
GAMMA: a Low-cost Network of Workstations

Based on Active Messages

Giovanni Chiola, Giuseppe Ciaccio

DISI, Universita' di Genova

via Dodecaneso, 35

16146 Genova, Italy

fchiola,ciacciog@disi.unige.it

Abstract

Networks Of Workstations (NOW) are an emer-

ging architecture capable of supporting parallel pro-

cessing with signi�cantly low cost/performance ratio.

At the moment the implementation of standard high-

level communication mechanisms in a NOW does not

provide such a satisfactory cost/performance ratio, as

modern communication hardware would allow. We

show how a standard, Unix-like operating system kernel

can be extended with e�cient and performant low-level

communication primitives based on the Active Mes-

sage communication paradigm. Higher level standard

communication libraries, like MPI, should be imple-

mented on top of such e�cient low-level mechanisms.

We provide some preliminary results obtained from an

experimental prototype called GAMMA (Genoa Active

Message MAchine), which is a NOW whose nodes run

the operating system Linux 2.0 enhanced with an Active

Message communication layer.

1. Introduction

The usual protocol stack which is predominant in

the Unix environment for inter-process communication

(IPC), namely, the remote procedure call (RPC) level

built on top of BSD Sockets or System V Streams built

on top of TCP or UDP protocols built on top of the

IP protocol now constitutes a de-facto standard that

allows inter-operability of di�erent machines. This ad-

vantage is payed in terms of e�ciency of use of the

communication hardware capabilities.

The performance of an Ethernet based LAN ex-

ceeded the needs of midrange workstations and \super-

mini computers" existing �fteen years ago even with

the huge overhead of ine�cient communication protocol

layers. Today, when Ethernet based LANs become the

bottleneck of a Network Of Workstations (NOW), the

cheapest solution is to switch to faster hardware techno-

logies (such as Fast Ethernet, FDDI, ATM, etc.) rather

than producing new, more e�cient software.

These economic considerations are correct in most

but not all applications. One noteworthy exception is

the case of NOWs used as hardware support to par-

allel processing. We claim that NOWs built out of

cheap, fast, o�-the-shelf computation and communic-

ation hardware components constitute the only hope

for parallel processing techniques to spread. As a mat-

ter of fact, today no one interested in real applications

would see the convenience of moving to parallel pro-

cessing technologies involving substantially higher costs

provided that each year single processors that are much

faster and much cheaper than the ones available the year

before can be found.

In principle, an e�cient and well tuned NOW envir-

onment may well provide reasonably good levels of per-

formance, as modern fast LAN devices like Fast Ether-

net and ATM are not that much worse than custom, ex-

pensive communication networks used a few years ago

in massively parallel platforms. The problem of de�n-

ing a fast NOW-based parallel processing platform is

delivering a fraction of the raw performance of commu-

nication hardware to the application level much larger

than the one typically delivered by usual LAN environ-

ments through traditional network protocols.

The best approach to e�cient parallel processing in

a NOW is to design and implement e�cient low-level

interprocess communication primitives from scratch,

and use these primitives to build higher-level commu-

nication mechanisms, like those of MPI[4], which would

still enjoy a signi�cant fraction of the raw communica-

tion performances.

We have built an extremely cheap NOW prototype

called GAMMA (Genoa Active Message MAchine)

equipped with an e�cient interprocess communication

layer based on the paradigm of Active Messages[6].

GAMMA is a network of 12 Intel Pentium PCs con-

nected by a 100 Mb/s Fast Ethernet LAN. Each work-

station runs Linux 2.0 enhanced with a custom device

driver and Active Messages communication primitives.

Our result shows that GAMMA can beat very ex-

pensive parallel platforms such as the CM-5 in terms

of message latency (while of course it cannot compete

in terms of communication bandwidth due to the obvi-

ous di�erence in communication hardware complexity

and cost). Yet, several parallel processing applications

exist that would bene�t by the availability of a truly

cheap platform o�ering modest bandwidth, low latency

communications.

2. The GAMMA architecture

2.1. Hardware con�guration

The current prototype of GAMMA is composed of a

set of 12 autonomous workstations connected by means

of two independent LANs: one 10 Mb/s Ethernet used

with the standard protocol suite to provide network ser-

vices (such as NFS access to �le servers, remote login,

etc.) in the Unix environment and one 100 Mb/s, isol-

ated Fast Ethernet dedicated to the implementation of

fast inter-processor communication primitives.

Each workstation comprises:

� Intel Pentium 133 MHz CPU

� PCI mother board, 256 KB of 15 ns pipelined sec-

ondary cache, PCI Intel Triton chipset

� 32 MB of 60 ns RAM

� 3COM 3C595-TX Fast Etherlink 10/100BASE-T

PCI network adapter.

The Fast Ethernet 100 Mb/s LAN consists of a

3COM LinkBuilder FMS 100 repeater hub with 12 RJ-

45 ports, to which each Fast Etherlink adapter is con-

nected by a UTP cable.

No communication protocol (except for the IEEE

802.3 which is implemented in �rmware inside the PCI

cards) is run over the 100 Mb/s LAN.

Each workstation runs the operating system kernel

Linux 2.0.0 enhanced with our own communication

layer described below.

2.2. The GAMMA Active Message layer

An inter-process communication is accomplished by

the sender process invoking an Active Message \send"

system call. The goal of this system call is to copy a

portion of memory content from the user memory space

of the sender process on one node to the user memory

space of the receiver on another node.

Sending a message is accomplished by copying the

message from user space into the network adapter using

no intermediate bu�ering into kernel space. The over-

head is very limited thanks to the low abstraction level

of our communication protocol. Messages longer than

110 bytes are split into a sequence of Ethernet frames

(each one of length ranging from 60 to 1536 Bytes) that

are copied right away to the adapter's transmit FIFO.

This poses neither protection problems (as writing to

the adapter can only be accomplished through a system

call) nor memory access problems (as the transmitting

process is running when the transmission function cop-

ies from user space to the network adapter).

The Ethernet frames are eventually received by the

network adapter on the receiver side. An interrupt

handler on the receiving PC is then launched which

copies the content of the adapter's input queue to the

memory space of the receiver process, again without

any intermediate kernel bu�ering. The frame headers

provide the addressing information needed to locate the

correct user space bu�er where the incoming message

is to be stored, as well information needed to correctly

rebuild the message from several frames.

Upon completion of the memory-to-memory data

transfer, a user de�ned receiver handler is called on

the receiver node. The role of a receiver handler is to

integrate the incoming message into the data structures

of the receiver process and to prepare a user space buf-

fer for the next message to be received. It is worth

pointing out that in the Active Message approach each

process belonging to a running parallel application has

at least two distinct threads, namely:

� the main process thread which performs the com-

putations and sends messages; this thread is sub-

ject to the usual schedule policy of the OS kernel;

� one or more receiver threads, corresponding to the

execution of the receiver handlers; they are ex-

ecuted right away upon message reception under

the control of the device driver's interrupt routine,

without involving the OS kernel scheduler.

The receiver threads cooperates with the main process

thread by sharing all the global data structures of the

program. This multi-threading mechanism avoids the

descheduling of the receiver process that is inherent to

blocking message reception such as is usually imple-

mented in Unix \sockets", thus substantially reducing

latency.

The GAMMA communication protocol provides no

message acknowledgement since the high cost in terms

of loss of bandwidth and additional latency time is not

worth-while in a communication system with extremely

low probability of frame corruption. No explicit
ow

control is provided either, since if the receiver hand-

ler invoked upon message receipt completes execution

quickly enough, then the fast LAN becomes the bottle-

neck of the communication system. Indeed
ow control

should be implemented at the application level in case

of long receiver handler code.

However GAMMA implements an error detection

feature, by allowing user de�ned error handlers to be

called in much the same way as receiver handlers:

� under the control of the network driver's interrupt

routine in case of checksum error or frame corrup-

tions when receiving a message;

� under the control of the \send" system call in case

of frame loss due to excessive collisions when at-

tempting to send a message.

Receiver and error handlers may be also used to im-

plement connected communication protocols that guar-

entee message delivery if needed at the application level.

The GAMMA communication layer is embedded

into the original Linux kernel in the form of additional

system calls and data structures. The additional system

calls trap into kernel through a dedicated trap address

(unused in the current Linux kernel) which leads to the

GAMMA code through a particularly short and optim-

ized code path. The reception software is part of the

custom network device driver, and the interrupt routine

of the network driver is registered into the Linux ker-

nel as a \fast interrupt", which means that the kernel

path from the interrupt request to the driver's interrupt

routine is short as well.

2.3. The GAMMA computational model

In what follows, the words \workstation" and \PC"

are used as synonyms.

A physical GAMMA is the set of M workstations con-

nected to the fast LAN. Each workstation is addressed

by the Ethernet address of the corresponding fast net-

work card. A virtual GAMMA is a set of N�M com-

putation nodes, each one corresponding to a distinct

workstation in the physical GAMMA. The nodes are

numbered from zero on and this numbering provides the

necessary addressing of nodes at the application level in

the most straighforward way. At the kernel level each

of these numbers is mapped onto the Ethernet address

of the corresponding PC.

A parallel program may be thought of as a �nite col-

lection of N processes running in parallel, each on a dis-

tinct node of a virtual machine. GAMMA supports par-

allel multitasking, i.e., more than one virtual GAMMA

may be spawned at the same time on the same physical

GAMMA. Each one runs its own parallel program on

behalf of potentially di�erent users.

As a consequence, any workstation may be shared by

more than one parallel program at a given time. Each

virtual GAMMA and the corresponding running paral-

lel program is identi�ed by a number which is unique

in the platform. We call such an identi�cation num-

ber a parallel PID. Processes belonging to the same

running parallel application are characterized by the

parallel PID of the application itself. The parallel PID

is used to distinguish among processes belonging to

di�erent parallel applications at the level of each indi-

vidual workstation. A maximum of 256 di�erent paral-

lel PIDs may be activated on a physical GAMMA.

Each process has 255 communication ports

numbered from one on; port number zero is reserved

for kernel-level fast communications like those occur-

ring to create a virtual GAMMA and launch a parallel

program or to synchronize within a barrier synchron-

ization. Each port is bidirectional, which means that

data can be both sent and received through it. The

pointer to a user space bu�er where incoming messages

are stored may be associated to a port in order to use

it as input. A user de�ned receiver handler and a user

de�ned error handler may also be associated to an in-

put port. Each port being used as an output must be

mapped to another port of another process belonging

either to the same parallel program or to a di�erent

one, thus forming an outgoing communication channel.

Alternatively, an output port may be bound with N-1

input ports, each belonging to a process on a di�erent

node in the same virtual GAMMA, in order to broad-

cast messages. However in neither cases is the binding

accomplished through an explicit connection protocol.

Correctness and determinism of the communication to-

pology induced by the port-to-port mapping is up to

the programmer.

3. Related Work

Active Messages were originally proposed by re-

searchers at the University of California at Berkeley

[6], as a
exible and e�cient low-level communication

mechanism aimed at reducing communication overhead

and allowing communication to overlap computation.

The e�ciency of the Active Messages communication

mechanisms lies in the fact that they do not require

message bu�ering, due to the immediate managing of

messages by the user de�ned handlers.

A well known application of Active Messages as an

e�cient support to parallel processing is the Active

Message Layer introduced by Thinking Machines Co.

in the CM-5 platform [1].

The same idea has been followed by the FM project

[2], using a fast LAN called Myrinet instead of the Fat

Tree interconnection network of the CM-5.

Our modest yet original contribution to the idea of

exploiting Active Messages for e�cient parallel pro-

cessing is the application to a cheap platform which

exploits only o�-the-shelf and cheap hardware devices.

In order to experiment this idea we also chose a stand-

ard operating system for which source code is freely

available, namely Linux.

A somehow similar approach was followed also by re-

searchers at Cornell University in the framework of the

U-net project [5]. U-net follows the idea of removing

communication support from the OS kernel in order

to re-implement it (more e�ciently) at the user ap-

plication level. A pre-de�ned number of virtual \end

points" are multiplexed over the physical adapter. Each

end point can be attached to a single user process by

means of a system call. This way a virtualization of fast

communication devices directly accessible by user pro-

cesses is obtained which does not require any system

call to send messages. An Active Message layer was

implemented on top of such virtual fast communica-

tion devices. Both an ATM [5] and a Fast Ethernet [7]

version of U-net were released.

4. Performance Measurements

We carried out some preliminary performance meas-

ures on a GAMMA equipped with a two PCs. A more

extensive benchmarking is in progress.

We de�ned \delay" as the time interval between the

instant the sender process invokes the \send" system

call and the instant the interrupt routine on the receiver

node terminates to copy the message into the user space

receive bu�er. We used a typical \ping-pong" applic-

ation to carry out standard round-trip measures. The

average message round-trip time divided by two yields

the average delay, which of course is a function of the

message size. We de�ne communication latency as the

delay of a zero sized message.

We de�ne the \communication throughput" T (s) as

the transfer rate perceived by the application when

sending a message of size s: T (s) =

s

D(s)

where D(s) is

the message delay. We de�ne communication bandwidth

B(s) according to the formula B(s) =

s

D(s)�D(0)

where

D(0) is the communication latency as de�ned above.

The IEEE 802.3 standard allows for the frame size

to range between 60 and 1536 bytes on the physical

channel. With GAMMA, each frame has a 20 byte

long header. Sending a message shorter than 40 bytes

implies that less than 60 bytes are written to the net-

work adapter, which in this case pads the frame with

garbage bytes and transmits 60 bytes on the channel

anyway. The header carries information about the size

of the signi�cant portion of the frame, so that the re-

ceiving CPU may copy only that portion to the user

space receiver bu�er.

Any message whose size ranges from 40 to 109 bytes

results into a single full-sized Ethernet frame. However

messages longer than 110 bytes are split into a sequence

of frames. We realized that with frame bursts the com-

munication system works as a pipeline, where the re-

ceiver CPU gets a previous frame from the RX FIFO

queue on the receiver side while the adapters are trans-

mitting the current frame and the sender CPU is writ-

ing the next frame in the TX FIFO queue of the sender

side. Thanks to such pipeline e�ect, the fragmenta-

tion of medium sized messages into a large number of

small frames yields better throughput. The optimal

fragmentation of a given message depends on its size,

and the optimal fragmentation policy was achieved ex-

perimentally. As a consequence of having such a frag-

mentation policy, the communication delay of messages

ranging from 110 to 1516 bytes is no longer a linear

function of message size.

The exploitation of cache a�ects the memory trans-

fer rate. Therefore data were collected in two cases:

hot cache, when the send and receive bu�ers are pre-

charged in cache before invoking the communication

system calls; cold cache, when the send and receive

bu�ers are discharged from cache before invoking the

communication system calls.

Our average estimates in the case of hot cache are:

� Latency: 18.4 �s

� Maximum Bandwidth: 9.91 MB/s, with messages

sized 65536 bytes.

Instead, our estimates in the case of cold cache are:

� Latency: 28.7 �s

� Maximum Bandwidth: 9.83 MB/s, with messages

sized 65536 bytes.

Figure 1 depicts the plot of throughput and band-

width as a function of the message size in the case of

message size
(bytes)2

2

4

8

throughput
(Mbyte/sec)

6

10

Bandwidth

Throughput

6
2

7
2

8
2

9
2

10
2

11
2

12
2

13
2

14
2

15
2

16

Figure1. Throughput and Bandwidth as a function of message size with hot cache.

Platform Latency (�s) Bandwidth (MByte/s)

100 Mb/s LAN, Linux TCP/IP sockets 275.6 3.4

100 Mb/s LAN, PARMA

2

PRP sockets 73.5 6.6

GAMMA cold cache 28.7 9.8

GAMMA hot cache 18.4 9.9

CM-5 CMMD 93.7 8.3

CM-5 CMAML 35.0

SP2 MPL 44.8 34.9

T3D PVMFAST 30.0 25.1

U-net UAM ATM 35.5 14.8

U-net UAM Fast Ethernet 30.0 12.0

Table1. Ping-pong application: comparison of platforms.

hot cache. We observed that half the bandwidth is ex-

ploited already with messages as short as 32 bytes.

Using results provided by our collegues working on

the PARMA

2

Project [3, Table 2.1] we can compare

the performance of ping-pong on GAMMA with the

performance of ping-pong on other platforms. Table 1

reports some of the results obtained by the PARMA

2

group in which the GAMMA results are integrated.

Like PARMA

2

, GAMMA cannot compete with real

parallel platforms in terms of bandwidth. However, in

terms of pure message latency GAMMA provides a dra-

matic improvement compared to PARMA

2

and is quite

competitive even compared to much more expensive

parallel platforms. Of course comparing GAMMA per-

formance to the performance of other platforms using

MPI or CMMD is not completely fair since only an Act-

ive Message layer and not the whole MPI environment

runs on GAMMA for the moment. However we do not

expect the overhead of the MPI implementation over

GAMMA to increase message latency in a substantial

way. The comparisons with CM-5 CMAML and the U-

net emulation of Active Messages [5] appear instead to

be fair. In the case of U-net data are desumed from the

cited paper and the hardware platform is constituted by

60 MHz SuperSPARCs connected by 140 MHz ATM.

5. Conclusions and Future Works

Our preliminary experimental results show an im-

provement of more than 4 times in short message delay

as compared to PARMA

2

which in turn had already

shown a substantial improvement (one order of mag-

nitude) over the standard implementation of socket

based inter-processor communication. These results

suggest that with proper kernel support, MPI type com-

munication primitives could show more than one order

of magnitude improvementwith respect to standard im-

plementations on NOW platforms as currently provided

by the best public domain products. Such improvement

may su�ce to make the use of inexpensive NOW plat-

forms feasible and convenient with respect to expensive

\commercial parallel platforms" for a large class of ap-

plications and with a fair number of processors.

Of course, our proposed NOW platform lacks one of

the main requirements that a massively parallel archi-

tecture must consider, namely scalability with respect

to the number of processing nodes. If we increase the

number of processing nodes in GAMMA sooner or later

we will saturate the LAN bandwidth. This problem

can be partly alleviated by the adoption of a switched

Fast Ethernet, which provides dedicated, full-duplex

100Mb/s connections to each node. The cost of Fast

Ethernet switches is now decreasing, and it will soon

become an a�ordable o�-the-shelf component, in sub-

stitution of traditional repeater hubs.

On the other hand, we think that the cost of the

scalability characteristics of \real" parallel platforms

such as the CM-5 (with its Fat Tree interconnection

network) is hardly justi�ed in the majority of applic-

ations where parallel processing would, in principle,

make sense. Only very few special applications would

really require (and therefore really be worth the current

cost of) the scalability characteristics of a \real" paral-

lel platform that a special purpose network can provide

with respect to o�-the-shelf LAN hardware technology.

This consideration leaves space for a trade-o�

between the scalability of a parallel machine and the

low cost and reasonably good performance of standard

LAN hardware provided that the performance of the

LAN hardware is not fully wasted by ine�cient layers

of software.

In conclusion, we think that the preliminary results

of our experiment are quite encouraging and that it

surely makes sense to propose the inclusion of a small

set of communication primitives, implemented accord-

ing to an accurate, performance-oriented approach into

a standard operating system kernel.

References

[1] Connection Machine CM-5 Technical Summary. Tech-

nical report, Thinking Machines Corporation, Cam-

bridge, Massachusetts, 1992.

[2] S. Pakin, M. Lauria, and A. Chien. High Perform-

ance Messaging on Workstations: Illinois Fast Messages

(FM) for Myrinet Computation. In Proc. Supercomput-

ing '95, San Diego, California, 1995. ACM Press.

[3] The Computer Engineering Group. PARMA

2

Project:

Parma PARallel MAchine. Technical report, Dip. In-

gegneria dell'Informazione, University of Parma, Oct.

1995.

[4] The Message Passing Interface Forum. MPI: A Mes-

sage Passing Interface Standard. Technical report, Uni-

versity of Tennessee, Knoxville, Tennessee, 1995.

[5] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-

Net: A User-Level Network Interface for Parallel and

Distributed Computing. In Proc. 15th ACM Symp. on

Operating Systems Principles, Copper Mountain, Col-

orado, Dec. 1995. ACM Press.

[6] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser.

Active Messages: A Mechanism for Integrated Commu-

nication and Computation. In Proc. 19th Int. Symp.

on Computer Architecture, Gold Coast, Australia, May

1992. ACM Press.

[7] M. Welsh, A. Basu, and T. von Eicken. Low-latency

Communication over Fast Ethernet. In Proc. Euro-

Par'96, Lyon, France, Aug. 1996.

