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Abstract dral meshes generated by recursive decomposition, which
are suitable for dealing with regularly distributed data points
This paper deals with the problem of analyzing and vi- (see [7, 8, 13, 14, 16, 21]). Applying nested decomposi-
sualizing volume data sets of large size. To this aim, wetions to irregularly-distributed data points would require re-
define a three-dimensional multi-resolution model based onsampling, with problems in dealing with non-convex do-
unstructured tetrahedral meshes, and built through a half- mains and with the spatial variation of such data. On
edge-collapse simplification strategy, that we calHalf- the other hand, multi-resolution models based on irregular
Edge Multi-Tessellation (MT)We propose a new compact tetrahedral meshes are desirable since they are highly adap-
data structure for a half-edge MT, and we analyze it with tive and can capture the shape of the field domain accurately
respect to both its space requirements and its efficiency ineven at the lowest resolution. But, no much research has
supporting Level-Of-Detail (LOD) queries based on selec- been performed on such models. There have been propos-
tive refinement. als in the literature for simplification algorithms for irregu-
lar tetrahedral meshes, based on edge collapse [1, 9, 20], or
on vertex insertion [11, 18], and on multi-resolution mod-
11 ducti els, based either on a progressive [9, 17] or on a multi-level
ntroduction approach [2, 15].
Several applications, including scientific visualization,
medical imaging, and finite element analysis, deal with in-
creasingly large sets of three-dimensional data describing In [5], we have defined a general multi-resolution model
scalar fields, called volume data sets. In order to analyzebased ond-dimensional simplicial complexes, called a
volume data sets of large size and to accelerate their renMulti-Tessellation (MT) which is both dimension- and
dering, a multi-resolution approach can be used. Multi- application-independent, and provides a framework for con-
resolution meshes have been used for describing surfacetinuous multi-resolution modeling based on meshes. Here,
and two-dimensional height fields (see [6] for a survey). we exploit the ideas underlying such general-purpose model
They encode the steps performed by a simplification pro-to define a specific three-dimensional multi-resolution
cess within a compact structure, in such a way that a virtu- model based on unstructured tetrahedral meshes, and built
ally continuous collection of simplified meshes at different through a specific edge-collapse simplification strategy, that
Levels-Of-Detail (LODs) can be extracted on-line. By ap- we call aHalf-Edge Multi-Tessellation (MT)We propose a
plying a multi-resolution approach to tetrahedral meshes, new compact data structure for a half-edge MT. We show
we may have the resolution (i.e., the density of the cells) that this data structure provides very good compression ra-
of the approximating mesh varying in different parts of the tios not only with respect to a data structure which encodes
field domain (e.g., inside a box, or along a cutting plane), a general-purpose three-dimensional Multi-Tessellation, but
or in the proximity of interesting field values. This will en- also with respect to encoding the original mesh at full res-
able a user to interactively explore large volume data usingolution. The data structure is analyzed with respect to both
simplified approximations, and to inspect specific areas ofits space requirements and its efficiency in supporting the
interest. primitives for implementingselective refinement.e., the
In the computer graphics and finite element literature, a process of extracting variable-resolution meshes in an in-
lot of research efforts have been devoted to nested tetraheeremental way.



2 Background

A volume data satonsists of a sét” of points spanning
a domainD in the three-dimensional Euclidean space, with
a field valuef associated with each of them.tétrahedral
meshX. is a connected set of tetrahedra such that the union
of all tetrahedra i coversD, any two distinct tetrahe-
dra have disjoint interiors and the intersection of the bound-
aries of any two tetrahedra af, which have a non-empty
intersection, consists of lower dimensional simplexes which
belong to the boundary of both tetrahedra. Although, the-
oretically, the numbem in tetrahedra in a mesh can be
guadratic in the number of vertices ofY, in practice, we
havem = 6n.

Given a volume data s&t, anapproximatedetrahedral
mesh is a mesk’ havingm’ (m’ < m) tetrahedra and

vertices at a subsét’ of the original data sev’, with n’ vertex spllt
(n’ < n) points. A scalar field”’ is defined or™’, similarly

to f, with the convention that values ¢gfand f’ are the

same on each vertex that belongs to bBttand V’. The

approximation error associated witt is the error that we

perform in usingY’ instead ofX for describingS. The

error associated with each tetrahedron is a combination of
thefield errorand of thedomain error In the simplification

algorithm that we use [1], the field error at a tetrahedron Figure 2. An example of a half-edge collapse.
is computed as the maximum of the absolute value of the
difference between the actual field value at the points of
V\ V' insidec and the field value at the same points linearl . .
int\erpolated withinr. The domain error atatet?ahedrm‘s g We say that a subsét of nodes of an MT izonsistent

i / 1+ _
computed as the maximum value of the one-sided Hausdorff'f' for exe_ry nOd?“ € U, each noda: .SUCh that pre
distances of the points of the domain from tetrahedron cedesu™ is also inU. The updates which form a consistent

and it is not null only if is close to the boundary &, subset/ can be applied to the base mesh in any total order
that extends the partial order, thus producing a mesh at an
intermediate Level Of Detail (LOD), that we denote with

Figure 1. (a) An example of a two-dimensional MT. (b)
A consistent set with the corresponding extracted mesh

half—edge collapse

3 The Multi-Tessellation Yy. Figure 1 (b) shows an example of a consistent set and
of the corresponding extracted mesh.
A Multi-Tessellation (MT)M = (3, Ug, R) consists A half-edge MT is a Multi-Tessellation based on a spe-

of an initial mesh>, subdividing the domain, that we call  cific update, called &alf-edge collapsethat consists of

the base mesha set of update&’r = {u1...ux}, and a  contacting an edge = (v, w) of u™ into one of its extreme

relation R of direct dependency among updates. vertices, say. The reverse modification of a half-edge col-
An updateapplied to a a mesk consists of a pair of lapse is a vertex split, which expands verteinto an edge

meshes; = (v~,u™), whereu™ is a sub-mesh of, and e by inserting the other extreme vertexf e (see Figure 2).

¥ can be modified by replacing™ with .+ in such away  In [3] we have defined an instance of a three-dimensional

thatu™ fills the hole left inY after the removal of,~ and Multi-Tessellation based on fall-edge collapse A full-

that the resulting mesh is still a tetrahedral mesh. Relationedge collapse consists of contracting an edgwith ex-

R of direct dependency is defined as follows: an update treme vertices’ andv”, to a new vertex (often the mid-

depends on an updatg iff u;~ removes some tetrahedra point ofe). The data structure proposed in [3] is specific for

introduced byu; ™. The transitive closure of relatioR is a full-edge collapses, since it exploits the fact that each col-

partial order. The updates M will be also called th@odes lapse generates a new vertex, and thus, it is not suitable for

of the MT. The mesh at the full resolution, that we term the encoding half-edge collapses. Also, a full-edge collapse has

referencemesh, can be obtained by applying all updates in the disadvantage of producing larger updates in comparison

U to the base mesh. Figure 1 (a) shows a simple examplewith those generated by a half-edge collapse (see Section

of a two-dimensional MT. 5).



4 A Data Structure for a Half-Edge MT structed as follows. We start from,- in «—, and traverse
the graph formed by the tetrahedrauof and by their faces
in breadth first. A face of a tetrahedron, which is common

Multi-Tessellation: encoding the direct dependency rela- 1© @nother tetrahedron i is labeled 1, itis labeled 0 oth-

tion, and encoding the update. The base mesh is encoded a%rwise. In this process, exactly three faces are labeled for

a standard data structure for tetrahedral meshes which store&aCh tetrahedron (this is also true for the initial tetrahedron

connectivity and face-adjacencies between tetrahedra. 0w SINCe we know one of its faces, i.¢). If v~ contains
The direct dependency relation is described as a DAG en-lkj tet{t?h?d;a,ghen the bg stream con;aiwflts, sm((:je (t?e
coded by using a technique proposed by Klein and Gumhold ength of the bit stream does not need to be stored. Our ex-

[12]. For each node in the DAG, which corresponds to an gﬁrimgnts f&ave shov:n that we can s?fely aSSlslm? 12. h
update, a cyclic linked list, called #oop, is defined, which en, in order to perform a vertex split , we start from the

contains the update followed by all its direct ancestors in encod'ed boundary fagk and use th? bit strea}m as amask
the DAG. A nodeu appears in its own loop and in all the to retrieve all tetrahedra af by'v'lsmng them in the same
loops defined by its direct descendants. Thus, at a node seguence as they have been visited when creating the tetra-

we store the number of loops to whiehbelongs, and, for hedron spanning free.
each loop to which belongs, a forward pointer implement- In order to perform a half-edge collapse on an edge
ing the linked list plus the loop identifier which is used to (v;w), we need to identify vertew among the vertices of
identify the loop each node belongs to. The total number of #* - Then, we traverse the star of vertexto identify the
links to describe the arcs of the DAG is thus equattoa, ~ faces of the boundary polyhedrdhof u™ not containingo.
wheren is the number of vertices in the reference mesh (and Those faces will be connected toto form the tetrahedra
thus an upper bound to the number of nodes in the MT),in u”. To identify vertexw in «™, we need to encode a
anda is the number of arcs in the DAG. Experimentally, we tetrahedrorv,. in the star ofv containingw and then the
have found that is equal to5n on average, for MTs built ~ index ofw in o+ Storing such an index requires 2 bits.
through half-edge collapse and, thus, we have evaluated the We describe now how we encode tetrahega in v~
cost of storing the DAG to be equéh log n + 35n bits. ando,+ in u*. When applying an incremental algorithm
The encoding of an upda’qe requires storing informa- for selective refinement, a tetrahedmore Xu is generated
tion for performing vertex splits and half-edge collapses, €ither during refinement or during coarsening. Thus, a tetra-
i.e., replacingu— with «* and vice-versa. To perform a hedrono is labeled with one bit to discriminate between the
vertex split, we need to store the coordinates of the vertex two cases, and with an integer, which uniquely identifies
introduced, the value of the field af an error values(u), ~ @mong the tetrahedra that have been insertéflitogether
which provides an estimate of the approximation error asso-With o. The integer label is encoded ésg P bits, where
ciated withu and is Computed as the maximum of the errors P denotes the maximum number of direct descendants and
associated with the tetrahedra forming, plus a compact ~ ancestors of a node.
encoding of the topological structure of . Note that we When we perform an update” in £;, we label the new
usually store the error associated with an update and notetrahedra (i.e., those af") in an (arbitrary) order which
with each tetrahedron forming it to obtain a more econom- is always the same every time the update is performed, and
ical representation. To perform a half-edge collapse, we such that tetrahedran,+ containingf is the first one. Sim-
need to encode the vertex on which edge: = (v, w) is ilarly, when we perform an update, we label the tetrahe-
contracted. Since an updatecorresponds to the insertion dra ofu~ in an (arbitrary) order which is always the same
of a vertexv, updates and vertices are re-numbered in suchevery time the update is performed, and such that tetrahe-
a way that a node and its corresponding vertexhave the  dron o, containing vertexw is the first one. Thus, for
same label. Thus, the relation betweenandv is encoded  each update, we encode an index (dng P bits) that iden-
at a null cost. tifies the tetrahedron,,- € v~ havingf as one of its faces,
Encoding the topology of.~ requires encoding a face and an index (ofog P bits) that identifies the tetrahedron
/ of the star-shaped polyhedr@hboundingu— plus a bit 0.+ € ut havingw as one of its vertices. Encoding such
stream which describes a traversal of the tetrahedral subinformation require® log P bits per update, i.e10n bits,
division ©~ starting atf. A boundary facef is described  since the construction algorithm enforcBgo be equal to
by a tetrahedrow,, - in »~ containingf plus the index of 32, and the number of updates is boundediby
f within o,,—. Such an index can be encoded with 2 bits.  In order to retrieves,- from the index stored in,
Tetrahedronr,,- is encoded as described below. we need to know the direct ancestot of v such that
Mesh v~ is described as #etrahedron spanning tree o,- € /. Updateu’ is encoded at no cost by adopting
rooted ato,—, encoded as a bit stream following an ap- the convention that, in the DAG encoding, the list of the di-
proach similar to [10]. The tetrahedron spanning tree is con-rect ancestors af contains.’ in its first position. The index

There are two basic ingredients in encoding a Half-Edge
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Figure 3. (a) Uniform LOD extraction: error threshold 0.800 1
equal to 0.1% of the field range. (b) Variable LOD based on
aregion of interest: mesh extracted with a threshold equal to
0.1% of the field range in a selected box, and arbitrary large (B) 6400
outside (the isosurface for a field value equal to 105.000 is
shown). (c) Variable LOD based on field values: a mesh ex-
tracted with a threshold equal to 0.1% of the field range on 0.000
the tetrahedra intersected by the isosurface with field value
equal to 1.27 (shown in dark gray), and arbitrary large out-
side. The second isosurface, with a field value equal to 1.45
(shown in light gray), illustrates the lower resolution of the
mesh in the region formed by the tetrahedra that do not in-
tersect the selected isosurface.
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Figure 4. (a) Number of tetrahedra in a mesh at a uni-
form LOD with different error thresholds extracted from

a half-edge MT with errors on updates and with errors on
tetrahedra (with respect to the number of tetrahedra in the
reference mesh). (b) Number of tetrahedra in a mesh at a
variable LOD with different error thresholds extracted from
a half-edge MT with errors on updates and with errors on
tetrahedra (with respect to the number of tetrahedra in the
reference mesh).

stored with an update to identify o,,- is the same as the
label assigned to,,- wheno, - is created in the current
mesh by performing updaté ™. This information, together
with nodeu’, enables us to retrieve, - in the current mesh
wheno - isin Xy because it has been created by perform-

ing «'". If o, has been added © by performingu™,  connectivity and face-adjacency information, &&¥ of
theno, - is simply retrieved as the tetrahedron with the min-  the cost of encoding the reference mesh in an indexed struc-
imum label among those inserted by. In a similar way,  tyre which encodes only connectivity information. Storing
o+ is retrieved from the index stored in a half-edge MT costs 1/5 more than encoding a full-edge
The cost of encoding the connectivity information for an MT with errors associated with updates. On the other hand,
updateu is equal to50 bits, since36 bits are required to  the half-edge MT is about0% of the full-edge MT when

encode the tetrahedron spanning tr@bits are required  we consider MTs with errors associated with tetrahedra.
to encode the tetrahedra and 4 bits are required to encode

face f and vertexw. The cost of encoding geometric infor-

mation, and the field values is equal8&dytes, while the 5 Results
error value is encoded on 2 bytes. Thus, the storage cost for

the information associated with a single update contributes In the experiments shown here the construction of a half-
for a cost of130 bits. Therefore, the total cost of a half- edge MT has been performed by using the algorithm in [1].
edge MT data structure (including the cost of encoding the We have used two regular volume data se$snallbucky
direct dependencies) is equalltésn + 6n log n bits. If we which is a portion of the well-known regular Bucky-Ball
associate an error value not just with each update, but withdata set and has 32,768 verticéasma which is a large
each tetrahedron, the total cost of storing the error valuessynthetic data set with 262,144 vertices, and two irregular
is equal to24n bytes. Thus, the cost of storing a half-edge data sets:Flame with 19611 vertices, anéfighter, with

MT would increase in this case #d1n + 6n log n bits, i.e.,
of about50%.
The storage cost of the half-edge MT is eqLi of the

13832 vertices.
We have found that the number of tetrahedra:inis
equal to 10.5, while the number of tetrahedrainis equal

space needed by encoding a three-dimensional MT in whichto 16, on average. Thus, the total number of tetrahedra in a
the tetrahedra are explicitly stored as a 4-tuple of vertices. Ithalf-edge MT is equal ta6n. The overhead introduced by
is about26% of the cost of storing the reference mesh with a half-edge MT, evaluated as the ratio between the number



Half-Edge MT with different data sets.

= = = Edge MT

In the first experiment we have compared the number
of tetrahedra in meshes extracted at a uniform LOD and at
a variable LOD based on field values, with different error
thresholds, from a half-edge MT with errors on the updates,
and an MT with errors on the tetrahedra (see Figure 4). The
‘ ‘ ‘ ‘ ‘ ‘ results show that the size of a mesh extracted from an MT
00%  01%  05%  10%  50%  10.0% with error on tetrahedra is betweef% and30% smaller

than the size of a mesh extracted from an MT with error on
T updates in both tests.

081 In the second experiment, we have compared the per-
061  meo . formances of a half-edge MT and of a full-edge MT, both
(b) ../ el . storing the errors with the updates, for uniform LOD ex-
Te tractions (see Figure 5 (a)), and for extractions at variable
021 = LODs based on the field values (see Figure 5 (b)). At a
0 ‘ ‘ ‘ ‘ ‘ ‘ variable LOD the size of the meshes extracted from the half-
00% 0B 0% 0% 0% 100% edge MT is abouR0% less that the size of those extracted
from the full-edge MT, while this percentage reduce8%o
for extractions at a uniform LOD. This is motivated by the
number of tetrahedra of the reference mesh) in a mesh ex- larger size of the updates in a _full-gdge MT and thu; b_y a
tracted from a half-edge and from a full-edge MT at a uni- lower number of dependency links in the DAG describing
form LOD with different error thresholds. (b) Number of it.
tetrahedra (with respect to the number of tetrahedra of the
reference mesh) in a mesh extracted from a half-edge and
from a full-edge MT at a variable LOD based on fieldvalue 6 Concluding Remarks
with different error thresholds.
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Figure 5. (a) Number of tetrahedra (with respect to the

We have proposed a new data structure for a class
of multi-resolution tetrahedral meshes, called a Half-Edge
Multi-Tessellation. This data structure is not only consid-
erably more compact than an efficient implementation of
& general MT data structure, but it acts as a compression
mechanism also with respect to storing the original mesh at
CLUH resolution. It is also more selective than a data structure

eveloped for encoding multiresolution tetrahedral meshes
built through full-edge collapses. Moreover, meshes with
connectivity and adjacency information can be extracted
from a half-edge MT at no extra cost. In [4], we have com-

a tetrahedron [19]. Our experiments have shown, on aver-pamd irregular multiresolution tetrahedral meshes with reg-

age, a value of edual to 1.38. and a value afeql;al to ular ones built through tetrahedron bisection.

19.6. Note that, in a Delaunay tetrahedral mesis, equal We have extended the data structure presented here to
to 1.046, andy is equal to 20.5, on average. represent MTs in which updates are general vertex inser-

We have performed the experiments based on the Leve|_ti0n5/removals. In this Way, an MT could be built by incre-
Of-Detail (LOD) queries defined in [3] as instances of the Mental top-down refinement on a Delaunay mesh. To this
genera' selective refinement query (See Figure 3) The Com.a.im, we need to deVeIOp heuristiCS fOI‘ dea”ng W|th VO|ume
parisons in the different experiments are in terms of the data spanning a non-convex domain.
number of tetrahedra in the extracted mesh (i.e., its size) Finally, we plan to apply the work presented in this paper
with respect to the number of tetrahedra in the referenceto perform LOD operations on irregular meshes describing
mesh. The size of the extracted mesh is directly related to3D scalar fields in a client-server environment. The use of
the complexity of the queries as the execution time of the our compact data structure will enable both a progressive
selective refinement algorithms depends on such parameteiand a selective download of the extracted mesh by a client
We have referred the size of the extracted mesh to that ofand allows for a dynamic selective refinement at each new
the reference mesh in order to compare the results obtainedequest from a client.

of tetrahedra in the MT and the number of tetrahedra in the
reference mesh (which is equal éa) is about 2.65. In a
full-edge MT the number of tetrahedra 4T andu™ is,

on average, equal to 27 and 33, respectively. The overhea
introduced by a full-edge MT is about 5.5.

We have evaluated the shape of the tetrahedra by usin
two measures commonly applied in the finite element liter-
ature: thecircumradius-to-shortest-edgatio » (where the
circumradius is the radius of the circumsphere of a tetra-
hedron), and the minimum solid angte associated with
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