X.empNum));

if (I<0) break;

printf(V.name,V.num);

}

9.3 Support for External Procedures

External procedures that can be called from inside Chimera need to be de�ned, so that

their interface becomes available for use in either queries (apply primitive) or reactions.

The format of such a de�nition could be:

define external procedure procedure-name(list of parameters) end

Procedures written in the \host" programming language perform any application-related

function; however, in order to inspect the content of the database or to modify the state

13

This example is by no means prescriptive of how the actual implementation of next should be done

in a \C" language interface.
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of the database, they must in turn use the API query primitives and update primitives,

de�ned below. A further analysis of the interaction between Chimera and the \host"

programming environment will be developed in the context of testbed implementations.

10 UPDATES

Chimera provides a number of prede�ned procedures for performing basic database ma-

nipulations. There are �ve main data manipulation operations in Chimera, which we

will discuss in turn:

� Object creation and deletion;

� Object migration from one class to another;

� State change of an object, i.e., attribute modi�cation;

� Change of persistency status of an object;

� Value class population and modi�cation.

10.1 Object Creation and Deletion

Persistent objects are created by means of the create operation. The general format of

a create command is create(C,T,O). A class name C and a record term T are expected as

input, resulting in the creation of a new object of type C with state T ; O is the OID of

the newly created object, returned as output. When C is a subclass in a generalization

hierarchy, T must include all attributes de�ned in all the superclasses of C

14

. The

operation is successful only if the structure of T and the types of all components of T

are compatible with the attribute signatures de�ned for C.

Temporary objects are created by means of the create tmp operation, which does not

place the new object into persistent store, but keeps it in the workspace of the current

session.

As an example for object creation, assume that the object class project is de�ned as

follows:

define object class project

attributes name:string(50)

acronym:string(10)

14

Consider two classes C1 and C2 such that C2 is a derived subclass of C1; an instance can be inserted

into C2 either by means of a create primitive on C2, or be automatically inserted into it by a passive rule

after a create on C1; in the latter case, the extensional attributes which are special to C2 are initially

set to null.

ESPRIT Project 6333 Page 45



Intelligent Database Environment for Advanced Applications

IDEA

number:integer

duration:integer

commencement:date

members:set-of(employee), derived

end

A syntactically correct creation command resulting in the creation of a new (persistent)

instance of project is:

create(project,

(name:"Intelligent DB Environment for Advanced Applications",

acronym:"IDEA",

number:6333,

duration:4,

commencement:(day:1,month:6,year:1992)),X)

where derived attributes are omitted.

Objects can be deleted by means of the delete operation, taking a class name C and

an object identi�er O as input parameters, the format being delete(C,O). The e�ect of a

deletion command is to delete the object identi�ed by O from its class C and also from

all other classes C

0

to which it belongs due to inheritance.

Moreover, an implicit referential integrity constraint is established: whenever an object

O is deleted from class C, the OID of the deleted object is dropped from all attribute

values which refer to O in other objects C

0

. Therefore:

� If C is the type of an atomic attribute of C

0

(either de�ned individually or a record

component), its value is set to null.

� If C is the type of the element of an attribute of C

0

built by means of set or list

constructors (e.g., set � of(C)), then O is deleted from the set or list; this may

result in producing an empty set or list.

An example of deletion is:

delete(project,X)

with X bound by the declarative expression

project(X), X.name = ``STRETCH''.

All references to the deleted project are also set to null or deleted.
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10.2 Object Migration

If an existing object in a given class is to be inserted to a more speci�c subclass or

inversely moved back to a more general superclass, the OID of the object (which means

its \identity") remains unchanged, but only those attributes that exclusively belong to

the more speci�c class have to be added or removed from the objects state. As an

example, consider the promotion of an employee to the manager level (manager being

a subclass of employee with some extra attributes like extra-bene�t or o�cial-car). The

inverse - admittedly rather unlikely, but nevertheless not completely excluded - case is

the transfer of a manager back to normal employee status (which means the loss of extra

bene�ts and o�cial cars).

CL o�ers another pair of operations for the two forms of object migration. Specialization

of an object to a subclass is done by means of the specialize operation, taking two class

names C1 and C2, an object identi�er O and a record term T as its input parameters.

The result of executing the command specialize(C1,C2,O,T) is that object O, initially

belonging to class C1, is inserted into class C2 as well, and that its state is extended by

concatenating its old state (containing values for those attributes that now are inherited

ones) with T , specifying values for those attributes that are special to C2. Of course, O

remains an instance of C1 due to subclassing.

An example of use of specialization, related to the signature de�nitions of object classes

employee and �atEmployee of Section ??, consider:

specialize(employee,fiatEmployee,X,(tax:32))

where X is bound by a declarative expression.

The inverse process is expressed by means of the generalize operation, which takes only

three parameters: two class names C1 and C2 again, and an identi�er O. The result

of performing generalize(C1,C2,O) is that object O is removed from class C1, while it

remains a member of the superclass C2 of C1; therefore, all attributes special to C1 are

dropped. For example, consider:

generalize(employee,person,X)

where X is bound by a declarative expression; as e�ect of this operation, attributes

emplNr, mgr, salary, and dependents are dropped for the particular object identi�ed by

the OID value bound to X.

Explicit specialization and generalization operations between classes C1 and C2 is not

possible if C1 is derived from C2. When a class C inherits frommultiple classes C1; ::Cn,

an instance of any of the superclasses Ci can be inserted into C by means of a special-

ization only if that instance is already included into all classes C1; ::Cn

15

.

15

However, instances of C can be directly created by means of a create primitive, which requires the

speci�cation of the entire state of T (e.g., all attributes de�ned in all superclasses of C).
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10.3 Attribute Modi�cation

Every attribute of an object has to be initialized (possibly with null) at object creation

time. The initial values are speci�ed within the state parameter of the respective create

command. Later changes of an attribute value can be performed by means of themodify

operation. The syntax of this operation is modify(C.A,O,V), where A is an attribute of

object class C, O is an object identi�er of an instance of C, and V is the new value of

O, replacing whatever old value had been in existence. A modify command returns an

error if either the attribute is not compatible with the de�nition of C, or the identi�er

O does not refer to an object in C, or if the value V does not have the type required for

A values in class C. An example of modi�cation is:

modify(employee.salary,Self,Self.mgr.salary)

10.4 Change of Persistency Status

Temporary objects can be made persistent by calling the make persistent operation.

Two parameters are required, a class name and an object identi�er: make persistent(C,O)

causes the pstatus ofO in class C to be changed from temporary to persistent. IfO already

is persistent, the command will succeed but no action will be performed. If O does not

exist as a temporary instance of C, the operation will return an error.

10.5 Value Class Population

User-de�ned value classes may be populated by explicitly inserting (or deleting) individ-

ual values. This concept is similar to the enumerated types found in many programming

languages, but causes explicit persistent storage to be generated for the extension of the

respective value class. The CL operations for adding a prede�ned value to or deleting it

from a user-de�ned value class are add and drop. Both operations expect the class name

as �rst parameter, and the value to be added to / dropped from that class as second

parameter. Recalling the value class postalCode of Section ??, examples of additions and

deletions are:

add(postalCode,3001)

drop(postalCode,X)

where X is again bound by a preceding declarative expression.
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11 PROCEDURAL EXPRESSIONS

Procedural expressions are ubiquituous in Chimera, too:

� The operation code of every operation implementation is a procedural expression.

� Every transaction is a procedural expressions.

� The reaction part of every trigger is a procedural expression.

In the following sections, we will introduce the various constituents of procedural Chimera

expressions in detail.

11.1 Procedure Calls

Procedures that can be called are either query primitives (display and select), or update

primitives (as de�ned in Section ??), or operations (Section ??), or externally de�ned

procedures (Section ??). These procedures have typed input and output parameters;

therefore, interaction among procedures is achieved by variables, of suitable type, which

are produced as output parameters by given procedures and consumed as input param-

eters by subsequent procedures.

Output parameters are produced by:

� create primitives, returning OID variables of newly created objects.

� select queries, returning either individual or collective bindings.

� operations and externally de�ned procedures, returning output parameters.

Input parameters are consumed by:

� update primitives (including create, which may require input parameters for the

state de�nition).

� operations, requiring an OID and possibly other input parameters, and externally

de�ned procedures, requiring input parameters.

Clearly, the type of variables used as input parameters in a procedure call must be

compatible with the type expected by the parameter's signature. All variables used as

output parameters in a procedure call must be unbound.
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11.2 Transaction Lines

Transaction lines are chains of one or more procedure calls. During the discussions on the

semantics of transaction lines in Chimera, the need for an explicit distinction between

a set-oriented and an object-oriented style of chaining has been identi�ed. Therefore,

CL o�ers two di�erent connectors for composing chains of procedure calls. Apart from a

set-oriented sequence connector one can also use an object-oriented pipe connector.

Sequences of procedure calls are constructed by means of the sequence connector which

is denoted by \,". When a variable is de�ned by means of a select statement and then

used by a given procedure P (e.g., an update primitive), the procedure call is iterated

over all the bindings produced by the select statement itself. This results in an object-

oriented semantics of application of procedures (including update primitives). However,

the UFI optimizer may analyze such a sequence to detect the select statement where a

given variable is introduced, and then process each update primitive in a set-oriented

way.

select(X where train-number(X), X>400), // iteration of drop

drop(train-number,X) // applied to a value class

select(X where employee(X), X.mgr.name="Manthey"), // iteration of

modify(employee.salary, X, X.salary + 5000) // modify applied to

// an object class

select(X where employee(X), X.name="Ceri"), // example of use

X.raiseSalary(10) // of operations

The same chains can also be expressed by using as query primitive foreach rather than

select:

foreach(X where train-number(X), X>400) do

drop(train-number,X)

foreach(X where employee(X), X.mgr.name="Manthey") do

modify(employee.salary, X, X.salary + 5000)

foreach(X where employee(X), X.name="Ceri") do

X.raiseSalary(10)

The semantics of execution of sequences is well understood in the general case. Each

procedure P is iterated over the cartesian product of bindings determined for variables

V 1; ::V n previously introduced as output parameters. For example, in the following

sequence:

ESPRIT Project 6333 Page 50



Intelligent Database Environment for Advanced Applications

IDEA

select(X,Y where F1(X,Y)), P1(X),

select(Z,W where F2(Z,W)), P2(X,Y,Z)

� The sequence consists of 4 procedure calls (select, P1, select, P2) which are executed

in sequence. Each select causes the evaluation (and storage) of a set of bindings,

that can be later referenced by means of variable names.

� Procedure P1 is iteratively executed for each projection on the �rst argument of

the set of bindings produced by the �rst select.

� Procedure P2 is iteratively executed for each element of the cartesian product of

the set of bindings produced by the �rst select with the projection on the �rst

argument of the set of bindings produced by the second select.

Pipelines are constructed by means of the object-oriented pipe connector which is de-

noted by \%". The semantic di�erence between this and the sequence connector is

illustrated by the following example.

select(X where employee(X), X.mgr.name="Manthey"),

modify(employee.salary, X, X.salary + 5000)%

X.changeIncome(X.salary + 5000)

In order to better understand the example, assume that the call of the select statement

bind the variable X to an implicit set of values XO. Note that XO could be explicitly

built as a set variable as introduced in the formulation select(X into-set XO where

employee(X), X.mgr.name="Manthey")). The pipe connector \%" corresponds to the

following equivalent formulation using the explicit loop construct of Chimera:

foreach(X where X in XO) do

modify(employee.salary, X, X.salary + 5000),

X.changeIncome(X.salary + 5000)

If the sequence connector \," would be used instead of the pipe connector, then the

\modify" statement would be applied to all elements of XO �rst, and only then the

operation \changeIncome" would be called. Using the \foreach" style, an equivalent

formulation would be:

foreach(X where X in XO) do

modify(employee.salary, X, X.salary + 5000),

foreach(X where X in XO) do

X.changeIncome(X.salary + 5000)
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The motivation for introducing the pipe connector comes from the challenge of embedding

programming languages, like Peplom, into Chimera. The issue was to �nd a natural way

of passing bindings between selections and subsequent procedure calls in a transaction

line. The possibility of applying two sequence connectors in Chimera complies with the

set-oriented style of Chimera's declarative services as well as with the \guided by objects"

style of Peplom. Using the sequence connector is very natural in a set-oriented context

while using the pipe connector is very natural in standard programming languages.

Transaction lines are chains of one or more procedure calls where subsequent procedure

calls are connected by \," (sequence) or by \%" (pipeline). Variables shared between

subsequent procedure calls in a transaction line must be type compatible. Variables

which are used for linking output to input parameters have a name and type which is

assigned to them by the procedure calls where they are �rst introduced. All output

variables introduced in the same line must have di�erent names.

We expect that bindings between input and output parameters normally required by the

UFI will be simple, as in the above examples; we also conjecture that each implementation

of UFI interface will introduce restrictions wrt the general case. If a procedure is called

with an unbound input variable, that procedure is not executed (but this is not considered

an error).

12 TRANSACTIONS

A transaction in Chimera is a sequence of transaction lines which are presented to

the Chimera database server, linguistically encapsulated by a (possibly implicit) begin-

transaction and a commit or rollback statement. At the beginning of a UFI session or

API application, a database is opened by means of an opendb primitive which indicates

the database name; a database can be created by indicating a new name. A symmetric

closedb primitive indicates that the database is released by the session or application.

The notion of transaction in Chimera has three facets.

� It serves to de�ne atomic units of execution from the viewpoint of reliability and

persistency.

� It allows to encapsulate actions which are subject to particular modes for reactive

processing.

� It enables to de�ne interactions between query and update primitives, by means of

either UFI variables or programming language variables.

This section illustrates each of these facets separately.
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12.1 Transactions as Units of Persistency and Reliability

Chimera supports a rather conventional notion of transaction, whereby a collection of

database changes can be committed atomically. A transaction is initiated by the begin-

transaction primitive (that may be implicit in some interfaces); it is committed by means

of a commit primitive, and aborted by means of a rollback primitive. Transactions are

normally isolated from each other by means of a concurrency control system.

The e�ect of a successful commit primitive is to apply all schema and instance updates

atomically; these are persistent. The e�ect of a rollback primitive is to suspend the

transaction's execution and to restore the transaction's initial state.

12.2 Transactions in the UFI interface

A transaction submitted from the UFI is a sequence of transaction lines. In the design

of the UFI interface, we recognized the need of interaction among calls; this interaction

requires the de�nition and use of temporary variables, whose type, scope, and legal use

needs to be precisely de�ned, as well as a precise de�nition of the semantics of procedure

executions, in particular with respect to the iteration over variable bindings; this section

attempts a �rst characterization.

We restrict the scope of a variable to one transaction line, syntactically recognized in the

UFI (e.g., lines are separated by a suitable delimiter). The following is an example of a

transaction. Transaction lines are separated by the \;" delimiter:

>

> begin-transaction

>

> select(X where train-number(X), X>400), // iteration of drop

> drop(train-number,X); // applied to a value class

>

> select(X where employee(X), X.mgr.name="Manthey"), // iteration of

> modify(employee.salary, X, X.salary + 5000); // modify applied to an

> // object class

>

> display(X where employee.exceedsMgrSalary(X)); // use of output

> // parameters of

> // constraints

>

> create(employee,(..),X), // connection of create

> create(employee,(..),Y), // statements; newly created

> create(project,(..workers:[X,Y]..),Z); // employees X and Y are

> // inserted into project Z

>

>
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> select(X into-list L

> where employee(X), // creation of a list L;

> X.mgr.name="Willem Jonker" // use in the state of

> order-by ascending(X.salary)), // a create object

> create(project,(..workers:L..),Z);

>

> select(X where employee(X), X.name="Stefano Ceri"), // example of use

> X.raiseSalary(10); // of operations

>

> commit

12.3 Transactions in the API interface

Also a transaction submitted from the API is a sequence of procedure calls for the Chimera

database; however, the interaction between calls is normally regulated by the use of con-

stants and variables de�ned according to the type system of the embedding programming

language. We recall that basic types in each Chimera testbed are compatible with those

of the embedding programming language.

Further, transaction execution can be controlled by means of conventional control state-

ments, which determine alternative 
ows of execution based on conditional or iterative

statements. A transaction must be well-formed, namely, along each possible 
ow of exe-

cution after the begin-transaction statement there must be exactly one command forcing

either the commit or the abort of the transaction.

13 TRIGGERS

Chimera supports set-oriented triggers, which are activated by database operations

and perform reactive computations. The distinguishing choice of Chimera is to map

an object-oriented data model with set-oriented triggers, e.g., triggers responding to

collective operations.

Triggers in Chimera follow the event-condition-action paradigm of active databases:

� Events correspond to database accesses for retrieval or manipulation.

� Each condition is a declarative formula, to be evaluated in the state before activa-

tion of the reaction.

� Each reaction is a chain (sequence or pipeline) of one or more procedure calls, which

can perform any computation on the database.

Events are a uniform interface for de�ning patterns of actions the observation of which

can trigger a reaction. Such patters can be:
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� Queries performed over object classes. A query is any retrieval operation which

occurs during the evaluation of a term in the context of a passive rule. Events are

denoted by the name of the target of the query (either a class or an attribute of a

class):

query(class-name)

query(class-name.attribute-name)

� Updates performed over object classes. Events are denoted by the name of the

resp. update operation and the target (class name, possibly attribute name) of

this operation. Based on the CL update operations discussed in Section ??, the

following events are available in Chimera

16

:

create(class-name)

create_tmp(class-name)

delete(class-name)

specialize(class-name, class-name)

generalize(class-name, class-name)

modify(class-name.attribute-name)

make_persistent(class-name)

Each trigger is de�ned on a set of triggering events; the set is associated to a disjunction

semantics (the trigger becomes active if any of its triggering events occurs). We exclude,

for the time being, to support within Chimera a more complex event calculus. Note

that we do not support triggers on value classes.

The condition is a declarative formula written in CL; it serves the purpose of monitoring

the execution of the reaction part. The reaction is a chain of procedure calls; proce-

dures can be either update primitives of Chimera (see Section ??), or display primitives

(see Section ??), or operations, or externally de�ned procedures, or the transactional

command rollback. Conditions and reactions may share some atomic variables that are

used in order to relate them; in addition, conditions may use special formulas occurred

and holds (de�ned in the sequel) in order to identify objects which have been the target

of one of the above events.

Syntactically, active rules must be safe, that is, the variables occurring as input parame-

ters of some procedures in the reaction part of the rule must be present in some positive

literals of the condition part of the same rule (or be de�ned as output parameters of

precedent procedures).

As an example, consider the trigger adjustSalary for class employee, requiring that, when-

ever an employee's salary is greater than his manager's salary, the employee's salary be

set equal to that of his manager:

16

Currently we have not yet considered the possibility of time-based triggering events in Chimera; this

issue is left for investigation in WP2 T2 (reactive processing).
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define trigger adjustSalary for employee

events create

modify(salary)

condition Self.salary > Self.mgr.salary

actions modify(employee.salary,Self,Self.mgr.salary)

end

13.1 Informal Description of Trigger Semantics

In this section we describe informally the semantics of triggers in Chimera. Triggers

are activated by events such as queries or updates; therefore, multiple triggers can be

activated as e�ect of the same event type. When one of the events of an active rule occurs,

we say that the active rule is triggered. At given points of time (de�ned in the sequel)

active rule processing is started. Rule processing consists of the iterative execution of

rule processing steps, until certain termination conditions hold.

Each rule processing step consists of a sequence of selection, consideration, and possible

execution. During trigger selection, one of the triggers which are triggered is chosen;

the choice is explicitly in
uenced by priorities (also de�ned below). The selected rule

is considered, by evaluating its condition; if the condition is satis�ed (either because it

produces the boolean value true or because it produces some bindings for the variables

which are shared between the condition and the reaction), then the reaction is executed;

this completes a rule processing step. The evaluation of the condition part of a trigger is

similar to the production of a set of bindings through a select or foreach query primitive

in the context of a transaction line; indeed, condition and reaction can be considered as

part of the same transaction line from a transactional perspective.

Considered rules are no longer triggered, unless their triggering event occurs again as

e�ect of some rule's reaction; note that a rule's reaction can trigger itself. In general, the

set of triggered rules may change at each new active rule processing step. Active rule

processing continues until no rule is triggered

17

; we call such a state a quiescent state.

13.2 Immediate and Deferred Triggers

Each trigger is de�ned as either immediate or deferred:

� The processing of immediate triggers is started immediately after the completion

of the transaction line which has caused the triggering event.

17

Clearly, the possibility of in�nite rule processing due to chains of active rules that trigger each

other inde�nitely exists in Chimera; the study of su�cient conditions for ensuring termination is one of

the topics of WP2 T2 (reactive processing). Regardless of this, each Chimera implementation should

control the run-time execution of active rule processing, possibly by forcing the abort of the underlying

transaction when a given threshold on the number of triggered rules is reached.
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� The processing of deferred triggers is started at the end of the transaction, as part

of the execution of the transactional command commit.

Whenever the execution of a transaction unit is completed, immediate triggers are pro-

cessed according to the semantics described in the previous section, until a �xpoint is

reached (called a quiescent state wrt immediate triggers); at commit time, active rule

processing is applied to all triggers, until a �nal state is reached. The transactional

command savepoint forces rule processing over all triggers (including deferred ones); rule

processing started by a savepoint command produces an intermediate transaction state

which is quiescent wrt all triggers.

13.3 Targeted and Untargeted Triggers

A trigger may be targeted to a speci�c class, when its triggering events are restricted

to queries and updates over a speci�c class; otherwise, the trigger is untargeted. Tar-

geted triggers are de�ned in the signature and implementation of their respective class.

The syntax of implementations of targeted triggers may be simpli�ed, because the class

name is understood by the context, and therefore can be omitted from events and event

formulas (next de�ned).

13.4 Priorities between Triggers

In order to control their execution, triggers have two additional components: the before

and after declarations. These de�nitions are only useful if two triggers are \triggered"

at the same time, and indicate which one of them should be considered �rst; by e�ect of

these speci�cations, triggers are partially ordered.

� The before declaration includes the name of all triggers that have lower priority

than the trigger being de�ned.

� The after declaration includes the name of all triggers that have higher priority

than the trigger being de�ned.

We assume a default partial order where all immediate triggers precede all deferred

triggers, and all targeted triggers precede all untargeted triggers; the �rst criterion is

predominant over the second one. However, user-de�ned priorities may override this

default ordering.

When many triggers are triggered at the same time, the system should consider them in

decreasing priority order; when two triggers have the same priority, the choice between

them is nondeterministic. Acyclicity of the precedence relation between triggers should

be checked when a new trigger is de�ned.
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13.5 Event Formulas

Conditions of triggers may include event formulas, particular formulas supported by the

declarative language of Chimera, built by means of the binary predicates occurred and

holds.

Syntactically, these predicates have two arguments: a set of events and a variable name.

Events which may appear in the �rst argument of event formulas of a given trigger must

be a subset of its triggering events. Observable events in Chimera include: query, create,

create tmp, modify, delete, specialize, generalize, make persistent; query and modify can

refer to speci�c attributes. An additional event change enables to refer to OIDs of all

class instances that were a�ected by all the triggering update primitives of a given rule.

Class names in event formulas can be omitted when they are clear from the context, e.g.

in targeted triggers.

The variable appearing as second argument of the event formula must range over the

objects of the class a�ected by the event, and becomes bound to OIDs instances which

were subject to any of the events which are speci�ed in the �rst argument; each OID

bound by the computation of an event formula is called an event instance.

For instance, consider a trigger targeted on class C, a variable X over that class, and the

event formula:

occurred((create,make_persistent),X)

After the evaluation of the event formula, X is bound to instances of class C which were

either created or made persistent.

13.6 Net E�ects for Event Predicates

The distinction between predicates occurred and holds is that in the former case all events

which originally caused rule triggering are bound, while in the latter case some events

are excluded: precisely, those events whose e�ect was compensated by subsequent events

on the same object, thus computing the net e�ect of event instances. Compensations are

performed as follows:

� A sequence of create and delete primitives on the same object, possibly with an

arbitrary number of intermediate modify primitives on that object, has a null net

e�ect.

� A sequence of create and several modify primitives on the same object has the net

e�ect of a single create operation.
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� A sequence of several modify and a delete primitive on the same object has the net

e�ect of a single delete operation on that object

18 19

.

To illustrate the di�erence between occurs and holds, suppose that a condition is evalu-

ated after the creation of an employee, with OID e1, and its subsequent deletion; then:

� After evaluating the formula occurred(create(employee),X), X is bound to e1.

� After evaluating the formula holds(create(employee),X), X is not bound.

Note that the net e�ect is computed at a given time during active rule processing, and we

cannot exclude that other events will occur in the remainder of the transaction, yielding

a di�erent �nal composition of net e�ects.

13.6.1 Event Consumption Modes

Two distinct event consumption modes are possible for each trigger; this feature is rele-

vant when a given trigger is considered multiple times in the context of the same trans-

action.

� Events can be consumed after the consideration of a rule; in this case, each event

instance is considered by a rule only at its �rst execution, and then disregarded.

� Alternatively, events can be preserved, i.e., all events since the transaction start are

considered at each rule consideration.

To understand the di�erence between consuming and preserving triggers, consider the

following example. Let us assume that an active rule be initially triggered by events E

1

and then re-triggered by events E

2

; consider its second triggering. Then bindings pro-

duced for the event formula occurred(event,X) at the second execution of r

1

are restricted

to the set E

2

if events are consumed, and they are given by the set E

1

[E

2

if the events

are preserved.

Both alternatives are semantically viable, as one trigger might respond to temporary

inserts, e.g. for tracking change history, while another one might only respond to actual

inserts, e.g. for consistency checking.

Event consumption modes and net e�ect evaluation are orthogonal; therefore, if the event

formula holds(event,X) is used instead of occurred(event,X), then event instances which

are selected as indicated in this subsection, and next the net e�ect is computed over

them.

18

The composition of two subsequent modify events referring to the same object is automatically

achieved by object orientation, since all updates on the same object correspond to the same OID and

yield a unique binding.

19

Other update primitives of Chimera, such as create tmp, make persistent, specialize, and generalize

could be considered for net e�ect. Our current choice is to limit the de�nition of net e�ect to the

primitives create, delete, and modify, which are more signi�cant.
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13.6.2 Reference to Old State

Finally, it is sometimes useful in triggers to refer to past database states. This feature

is supported in Chimera by the function old, that can be applied to atomic formulas,

indicating that the respective formula is to be evaluated in a previous database state.

The chosen state depends on the event consumption mode:

� If the rule is event-consuming, then the old state is the one holding at the last

consideration of the rule; prior to any consideration of a rule, the old state refers

to the state at the transaction start.

� If the rule is event-preserving, then the old state refers to the state at the transaction

start.

By o�ering all the above alternatives, we have designed a very rich trigger language, by

means of which trigger semantics can be adapted to speci�c application needs rather than

being forced to use one speci�c behavior, often \buried" inside the implementation of

active rule systems. However, we are aware that such a rich language should be carefully

used by application designers; in particular, we advocate an approach where triggers can

be automatically generated by declarative speci�cations.

13.7 Defaults and Examples

Defaults for execution and consumption modes are set to deferred and consuming; alter-

native modes must be explicitly indicated by pre�xing the keyword \trigger" by any of

the keywords \immediate" or \event-preserving".

The following active rule provides the implementation of the targeted, deferred trigger

adjustSalary for employees, requiring that, whenever an employee salary is greater than

his manager's salary, then employee's salary be set equal to that of his manager:

define trigger adjustSalary for employee

events create

modify(salary)

condition Self.salary>Self.mgr.salary

actions modify(employee.salary,Self,Self.mgr.salary)

end

Note that in the above example all event formulas relate implicitly to the target object;

in facts, event formulas of targeted triggers can refer only to events (queries or updates)

de�ned on the target class.
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The following targeted, immediate trigger is identical to the previous one, but it is

considered at the end of the execution of the transaction line which raises the triggering

event, rather than at the end of the transaction:

define immediate trigger immAdjustSalary for employee

events create

modify(salary)

condition Self.salary>Self.mgr.salary

actions modify(employee.salary,Self,Self.mgr.salary)

end

The next example is a untargeted, deferred trigger which was introduced in Section

??. The trigger reacts to any change to salaries a�ecting a given department, whose

condition produces some bindings (for the shared variables I and D) when the salary

budget of a given department is exceeded by the sum of all salaries of the employees

working at that department, and whose reaction is to adjust the salary's budget. This

trigger has a lower priority with respect to the trigger which was introduced before. Note

that this untargeted triggers refers to events de�ned over multiple di�erent classes.

define trigger raiseBudget

events insert(employee)

modify(employee.salary)

modify(dept.members)

modify(dept.salaryBudget)

condition dept(D), integer(I),

I=sum(E.salary: employee(E), E in D.members),

I>D.salaryBudget

actions modify(dept.salaryBudget,D,I)

after employee.adjustSalary

end

The next example illustrates the use of event formulas and of the function old. The

targeted, deferred, event-preserving trigger selects all employees who get, in the

course of the transaction, a high salary raise (possibly caused by small salary raises

due to individual modify operations). Note that the rule is event-preserving, therefore

all modi�cations since the transaction start are accumulated at each rule consideration;

further, note that the condition part evaluates the salary di�erence between the state

before transaction's execution and the new state determined at active rule processing

time. The reaction consists in calling the external procedure monitorSalary.
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define event-preserving trigger modifySpecialEmp for employee

events modify(salary)

condition occurred(modify(salary),X), integer(Y),

Y=X.salary - old(X.salary), Y > 50000

actions monitorSalary(X,Y)

end

Finally, the next example illustrates the use of net e�ects; the targeted, deferred

trigger is triggered by creation of employees, and the event formula excludes bindings to

objects which were created and subsequently deleted by the transaction. The reaction

consists in specializing the selected employees, by adding them to the subclass specialEmp

of employee; the state of specialEmp includes the (new) attribute raise.

define trigger createSpecialEmp for employee

events create

condition net_occurred(create,X), integer(Y),

Y=X.salary - old(X.salary), Y > 50000

actions specialize(employee,specialEmp,X,(raise:Y))

end

13.8 Innovative Features of Triggers in Chimera

Innovative features of trigger management in Chimera include the introduction of event

formulas (introduced by predicates occurred and holds), of alternative consumption modes

for event instances, and of the meta-predicates old. In this section, we illustrate the

rationale of our choices.

� We have excluded to support an event calculus for triggers: they can only monitor

the disjunction of several simple events.

� We have excluded a super-immediate semantics of immediate triggers (i.e., starting

their processing immediately after the raising of triggering events) because we prefer

a priority-based iterative rule processing semantics to a recursive semantics. With

our choice, the bindings to variables which are used in a transaction unit cannot be

changed as e�ect of rule processing, thereby easing the understanding of transaction

units themselves.

� Consequent to our exclusion of super-immediate semantics, the raising of triggering

events is separated from the processing of relevant triggers. Thus, we do not bind

event instances at the raising of events (e.g., by event formulas in the event part),

but we bind them at rule consideration time (by means of event formulas in the

condition).
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� The notions of immediate/deferred and event consuming/preserving are orthogonal;

they are motivated by speci�c applications. Their de�nition is set at the rule level

because they determine execution semantics, and in particular the sets of event

instances relevant to each rule consideration.

� Event formulas occurred and holds are used for accessing event instances; the use of

either predicate indicates whether net e�ect should be applied or not. We decided

that the elimination of event instances due to net e�ect composition should not

result in de-triggering of rules; this would have heavily a�ected the semantics of

rule processing. Instead, net e�ect is simply computed during rule consideration,

possibly resulting in empty sets of bindings. For stressing this feature, we preferred

to use two distinct predicates for event formulas rather than adding another mode

to active rules.

� Priorities de�ne a unique partial order, holding for all triggers (regardless of whether

they are immediate or deferred); such unique partial order permits the run-time

selection component to choose one of the triggered triggers at each rule processing

step.

The rich o�ering of alternatives for triggers is motivated by their large spectrum of

applications; we show that all the features provided by triggers in Chimera are required

by some class of applications.

� Default setting (consuming, deferred) and use of net e�ects is suited for checking

static integrity constraint at transaction commit; with this choice, the database is

allowed to be invalid at an intermediate state of the transaction.

� Event-preserving rules are required for checking of dynamic integrity constraints;

event preservation is required for detecting sequences of events that collectively

violate the constraints, but not individually.

� Immediate active rules are required for triggers whose e�ect should \soon" become

visible. However, Chimera users should be aware that immediate really means

\at the end of the transaction line" rather than \after the tuple-level operation"

(as in many tuple-oriented trigger mechanisms). With some care, we could use

immediate active rules for supporting view materialization or data derivation, of

for the early checking of integrity constraints.

� The transactional command savepoint is issued by an application when it needs to

check constraints or alert users at an intermediate state of the transaction, rather

that at commit; if savepoints are recoverable (i.e., associated to transactional-level

persistence), then state consistency may indeed be required.

� Events without net-e�ect composition are required by triggers used for book-

keeping, such as transactions which perform logging on the database journal, as

they must track each individual change.
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� Finally, triggers for alerting are normally event-consuming (i.e., they monitor each

event only once) and require several of the alternative semantics which are o�ered:

they can either be immediate (when they alert immediately after the occurrence

of the monitored event) or deferred (when they alert at commit time); they can

monitor net e�ects (reacting only if the event is still present), or instead monitor

events without composition, when they track an event regardless of subsequent

evolution.

14 SCHEMA UPDATES

Updating Chimera schemas is an argument left for future investigations. In this section

we illustrate the current rationale for disallowing schema updates, and indicate the kind

of di�culties that have to be solved in order to attach this problem successfully.

Currently, targets must be de�ned (both signature and implementation) before being

populated by means of objects or values. In this way, a Chimera database produced as re-

sult of succesfully commited transactions is certainly consistent wrt integrity constraints.

This is additionally guaranteed by the fact that constraints cannot be specialized; thus,

adding a subclass does not change the consistency requirements on the elements of the

superclass. Note that:

� There is no guarantee that constraints be satis�able.

� Integrity may be enforced by means of active rules which react to constraint viola-

tions and restore consistency, as suggested in the literature of constraint manage-

ment.

� There is no guarantee of termination of active rule processing.

Schema evolution is an important feature of modern database systems, as it enables to

adapt to changes in the application requirements. Normally, there is a trade-o� between

supporting evolution and integrity; Chimera highlights the importance of supporting

integrity, hence a careful management of schema updates is required.

Various alternatives for schema evolution may apply to Chimera objects. In general, it

is easier to add new elements to an object, rather than changing or deleting existing

elements; it is normally easier to change an implementation rather than a signature;

and it is easier to add derived attributes rather than extensionally de�ned ones. Adding

integrity constraints may be critical, because the the database state might be inconsistent

with respect to the new constraint. Based on these considerations, the following schema

update primitives could be �rst considered for Chimera:

add derived attribute attribute-name: domain

to class class-name as {attribute implementation}

ESPRIT Project 6333 Page 64



Intelligent Database Environment for Advanced Applications

IDEA

add operation operation-name (list of input parameters): output domain

to class class-name as {operation implementation}

add trigger trigger-name

to class-name as {trigger implementation}

change implementation for operation operation-name

in class class-name as {new operation implementation}

In addition to targeted schema updates, it is possible to support untargeted schema

updates; untargeted elements should only be added or deleted, but not updated. The

addition of untargeted schema elements is currently supported in Chimera, as we do not

restrict their de�nition time; therefore, untargeted views, constraints, and triggers can

be added even if they refer to classes with a population. Note, however, that the addition

of an untargeted constraint requires to check the validity of the current database with

respect to the new constraint.

We do not expect to support the update or deletion of value types (they can only be

added incrementally), or the schema update of value classes. It should instead be possible

to destroy entire value or object classes from the database. This operation, however,

requires care, because these classes may be mentioned in other targeted or untargeted

schema elements, which then would become invalid; therefore, the operation should only

be allowed for classes which are not referenced. A syntax for this schema update is:

destroy class class-name

Further investigation is needed in order to decide whether schema update should be

supported at all in Chimera, possibly giving precedence to the schema update primitives

whose syntax has been given above.

15 SUMMARY OF CL PRIMITIVES

In this �nal section, we summarize informally the features of the Chimera Language

that have been introduced so far; a precise description of CL's syntax is given in Appendix

1.

15.1 Data De�nition Language

We start by summarizing the distinction between schema and instance, and distinguish-

ing exensional from intensional instances. A schema in Chimera consists of de�nitions

of value types, value and object classes, and untargeted constraints, triggers, and views.

Only classes are associated to persistent extents; therefore it is possible to store infor-

mation about real wold concepts only if these are modeled as classes; this information
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constitutes the extensional instance of a Chimera database. From the extensional

instance, it is possible to derive data through a variety of mechanisms; all derived data

associated to a given extensional instance constitute the corresponding intensional in-

stance.

15.1.1 Targeted De�nitions

Targeted de�nitions include the de�nition of value types, value classes, and object classes.

Each of them is given by distinguishing the signature from the implementation. Their

syntax is sketched in the following:

define value type vtname: domain

[constraints constraint-definitions]

end

define value class vcname: domain

[constraints constraint-definitions]

end

define object class ocname

[superclasses superclasses-names]

[attributes attribute-definitions]

[operations operation-definitions]

[constraints constraint-definitions]

[c-attributes c-attribute-definitions]

[c-operations c-operation-definitions]

[c-constraints c-constraint-definitions]

[triggers trigger-names]

end

define implementation for vtname

[constraints constraint-implementations]

end

define implementation for vcname

[constraints constraint-implementations]

end

define implementation for ocname

[population population-rules]

[attributes attribute-implementations]

[operations operation-implementations]

[constraints constraint-implementations]

[c-attributes c-attribute-implementations]

[c-operations c-operation-implementations]
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[c-constraints c-constraint-implementations]

end

define [optional-modes] trigger trigger-name for ocname

events event-definitions

condition condition-definition

actions action-definitions

[before trigger-names]

[after trigger-names]

end

15.1.2 Untargeted De�nitions

Untargeted schema elements include views, constraints, and triggers. Each of them is

given by combining in the same de�nition both the signature and the implementation,

as follows:

define view vname: domain

view-implementation

end

define constraint constraint-definition

constraint-implementation

end

define [optional-modes] trigger trigger-name

events event-definitions

condition condition-definition

actions action-definitions

[before trigger-names]

[after trigger-names]

end

15.2 Data Manipulation Language

Data manipulation primitives in Chimera consist of queries and updates. Both are either

submitted from a user-friendly interface (UFI) or from an application program interface

(API).

15.2.1 Queries

Queries supported from a UFI include display and select or foreach, whose syntax is

roughly the following:
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display(target-list-definition

where complex-formula-definition

[order-by order-specification])

select(target-list-definition [into-set|into-list]

where complex-formula-definition

[order-by order-specification])

for_each(target-list-definition

where complex-formula-definition)

do procedure-calls

Queries supported from an API include select and next, whose syntax is roughly the

following:

select(target-list-definition

where complex-formula-definition

[order-by order-specification])

next(target-list-definition into-host-variable

where complex-formula-definition

[order-by order-specification])

15.2.2 External Procedures

The signature of external procedures can be de�ned in CL as follows:

define external procedure procedure-name(parameter-list) end

15.2.3 Updates

Updates in Chimera support object creation and deletion, object migration from one

class to another, state change or change of persistency status of objects, and value class

population and modi�cation. Their rough syntax is:

create(class-name, state, object-variable)

create_tmp(class-name, state, object-variable)

delete(class-name, object-variable)

specialize(class-name, class-name, object-variable, state)

generalize(class-name, class-name, object-variable)

modify(class-name.attribute-name, object-variable, attribute-value)

make_persistent(class-name, object-variable)
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add(value-class-name, value)

drop(value-class-name, value)

15.2.4 Transactions

Transactional commands supported in Chimera include:

opendb

closedb

begin-transaction

commit

rollback

16 CONCLUSIONS

This consolidated version of the Chimera speci�cation has been prepared after a six-

months phase of reconsideration of old, and investigation into new issues. Particularly

those aspects related to active rule processing have matured since the �rst speci�cation,

mainly due to intensive discussions within the team at Politecnico di Milano. A brief

summary of the main changes is contained in the companion document [8] and will not

be repeated here.

Chimera is certainly an intricate conceptual development, but this is consequent from

Chimera's intrinsic nature of merging, within a unique model and language, the main

features of object-oriented, deductive, and active databases. We envision that each of the

research groups involved in either basic research or testbed development will consider this

document as a starting-point for setting research goals or determining/revising priorities

driving their testbed implementations.
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A1 SYNTAX OF THE CHIMERA LANGUAGE

In this appendix an EBNF syntax of the Chimera Language is presented. Every feature

of CL is included, with the only exception of the API. The grammar is organized in

sections:

1. Top-level productions.

2. Signatures of targeted concepts.

3. Implementation of targeted concepts.

4. Untargeted concepts.

5. Operations.

6. External procedures.

7. Transaction primitives.

8. Triggers.

9. Actions.

10. Query language primitives.

11. Update primitives.

12. Expressions, terms and operators.

13. Formulas.

The above sections of the grammar de�ne sublanguages of Chimera, that may help in

the identi�cation of compilation units. Normally, productions of sublanguages can "call"
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productions of lower-level sublanguages; for instance, productions of Section 8 (triggers)

"call" productions of Section 9 (actions), which in turn "call" productions of Section 10

(queries) and 11 (updates). Finally, formulas, expressions, terms and operators may be

"called" by most of higher levels. "IDENTIFIER" is a user-supplied name beginning

with a lower-case letter which cannot be a keyword. "VARIABLE" is a user-supplied

name beginning with a capital letter. "NUMBER" is a natural number.

With respect to the previous version of the Syntax, the main changes we introduced

are:

� separation in the grammar of ddl and dml transactions,

� a new organization of the expression/term section (in order to make easier the

subsequent semantic control phase),

� the introduction of a new symbol for the record construct ("[" instead of "(") and

for the list construct (" < " instead of "[") to solve a syntactical ambiguity,

� the introduction of the "de�ne name" primitive in the action section to associate

an oid to a user-de�ned name,

� some changes to the syntax of the triggers ("holds", "change") and the

transactional-commands ("savepoint"),

� a new organization of the top-level productions to implement the concept of

"transaction-line",

� the new format of the operation-call,

� the use of the word "end" to close each de�nition section.

A1.1 Top-level Productions

chimera ::= begin_section transaction {transaction} "close_db"

begin_section ::= "create_db" | "open_db"

transaction ::= "begin" "transaction" transaction_body end_transaction

end_transaction ::= "commit" | "rollback"

transaction_body ::= ddl_transaction | dml_transaction

ddl_transaction ::= ddl ";" {ddl ";"}

ddl ::= targeted | untargeted | external
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targeted ::= signature | implementation

dml_transaction ::= dml ";" {dml ";"}

dml ::= action {connector action}

connector ::= "," | "%"

A1.2 Signatures of Targeted Concepts

signature ::= object_definition

| value_definition

object_definition ::=

"define" "object" "class" class_name class_reference_body "end"

class_reference_body ::=

[[derived_option] superclasses]

[attributes]

[operations]

[constraints]

[class_attributes]

[class_operations]

[class_constraints]

[triggers]

superclasses ::= "superclasses" superclass_list

attributes ::= "attributes" attribute_list

operations ::= "operations" operation_list

constraints ::= "constraints" constraint_list

class_attributes ::= "c_attributes" attribute_list

class_constraints ::= "c_constraints" constraint_list

class_operations ::= "c_operations" operation_list

triggers ::= "triggers" trigger_list
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superclass_list ::= class_name {"," class_name}

attribute_list ::= attribute {"," attribute}

attribute ::= attribute_name ":" type_structure [ options ]

options ::= redefined_option [derived_option]

| derived_option [redefined_option]

derived_option ::= "derived"

redefined_option ::= "redefined"

type_structure ::= named_type

| structured_type

named_type ::= atomic_type

| user_named_type

structured_type ::= list_type

| record_type

| set_type

atomic_type ::= "boolean"

| "char"

| "integer"

| "real"

| "string"

| "string" "(" "NUMBER" ")"

user_named_type ::= class_name | value_name

list_type ::= "list_of" "(" type_structure ")"

record_type ::= "record_of" "(" fields ")"

set_type ::= "set_of" "(" type_structure ")"

fields ::= field { "," field }

field ::= [label_name ":"] type_structure

constraint_list ::= constraint_element {"," constraint_element}

constraint_element ::= constraint_name "(" parameter_list ")"
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parameter_list ::= parameter { "," parameter }

parameter ::= variable_name ":" domain_name

operation_list ::= operation_element {"," operation_element}

operation_element ::=

operation_name "(" [op_parameter_list] ")" [redefined_option]

op_parameter_list ::= op_parameter {"," op_parameter}

op_parameter ::= op_token variable_name ":" domain_name

op_token ::= "in" | "out"

trigger_list ::= trigger {"," trigger}

trigger ::= trigger_name

value_definition ::= value_type_definition

| value_class_definition

value_class_definition ::= "define" "value" "class" value_name

":" type_structure [ constraints ] "end"

value_type_definition ::= "define" "value" "type" value_name

":" type_structure [ constraints ] "end"

domain_name ::= named_type

attribute_name ::= "IDENTIFIER"

constraint_name ::= "IDENTIFIER" | "key" | "notnull"

class_name ::= "IDENTIFIER"

label_name ::= "IDENTIFIER"

trigger_name ::= "IDENTIFIER"

value_name ::= "IDENTIFIER"

variable_name ::= "VARIABLE"

ESPRIT Project 6333 Page 74



Intelligent Database Environment for Advanced Applications

IDEA

A1.3 Implementation of Targeted Concepts

implementation ::= object_implementation

| targeted_trigger

| value_implementation

object_implementation ::=

implementation_alternative "implementation" "for" class_name

[population_implementation]

[attribute_implementation]

[operation_implementation]

[constraint_implementation]

[c_attribute_implementation]

[c_operation_implementation]

[c_constraint_implementation]

"end"

implementation_alternative ::= "define" | "redefine"

population_implementation ::= "population" passive_rule_list

attribute_implementation ::= "attributes" passive_rule_list

operation_implementation ::= "operations" active_rule_list

constraint_implementation ::= "constraints" passive_rule_list

c_attribute_implementation ::= "c_attributes" passive_rule_list

c_constraint_implementation ::= "c_constraints" passive_rule_list

c_operation_implementation ::= "c_operations" active_rule_list

active_rule_list ::= operation_rule {";" operation_rule}

passive_rule_list ::= passive_rule {";" passive_rule}

passive_rule ::= head "<-" body

head ::= atomic_formula

body ::= formula

value_implementation ::=

"define" "implementation" "for" value_name
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[constraint_implementation]

"end"

targeted_trigger ::= targeted_trigger_rule

A1.4 Untargeted Concepts

untargeted ::= untargeted_constraint | untargeted_trigger

| untargeted_view

untargeted_constraint ::=

"define" "constraint" constraint_name "(" parameter_list ")"

passive_rule_list "end"

| "define" "constraint" "inverse"

"(" variable_name ":" qualified_attribute_name "," variable_name

":" qualified_attribute_name ")" "end"

untargeted_trigger ::= untargeted_trigger_rule

untargeted_view ::=

"define" "view" view_name ":" type_structure passive_rule_list "end"

view_name ::= "IDENTIFIER"

A1.5 Operations

operation_rule ::= operation_name argument_list ":" formula

"->" list_of_actions

operation_name ::= "IDENTIFIER"

A1.6 External Procedures

external ::= "define" "external" "procedure"

procedure_name "(" [parameter_list ] ")" "end"
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procedure_name ::= "IDENTIFIER"

A1.7 Triggers

targeted_trigger_rule ::=

"define" [trigger_options] "trigger" trigger_name "for" class_name

"events" t_trig_events

"condition" t_condition_formula

"actions" reactions

[priority_option]

"end"

untargeted_trigger_rule ::=

"define" [trigger_options] "trigger" trigger_name

"events" unt_trig_events

"condition" unt_condition_formula

"actions" reactions

[priority_option]

"end"

trigger_options ::= trigger_consumption_token [trigger_execution_option]

| trigger_execution_token [trigger_consumption_option]

trigger_consumption_option ::= trigger_consumption_token

trigger_consumption_token ::= "event_consuming"

| "event_preserving"

trigger_execution_option ::= trigger_execution_token

trigger_execution_token ::= "deferred"

| "immediate"

t_trig_events ::= t_event { t_event }

unt_trig_event ::= unt_event { unt_event }

t_event ::= "create"

| "create_tmp"

| "delete"

| "make_persistent"

| "generalize" "(" class_name ")"

| "specialize" "(" class_name ")"
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| "modify" [ "(" attribute_name ")" ]

| "query" [ "(" attribute_name ")" ]

| "change"

| operation_name

unt_event ::= "create" "(" class_name ")"

| "create_tmp" "(" class_name ")"

| "delete" "(" "class_name" ")"

| "make_persistent" "(" "class_name" ")"

| "generalize" "(" class_name "," class_name ")"

| "specialize" "(" class_name "," class_name ")"

| "modify" "(" class_name [opt_attrib] ")"

| "query" "(" class_name [opt_attrib] ")"

| "change "(" "class_name" ")"

| class_name "." operation_name

opt_attrib ::= "." attribute_name

t_condition_formula ::= t_simple_condition_formula_list

| "true"

unt_condition_formula ::= unt_simple_condition_formula_list

| "true"

t_simple_condition_formula_list ::= t_simple_condition_formula

{ "," t_simple_condition_formula }

unt_simple_condition_formula_list ::= unt_simple_condition_formula

{ "," unt_simple_condition_formula }

t_simple_condition_formula ::= pos_or_neg_atomic_formula

| t_event_formula

| "not" t_event_formula

unt_simple_condition_formula ::= pos_or_neg_atomic_formula

| unt_event_formula

| "not" unt_event_formula

t_event_formula ::= event_token "(" t_event_list "," variable_name ")"

unt_event_formula ::= event_token "(" unt_event_list "," variable_name ")"

event_token ::= "holds" | "occurred"

t_event_list ::= t_event { "," t_event }
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unt_event_list ::= unt_event { "," unt_event }

reactions ::= reaction { connector reaction }

reaction ::= action

| "rollback"

priority_option ::= "after" qualified_trigger_list [before_option]

| "before" qualified_trigger_list [after_option]

before_option ::= "before" qualified_trigger_list

after_option ::= "after" qualified_trigger_list

qualified_trigger_list ::=

qualified_trigger_name {"," qualified_trigger_name}

qualified_trigger_name ::= [class_name "."] trigger_name

A1.8 Actions

action ::= query_cmd

| update

| operation_call

| procedure_call

| name_definition

| "savepoint"

procedure_call ::= procedure_name "(" [exp_list] ")"

operation_call ::= var_or_oid_name "." operation_name

"(" [exp_list] ")"

name_definition ::= "assign" "name" "(" variable_name ","

oid_name ")"

oid_name ::= "IDENTIFIER"
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A1.9 Query Language Primitives

query_cmd ::= display_cmd | for_each_cmd | select_cmd

display_cmd ::=

"display" "(" start_with_var_or_id_list [where_option]

[ordering_option] ")"

start_with_var_or_id_list ::= start_with_var_or_id

{ "," start_with_var_or_id }

start_with_var_or_id ::= start_with_variable | start_with_identif

where_option ::= "where" formula

select_cmd ::=

"select" "(" var_list [select_into_var_option]

"where" formula [ordering_option] ")"

var_list ::= variable_name { "," variable_name }

select_into_var_option ::= "into_set" variable_name

| "into_list" variable_name

for_each_cmd ::=

"for_each" "(" var_list "where" formula ")" "do"

list_of_actions "end_do"

list_of_actions ::= action { connector action }

ordering_option ::= "order_by" ordering_option_list

ordering_option_list ::= ordering_term {"," ordering_term}

ordering_term ::= ordering_op "(" start_with_variable ")"

ordering_op ::= "ascending" | "descending"

A1.10 Update Primitives

update ::= create_cmd

ESPRIT Project 6333 Page 80



Intelligent Database Environment for Advanced Applications

IDEA

| create_tmp_cmd

| delete_cmd

| change_persistency_cmd

| generalize_cmd

| specialize_cmd

| modify_cmd

| population_cmd

create_cmd ::=

"create" "(" class_name "," record "," variable_name ")"

create_tmp_cmd ::=

"create_tmp" "(" class_name "," record "," variable_name ")"

delete_cmd ::=

"delete" "(" class_name "," variable_name ")"

change_persistency_cmd ::=

"make_persistent" "(" class_name "," variable_name ")"

generalize_cmd ::=

"generalize" "(" class_name "," class_name "," var_or_oid_name ")"

specialize_cmd ::=

"specialize" "(" class_name "," class_name ","

var_or_oid_name "," record ")"

modify_cmd ::=

"modify" "(" start_with_identif "," var_or_oid_name "," expression ")"

population_cmd ::=

"add" "(" class_name "," expression ")"

| "drop" "(" class_name "," expression ")"

var_or_oid_name ::= oid_name | variable_name

A1.11 Expressions, Terms and Operators

exp_list ::= expression { "," expression }

expression ::= sum_exp { add_op expression }

add_op ::= "+" | "-"
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sum_exp ::= mult_exp { mult_op sum_exp }

mult_op ::= "*" | "/" | "mod" | "//"

mult_exp ::= "(" expression ")" | term

term ::= set_or_list | record | simple_term

set_or_list ::= set | list

set ::= "{" [ term { "," term } ] "}"

list ::= "<" [ term { "," term } ] ">"

record ::= "[" record_fields "]"

record_fields ::= record_field { "," record_field }

record_field ::= [ label_name ":" ] term

simple_term ::= "abs" "(" expression ")"

| "-" minus_follows

| "old" "(" var_or_oid_name [ opt_attrib ] ")"

| list_unary_operator

| constant

| start_with_variable

| start_with_identif

| aggregate_operator

minus_follows ::= simple_term | "(" expression ")"

list_unary_operator ::= "hd" "(" sum_exp ")" | "tl" "(" sum_exp ")"

constant ::= "CHAR" | "STRING" | "INTEGER" | "REAL" | boolean_value

| "null"

boolean_value ::= "true" | "false"

start_with_variable ::= variable_name { dot_notation }

start_with_identif ::= "IDENTIFIER" { dot_notation }

dot_notation ::= "." dot_follows

dot_follows ::= "IDENTIFIER" | "NUMBER"
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aggregate_operator ::= agg_op "(" expression [ where_option ] ")"

agg_op ::= "max" | "min" | "sum" | "avg" | "card"

A1.12 Formulas

formula ::= pos_or_neg_atomic_formula {"," pos_or_neg_atomic_formula }

pos_or_neg_atomic_formula ::= atomic_formula | "not" atomic_formula

atomic_formula ::= class_formula

| type_formula

| constraint_formula

| comparison_formula

| membership_formula

| choose_formula

class_formula ::= class_name "(" variable_name ")"

| class_name "(" record ")"

type_formula ::= named_type "(" variable_name ")"

| named_type "(" record ")"

constraint_formula ::= [class_name "."] constraint_name argument_list

| "inverse" "(" class_name "." attribute_name ","

class_name "." attribute_name ")"

argument_list ::= "(" exp_list ")"

comparison_formula ::= expression comparison_op expression

comparison_op ::= "<" | "<=" | ">" | ">=" | "=" | "!=" | "=="

membership_formula ::= expression "in" expression |

expression in class_name

choose_formula ::= "choose" "(" choosing_set "," cardinality ","

variable_name ")"

choosing_set ::= expression

cardinality ::= expression
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