
PVMsnap User Manual

Application Program Organization

The computation must be started by a unique process, called starter. The starter only

can spawn other processes and call a cut operation. No process can be created after the

�st cut request.

Scheme of the starter:

initialization

process spawn

loop

compute

cut

end loop

Each regular message received by a user process has an additional parameter indicating

whether the message is in transit through a cut or not. Two new (control) messages can

be received. They are not sent by a user process and carry no data: they are generated by

the PVM daemons to notify the user process of the beginning and of the termination of

the cut. The �rst message (begin cut) is the local cut pseudo event of the consistent cut,

the second message (end cut) informs the user process that it has received all its in-transit

messages. The starter receives the cut termination message only when all the in-transit

messages have been delivered to their receiver process, that is, when the cut algorithm is

terminated. After that, it can call for a new cut.

Since the selective receive is allowed, the termination condition could be never veri-

�ed, then a cut could never terminate if a user process does not require to receive all its

in-intransit messages.

Both control messages are delivered to the user process, independently of its possible

conditional receive, at �rst it is possible. That is, the begin cut message is delivered to user

processes when received from the PVM local daemon, before any other bu�ered message.

The termination message is delivered to a user process after its receipt from the daemon

and after the delivery of every in-transit bu�ered message.

Cut Request

The cut is performed by the function pvm startcut().

Synopsis: int info = pvm startcut()

Description: It can be called only by the starter in order to start a cut operation. The

starter also participates to the cut. A negative value is returned if the function does not

succeed. The function is not blocking. The starter is noti�ed of the global termination of

1

the cut by the receipt of a control message with tag PvmTermCut.

Example

info = pvm_startcut();

while ((bufid = pvm_recv(tid, msgtag, &flag)) != PvmTermCut)

{

... /* compute */

}

/* end cut */

info = pvm_startcut()

Message receipt

The original pvm recv() function has been modi�ed as follows.

Synopsis: int bu�nfo = pvm recv(int tid, int msgtag, int *transmsg)

Parameters:

tid, msgtag - as in the original PVM,

transmsg - = 1 if the received message is in transit, = 0 otherwise,

bu�d - a positive value is the identi�er of the active input bu�er which contains the

message. Negative values are:

PvmCutEvent: control message which noti�es the beginning of the cut operation;

PvmTermCut: control message which noti�es the termination of the cut operation;

PvmBadParam, PvmSysErr: error messages, as in the original PVM.

Example

bufid = pvm_recv(tid, msgtag, &transmsg)

if (bufid >= 0)

{

if (transmsg)

{

/* regular in-transit message */

}

else

{

/* regular non in-transit message */

}

}

else

switch(bufid)

{

case PvmCutEvent :

... /* begin cut */

2

break;

case PvmTermCut :

... /* end cut */

break;

default :

... /* error */

}

How to use PVMsnap

The �le PVMsnap.uue contains a uuencoded, compressed tar �le with the directories

newlib and my example. The �rst one contains the executable �les for the PVM-

snap console and daemon and a library for compiling user processes, for SUN4 with SUN

OS. The second one contains the code of a starter process (test00.c) and a slave pro-

cess (test00slave.c) which can be compiled using the script �le npvmcc (npvmcc test00

and npvmcc test00slave commands produce the executable �les test00 and test00slave in

my example/SUN4). The two environment variables PVM ROOT and PVM ARCH must

be set to the parent directory and to SUN4 respectively.

The test program test00

The example in directory $PVM ROOT/my example is a test to verify the correctness of

the cut protocol.

A. The starter process spawn n processes. Initially each process sends a message to each

other. Then, it enters a loop in which a message is read (from ANY) and a message

carrying an integer value is sent to a process randomly choosen. Moreover, each process

also maintains a table, with two integer variables for each process of the program (initially

=0). The �rst variable is updated with the last value received from the related process.

The second variable is incremented each time a message is sent to the related process.

Such a value is the data sent within the message itself.

B. After m messages the starter calls for a cut. Eventually, each process receives a begin

cut control message. After the receipt, the content of the table is written on a log �le

(out.<process pid>) and its variables are then set to 0. Each process continues to read

the input messages. Messages marked as in-transit are written in the log �le until the cut

termination message is received.

Section B is repeated for k times. The values n, m and k are set by the user, starting

the program.

3

Syntax

test00 [n1 [n2 [n3]]]

where:

n1 = number of slave processes (test00slave),

n2 = number of messages sent by the starter before the cut request,

n3 = number of cuts.

default values:

n1 = 10

n2 = 10

n3 = 5

Warnings

PVM console

The console is considered by PVM like any other process. Since in the available version

no changes have been performed in order to exclude the console from the cut evaluation,

the test00 program must be executed without the console. That is, the operation are

the followings:

� Start PVM by the console or by the daemon,

� Con�gure the virtual machine,

� quit the console,

� start the test test00.

The console must not be activated during the computation. Morever, PVM must be

stopped at the end of the computation, before any other execution.

Available pvm calls

The only I/O modi�ed PVM procedures are pvm send() and pvm recv(). Multiple send

and non blocking receive cannot be used.

Process spawn

Only the starter can spawn PVM processes.

4

