
THE CONVERSATION DEADLOCK PROBLEM

IN CLIENT-SERVER MODEL

Andrea Clematis

�

and Vittoria Gianuzzi

?

�

Istituto per la Matematica Applicata del C.N.R.

Via L.B. Alberti, 4 - 16132 Genova, Italy

?

Dipartimento di Matematica dell'Universit�a

Via L.B. Alberti, 4 - 16132 Genova, Italy

Di�erent problems have to be solved for an e�ective use of conversations as a mean to improve the

overall reliabilty of a concurrent program. In this paper we address the so called Deserter Process

Problem. We investigate the causes which generate deserter processes, distinguishing between the

case in which a process does not enter a conversation and the case in which a process does not reach

the acceptance test line. The �rst case is related with a particular type of deadlocks. A model of

concurrent programs with conversations, and conditions, which are useful to detect deadlocks in

these programs, are presented.

1

1. INTRODUCTION

Conversations have been proposed as a linguistic con-

struct to provide concurrent programs with backward

error recovery facilities

1

, avoiding the domino e�ect.

We brie
y describe the semantic of such construct.

The processes partecipating in the conversation enter

it, not necessarily synchronously, establish a recovery

line and cooperate in error detection by executing a

synchronous acceptance test. If any of the processes

fails its acceptance test, recovery is achieved by rolling

back all the processes in the conversation to their re-

spective recovery points. Processes participating in a

conversation are prevented from communicating with

processes not participating in it, to avoid information

smuggling (�gure 1).

Processes

P1 P2 P3

recovery line

side wall

acceptance test line

�gure 1. The conversation structure

Even if various studies exist about applications of

conversations, some open problems still remain to be

solved to allow their widespread and e�ective use. For

instance, conversations cannot solve all kinds of error

arising during a computation: in fact, certains errors

are revealed by the acceptance test, others result in a

blocking of the conversation itself. This latter prob-

lem, known as the deserter process problem, is present

in almost all the conversation implementation schemes

proposed in the literature. In spite of its importance,

only few papers deal explicitely with it, and no one

performs a through analysis enlightening the reasons

of its rising.

2

Here, we present a comprehensive analysis of the de-

sertion problem, which investigates its causes and in-

dicates how to handle it.

This paper can be intended as the completion of the

work

2

presented by the authors at the same Con-

ference, dealing with problems arising from an e�ec-

tive use of conversations in typical concurrent applica-

tions. In that work, we referred to an implementation

3

of conversation in Ada

?

and discussed some extentions

to the conversation construct, in order to improve its

usefulness in applications following the client-server

model. Thus, we advise the reader to refer to those

papers for a deeper discussion about the mechanisms

proposed in the literature for implementing conversa-

tions.

2. THE DESERTER PROCESS PROBLEM

In the client-server model, a distinction is made be-

tween active processes, or clients, which act in a deter-

ministic way, and passive processes, or servers, which

act in non-deterministic way, since they cannot de-

cide deterministically which request to answer (among

those which can be satis�ed). In such a model, a con-

versation occurs among clients and servers. The �rst

ones decide deterministically to enter it, while the sec-

ond ones are asked to participate in it, and decide in

a non-deterministic way which conversation to join.

Thus, the system can deadlock if one (or more) pro-

cess will never join a conversation. This can be due

to two main reasons.

First, the �nal synchronization required by the con-

versation may introduce a particular form of con-

tention on resources, that is, some conversations can-

not evolve because of a circular wait for servers. This

case shall not be considered as a real program error

because it is the consequence of an incorrect schedul-

ing of the underlying operating system. In such a case,

the deadlock must not be handled inside the conver-

sation, by means of restart and retry of another al-

ternative. Indeed, we may have a degraded response,

at least in time, also in presence of a basically cor-

rect program, and remark that the restarting of an

?

Ada is a registered trademark of the U.S. Government.

3

alternate try block cannot guarantee the breaking of

a cyclic restoration of deadlock situations.

The implementation proposed by the authors

1

re-

quires the presence of an additional server process,

that is the Conversation Manager which locks the

servers needed in a conversation, allows the synchro-

nization among processes and the exclusion among

conversations. This process could also provide mech-

anisms for avoiding resource deadlock, for instance, by

acquiring the lock of the servers following some order

imposed on the same servers.

Second, the decision of an active process, which is

expected to participate in a conversation, to follow

an alternative path, may introduce a deadlock in the

form of an endless wait. In this case, deadlock cannot

be avoided at run time, since missing participation in

a conversation can be caused by a fault of the pro-

cess. Thus, to deal with deadlock, it is necessary to

use an adequate computational model and the related

suitable tools to perform static analysis of concurrent

programs.

3. A COMPUTATIONAL MODEL OF ADA

PROGRM

WITH CONVERSATIONS

We can derive a computational model by suitably

modifying the model proposed by Taylor

4

which deals

with veri�cation problems arising in concurrent soft-

ware programming. Taylor aims at constructing a tool

to ensure the designer of a concurrent program (in

particular Ada programs) that no undesiderable par-

allelism is present, or that her/his system is free from

deadlock.

In that paper, an Ada program is represented as a set

of directed rooted
owgraphs (G

1

:::G

U

), where each

G

b

= (N

b

; A

b

; r

b

) correspond to an uniquely identi-

�ed program unit of a task. A node (called state node)

c

i

2 N

b

represents any of the following statements:

entry call, accept, select, select-else, delay, abort, task

begin, task end, subprogram begin, subprogram end,

subprogram call, block begin and block end. They

represent the tasking activities which are relevant for

4

the analysis to be performed. Each arc a

i

2 A

b

rep-

resents possible control
ow, and r

i

2 N

b

is the root

of the
owgraph.

From our point of view, the relevant tasking activi-

ties are at a higher level than those in Taylor's model.

Rather than in the single communication, we are in-

terested in the relationships among conversation sec-

tions. Each conversation can be considered as a sin-

gle communication involving a set of conversation sec-

tions and a set of resources, thus becoming the only

synchronization points in the program.

We have to modify also the representative set of the

nodes. In fact, active tasks can contain specialized

blocks, the conversation sections, that constitute the

local parts of a conversation. a rendez vous, can be

performed only within a conversation.

Thus, in this modi�ed representation of an Ada pro-

gram, a state node for an active task can represent

one of the following items: abort, task begin, task end,

subprogram begin, subprogram end, subprogram call,

block begin, block end, conversation section; while a

task representing a reusable resource is represented

by the following
owgraph:

begin ! body ! end

These graphs are not su�cient to represent informa-

tion such as the set of conversations and, for each

conversation, the set of conversation sections and re-

sources composing it.

To simplify this presentation, we can follow the exam-

ple of �gure 2, in which a program is represented by

means of 6
owgraphs (the nodes labeled as Si rep-

resent the conversation sections, whereas R1 and R2

are tasks considered as resources).

5

main subr task R1

declare tasks

begin T1, T2, R1 and R2 begin

#

subr; begin R1 body

#

end S1 end

#

S2

#

end

task T1 task R2

task T2

begin begin

begin

S3 # R2 body

S5

S4 # end

end

end

The conversations are so de�ned: C1 among S3, R1, R2

C2 among S1, S5, R1, R2

C3 among S2, S4, R1

�gure 2: an Ada program constitutes of 6 program units and 3 conversations.

We observe that non determinism is maintained, be-

cause of the possibility of a resource to select what

conversation to enter.

If at any moment we observe the evolution of the pro-

gram, we see that each task appears to be in one of the

above listed states. This set of states can thus be rep-

resented by means of a N-tuple, X = (c

1

; c

2

; :::; c

N

)

called concurrency state, where N is the number of ac-

tive tasks. Each state c

i

may assume one of the values

stated above for our case, plus the value inactive.

Hereafter, resources whall not be represented in our

scheme, since they are not responsible of structural

deadlocks, that is, unrecoverable wait-forevers, due to

6

a software fault. However, they will be reconsidered

later in the analysis, to state rules allowing the user

to test the complete deadlock-freeness of his/her pro-

gram. For lack of space, we do not describe the al-

gorithm to be applied in order to �nd all the di�er-

ent concurrency states. In a few words, starting from

the initial states of each task, we obtain all the other

states by following the control
ow of the task or by

applying any possible synchronization due to the com-

pletion of a conversation.

For the example above, we have the concurrency

states, with N = 3, presented in �gure 3 (the set

is not complete).

States (Main task, task T1, task T2)

X

0

(begin main, inactive; inactive;)

X

1

(subr, inactive; inactive)

X

2

(begin subr, begin T1, begin T2)

X

3

(S1, S3, S5)

X

4

(S1, S4, S5)

X

5

(S2, S3, S5)

X

6

(S2, S4, S5)

.

.

.

.

.

.

�gure 3: concurrency states

We can also represent the graph of the histories of the

program which can be obtained by linking the states

togheter by means of edges representing the possible

state transitions. Since we are interested in the con-

versation analysis, we will only consider those states

which are relevant, that is, the states containing con-

versation sections. Moreover, when a transition is due

to the completion of a conversation, the corresponding

edge is labeled with the identi�er of such a transition.

For the above example we have the state transition

graph of �gure 4.

7

C1

X

0

X

3

X

4

C1,C2 C3

C2 C2

X

5

X

6

C1

�gure 4: a state transition graph

8

4. DEADLOCK ANALYSIS

Starting from this computational model of an Ada

program with conversations, we obtain the informa-

tion needed to analyze the deadlock problem by con-

sidering, for every concurrency state, called Conver-

sation Execution System (CES). A CES is a multi-

graph containing both directed and undirected edges,

derived from a concurrency state X = (c

1

; :::; c

N

) in

this way:

- a node is a conversation C such that at least one of

its sections is present in X;

- a directed edge (C2,C1) exists if there exist c

i

; c

j

; c

k

such that c

i

2 C1; c

j

; c

k

2 C2 (C1 6= C2),

c

i

; c

j

2 X and a path from c

i

to c

k

exists in the

initial
owgraphs. This edge means that the con-

versation C2 needs for its completion the section

c

k

which can be viewed at as a resource held by

C1;

- an undirected edge fC1,C2,Rg exists, if the resource

R is required by both the conversations C1 and C2.

Such an edge is labeled with the resource identi�er.

Again on the above example, we obtain, for each con-

currecy state containing some conversation sections,

the CESs presented in �gure 5:

R1 R1

C1 C2 C2 C3

R2

(X

3

) (X

4

)

R1

R1 R1 R1

C1 C2 C3 C2 C3

R2

(X

5

) (X

6

)

�gure 5: Conversation Execution Systems

An undirected edge represents a dependency which

can be explicited only at run-time. The relation

9

fC2,C3,R1g in the CES related to the state X

4

can

become (C2,C3) if resource R1 is acquired by C3, so

that C2 is waiting for it from C3, and vice versa.

As an example, let us see in more details state X

4

= (S1, S4, S5). Both conversations C2 and C3 are

represented by a section, so resource R1 can select

what conversation enter between them. Depending

on its choice, the system could enter a deadlock or

not. If R1 enters conversation C2, such a conver-

sation complete, and R1 can participate in another

conversation. This case corresponds to the transition

labeled C2 between X

4

and X

6

on the graph of the

histories. On the contrary, if R1 enters conversation

C3, we shall obtain a deadlock. In fact, conversation

C3 needs for its completion also the section S2 which

cannot be executed until the end of section S1. But

section S1 needs the resource R1 to exit conversation

C2. This leads to a circular waiting situation, that

is, deadlock. These possibilities are both represented

by a unique CES, ascribing a direction to the undi-

rected edge fC2,C3,R1g. We can also observe that

the deadlock could not be detected run-time without

the knowledge of the relations among sections, tasks

and conversations.

Thus, we can state the following:

Theorem: Given a Conversation Execution System

the following facts hold:

1. a structural deadlock arises if there exists a cycle

in the CES, obtained by following only directed

edges. A structural deadlock is a program error

for which no legal schedule exists.

2. the system is deadlock-free if and only if no cycles

exist among the conversations, obtained by follow-

ing both directed and undirected edges.

3. a Conversation Execution System which satis�es

constraint 1 but not constraint 2 admits both legal

schedules, which lead to the execution termination,

and illegal ones, which lead to deadlock situations.

Circular waiting are not, however, the only case in

which a deadlock can arise. Let us consider, for ex-

ample, the state X

7

= (end, end, S5), not listed in

�gure 4, but which deems possible, considering the

initial
owgraphs. It is indeed a deadlock state, even

if it is not due to a cycle in the corresponding CES

10

but to an in�nite wait. In fact conversation C2 can-

not complete because the other needed section, that

is S1, never executes. To be sure that the state X

7

will never actually occur, it is necessary to analyze the

boolean expressions which cause the choice between,

for example, the end of the task or the iteration of

another section. These controls must be performed

for all the concurrency states from which, in the con-

currency history graph, it is not possible to reach the

terminal states, that is, the ones containing the mark-

ers end or inactive for all the tasks.

5. CONCLUSIONS

In this paper we propose an analysis of deadlock prob-

lem in conversation.

The theorem we present in the last section can be used

to design an algorithm and can be applied in di�erent

ways. It can be used to test the conversation de�ni-

tions for avoiding structural deadlocks or to prove the

deadlock freeness of a program. If any state is found

to be deadlock prone, a deadlock avoidance algorithm

can be applied (for example an initial synchronization

among conversation sections and a suitable protocol

for the resource locking) restricted to that state. In

such a way it is possible to avoid the performance de-

crease consequent to the application of this kind of

algorithm to all conversations.

Some consideration are necessary about the analysis

of concurrent programs we propose in order to col-

lect information necessary to avoid deadlocks. With

respect to the methodology described by Taylor

4

, we

observe that the modularization induced by the con-

versations on the whole In fact, the �rst step is the

analysis with respect to the relationships among con-

versations, while the possible second step, in order

to complete the veri�cation of the program, is the

analysis of the concurrency inside each conversation,

following Taylor's scheme.

As like all the other tools performing concurrency

analysis, also our method has an exponential time.

However, the hierarchical approach results in an im-

provement in the e�ciency of the method, since the

number of tasks and of the synchronizations to be

11

considerd for each phase decreases with respect to the

analysis performed on the whole system at a time.

The methodology we proposed is oriented to Ada

programming. However, a similar approach can be

used also starting from di�erent formalisms. For in-

stance, the class of distributed systems which can be

expressed as a set of communicating sequential pro-

cesses, can take advantage in the concurrency analy-

sis, of the Petri nets formalism. An example of Petri

net use can be found the work of Tyrrell

5

, where a

method is presented for the "a priori" de�nition of the

conversation boundaries in an occam program, start-

ing from its reachability tree.

REFERENCES

[1] Randell B., "System structure for software fault

tolerance", IEEE Trans. Software Eng., Vol.SE-1,

pp.220-232, 1975.

[2] Clematis A. and Gianuzzi V., "Software Fault Tol-

erance in Concurrent Ada Programs", in Proc. Eu-

romicro 91 Conference, Vienna, Sept.2-5, 1991.

[3] Clematis A. and Gianuzzi V., "A Conversation

Structure for Remote Procedure Call Oriented

Languages", in Proc. Fault Tolerant Computing

Systems, Springer Verlag, pp. 163-173, 1989.

[4] Taylor R.N., "A General-purpose Algorithm for

Analyzing Concurrent Programs", Comm. ACM,

Vol.26, No.5, 1983.

[5] Tyrrell A.M. and Holding D.J., "Design of reliable

software in distributed systems using the conversa-

tion scheme", IEEE Trans. Softw. Eng., Vol.SE-

12, no.9, pp.921-927, 1986.

12

