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Abstract

This paper deals with the problem of analyzing and vi-
sualizing volume data sets of large size. To this aim, we
define a three-dimensional multi-resolution model based on
unstructured tetrahedral meshes, and built through a half-
edge-collapse simplification strategy, that we call aHalf-
Edge Multi-Tessellation (MT). We propose a new compact
data structure for a half-edge MT, and we analyze it with
respect to both its space requirements and its efficiency in
supporting Level-Of-Detail (LOD) queries based on selec-
tive refinement.

1 Introduction

Several applications, including scientific visualization,
medical imaging, and finite element analysis, deal with in-
creasingly large sets of three-dimensional data describing
scalar fields, called volume data sets. In order to analyze
volume data sets of large size and to accelerate their ren-
dering, a multi-resolution approach can be used. Multi-
resolution meshes have been used for describing surfaces
and two-dimensional height fields (see [6] for a survey).
They encode the steps performed by a simplification pro-
cess within a compact structure, in such a way that a virtu-
ally continuous collection of simplified meshes at different
Levels-Of-Detail (LODs) can be extracted on-line. By ap-
plying a multi-resolution approach to tetrahedral meshes,
we may have the resolution (i.e., the density of the cells)
of the approximating mesh varying in different parts of the
field domain (e.g., inside a box, or along a cutting plane),
or in the proximity of interesting field values. This will en-
able a user to interactively explore large volume data using
simplified approximations, and to inspect specific areas of
interest.

In the computer graphics and finite element literature, a
lot of research efforts have been devoted to nested tetrahe-

dral meshes generated by recursive decomposition, which
are suitable for dealing with regularly distributed data points
(see [7, 8, 13, 14, 16, 21]). Applying nested decomposi-
tions to irregularly-distributed data points would require re-
sampling, with problems in dealing with non-convex do-
mains and with the spatial variation of such data. On
the other hand, multi-resolution models based on irregular
tetrahedral meshes are desirable since they are highly adap-
tive and can capture the shape of the field domain accurately
even at the lowest resolution. But, no much research has
been performed on such models. There have been propos-
als in the literature for simplification algorithms for irregu-
lar tetrahedral meshes, based on edge collapse [1, 9, 20], or
on vertex insertion [11, 18], and on multi-resolution mod-
els, based either on a progressive [9, 17] or on a multi-level
approach [2, 15].

In [5], we have defined a general multi-resolution model
based ond-dimensional simplicial complexes, called a
Multi-Tessellation (MT), which is both dimension- and
application-independent, and provides a framework for con-
tinuous multi-resolution modeling based on meshes. Here,
we exploit the ideas underlying such general-purpose model
to define a specific three-dimensional multi-resolution
model based on unstructured tetrahedral meshes, and built
through a specific edge-collapse simplification strategy, that
we call aHalf-Edge Multi-Tessellation (MT). We propose a
new compact data structure for a half-edge MT. We show
that this data structure provides very good compression ra-
tios not only with respect to a data structure which encodes
a general-purpose three-dimensional Multi-Tessellation, but
also with respect to encoding the original mesh at full res-
olution. The data structure is analyzed with respect to both
its space requirements and its efficiency in supporting the
primitives for implementingselective refinement, i.e., the
process of extracting variable-resolution meshes in an in-
cremental way.
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2 Background

A volume data setconsists of a setV of points spanning
a domainD in the three-dimensional Euclidean space, with
a field valuef associated with each of them. Atetrahedral
meshΣ is a connected set of tetrahedra such that the union
of all tetrahedra inΣ coversD, any two distinct tetrahe-
dra have disjoint interiors and the intersection of the bound-
aries of any two tetrahedra ofΣ, which have a non-empty
intersection, consists of lower dimensional simplexes which
belong to the boundary of both tetrahedra. Although, the-
oretically, the numberm in tetrahedra in a meshΣ can be
quadratic in the numbern of vertices ofΣ, in practice, we
havem ≈ 6n.

Given a volume data setS, anapproximatedtetrahedral
mesh is a meshΣ′ havingm′ (m′ < m) tetrahedra and
vertices at a subsetV ′ of the original data setV , with n′

(n′ < n) points. A scalar fieldf ′ is defined onΣ′, similarly
to f , with the convention that values off andf ′ are the
same on each vertex that belongs to bothV andV ′. The
approximation error associated withΣ′ is the error that we
perform in usingΣ′ instead ofΣ for describingS. The
error associated with each tetrahedron is a combination of
thefield errorand of thedomain error. In the simplification
algorithm that we use [1], the field error at a tetrahedronσ
is computed as the maximum of the absolute value of the
difference between the actual field value at the points of
V \V ′ insideσ and the field value at the same points linearly
interpolated withinσ. The domain error at a tetrahedronσ is
computed as the maximum value of the one-sided Hausdorff
distances of the points of the domain from tetrahedronσ,
and it is not null only ifσ is close to the boundary ofΣ.

3 The Multi-Tessellation

A Multi-Tessellation (MT)M = (Σb, UR, R) consists
of an initial meshΣb subdividing the domain, that we call
the base mesh, a set of updatesUR = {u1 . . . uk}, and a
relationR of direct dependency among updates.

An updateapplied to a a meshΣ consists of a pair of
meshesu = (u−, u+), whereu− is a sub-mesh ofΣ, and
Σ can be modified by replacingu− with u+ in such a way
thatu+ fills the hole left inΣ after the removal ofu− and
that the resulting mesh is still a tetrahedral mesh. Relation
R of direct dependency is defined as follows: an updateui
depends on an updateuj iff ui− removes some tetrahedra
introduced byuj+. The transitive closure of relationR is a
partial order. The updates inM will be also called thenodes
of the MT. The mesh at the full resolution, that we term the
referencemesh, can be obtained by applying all updates in
U to the base mesh. Figure 1 (a) shows a simple example
of a two-dimensional MT.
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Figure 1. (a) An example of a two-dimensional MT. (b)
A consistent set with the corresponding extracted mesh
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Figure 2. An example of a half-edge collapse.

We say that a subsetU of nodes of an MT isconsistent
if, for every nodeu ∈ U , each nodeu′ such thatu′+ pre-
cedesu+ is also inU . The updates which form a consistent
subsetU can be applied to the base mesh in any total order
that extends the partial order, thus producing a mesh at an
intermediate Level Of Detail (LOD), that we denote with
ΣU . Figure 1 (b) shows an example of a consistent set and
of the corresponding extracted mesh.

A half-edge MT is a Multi-Tessellation based on a spe-
cific update, called ahalf-edge collapse, that consists of
contacting an edgee = (v, w) of u+ into one of its extreme
vertices, sayw. The reverse modification of a half-edge col-
lapse is a vertex split, which expands vertexw into an edge
e by inserting the other extreme vertexv of e (see Figure 2).
In [3] we have defined an instance of a three-dimensional
Multi-Tessellation based on afull-edge collapse. A full-
edge collapse consists of contracting an edgee, with ex-
treme verticesv′ andv′′ , to a new vertexv (often the mid-
point ofe). The data structure proposed in [3] is specific for
full-edge collapses, since it exploits the fact that each col-
lapse generates a new vertex, and thus, it is not suitable for
encoding half-edge collapses. Also, a full-edge collapse has
the disadvantage of producing larger updates in comparison
with those generated by a half-edge collapse (see Section
5).
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4 A Data Structure for a Half-Edge MT

There are two basic ingredients in encoding a Half-Edge
Multi-Tessellation: encoding the direct dependency rela-
tion, and encoding the update. The base mesh is encoded as
a standard data structure for tetrahedral meshes which stores
connectivity and face-adjacencies between tetrahedra.

The direct dependency relation is described as a DAG en-
coded by using a technique proposed by Klein and Gumhold
[12]. For each node in the DAG, which corresponds to an
updateu, a cyclic linked list, called aloop, is defined, which
contains the updateu followed by all its direct ancestors in
the DAG. A nodeu appears in its own loop and in all the
loops defined by its direct descendants. Thus, at a nodeu,
we store the number of loops to whichu belongs, and, for
each loop to whichu belongs, a forward pointer implement-
ing the linked list plus the loop identifier which is used to
identify the loop each node belongs to. The total number of
links to describe the arcs of the DAG is thus equal ton+ a,
wheren is the number of vertices in the reference mesh (and
thus an upper bound to the number of nodes in the MT),
anda is the number of arcs in the DAG. Experimentally, we
have found thata is equal to5n on average, for MTs built
through half-edge collapse and, thus, we have evaluated the
cost of storing the DAG to be equal6n log n+ 35n bits.

The encoding of an updateu requires storing informa-
tion for performing vertex splits and half-edge collapses,
i.e., replacingu− with u+ and vice-versa. To perform a
vertex split, we need to store the coordinates of the vertexv
introduced, the value of the field atv, an error value,ε(u),
which provides an estimate of the approximation error asso-
ciated withu and is computed as the maximum of the errors
associated with the tetrahedra formingu+, plus a compact
encoding of the topological structure ofu−. Note that we
usually store the error associated with an update and not
with each tetrahedron forming it to obtain a more econom-
ical representation. To perform a half-edge collapse, we
need to encode the vertexw on which edgee = (v, w) is
contracted. Since an updateu corresponds to the insertion
of a vertexv, updates and vertices are re-numbered in such
a way that a nodeu and its corresponding vertexv have the
same label. Thus, the relation betweenu+ andv is encoded
at a null cost.

Encoding the topology ofu− requires encoding a face
f of the star-shaped polyhedronΠ boundingu− plus a bit
stream which describes a traversal of the tetrahedral sub-
division u− starting atf . A boundary facef is described
by a tetrahedronσu− in u− containingf plus the index of
f within σu− . Such an index can be encoded with 2 bits.
Tetrahedronσu− is encoded as described below.

Mesh u− is described as atetrahedron spanning tree
rooted atσu− , encoded as a bit stream following an ap-
proach similar to [10]. The tetrahedron spanning tree is con-

structed as follows. We start fromσu− in u−, and traverse
the graph formed by the tetrahedra ofu− and by their faces
in breadth first. A face of a tetrahedron, which is common
to another tetrahedron inu− is labeled 1, it is labeled 0 oth-
erwise. In this process, exactly three faces are labeled for
each tetrahedron (this is also true for the initial tetrahedron
σu− , since we know one of its faces, i.e.,f ). If u− contains
k tetrahedra, then the bit stream contains3k bits, since the
length of the bit stream does not need to be stored. Our ex-
periments have shown that we can safely assumek = 12.
Then, in order to perform a vertex split , we start from the
encoded boundary facef , and use the bit stream as a mask
to retrieve all tetrahedra ofu− by visiting them in the same
sequence as they have been visited when creating the tetra-
hedron spanning tree.

In order to perform a half-edge collapse on an edgee =
(v, w), we need to identify vertexw among the vertices of
u+. Then, we traverse the star of vertexv to identify the
faces of the boundary polyhedronΠ of u+ not containingw.
Those faces will be connected tow to form the tetrahedra
in u−. To identify vertexw in u+, we need to encode a
tetrahedronσu+ in the star ofv containingw and then the
index ofw in σu+ . Storing such an index requires 2 bits.

We describe now how we encode tetrahedraσu− in u−

andσu+ in u+. When applying an incremental algorithm
for selective refinement, a tetrahedronσ ∈ ΣU is generated
either during refinement or during coarsening. Thus, a tetra-
hedronσ is labeled with one bit to discriminate between the
two cases, and with an integer, which uniquely identifiesσ
among the tetrahedra that have been inserted inΣU together
with σ. The integer label is encoded onlogP bits, where
P denotes the maximum number of direct descendants and
ancestors of a node.

When we perform an updateu+ in ΣU , we label the new
tetrahedra (i.e., those ofu+) in an (arbitrary) order which
is always the same every time the update is performed, and
such that tetrahedronσu+ containingf is the first one. Sim-
ilarly, when we perform an updateu−, we label the tetrahe-
dra ofu− in an (arbitrary) order which is always the same
every time the update is performed, and such that tetrahe-
dron σu− containing vertexw is the first one. Thus, for
each updateu, we encode an index (onlogP bits) that iden-
tifies the tetrahedronσu− ∈ u− havingf as one of its faces,
and an index (onlogP bits) that identifies the tetrahedron
σu+ ∈ u+ havingw as one of its vertices. Encoding such
information requires2 logP bits per update, i.e.,10n bits,
since the construction algorithm enforcesP to be equal to
32, and the number of updates is bounded byn.

In order to retrieveσu− from the index stored inu,
we need to know the direct ancestoru′ of u such that
σu− ∈ u′

+. Updateu′ is encoded at no cost by adopting
the convention that, in the DAG encoding, the list of the di-
rect ancestors ofu containsu′ in its first position. The index
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Figure 3. (a) Uniform LOD extraction: error threshold
equal to 0.1% of the field range. (b) Variable LOD based on
a region of interest: mesh extracted with a threshold equal to
0.1% of the field range in a selected box, and arbitrary large
outside (the isosurface for a field value equal to 105.000 is
shown). (c) Variable LOD based on field values: a mesh ex-
tracted with a threshold equal to 0.1% of the field range on
the tetrahedra intersected by the isosurface with field value
equal to 1.27 (shown in dark gray), and arbitrary large out-
side. The second isosurface, with a field value equal to 1.45
(shown in light gray), illustrates the lower resolution of the
mesh in the region formed by the tetrahedra that do not in-
tersect the selected isosurface.

stored with an updateu to identify σu− is the same as the
label assigned toσu− whenσu− is created in the current
mesh by performing updateu′+. This information, together
with nodeu′, enables us to retrieveσu− in the current mesh
whenσu− is in ΣU because it has been created by perform-
ing u′+. If σu− has been added toΣU by performingu−,
thenσu− is simply retrieved as the tetrahedron with the min-
imum label among those inserted byu−. In a similar way,
σu+ is retrieved from the index stored inu.

The cost of encoding the connectivity information for an
updateu is equal to50 bits, since36 bits are required to
encode the tetrahedron spanning tree,10 bits are required
to encode the tetrahedra and 4 bits are required to encode
facef and vertexw. The cost of encoding geometric infor-
mation, and the field values is equal to8 bytes, while the
error value is encoded on 2 bytes. Thus, the storage cost for
the information associated with a single update contributes
for a cost of130 bits. Therefore, the total cost of a half-
edge MT data structure (including the cost of encoding the
direct dependencies) is equal to165n+ 6n log n bits. If we
associate an error value not just with each update, but with
each tetrahedron, the total cost of storing the error values
is equal to24n bytes. Thus, the cost of storing a half-edge
MT would increase in this case to441n+ 6n log n bits, i.e.,
of about50%.

The storage cost of the half-edge MT is equal15% of the
space needed by encoding a three-dimensional MT in which
the tetrahedra are explicitly stored as a 4-tuple of vertices. It
is about26% of the cost of storing the reference mesh with
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Figure 4. (a) Number of tetrahedra in a mesh at a uni-
form LOD with different error thresholds extracted from
a half-edge MT with errors on updates and with errors on
tetrahedra (with respect to the number of tetrahedra in the
reference mesh). (b) Number of tetrahedra in a mesh at a
variable LOD with different error thresholds extracted from
a half-edge MT with errors on updates and with errors on
tetrahedra (with respect to the number of tetrahedra in the
reference mesh).

connectivity and face-adjacency information, and53% of
the cost of encoding the reference mesh in an indexed struc-
ture which encodes only connectivity information. Storing
a half-edge MT costs 1/5 more than encoding a full-edge
MT with errors associated with updates. On the other hand,
the half-edge MT is about70% of the full-edge MT when
we consider MTs with errors associated with tetrahedra.

5 Results

In the experiments shown here the construction of a half-
edge MT has been performed by using the algorithm in [1].
We have used two regular volume data sets:Smallbucky,
which is a portion of the well-known regular Bucky-Ball
data set and has 32,768 vertices.Plasma, which is a large
synthetic data set with 262,144 vertices, and two irregular
data sets:Flame, with 19611 vertices, andFighter, with
13832 vertices.

We have found that the number of tetrahedra inu− is
equal to 10.5, while the number of tetrahedra inu+ is equal
to 16, on average. Thus, the total number of tetrahedra in a
half-edge MT is equal to16n. The overhead introduced by
a half-edge MT, evaluated as the ratio between the number

4



(a)

0

0.2

0.4

0.6

0.8

1

0.0% 0.1% 0.5% 1.0% 5.0% 10.0%

Half-Edge MT

Edge MT

(b)

0

0.2

0.4

0.6

0.8

1

0.0% 0.1% 0.5% 1.0% 5.0% 10.0%

Half-Edge MT

Edge MT

Figure 5. (a) Number of tetrahedra (with respect to the
number of tetrahedra of the reference mesh) in a mesh ex-
tracted from a half-edge and from a full-edge MT at a uni-
form LOD with different error thresholds. (b) Number of
tetrahedra (with respect to the number of tetrahedra of the
reference mesh) in a mesh extracted from a half-edge and
from a full-edge MT at a variable LOD based on field value
with different error thresholds.

of tetrahedra in the MT and the number of tetrahedra in the
reference mesh (which is equal to6n) is about 2.65. In a
full-edge MT the number of tetrahedra inu− andu+ is,
on average, equal to 27 and 33, respectively. The overhead
introduced by a full-edge MT is about 5.5.

We have evaluated the shape of the tetrahedra by using
two measures commonly applied in the finite element liter-
ature: thecircumradius-to-shortest-edgeratio r (where the
circumradius is the radius of the circumsphere of a tetra-
hedron), and the minimum solid angleα associated with
a tetrahedron [19]. Our experiments have shown, on aver-
age, a value ofr equal to 1.38, and a value ofα equal to
19.6. Note that, in a Delaunay tetrahedral mesh,r is equal
to 1.046, andα is equal to 20.5, on average.

We have performed the experiments based on the Level-
Of-Detail (LOD) queries defined in [3] as instances of the
general selective refinement query (see Figure 3). The com-
parisons in the different experiments are in terms of the
number of tetrahedra in the extracted mesh (i.e., its size)
with respect to the number of tetrahedra in the reference
mesh. The size of the extracted mesh is directly related to
the complexity of the queries as the execution time of the
selective refinement algorithms depends on such parameter.
We have referred the size of the extracted mesh to that of
the reference mesh in order to compare the results obtained

with different data sets.

In the first experiment we have compared the number
of tetrahedra in meshes extracted at a uniform LOD and at
a variable LOD based on field values, with different error
thresholds, from a half-edge MT with errors on the updates,
and an MT with errors on the tetrahedra (see Figure 4). The
results show that the size of a mesh extracted from an MT
with error on tetrahedra is between25% and30% smaller
than the size of a mesh extracted from an MT with error on
updates in both tests.

In the second experiment, we have compared the per-
formances of a half-edge MT and of a full-edge MT, both
storing the errors with the updates, for uniform LOD ex-
tractions (see Figure 5 (a)), and for extractions at variable
LODs based on the field values (see Figure 5 (b)). At a
variable LOD the size of the meshes extracted from the half-
edge MT is about20% less that the size of those extracted
from the full-edge MT, while this percentage reduces to8%
for extractions at a uniform LOD. This is motivated by the
larger size of the updates in a full-edge MT and thus by a
lower number of dependency links in the DAG describing
it.

6 Concluding Remarks

We have proposed a new data structure for a class
of multi-resolution tetrahedral meshes, called a Half-Edge
Multi-Tessellation. This data structure is not only consid-
erably more compact than an efficient implementation of
a general MT data structure, but it acts as a compression
mechanism also with respect to storing the original mesh at
full resolution. It is also more selective than a data structure
developed for encoding multiresolution tetrahedral meshes
built through full-edge collapses. Moreover, meshes with
connectivity and adjacency information can be extracted
from a half-edge MT at no extra cost. In [4], we have com-
pared irregular multiresolution tetrahedral meshes with reg-
ular ones built through tetrahedron bisection.

We have extended the data structure presented here to
represent MTs in which updates are general vertex inser-
tions/removals. In this way, an MT could be built by incre-
mental top-down refinement on a Delaunay mesh. To this
aim, we need to develop heuristics for dealing with volume
data spanning a non-convex domain.

Finally, we plan to apply the work presented in this paper
to perform LOD operations on irregular meshes describing
3D scalar fields in a client-server environment. The use of
our compact data structure will enable both a progressive
and a selective download of the extracted mesh by a client
and allows for a dynamic selective refinement at each new
request from a client.
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