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1 Introduction

The problem of describing 3D objects from visual information without explicitly computing

their 3D structure has been extensively studied in the last decade. Among the better estab-

lished methods it is worth mentioning multiple-view approaches and local approaches. XXX

aggiungere referenze There have also been attempts to combining the two, usually merging local

features extracted from different images, but rarely the fact that a meaningful image feature was

persistent at different viewing angles has been conveniently studied. In this paper we explore in

depth the interlink between temporally dense view-based object recognition and sparse image

representations with local keypoints. The temporal component is an add on that allows us to

extract information which is distinctive of a given object in a given view-point range.

Our work is motivated by the fact that an image sequence does not just carry multiple

instances of the same scene, but also information on how the appearance of objects evolves

when the observation point changes smoothly. Since in many applications image sequences are

available and often under exploited, our aim is to fill this gap.

We believe that, in the appropriate application setting, observing an object from slightly

different viewpoints, and looking for features that are distinctive in space, stable and smooth

in time, can greatly help object recognition. Moreover biological vision systems gather infor-

mation by means of motion (motion of the pupil and motion of the head). This information

includes important cues for depth perception and object recognition. To the purpose of recog-

nition, fixating an unfamiliar object for a few seconds and possibly observing it from slightly

different viewpoints is a common practice in human experience. Most optical 2D illusions of 3D
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Figure 1: Playing with 2D and 3D scenes: (top) a famous Magritte’s masterpiece: the difference

between the 3D world outside the window and the 2D painting is suggested by the artist with

a careful choice of the observer’s viewpoint, that reveals the canvas side; (bottom) 2D objects

in 3D world can be spotted only from the right angle.

shapes would be disambiguated if multiple views of the 3D object were available (see Figure 1).

Sometimes it suffices to move the observation point slightly to get an entirely new perception

of the observed scene. It is known that the cerebral cortex uses spatio-temporal continuity to

build invariant representations w.r.t. scale, view-point, and position variation of 3D objects

[SPRP06].

The contributions of our work are manifold: firstly we propose an appearance-based recog-

nition method that exploits temporal coherence both in training and test, thus the method fits

naturally in the video analysis framework. In spite of the redundancy of the data that we use,

the descriptions we obtain are compact since they only keep information which is very distinc-

tive across time. A second important contribution is the matching procedure: simple nearest
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neighbor is strengthened with a strategy that favors matching between groups of features which

are coeval, i.e. features belonging to similar fields of view, and which are spatially neighbours.

In other words, we discard those features which are spatially and temporally isolated. Finally

we argue that, modeling the scene by means of a continuos set of images or a video sequence,

we may

• capture the idea of invariant representation to view-point changes and translation which

is typical of biological vision systems

• increase the recognition confidence by observing an object for an amount of time which is

proportional to the object peculiarity, its difficulty and the divergence of the acquisition

conditions with respect to the training stage.

We report very good results on test sequences of increasing difficulty, in the presence of

clutter, illumination and scene changes, occlusions, similar objects. Ampliare questa descrizione

breve degli esperimenti riportati nell’articolo distinguendo le due fasi.

1.1 Related work

In the following, we give a brief hystoric overview of current approaches to object recognition:

from first view-based techniques to recent developement of methods based on the use of code-

books. Here we focus mainly on those techinques based on the use of temporal information and

local descriptors.

There are several reasons motivating the introduction of view-based approaches to object

recognition, among which we recall biological inspiration. The research in neuroscience has

shown that, for recognising objects, primates use simple features which are invariant to changes

in scale, location and illumination [Tan97]. Qui bisogna vedere se si puo’ citare l’ultimo articolo

di Poggio, quello con Serre che e’ un po’ piu’ recente rispetto a questo. The approach proposed

by Edelman, Intrator and Poggio in [EIP] makes use of a model of biological vision based on

complex neurons in primary visual cortex which respond to a gradient at a particular orienta-

tion but allows for shift over a small receptive field rather than being precisely localise. They

hypothesised that the function of these complex neurons was to allow for matching and recogni-

tion of 3D objects from a range of viewpoints. Over the last decade, a number of physiological
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studies in nonhuman primates have established several basic facts about the cortical mecha-

nisms of recognition. A particularly important aspect of visual system is the back-projection,

abundantly present between almost all of the areas in the visual cortex. In [SOP06] the authors

propose a feedforward architecture based on the simple-to-complex cell hierarchy and on the use

of learning at different stages of the model. They test the model with a categorization problem

which gives results comparable with human capabilities of recognition.

Forse si puo’ eliminare da qui XXXXX Among view-based techniques, it is worth mentioning

2D morphable models [PV92, BSP93, VP97, JP98] and view-based active appearance models

[ECT99, CWT00], which use a selection of 2D views for the purpose of modelling a 3D complex

object. The idea behind both methods (which achieve comparable results in two rather different

ways) is that of synthesising a model for each object or class of objects, and then matching it

with a novel image to check for consistency. Both morphable models and active appearance

models are firmly based on registering a selection of images belonging to the same object or the

same class, and compute linear combination of the examples in terms of their 2D shape and

their texture, which represent a model of the object. Fino a qui XXXXX

The popularity of local approaches [Low99, CDFB04, LMS06, RLSP06, FTG06, TFL+06]

is due to the fact that, unlike global methods [MN95, PV98], they produce relatively com-

pact descriptions of the image content and do not suffer from the presence of cluttered back-

ground, scene variations and occlusions. Also, by means of appropriate descriptions, they can

be matched effectively, even in the presence of illumination changes and scale variation.

A number of 2D local keypoints detectors and descriptors have been proposed in the litera-

ture, and comparative evaluations have been proposed [MS05, MP05]. Of particular interest to

our study is the work carried out in [MP05]: the authors assess feature detectors and descriptors

for 3D objects, pointing out how, on a generic 3D object, features are partly due to textures and

partly generated by the object shape (edges, folds, ...). The latter are more unstable to large

view-point changes, therefore Moreels and Perona conclude that an affine-invariant detector is

more appropriate. In our case, since we consider smooth variations on an image sequence, we

rely on simplest detectors. As for the description we resort to SIFT [Low04], considered the

most reliable in a variety of situations [MS05, MP05]. Despite these studies, it is not yet clear if

one keypoint is best suited for object recognition or for other tasks [Lei04]. Our experience lead
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us to the conclusion that the exact choice of keypoint detectors is not crucial: each keypoint

can be more suitable to describe a given image in relation with the qualities of the image itself.

Instead it is worth to remember the importance of robustness of descriptors to image variations

such as scale, illumination and orientation changes. On this respect, there is a general belief

that SIFT descriptors are a good choice.

Local features have also been already used to recognize 3D objects from multiple views,

see [RLSP06, FTG06] or [BL05], where features are also used to build an explicit 3D model

of the object as well as recognizing it. Recently multiple view object categorization has been

addressed in [TFL+06]. A novel and interesting approach to multiple view object categorization

is described in [SFF07]: the authors propose a novel 3D model of an object class by encoding

both the appearance and 3D geometric shape information.

Ci si potrebbe mettere una citazione a oliver sacks... o e’ da sboroni? The main problem

with local methods is that, while observing minute details, the overall object’s appearance may

be lost. Also, small details are more likely to be common to many different objects (this feature

has actually been exploited in [TMF06] to design efficient multi-class systems). For this reason

local information is usually summarized in global descriptions of the object, for instance in

codebooks [CDFB04, LMS06]. Alternatively, closeness constraints can be used to increase the

quality of matches [FTG06]. Moreover there have been some attempts to introduce information

about global appearance and context of the image [TMF06, FTG06, RVG+07].

Temporal continuity may help to cluster related keypoints observed at different view-points,

in the case a dense sequence of the object of interest is available, as suggested in [GB05]: in

their paper temporal information is used on the training phase only to obtain a richer object

model, while at run time, only one image is available. Their approach is shown successful on

nearly flat objects with highly textured surfaces, with almost no features due to shape. The

tracking algorithm they adopt would not allow them to deal with temporary interruptions of

the trajectories due to self-occlusions.

Temporal continuity has been explored in a number of application fields. Among them

it is worth mentioning action recognition [LL03], video retrieval [SZ03], robotic applications

[UGC04]. Our approach fits naturally in the latter application domain, and could be applied

to automatic place recognition or robot object grasping.
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1.2 Our approach

In this section we briefly describe our approach to the problem of 3D object recognition using

temporal information and local descriptors detected in a sequence of images. We represent

implicitly 3D information by means of time-invariant features, i.e, local features that are dis-

tinctive in space and smooth and stable in time. To do so, we extract 2D scale-invariant local

features (Harris corners) from the images and track them along the video sequence by Kalman

filtering. Kalman filters, robust to temporary occlusions, allow us to deal with general non

convex objects, since, while rotating around a 3D object, self-occlusions may cause temporary

interruptions in a trajectory.

Then we obtain a compact description of the time-invariant feature by averaging SIFT

descriptions for each keypoint belonging to the same trajectory. Each time-invariant feature is

made of two distinct parts:

• a spatial appearance descriptor, that is the average of all SIFT vectors of its trajectory

• a temporal descriptor, that contains information on when the feature first appeared in the

sequence and on when it was last observed.

Thus we obtain a spatio temporal model made of all these time-invariant features: this model

represent the object and its modification due to the motion observed during the sequence. This

description of the image sequence content is applied off-line in the training phase on image

sequences previously acquired in plain environments, to show the interesting sides of an object.

Once that a model of an object is built, the training phase is finished and for the test phase

there are two possible approaches:

1. the off-line approach consists of an analysis of video sequences previously acquired: for

each test video, we compute a model similar to those obtained in the training phase

2. the on-line version of this approach consists of a real time analysis: the building of the

test model starts when the camera is switched on.

The core of our system is a matching technique [DNOV07] that consists of two steps aiming

at exploiting spatial and temporal coherence of time-invariant features: after computing a
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first set of matches, the procedure is reinforced by analysing spatial and temporal matches

neighborhood.

From the experimental stand point we consider a set of 20 3D objects of different shape

and texture complexity. Some of the objects are quite similar to one another. XXXXX dopo

aver scritto la sezione sugli esperimenti aggiustare qui la descrizione degli esperimenti... We

first report results that we obtained on a validation set acquired off-line to validate our spatio-

temporal models against scene variations and the growth of the number of models. Then we

present results obtained running our real-time recognition system on a variety of settings. The

major point of these experiments is to show how, in many different cases, the information

obtained from continuous views can greatly help recognition and solve ambiguous matches.

1.3 Structure of the paper

This paper is organized as follows (giusto l’elenco delle sezioni...)

1. Building models with time-invariant features

• Feature extraction and cleaning

• The spatio-temporal model

• The importance of temporal information

• Space occupancy issue

2. Matching models with spatio temporal models

3. The recognition pipeline

• Off-line recognition method

• On-line recognition method

4. Experiments

5. Conclusions
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2 Building models with time-invariant features

In this section we introduce the spatio-temporal features around which we base our object

recognition method. As we have already mention, one of the main drawbacks of local approaches

is that when looking at minute details, an observer may loose the overall object appearance,

therefore small details are more likely to be common to many different objects. Another problem

that affects local approaches is that when building a model considering many minute details

the size of the model can be huge. These observation lead to some of the methods based on

geometric, spatial and temporal constraints [FTG06, TMF06, RVG+07] described in Section

1.1.

Let us consider the case in which an object is described by a dense set of views capturing

smoothly the appearance variations. Then we can use temporal information to integrate the

appearance and spatial description provided by local descriptors. Thus, our aim is to exploit

the information hidden in an image sequence to obtain a complete description of the object

represented in the sequence itself.

Figure 2: The object goofy seen in a sequence capturing its variation in space and time.

If we think about a robot grasping an object and observing it from different points of view

it is natural to assume that there are local descriptors which can be spatially and temporally

combined. Moreover we can also build a description which is evolving incrementally as the time

goes by. Another example in which it is possible to use temporal description, is when the camera

moves and observes an object from different points of view. Figure 2 shows an example in which

the object goofy is seen from different points of view. These are the applications that we have

in mind while building our approaches: in such cases we need to model the spatio-temporal
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changes of object appearance.

Our method can be briefly described as follows:

• identification of a set of keypoints for each image of the sequence

• description and tracking of the keypoints to capture their variation in time and space

• creation of a model to describe the variation of keypoints appearance

• matching models with spatio-temporal constraints.

Thus, next sections are devoted to explain and give details about the first three steps which

are related to the process of building a spatio-temporal model for an image sequence. Finally

in Section 3 we will describe the procedure for matching spatio-temporal models of objects.

2.1 Feature extraction and cleaning

We base our recognition approach on the use of local descriptors of images: for each image of the

sequence we extract keypoints and describe them using SIFT by Lowe. After the detection and

the description of keypoints, each of our descriptors contains the following information about

the keypoint k:

(pk , sk ,dk ,Hk)

where pk is the position in the space, sk refers to the level of scale and dk to the principal

direction of the keypoint. Hk contains local orientation histograms around the keypoint. We

will use the first three elements for tracking the keypoints while the orientation histograms

Hk will be used as appearance descriptors. It is important to remember that scale and main

orientation are also implicitly used for computing the descriptors, as Hk is built on an image

patch centred at the keypoint position, and scaled and rotated according to scale and main

orientation.

Since we want to model the variation of keypoints in time and space, we track them and look

for a descriptor capable to express the evolution of each keypoint along a sequence. Instead of

using a correlation based tracker as the KLT adopted in [Gra04] we choose dynamic filters with

prediction capabilities, in particular we start considering the Unscented Kalman Filtering which

falls in the class of Particle filters and it is designed for dealing with non linearity of the system.
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Figure 3: The SSD computed between the patch extracted in the first frame and the following

ones. The red line shows the SSD trend for a stable patch while the blue one shows a patch

that have an abrupt change due to an error in the tracking.

In our case, the unknown state is defined by the position in space and scale and the principal

direction of each keypoint xk = {pk, sk,dk} For more details on the use of the Unscented

Kalman Filtering see [DAOV06] and references therein. Recently we have seen experimentally

that, when the sequence is dense enough, a Kalman filtering is faster, accomplishes the need of

a stable tracking and it has an easier implementation [DNOV07]. This choice is decisive in the

case of the on-line recognition system, when there is the need of higher speed in tracking.

At the end of the tracking procedure, we have many trajectories that can be of variable

quality: we may have robust and stable but also noisy and wrong trajectories. Thus there is

the need of applying a cleaning procedure that eliminates noisy or wrong trajectories: first,

we compute the variance of the scale and of the principal direction of each trajectory. Then,

trajectories with a high variance are further analysed in order to check whether they contain

abrupt changes that could be caused by tracking errors. To do so, we perform a SSD correlation

test between the first gray-level patch of the trajectory and the subsequent ones. In the presence

of an abrupt change, the trajectory is discarded. Figure 3 compares two trajectories: the dashed

one refers to a good feature, whose appearance varies slowly and smoothly in time; the solid one

refers to an unstable trajectory, containing tracking errors (a visual inspection of the gray-level

patches confirms this hypothesis).
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Figure 4: A visual representation of goofy model.

2.2 The spatio-temporal model

The content of an image sequence is redundant both in space and time but we obtain com-

pressed descriptions for the purpose of recognition, extracting a collection of trains of features

and discarding all the other information. We call this collection spatio-temporal model of the

sequence. We do not keep any information on the relative motion between the camera and the

object, as it is not informative for the recognition purpose.

More in detail, all the keypoints linked by a tracking trajectory, belong to the same equiv-

alence class. We compute the average of all local orientation histograms Hk, with k running

through the trajectory, and we use this as a delegate for all the keypoints of the trajectory.

Average values are good representatives of the original keypoints as the tracking procedure is

robust and leads to a class of keypoints with a small variance. [Gra04] uses trajectory centroid

to select the delegate for each trajectory. This choice is not convenient for our case since it gives

the best results with planar object, while our aim is that of representing also keypoints of 3D

objects. Thus we decide to use the average as a delegate for the trajectory. Being an average,

some histogram peculiarities are smoothed or suppressed, but we will discuss this issue in the

next section. It is worth noticing that the descriptors which are too different from the average

are discarded to improve the robustness of the descriptor and to eliminate errors due to the

tracker.

At the end of this process we have obtained a time-invariant feature that is described by
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• a spatial appearance descriptor, that is the average of all SIFT vectors of its trajectory

(the time-invariant feature);

• a temporal descriptor, that contains information on when the feature first appeared in the

sequence and on when it was last observed.

The set of time-invariant features forms the spatio-temporal model of the object. A visual

representation of the information contained in one model is shown in Figure 4.

We have shown that the tracking phase allows us to obtain a compressed description for

the purpose of recognising objects. But there are some cases in which, as we have mentioned

above, the time-invariant feature tends to oversmooth the description. Thus in the next section

we will analyse the effects of changing the length of the train of keypoints.

2.3 The importance of temporal information

In the feature extraction phase, features robust to viewpoint variations are preferred, because

we think that a keypoint present in most part of the sequence is more representative than

others which are noisy and unstable. Therefore we extract long trajectories. But, if we use

the entire long trajectory to compute a descriptor [DAOV06] then we risk to oversmooth the

information contained in the trajectory. On this respect it is important to notice that choosing

to average a long sequence of descriptors the model is more general, but it can happen that we

loose information: since long trajectories are the result of observing a feature on a long period

of time (and possibly a high range of views). Thus descriptions generated from these long

trajectories tend to oversmooth the appearance information, and may lead to a high number

of false positives. This is especially true if the object is deeply 3D and its appearance changes

dramatically over the sequence.

To this purpose we apply, before computing the time-invariant feature descriptions, a cutting

phase that cuts a trajectory into many sub-trajectories of length N . The choice of N is not

crucial, and common sense rules may be applied: if N is too small we loose efficiency and

compactness, as the model becomes very big. If N is too big, the information within a feature

is oversmoothed. Figure 5 shows the effect of changing N : a small training sequence containing

a small range of viewpoints is compared with a test sequence of the same object. A similar
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Figure 5: Matches between training and test sequences for different choices of the length of the

train N : solid line is for N = 10, dashed line is for N = 50.

viewpoint of the training appears in the first part of the test video. The solid line shows

the matches between training and test models obtained with N=10, the dashed line is for

N=50. The smoothing effect as N grows is apparent. To one extreme N = 1 is equivalent to

discard temporal information and perform image matching, N = L where L is the length of the

trajectory is equivalent to avoid cutting.

It is worth noticing that the cutting parameter depends strongly on the quality of the

analysed sequence: we noticed that when the sequence of the object is acquired with a better

camera as a consequence we obtain better and more stable sequences which allow us to keep

a higher value of N. Therefore we can conclude that the choice of this parameter depends

also on the quality and the type of the sequences considered. Infatti durante gli esperimenti che

avevamo fatto con la nuova telecamera avevamo visto che poiche’ le sequenze erano molto stabili,

si potevano ottenere modelli molto piu’ compatti non tagliando quasi mai. Ma lo potevamo fare

perche’ le sequenze erano molto buone... non so se vale la pena dirla sta cosa... boh!? Then,

considering the fact that we devised two kind of recognition approach, it is important to notice

that the cutting phase is of utmost importance during the on-line recognition stage. In fact,

as we will show in Section 4, to incrementally build a spatio-temporal model, there is the need
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to analyze keypoints belonging to a finite temporal window in order to obtain a model which

adhere to the scene currently observed. Therefore, the model is updated every 10 frames, which

is a different way to cut sequences.

As we have already mentioned in the Introduction, we think that the temporal information is

a crucial add for the recognition task. Indeed many biological vision system gather information

from motion of head or of the pupil: fixating an unfamiliar object for a few seconds and possi-

bly observing it from slightly different viewpoints is a common practice in human experience.

Therefore our approach exploits temporal information to obtain a system that incrementally

can model the scene by means of a continuos set of images or a video sequence. We can capture

the idea of invariant representation and increase the recognition confidence by observing an

object for an amount of time which is proportional to the object peculiarity, its difficulty and

the divergence of the acquisition conditions with respect to the training stage.

2.4 Implementation issue

Our approach allows us to obtain a compact representation of the object contained in the

sequence. Indeed the representation can be extremely compact in the case we decide to have

smoother descriptors or it can contain some more details if we decide to have shorter trajectories

for the creation of the descriptors. The advantage of this representation is apparent because

the space occupancy of our model is limited. Suppose that the keypoints detected in each

frame are approximately 300. Then, if every keypoint of the sequence participates to build

the model, in the average case (a sequence of length 250) the model is made of approximately

75000 features. Our approach grants to obtain a compact representation of typically 1500

time-invariant features. A compact model for the object is fundamental when recognising many

different objects. Questo pezzo e’ peso... non so come metter giu’ il problema della complessita’!

In fact, one of the main problems that we faced is that when the number of models increases,

the recognition stage becomes slower, since the matching procedure is performed on a great

number of spatio-temporal models. During the off-line recognition, a correct tuning of the

parameters and the good performances of the two-stage matching procedure is sufficient to

cope with the increase of the models. Since we devised an approach which compare the time-

invariant features of the test with those of all the models, the complexity is increasing with N,
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Figure 6: Description of the two-stage matching for comparison of sequences models.

the number of models. A possible solution is to devise a sort of tournament in which one can

firstly recognize the type of object (planar or 3D for instance) and then proceed for further

more refined comparison. We performed our experiments with a dataset of 20 objects: in the

off-line version of our recognition system... in the on-line...

3 Matching models with spatio-temporal constraints

We devise a two-stage matching which exploits spatial and temporal information within each

model. It is worth noticing that this matching procedure is performed in the two version of

our system both during the off-line and the on-line recognition. Let us consider a test sequence

represented by a model T , and a training sequence, represented by an object model M . The

problem we address is to see whether the test model T contains the object M .

Our two-steps matching strategy, visually described in Figure 6, is performed as follows:

STEP 1: We perform a nearest-neighbour matching between each training model and the

test model: this procedure gives us initial hypotheses for the presence of known objects in the

sequence. For each time-invariant feature in M , we use histogram intersection [SB91] to check

whether T contains a similar feature: we set a minimum similarity threshold S1 to obtain a

collection of robust matches (fM , fT )S1.
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STEP 2: This stage, based on enhancing spatio-temporally coherent matches, helps us to con-

firm or to reject each hypothesis. We use spatio-temporal constraints and perform a backward

matching procedure from the test to the training model.

• We detect the subsets of training and test models containing most matches, IM and IT ,

exploiting the temporal descriptors of the features matched after the first step. Doing

so, we obtain a raw temporal localization of the object in the test sequence, but also

hints about its appearance, since IM marks a particular range of views. In order to refine

this detection, we reject matches which are spatially isolated, founding on their average

positions pk.

• We increase the number of matches in a spatio-temporal neighborhood around the previ-

ously detected features. Let us consider a match (fM , fT )S1: we can specify two sets, FM

and FT , containing features (of M and T respectively) appearing together with fM and

fT for a chosen period of time. A new matching step is then performed between FT and

FM considering a lower similarity threshold S2: a pair (f ′T , f ′M )S2 is a new match if the

features are spatially close to fT and fM , respectively.

• This new stage is repeated for each pair (fM , fT )S1 belonging to IM and IT intervals.

The incorrect recognition hypotheses are rejected while the correct ones are enriched by

further matches in the surrounding areas. In Figure 6 the cylinder bounds a region in

which this second search is performed.

This procedure increases the number of high scores when groups of features which are spatio-

temporally coherent appear both in training and test. Thanks to the compact representation

of visual information the matching phase is efficient even when the sequence is long and there

are several detected keypoints.

4 The recognition pipeline

In this section we describe how the matching strategy is applied to recognition, both for off-line

and on-line recognition of known objects in the observed scene.
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When the recognition system is used off-line the recognition procedure boils down to the

matching strategy described in Section 3, applied to each object model and the test model

computed from the training and test sequences previously acquired. In this particular case

the temporal windows defining the scene of interest are well defined and consist of the whole

training and test sequence. We make use of a threshold on the number of matches to decide if

a given object is present in one of the test sequences. The recognition process is identical when

there is more than one object in the same scene: each model is compared with the test and the

keypoints which are correctly matched allow us to identify the corresponding model.

If we move to on-line acquisition our system enters in recognition mode as soon as it starts

receiving a video signal. It extracts local features on the first frame and track them on the next

frames, incrementally building a model from the video stream. Feature extraction is performed

only if the current number of trajectories goes below a given threshold. When, at time t1,

the size of the model reaches a minimal number of spatio-temporal features Smin, we look for

known objects on the scene: the two-step matching is performed between the test model at

time t1 (that encodes the information from a temporal window [0, t1]) and all training models.

Matching can produce one of the following results:

• It exists just one model M (of an object O) producing WM ≥ Wmin matches while for the

other models Mi WM −WMi ≥ d. In this case we reach the conclusion that object O is

present in the scene. At this point the system is ready for another recognition, while the

temporal window slides ahead.

• More than one model verify the given conditions. We consider such objects as our hypoth-

esis, then we extract new information to improve the description. When the test model

is grown of at least N items, we try again the recognition only between the hypothesis;

• There are no models verifying the conditions. The system gives feedbacks to the user

suggesting to change scale, in accordance to the training models, or to change observation

point. For a fixed delay it continues to increase the model. If no observation is reached it

concludes that no known objects are present in the scene after a given number of matching

attempts.

For space occupancy and performance reasons the test models need to have a finite memory of
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length t: the size of the memory induces a temporal window of analysis that we slide ahead as

time goes on. Also, the scene model is reset when a high number of trajectories are abruptly

interrupted – this usually happens when the user attention moves from one object to another.

It is worth to notice that when the recognition process is activated real-time on a video

stream our system incrementally gathers a first hypothesis on the presence of objects and gives

feedbacks to the user on how to explore the world. In the case of multiple matches it encourages

the user to observe the object from a slightly different viewpoint. In the case of no matches it

suggests to change scale or observation point before concluding that no known object is present

in the scene. The system response is incrementally updated and cleaned at run time so that

the model of the observed scene does not grow to a size which is difficult to manage.

5 Experiments

5.1 Off-line recognition

5.2 On-line recognition

6 Conclusions
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