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Abstract GAMMA is a prototype light-weight

communication system based on the Active Ports

paradigm, designed for e�cient implementation

over Fast Ethernet interconnects. The original im-

plementation started in 1996 based on 3Com 3C595

cards. The optimizations obtained on that NICs al-

lowed us to obtain the lowest latency and highest

throughput results ever published in the literature

for Fast Ethernet. Technology evolved, however,

and now all low-cost NICs available are based on

Descriptor Based DMA (DBDMA) transfers, orig-

inally introduced by the DEC chipset 21140. In this

paper we report on the re-implementation of the

GAMMA prototype for the DEC NICs exploiting

the new transfer modes and achieving substantially

equivalent performance �gures. We also describe

the addition of an e�cient ow-control algorithm,

that allows loss-free communications without seri-

ously a�ecting performance.

Keywords: Active Ports; Fast Ethernet; Low La-

tency; Descriptor Based DMA; Flow-control.

1 Introduction

Linux provides one of the most e�cient im-

plementations of the TCP/IP stack ever. The

Linux TCP/IP socket one-way latency depends

heavily on the speci�c network driver being

used, which in turn depends on what Net-

work Interface Card (NIC) has been leveraged.

One may wonder why bothering about the

adoption of a specialized messaging system for

cluster computing, and not just adopt stan-

dard TCP/IP communication on good NICs,

as done in most Beowulf-type clusters.

Let us consider a very basic cluster con�g-

uration comprising two Pentium II 300 MHz

PCs, each running Linux 2.0.29 and equipped

with a 3COM 3c905 Fast Ethernet NIC. Sup-

pose we connect the two PCs by a UTP class 5

crossover cable and work in half-duplex mode

(this simulates the use of a Fast Ethernet re-

peater hub). Then run a simple ping-pong test

to evaluate one-way latency and asymptotic

bandwidth (after disabling the Nagle \piggy-

backing" algorithm). Under such experimen-

tal conditions you should measure a one-way

latency of 77.4 �s and asymptotic bandwidth

of 10.8 MByte/s at socket level, on average.

The average half-power point is found at 1750

bytes. Recalling that the maximum theoretical

bandwidth of Fast Ethernet is 12.5 MByte/s

and assuming a reasonable lower bound for

latency of 7 �s, this means that with Linux

TCP/IP and Fast Ethernet: Latency is one

order of magnitude worse than the hardware

latency; E�ciency in the range of short (single

packet) messages is below 50%; E�ciency is

good (86%) only with very long data streams.

Linux TCP/IP is very good for traditional net-

working but not perfect for cluster computing.

The Genoa Active Message MAchine

(GAMMA) [3, 5, 2] is a commodity cluster

based on Personal Computer (PC) and 100

Mbit/s Fast Ethernet technology. The Linux

kernel has been enhanced with a communica-

tion layer implemented as a small set of addi-

tional light-weight system calls and a custom

NIC driver with a fast interrupt path. Most

of the communication layer is thus embedded

in the Linux kernel, the remaining part being

placed in a user-level programming library.

The adoption of an Active Message-like

communication abstraction [7] called Active



Ports [4] allowed a zero-copy optimistic pro-

tocol, with no need of either kernel-level or

application-level temporary storage for incom-

ing as well as outgoing messages. GAMMA

implements pipelined communication paths

among user processes. Multi-user protected

access to the communication abstraction is

granted. The GAMMA device driver is capa-

ble of managing both GAMMA and IP com-

munication in the same 100base-T network.

On 3COM 3c595 and 3c905 NICs, GAMMA

yields very low one-way user-to-user latency

(12.7 �s) and high asymptotic bandwidth (12.2

MByte/s, corresponding to 98% e�ciency)

even when run on Pentium 133 based PCs.

It must be said that the GAMMA commu-

nication protocol o�ers little more than Data-

gram quality of service (QoS): it detects com-

munication errors (packet losses and corrupted

packets) but then it simply raises an error con-

dition without recovering. The GAMMA ap-

proach leaves to the user (application as well

as library writer) the task of using the error

detection mechanisms to build recovery poli-

cies of suitable complexity. However the very

low latency delivered by GAMMA potentially

allows a wide range of error recovery as well

as explicit acknowledge policies to be imple-

mented in a very e�cient way.

The main practical problem that has pre-

vented a distribution of the GAMMA proto-

type in form of a Beta release so far is due

to the fact that the 3Com NICs for which the

GAMMA driver was originally developed are

not commercially available anymore. Newer

NICs distributed by 3Com adopt now an in-

teraction mechanism that is similar to the one

o�ered by other product (such as the Digital

2114x, the Intel EtherExpress, etc.) that is

called descriptor-based DMA (DBDMA). The

exploitation of this data transfer mode from

NIC to RAM required a substantial re-design

of the 3COM 3c595 based GAMMA proto-

type. In particular, the \true zero-copy" mes-

sage receive that was implemented in the orig-

inal GAMMA prototype is almost impossible

to implement with similar performance results

in case of DBDMA NICs.

In this paper we report on the re-design and

porting of GAMMA on recent DBDMA based

NICs, and on how we achieved pretty satis-

factory results compared not only to previous

GAMMA versions but also to other prototypes

described in the literature that adopt the same

chipset. The restructuring of the GAMMA

prototype also changed the constraints on mes-

sage queueing and allowed an e�ective intro-

duction of a ow-control protocol.

The DBDMA version of GAMMA with ow-

control (that guarantees extremely low proba-

bility of message loss in any load conditions)

incurs no performance penalty compared to

the DBDMA version of GAMMA without ow-

control. This result allows the use of ow-

control for increased reliability of the prototype

and, in our opinion, compensates the (modest)

loss in absolute performance with respect to

the non-DBDMA previous prototype.

2 On DBDMA transfers

Figure 1 provides a comparison among

throughput curves measured with di�erent sys-

tem con�gurations for a Linux PC cluster

based on 3Com 3c905 Fast Ethernet NICs. It is

apparent that using the same hardware and OS

but di�erent device drivers leads to substantial

performance di�erences. The reason is very

simple. The 3c905 NIC can be programmed

and driven in two di�erent ways, that we call

descriptor-based DMA and CPU-driven DMA.

When driven in DBDMA mode, the NIC it-

self starts DMA transfers between host mem-

ory and the network (and vice-versa) by simply

scanning a precomputed list of so called \DMA

descriptors" stored in host memory. Therefore

the low-level memory-to-network and network-

to-memory data transfers are operated by the

NIC autonomously while the CPU is run-

ning the TCP/IP protocol code and prepar-

ing the necessary DMA descriptors for sub-

sequent data transfers. This operation mode

pipelines the end-to-end communication path

and increases the communication throughput.

The latest Linux drivers for the 3COM 3c905
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Figure 1: Linux 2.0.29 TCP/IP sockets: \ping-

pong" throughput, various NICs and CPUs

NIC use the DBDMA mode. Previous drivers

used the CPU-driven DMA mode, according to

which the host CPU itself starts a DMA opera-

tion of the NIC. After a DMA transfer has been

started, the CPU has to wait for the current

DMA transfer to end before starting a subse-

quent DMA operation. This leads to a \store-

and-forward" type of behavior and tight syn-

chronization between the CPU and the NIC,

that inevitably results either in lower through-

put (if the CPU context-switches) or in higher

overhead (if the CPU busy-waits).

A very similar 3Com card operated in CPU-

driven DMA mode on Pentium 133 CPUs

yields even lower performance. This provides

an insight on the software overhead involved

in running the TCP/IP stack: the larger this

overhead, the larger the performance degrada-

tion with slower CPUs.

In summary, we may conclude that the ad-

vantages of use of DBDMA NICs for tradi-

tional communication protocols is quite evi-

dent. Such an advantage certainly justi�es

the widespread adoption of DBDMA NICs and

their substitution of CPU-driven DMA NICs in

the market of commodity components.

The theoretical question that remains open

is whether light-weight cluster protocols such

as GAMMA can bene�t of DBDMA NICs or

not. Thinking in terms of pure latency and

bandwidth, the answer would obviously be

\no." On the one hand, the GAMMA pro-

totype already provides very high bandwidth

even with CPU-driven DMA transfers. On

the other hand, CPU-driven DMA transfers in

the receiver side allow \true zero-copy" proto-

col implementation, reducing latency as com-

pared to DBDMA. Indeed the demultiplexing

of incoming messages to di�erent receiver pro-

cesses and software communication ports re-

quires CPU activity, and calling the CPU af-

ter the incoming messages have been bu�ered

in memory forces a subsequent copy to deliver

the messages in their correct �nal destination.

In practice, even if one thinks that this

might not be a good choice in terms of la-

tency, the adoption of DBDMA NICs is forced

by the non availability of CPU-driven DMA

NICs. This was of course a practical consider-

ation that could not be considered satisfactory

from a scienti�c point of view, and the chal-

lenge was that of reducing the expected loss in

terms of latency to a minimum.

In the re-design of the GAMMA prototype

for DBDMA NICs we thus attempted to in-

clude additional functionalities that could solve

part of the open problems inherent to the CPU-

driven DMA version of the GAMMA driver.

The main bene�t that we could think to ex-

ploit in the case of GAMMA of a DBDMA

approach was the availability of substantially

larger FIFO queues (because they are imple-

mented in system RAM rather than in the

NIC). We thought that a good way of ex-

ploiting substantially larger input FIFO queues

could have been the introduction of a credit-

based, sliding window, ow control protocol

similar to the one already adopted in the FM2

prototype developed at University of Illinois

[6]. Such a ow-control protocol would have

had little chances to be implemented in an e�-

cient way in the context of inexpensive, CPU-

driven DMA NICs due to the presence of few

KBytes of on-board FIFO queues.



3 The ow-control problem

Another consideration which does not emerge

from Figure 1 is related to performance in a

congested LAN. It is well known that TCP

uses a sliding-window ow control algorithm

with \go-back-N" packet retransmission upon

timeout. The ow control mechanism of TCP

is an end-to-end protocol, that avoids packet

overow at the receiver side. However it can-

not prevent overow from occurring in a LAN

switch in case of network congestion. Only

a data-link level ow-control mechanism, such

as, e.g., the one de�ned in the 802.3x standard

extension, can prevent packet loss within the

network in case of congestion. A switch that

does not o�er 802.3x ow-control can indeed

discard frames in case of congestion. When this

occurs, eventually the retransmission mecha-

nisms of TCP on the sender hosts are triggered

and start re-sending many more packets than

needed, increasing network tra�c and there-

fore making the LAN even more congested.

Clearly, LANs require better ow control al-

gorithms or at least more sophisticated retrans-

mission policies. In the case of GAMMA we

started designing an appropriate ow-control

protocol from scratch, taking into account the

almost zero error rate that is exhibited by

100BaseT star topologies adopting standard

class 5 UTP cabling. The idea of associating

acknowledgement packets to each data packet

was therefore discarded.

A pure credit-based sliding window protocol

was instead chosen for pure ow control pur-

poses, similar to the one already adopted in

FM2 [6]. The availability of a potentially very

large FIFO Input Queue for incoming mes-

sages, that is implemented in system RAM and

handled by the NIC working in DBDMA mode,

allows a splitting of the queue size among many

potential message senders. Consider, e.g., the

case of an input queue made up of 1024 bu�ers,

each one of size 1.5 KBytes, in order to be

able to store a complete Ethernet frame. Such

an Input Queue would require the reservation

of 1.5 MBytes in system RAM, which is not

a big deal in a modern PC. A similar Input

Queue cannot be included on-board in low-

cost commodity NICs. Now consider the case

of the interconnection of 100 nodes by means

of a large switch. One may easily think at a

\reservation" of a substantial portion of the In-

put Queue for point-to-point communications.

Each node will have to be ready to receive mes-

sages from 99 di�erent nodes. If we reserved 8

bu�ers for each possible sender, we would con-

sume 792 out of the 1024 available bu�ers. In

this system con�guration we could then adopt

a sliding window size of 8 for each communi-

cation pair. Each sender would be initialized

with a credit of 8 frames towards each possi-

ble receiver, so that up to 8 consecutive frames

could be sent towards a given arbitrary des-

tination without receiving any acknowledge-

ment. Once all credits towards a given destina-

tion are exhausted the sender must refrain from

sending further frames towards that address

until it receives an acknowledgement. An ac-

knowledgement packet could restore the whole

initial credit of 8 consecutive frames allowed

for sending to a given destination.

In our example of utilization schema, addi-

tional 99 bu�ers in the input queue should be

reserved for incoming acknowledgements in or-

der to guarantee absence of deadlock. Out of

the 1024 bu�ers available in the Input Queue,

133 would not be reserved for GAMMA com-

munications, and could thus be used for other

protocols (such as, e.g., TCP/IP) possibly

sharing the same connection. The expected

overhead of such a ow control protocol is ex-

pected to be almost negligible if the initial

credit hold by a sender towards any possible

destination is large enough, because a single

acknowledgement frame is used to restore an

entire credit and because acknowledgements do

not involve any packet re-transmission in our

pure ow-control mechanism.

4 The DBDMA GAMMA

The new GAMMA prototype based on DB-

DMA operating mode has been developed at

the Department of Computer Science of the



University of Rome as part of two Master's

thesis. One version was developed for Intel

EtherExpress cards and another for Digital

21140 chipset based NICs. A similar e�ort

has not been undertaken yet for 3Com NICs

due to the lack of su�cient documentation on

the programming interface of the cards. The

DEC 21140 GAMMA prototype has been then

ported to newer chipsets of the same family

(21143), debugged and optimized at DISI, Uni-

versity of Genoa. A very e�ective ow-control

protocol has been included in this version.

For message sending the mechanism im-

plemented in the DBDMA driver is con-

ceptually identical to the one implemented

for the CPU-driven DMA ones. An ex-

plicit gamma_send(out_port,data_pointer,

length) function is invoked by the sender

process that speci�es a memory address and

an integer length to describe the data to be

transmitted through a speci�ed output port.

The send primitive automatically fragments

the message in packets of appropriate maxi-

mum size, and by means of a system call that

is added to the usual Linux ones inserts the

pointers to the fragmented data to be trans-

mitted into a pre-allocated list of frame de-

scriptors linked to the Output FIFO Queue as-

sociated with the NIC. The NIC automatically

realizes that some frames in its output queue

are ready to be sent, and starts sending them

accessing to the data in RAM. Both blocking

and non-blocking versions of gamma_send() are

available, the former busy waiting until the last

data frame has been sent, the latter returning

immediately upon insertion of the pointer to

the last frame to send in the output queue.

For message receive, instead, the adoption

of the DBDMA transfer mode implied a dif-

ferent software architecture as compared to

previous GAMMA prototypes. In the CPU-

driven DMA version of GAMMA, incoming

frames used to be kept in the on-board NIC's

FIFO Input Queue until the CPU responded

to the NIC's interrupt request. Then the

CPU used to look at the content of the frame

header by accessing it in programmed I/O

(PIO) mode in order to distinguish GAMMA

frames from TCP/IP frames, and do the appro-

priate demultiplexing. Eventually, the CPU

programmed the DMA Bus Mastering transfer

from the NIC's Input Queue to the �nal des-

tination in RAM for the received data. Upon

completion of the DMA transfer, the CPU ex-

ecuted the corresponding Receiver Handler.

With the DBDMA handling of the receiver

queue, the FIFO Input Queue is allocated in

system RAM rather than on-board. When the

NIC starts receiving a frame, it immediately

starts �lling the next bu�er available in RAM.

Upon complete receipt of a new frame, the NIC

interrupts the CPU to signal the availability of

new data. The CPU may also poll directly the

Input Queue data structure in RAM in order

to discover the presence of new frames with-

out having to wait for the execution of the In-

terrupt Handler. In any case, when the CPU

reads the frame header and is ready to perform

the demultiplexing, the message is already in

RAM, but most probably at the wrong memory

address. A memory-to-memory copy is usually

needed (and implemented by the CPU) in or-

der to deliver a GAMMA message in the user

bu�er speci�ed by the receiver process. Only

after this copy the CPU may execute the cor-

responding Receiver Handler.

The prototype adopting DBDMA NIC-to-

RAM communication mode is therefore ex-

pected to provide less good performance than

the previous CPU-driven DMA version, both

in terms of latency and of CPU overhead. The

greater CPU overhead in principle could be

considered relatively harmless, as the increase

in both CPU and memory bus clock rate are

expected to mitigate the performance penalty

in the near future. Our main concern before

the development of the prototype was related

to latency. In order to compensate for the ex-

pected performance loss we implemented an

important feature that we did not know how

to implement e�ciently in the previous ver-

sion of GAMMA, namely the ow-control. Ex-

ploiting the availability of a potentially very

large FIFO Input Queue in RAM, we adopted

a credit-based sliding-window protocol follow-

ing the idea outlined in the previous Section.
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Figure 2: Throughput curves of the new

GAMMA driver on DE500 NICs, Pentium 133

5 Performance

Figure 2 reports the throughput curves that

we were able to measure on our old proto-

type GAMMA cluster (Pentium 133MHz) us-

ing the newly developed DBDMA version of

the NIC driver for the DE500-BA NIC (21143

chipset). The measurements were taken using

a Ping-pong experiment user-process to user-

process level (including receiver handler over-

head). Curves measured for the new driver

implementation with and without ow-control

protocol are compared to the maximum the-

oretical throughput computed based on pure

hardware optimistic estimation of message de-

lay and to the actual curve previously mea-

sured on the CPU-driven DMA version imple-

mented for the 3C905 NIC. It is possible, of

course, to appreciate the increase from 13 �s.

to 17 �s. of message latency, even without ow-

control. The throughput for small/medium

size messages is also lower than the previ-

ous one, most probably due to the additional

memory-to-memory copy on receive. It is in-
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driver on DE500 NICs, Pentium II 350

teresting, however, to observe the diminishing

impact of ow control on throughput and la-

tency for increasing window size. While a win-

dow size of 4 frames still substantially a�ects

the throughput curve and latency, a window

size of 8 already has limited impact both on

throughput and on latency. With a window

size of a few tens, ow-control hardly reduces

performance in a noticeable way.

Moreover, consider the throughput curve

measured on our new prototype GAMMA clus-

ter, which is based on Pentium II 350MHz

with 100MHz memory bus, which is depicted

in Figure 3. Firstly, notice the reduction in la-

tency to 14 �s., which is almost equivalent to

the latency of the previous CPU-driven DMA

GAMMA driver for 3c905 NICs. Notice that

the previous GAMMA driver obtained very lit-

tle bene�ts from the upgrade of the processing

nodes to faster CPUs. Indeed the throughput

curve of the previous GAMMA prototype for

3c905 NICs was virtually insensitive to CPU

clock rate. Secondly, notice the substantial

improvement in the throughput curve of the

DE500 driver obtained by simply increasing



CPU and memory bus clock rate (compare the

two curves on P133 and PII350). The compar-

ison clearly shows the diminishing overhead of

memory-to-memory copy in receive due to the

increase in CPU and memory bus clock rate.

Thirdly, notice the very reduced di�erence in

throughput curve between the old CPU-driven

DMA with zero copy approach, and the new

DBDMA with single copy on receipt if a mod-

ern CPU with high clock rate is used.

Finally, let us stress the absolute value of the

performance results we obtained. GAMMA la-

tency remains substantially lower than the la-

tency reported for similar research projects, in-

cluding U-Net [8] and M-VIA [1] on NICs using

the same DEC chipset, even though our new

GAMMA prototype now includes ow-control.

6 Conclusions

We have ported our Active Port based messag-

ing system to a new device that adopts the DB-

DMA transfer mode to system memory. A re-

design of the receive mechanism was required,

that forced the introduction of one copy from

memory to memory. Performance results show

that, also due to the current trend of increasing

speed of CPU and RAM even in extremely low

cost PCs, such a change in the receive mecha-

nism has little impact.

On the other hand, the availability of a sub-

stantially larger FIFO Input Queue (allocated

in system RAM) allowed us to introduce a

credit-based ow-control protocol with appro-

priately high window size reserved to all po-

tential communication pairs. Our performance

measurements also show that, using such pro-

tocol and the window sizes that are feasible

in our low-cost prototype, the impact of ow-

control on latency and throughput is negligible.

With the adoption of ow-control our pro-

totype becomes very reliable, avoiding all sorts

of message loss due to receiver bu�er overow

under any load condition of the computational

nodes. The only remaining source of message

loss in GAMMA with ow-control is due to

transmission error and subsequent CRC check

failure, which almost never occurs (assuming

10

�10

bit error rate, an error inducing frame

loss is expected every 10

6

frames). In partic-

ular, using the new GAMMA prototype with

ow-control we expect to be able to implement

an MPI interface on top of GAMMA o�ering

unprecedented performance on cheapest Fast

Ethernet technology.
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