
signatures

UNIVERSIT

�

A DEGLI STUDI DI PISA

DIPARTIMENTO DI INFORMATICA

DOTTORATO DI RICERCA IN INFORMATICA

Universit�a di Pisa-Genova-Udine

Ph.D. Thesis: TD-4/93

Relationships

between

Logical Formalisms

Maura Cerioli

Abstract. This thesis provides rigorous tools to state the independence of results

and speci�cations from the algebraic frameworks chosen to describe them.

To translate speci�cations and results, a new kind of formalism (institution)

homomorphisms, called simulations, is de�ned.

The main applications of simulations are three: the investigation of the rela-

tionships between the expressive power of di�erent institutions, the translation of

logical tools and the de�nition of speci�cation building languages that allow basic

theories to be de�ned in several formalisms, generalizing the concept of imple-

mentation by relating speci�cations from two frameworks. Recent results in the

theory of both partial and non-strict algebras are disseminated through the thesis

as well.

March 1993

ADDR:Corso Italia 40,56125 Pisa,Italy. TEL:+39-50-510111 - TLX:590291 DIPISAI -

E MAIL: cerioli@cisi.unige.it

ii

Preface

Formal speci�cations are widely considered an important tool in software speci�-

cation, design and implementation. As a result both of theoretical investigations

and of preliminary attempts at applications, a variety of speci�cation formalisms

have been considered. This fragmentation of frames is con
icting with some es-

sential requirements of any speci�cation formalism, i.e. the ability of supporting

modularity and re�nement, which are clearly related to the problem of reuse of

speci�cations. The central theme of this thesis is the independence of speci�ca-

tions and results from the logical formalisms in which they are formulated.

A concrete motivating example of the need for a formal tool allowing transla-

tion and comparison of speci�cations de�ned in di�erent frameworks is the debate

about the algebraic speci�cation of partial (higher-order) functions. Indeed the

relevance of such a problem is made obvious by the wide use of partial operations

in programming languages and their data types and not only the scienti�c com-

munity didn't agree on what formalism is better, but also the criteria for such a

judgment are still under investigation.

After presenting a parade of di�erent formalisms proposed to de�ne partial

functions and in particular some recent results about the partial paradigm, the

concept of simulation of a framework by another is introduced, adopting the notion

of institution as a synonym for logical formalism. The basic idea of simulation

is encoding the syntax, i.e. signatures and sentences, of a new frame by that of

an already known formalism in a way consistent with the semantics, in order to

transfer back results and tools.

Then simulations are used to investigate the relationships between frames, �rst

using the relationships between speci�cations of partiality in di�erent formalisms

as a guide, and then applying the same technique to the analogous problem of

de�ning non-strict functions (like the ubiquitous if then else). Three levels can

be distinguished (and formalize using simulations): the\set-theoretic", where the

individual models are related disregarding their categorical and logical intercon-

nection, the \categorical", where the relation is between the categories of models,

and the \logical", where the relation is between speci�cations (or theories).

iii

Moreover a general categorical construction is introduced, that allows \bor-

rowing" the logical tools of a framework to enrich another framework lacking

them, provided that an appropriate mapping between the frameworks exists. This

technique applies, in particular, to the translation of inference systems along sim-

ulations (in a way that soundness and completeness are preserved) and of proofs

along maps of the underlying institutions (entailment systems). An instance of

this technique builds an equationally complete inference system for the partial

higher-order speci�cations starting from an equationally complete inference sys-

tem for the �rst-order case.

Finally the notion of institution independent metalanguage, by Sannella and

Tarlecki, is re�ned in simulation independent metalanguage, allowing speci�cation

de�ned in di�erent institutions to be assembled to build new speci�cations, and

the concept of implementation is generalized, involving models in two institutions;

in this way speci�cations may be related that belongs to di�erent frames.

iv

Contents

1 Speci�cation Formalisms 1

1.1 Institutions : 3

1.2 Other Formalisms : 10

1.2.1 Pre-Institutions : 11

1.2.2 Speci�cation Logics : 13

1.2.3 Galleries : 15

1.2.4 Foundations : 18

1.2.5 �-Institutions and Entailment Systems : : : : : : : : : : : 20

2 A paradigmatic problem: the Speci�cation of Partial Functions 27

2.1 The Total Approaches : 28

2.1.1 Error Algebras : 28

2.1.2 Equational Type Logic : 33

2.1.3 Uni�ed Algebras : 34

2.2 The Order-Sorted Approach : 36

2.3 The Partial Approach : 41

2.4 Strong Partial Logic : 54

2.4.1 Conditional Speci�cations : : : : : : : : : : : : : : : : : : 55

2.4.2 Free objects and logical deduction : : : : : : : : : : : : : : 64

2.5 Partial Higher-Order Speci�cations : : : : : : : : : : : : : : : : : 75

3 Relating Speci�cation Formalisms 87

3.1 Simulations : 88

3.1.1 An Introductory Example : : : : : : : : : : : : : : : : : : 89

3.1.2 Simulations of Basic Speci�cations : : : : : : : : : : : : : 91

3.2 Relationships between Institutions : : : : : : : : : : : : : : : : : : 95

3.2.1 A Paradigmatic Example: Partial versus Total Speci�cations 96

3.2.2 Non-strict Speci�cations : : : : : : : : : : : : : : : : : : : 103

3.2.3 Relating total and non-strict algebras : : : : : : : : : : : : 126

v

3.3 Arrows between Institutions : 136

3.3.1 Maps of Institutions : 136

3.3.2 Institutions Morphisms : 139

3.3.3 Pre-Institution Transformations : : : : : : : : : : : : : : : 140

3.3.4 Institution Coding and Representations : : : : : : : : : : : 144

4 Translating Tools 147

4.1 Introductory Examples : 148

4.2 Transporting Structures Across Categories : : : : : : : : : : : : : 150

4.3 General Logics : 156

4.4 Building Logics : 159

4.4.1 Applications : 163

4.5 Building Proof Calculi : 187

4.6 Building Logical Systems : 190

5 Structured Speci�cation 193

5.1 Simulations and modularity : 194

5.1.1 Basic Speci�cations : 195

5.1.2 Structured Speci�cations : : : : : : : : : : : : : : : : : : : 197

5.2 Implementation : 204

5.2.1 Simulations and the third dimension of implementation : : 204

6 Conclusions and Future Work 207

vi

Introduction

Most software systems needed to solve concrete problems are far too large to be

handled by human minds without the support of a rigorous methodology. This

was dramatically brought to the word attention, at the end of the sixties, by the

so called software crisis. Since then the need for formal software speci�cations

has been widely recognized.

Formal speci�cations, providing tools for modularity and re�nement (see

e.g. [49, 72]), facilitate reuse and maintenance of produced software and allow,

by rapid prototyping and formal veri�cation methodologies, keeping under con-

trol the correspondence between the still developing programs and the customer

requests.

In this frame the algebraic approach �nds place as the natural abstraction of

the data type concept, seen as set(s) of values and operations on them, that are the

only acceptable tools to manipulate the data, whose actual realization should be

hidden from the user of the data type. Thus a (concrete) data type (or a program)

is a (many-sorted) algebra on a signature representing the data type (or module)

interface by the names classifying the values and the operation symbols on them

(see e.g. [42, 41]). Symbols in the signature are used to axiomatize the basic

properties and behavior of the data type, so that a user does not need to know

the actual realization of the data type, but can work on the axiomatic description,

that is common to every implementation of the data type. Moreover a standard

realization exists for each data type that is characterized by two properties: no-

junk, i.e. every value of the data type is denoted by (at least) a term built on the

signature symbols, and no-confusion, i.e. two terms denoting the same value in

this algebra denote one value in any algebra satisfying the axioms, too. These

properties are strictly related with the induction principles, and in particular with

proof-theoretic properties (see e.g. [64]), and correspond to initiality.

In the pioneering papers of the ADJ group equational logic was chosen to

axiomatize the properties of the data types, following a well-established tradition

in universal algebra. Indeed the study of classes of algebras de�nable by equations

dates back to the thirties, with the works of Birkho� resulting in his famous

vii

theorem, that states that equations characterize exactly varieties, i.e. classes of

algebras closed w.r.t. subalgebras, products and quotient (see e.g. [19]). Although

varieties, or their weakened notion of quasi-varieties, are still in vogue because

of their elegant and well-established mathematical counterpart, especially if the

initial approach is considered, as a result both of theoretical investigations and

of preliminary attempts at applications, the nature of the algebras, the logics

used to de�ne the classes of admissible realizations of a data type and even the

notion of signature have been worked out again more or less recently, producing

a considerable proliferation of speci�cation formalisms.

From a pragmatic point of view, the existence of a number of di�erent for-

malisms is pretty reasonable, because each one of them may be the more comfort-

able to work in, depending on the problem under examination, the �eld tradition,

the available tools and (not least) the personal taste. However in practice (and

indeed this thesis started out of a bunch of concrete problems arising in the �eld

of the algebraic speci�cation of concurrent systems, that are sketched later) this

fragmentation leads to three orders of di�culty:

� a number of analogous results are proved in di�erent frameworks, with slight

variations of one proof technique; think for instance of the proofs of existence

of an initial object in classes of (partial, total, order-sorted one/many-sorted)

algebras (with/without predicates) de�ned by a set of conditional sentences.

The standard technique is to de�ne congruences in a way that the kernels

of the natural interpretation of terms is a congruence and then show that

the quotient of the term algebras by the intersection of the kernels of the

natural interpretation of terms in the algebras of the class (alternatively by

the congruence generated by a Birkho�-like deduction system) is a model,

too. Thus a number of instances of the same result, proved with the same

technique are disseminated in the literature.

� it is virtually impossible to formally compare results and tools developed in

di�erent frameworks without the help of a meta-formalism; thus quite often

comparisons and discussions about what framework better �ts the needs are

developed at an informal level and the lack of rigour comes out in a lack of

objective criteria to establish the merits of the di�erent frames.

� from the point of view of a speci�cation language user the ability of sup-

porting modularity and re�nement are essential in order to allow reusing of

speci�cations. Thus it is important (not to say crucial) to assemble, possibly

at di�erent levels of implementative detail, speci�cation modules in di�er-

ent formalisms. Rephrasing the title of a landmark paper by Burstall and

viii

Goguen [27], the issue is \putting together theories from di�erent formalism

to make speci�cations".

To overcome these problems the �rst step is developing a theory whose objects

are the speci�cation frameworks, so that results can be stated in a general form

and then instantiated on an actual framework; moreover such a notion should help

in comparing di�erent formalisms providing a common language to de�ne which

results/features are relevant w.r.t. the comparison. In Mahr & Makowsky's words

([56]), the goal is

to create an appropriate framework to speak about speci�cation lan-

guages, to compare their expressive power and to axiomatize their

semantic behavior. This framework is meant to capture only the ba-

sic properties which are satis�ed by any speci�cation language that is

reasonable.

Starting from ground work in the �eld of speci�cation languages and in par-

ticular to give the semantics of the Clear language (see e.g. [28]), in the late

seventies Burstall & Goguen captured the intuition of the minimal requirements

that a theory must meet to be a reasonable speci�cation framework and intro-

duced the notion of institution \to do the Clear tricks once and for all, over any

(suitable) logical system" (Burstall & Goguen [45]). Institutions formalize the

intuitive notion of logical system and consist of the minimal ingredients of any

algebraic framework:

� a collection of the admissible languages (that in the algebraic tradition are

called signatures);

� for every language the class of the admissible structures on that language

(algebras on the signature)

� for every language a set of sentences on the language, used to axiomatize

classes of structures, or models.

A satisfaction relation between structures and sentences on the same language

is needed in order to de�ne (basic) speci�cations, i.e. to axiomatize classes of

models; moreover, in order to build more complex speci�cations starting from

simple ones, the admissible changes of language are used. Accordingly sentences

are translated by language changes (by the rename of the language symbols, in

the standard cases) and any model on the target language can by reduced to a

model on the source of a language change (by interpreting each source symbol

ix

as the interpretation in the model of its image along the language change). A

crucial point is that, following the intuition that the language changes do not

have any semantic meaning, truth is invariant under change of notation. From a

technical point of view this property is also needed to have that the construction

of speci�cations using such changes of notation is sound.

Translating the above discussion in categorical terms, an institution consists

of a category of signatures, a couple of functors, respectively giving the set of

sentences and the category of models for any given signature, and a satisfaction

relation between models and sentences on the same signature such that for each

signature morphism � a model satis�es the translation of a sentence along � i�

the reduct of the model along � satis�es the sentence (i.e. the satisfaction relation

is an extranatural transformation).

Few alternative notions have been proposed, at a time with institutions or

later, aimed to deal with problems related to speci�cation languages, but not de-

signed to represent algebraic formalisms in their general form, so that their appli-

cations have been local to a problem or a working group and missed the resonance

of institutions. Consider for instance the (algebraic) speci�cation languages by

Mahr & Makovsky, independently de�ned during the same period as institutions

and very close to this notion; they were used in [56, 55, 57] to state an important

result in the Birkho� tradition, that, roughly speaking, can be rephrased as \the

speci�cations uniformly admitting initial object are all and only those that can be

expressed by conditional axioms". But, to the author's knowledge, speci�cation

languages were not used for any other task and the following works on the sub-

ject were stated in the institution framework (see e.g. [89, 90, 92]). Analogously

the model-theoretic approach by Barwise (see e.g. [15]) had no followers among

the computer scientists, because some conditions were too restrictive to capture

relevant examples in this �eld.

On the other hand structures were proposed to deal with aspects of the alge-

braic speci�cations ignored by the institutions, namely the need for the capability

to represent many-valued logics, in order to capture examples from data base and

knowledge theory or simply the concept of evaluation, (see e.g. [61]) and tools to

speak of deductions, proofs and such (see e.g. [36] for a formalism presented as

an alternative to institutions and [63] for a completion of the institution frame-

work with logical instruments). The original de�nition of institution inherited

from these alternative representations of logical systems and from the feed-back

coming from their use by the scienti�c community some slight changes and gen-

eralizations (see e.g. [45]).

Since their de�nition, institutions were favored by the scienti�c community

x

and a number of classical notions, problems and results from algebraic speci�ca-

tions were rephrased and approached in this more general frame; consider, indeed,

e.g. [89, 90, 92] for Birkho�-like studies on the relationships between initiality,

freeness, varieties and the form of the axioms, [32] for a generalization of the

module algebra concept to the institution frame, [84, 82] for speci�cation building

languages that are uniformly interpreted on any institution, [83] for lifting the

notion of observational equivalences to work on a generic logical framework, [91]

for rephrasing classical logic theorem and, on a more applicative side, [16], where

an institution is presented to represent implementations, and [31, 78, 79], where

some institutions for the speci�cation of the abstract requirements of concurrent

systems are proposed and analyzed.

The common denominator of these papers is the emphasis on the institution

independence of many classical results, that can be presented in a more general

form once and for all.

Although a great part of algebraic theory can be rephrased in terms of a generic

institution (possibly satisfying some extra conditions), there are constructions (or

theoretical proofs or automatical tool building) that cannot be done without �xing

the logical framework details, for example the nature of signature should be known

to the designer of a parser. Moreover it may be convenient (and in practice this

happens in many cases), in order to develop di�erent parts, to be able to work in

more than one institution at one time. To make this idea precise and to inherit

from the category theory prede�ned concepts (like the notion of sub-institution)

and constructions (like products, sums, or (co)limits) a notion of arrow between

institutions has to be introduced.

The �rst attempt at the de�nition of such arrows was the notion of institution

morphism in the pioneering paper on institutions [44]. This de�nition serves

the purpose of building new institutions starting from simpler ones, adding in a

modular way features to logical systems. The basic idea is that signature and

models are translated from the source into the target institution, while sentences

are mapped from the target into the source, preserving the satisfaction relation

in the sense that the translation of a model satis�es all and only those sentences

whose translations are satis�ed by the model itself.

Although institution morphisms induce a category of institutions, where stan-

dard categorical construction correspond to intuitive institution building opera-

tions (see e.g. [44, 46] and the study of categorical properties in [91]) and are

apparently well behaving also w.r.t. more ad hoc hierarchic constructions (the

analysis of such compatibility is still under development, see [30]), they are in-

xi

appropriate to compare the expressive power of di�erent institutions

1

. Moreover,

since signatures and sentences are mapped in the opposite directions, the use of in-

stitution morphisms in order to translate axiomatic presentations of speci�cations

are innatural.

The analysis of a few concrete examples leads to identify two main require-

ments to capture the notion of comparison between the logical expressive power

of di�erent institutions:

� signatures and sentences should be mapped in the same direction, so that

axiomatic presentations of speci�cations can be translated and compared

with theories expressed in a di�erent institution;

� requiring that every (target) model may be translated (into a source model)

in a way that satisfaction is preserved (with the same meaning as for insti-

tution morphisms), i.e. that every individual model of the target institution

is a sound representation of a model of the source, is too restrictive, because

in this way only institutions whose models have the same expressive power

could be related.

Moreover, in order to be guaranteed that every speci�cation in the source has a

corresponding speci�cation in the target whose models represent the models of

the speci�cation (where speci�cation stands for class of algebras on one signature,

as necessary to deal with speci�cation languages), the surjectivity of the model

component is crucial.

In order to meet the second requirement, there are basically three possibilities:

the component dealing with models is partial (adopted by simulations in [2]), a

signature is translated into a theory whose models are the domain of the compo-

nent dealing with models (adopted by maps of institutions in [63]), and a (source)

model is represented by a class of (target) models (adopted by institution coding

in [93], and more recently by pre-institution transformation in [81], where every

source model is translated into a set of target models).

Starting from a number of concrete examples and following the requirements

described above, in [2] simulations of institutions were de�ned and used to ap-

proach two main problems: how to put together speci�cations de�ned in di�erent

institutions and how to generalize the notion of implementation, relating models

in di�erent formalisms.

Simulations consist of a mapping of signatures and sentences from the source

into the target institution and of a backward translation of models preserving

1

The motivations of this inadequacy are clearly presented in [91] and appear patently from

concrete examples

xii

satisfaction, that is partial and surjective. The domain of the model class is not

required to be the model class of a set of old sentences, not even a full subcategory

of the old models, in order to be able to use simulation to represent relationships

between institutions that are known in literature, as for instance the representa-

tion of partial by total algebras adding (for each sort) a constant denoting the

\unde�ned elements".

In the literature it is often claimed that a frame is equivalent to another one,

usually in the sense that both solve the same kind of problems, or that in both the

results are equivalently (un)satisfactory. But the meaning of equivalence is usually

not formally de�ned and quite often used to denote di�erent levels of relationship.

Indeed three levels can be distinguished and formalized by means of simula-

tions, depending on whether the correspondence is between models, or categories

of models, or speci�cations (theories). At the set-theoretic level, every model of

the new frame is represented by a model in the old frame, that satis�es the same

formulas, or, more precisely, corresponding formulas. This corresponds to requir-

ing that a simulation exists from the new into the old frame (s.t. the domains of

the model component is a, possibly non-full, subcategory of the old models). At

this level most properties are missing, in particular no structured way of de�ning

models is guaranteed to be preserved, because it usually involves categorical con-

structions. To have a categorical correspondence between two frames, at least the

domain of the simulation has to be a full subcategory of the old models; moreover

some more properties have to be required depending on the categorical structures

that are intended to be preserved. Here the focus is on the initial structures and

minimal conditions are given to preserve initiality. Even if there is a categori-

cal simulation, the power of the speci�cation languages in the two frames can be

quite di�erent; in particular it is possible that in the new frame some categories

are de�nable by sets of sentences that are not so in the old one (and vice versa).

To guarantee that the relationship is at the logical level, i.e. for every speci�cation

(i.e. the class of models which satisfy a set of sentences) in the new frame there

exists a speci�cation in the old frame equivalent to the given one in the categorical

sense, it must be required not only that the domain of the model component is a

full subcategory of the category of old models, but also that it is described by a

set of old sentences.

Simulations can be used not only to compare the expressive power of di�er-

ent formalisms, but also to translate results and tools from the target into the

source institution. Consider indeed, as an example, the mapping of inference sys-

tems. Given an inference system in the target institution an inference system for

the source institution can be built, which consists of a preprocessing (the cod-

xiii

ing of both the premises and the consequence in terms of target sentences), the

application of the given system and possibly a post-processing (the decoding of

the answer). Since the validity of sentences is preserved by simulation and every

new model is represented by at least an old one, soundness is preserved by this

construction. Moreover if the domain of the simulation component dealing with

models is the model class of a set of sentences, i.e. the simulation is a map of insti-

tutions too, also completeness is preserved. In particular this technique is applied

to the simulation of partial higher-order speci�cations by partial �rst-order ones,

after presenting an equationally complete inference system for the �rst-order case.

This construction is a particular case of a general categorical construction, that

allows \borrowing" the logical tools of a framework to enrich another framework

lacking them. In order to apply this construction, one needs appropriate mappings

between the frameworks. After explaining the key categorical properties on which

the construction rests and giving an overview of concepts in general logics, this

technique is applied to few concrete examples to illustrate how it can be generally

used to translate proofs along maps of the underlying institutions (entailment

systems) and how to built a logical system for any given institution.

Finally the basic notion of simulation between institutions is extended to deal

with the problem of structuring speci�cations in di�erent formalisms, introducing

the concept of simulation independent metalanguage, a generalization of notion

of institution independent metalanguage, by Sannella and Tarlecki. Moreover, in

connection with the re�nement problem, it is shown how simulation adds a third

dimension to the well known horizontal and vertical composition of implementa-

tions, thus allowing the composition of software modules not only from di�erent

formalisms, but also at di�erent levels of abstraction.

Thesis Summary

The roots of this thesis date back to concrete experiences (of the supervisor and

his group but not involving the author) in the �eld of algebraic speci�cation of

concurrent systems from two points of view.

On one side in order to specify concurrent calculi, higher-order partial functions

are needed (see e.g. [13]), as well as to specify programming languages and their

data types (see e.g. [11]; thus the need for a rigorous foundation of the theory

of partial functions led to the study of partial higher-order speci�cations. Since

partial higher-order speci�cations reduce (at least for term-generated models) to

a �rst-order (in�nitary) logic more powerful than usual, foundations for such a

logic had to be provided �rst. The results about the categorical properties of

xiv

model classes, published in [1, 7, 29], are summarized in the second chapter, while

the equationally completeness of an inference system, presented in [1], restricted

to ground deduction, and in [7, 29], in a more general form, is proved in the

forth chapter. Moreover the application of these studies to the higher-order case,

presented in [3, 6], are summarized, too, in the second (categorical results) and

forth (logical system) chapters.

On the other side, as concurrency features are in a sense orthogonal to the

algebraic formalism adopted in order to represent the data types of the language

(including processes), provided that tools to represent the transition predicates are

available, the SMoLCS paradigm was rephrased on di�erent algebraic frameworks,

tuning it to the particular applications; for example in [10, 13, 12] the algebraic

formalism underlying the SMoLCS construction is the (plain) partial algebras,

while in [14] total algebras with predicates are used and in [9] partial algebras

with predicates. Since every change of the underlying formalism requires, in order

to be rigorous, formal restatement of de�nitions and results that do not involve

the concurrent features and are, hence, semantically immaterial, the need for a

translator of algebraic framework that allowed to change the underlying formalism

without a�ecting the concurrent constructions resulted in the study of simulations,

that are the central theme of this thesis. Simulations were introduced in [2] and

used to deal with two important aspects of speci�cation languages: modularity

and implementation; such results are reported in the last chapter. In [8] a rigorous

analysis of the di�erent levels of relationships between logical formalisms is de-

veloped by means of simulation; in the second chapter these levels are illustrated

and the technique is applied to two paradighmatic cases: the relationship between

di�erent speci�cations of partiality and the comparison between the speci�cation

of non-strict functions in total and non-strict frames.

The structure of the thesis is the following.

The �rst chapter is devoted to the introduction of the notion of institution as

rigorous counterpart of speci�cation framework and to the comparison of institu-

tions with other formalisms introduced in litterature to represent logical frames:

Pre-Institutions, by Scollo and Salibra; Speci�cation Logics, by Erigh, Baldamus

and Cornelius; Galleries, by Mayoh; Foundations, by Poign�e; �-institutions, by

Fiadeiro and Sernadas; Entailment Systems, by Meseguer.

In the second chapter, as a paradigmatic example of the need for a rigoruos

de�nition of speci�cation formalism translator, the speci�cation of partial func-

tions in several styles is proposed, considering from the classical total ones, like

error algebras, to more recent proposals, like the order-sorted paradigm or the use

xv

of explicit typing mechanisms. A large room is given to the partial approach, not

only recalling the classical result but also proposing a treatment of higher-order

partiality.

The third chapter presents the central de�nition of this thesis, i.e. the notion

of simulation and uses simulations to enlighten the di�erences between a number

of representations of partiality by total algebras, showing that three levels can be

distinguished, corresponding to relating individual models, categories of models,

or axiomatic presentations. The same technique is applied also to the relationship

between total and non-strict algebras, after a summary of the results about non-

strict don't care speci�cations. Then simulations are compared to other notions

of arrows between institutions: institution morphisms, maps of institution, pre-

institution transformations and istitution coding/representations.

A general categorical construction allowing a structure to \borrow" logical

tools from a richer one along a mapping is presented in the forth chapter and

applied to the world of general logic. In particular it is shown how to endow an

institution with an entailment system via a simulation or a map of institution and

this technique is applied to build an inference system for the partial higher-order

framework, after presenting an equationally complete inference system for partial

(�rst-order) conditional speci�cations.

The last chapter is devoted to the use of simulations to translate (structured)

speci�cations in order to assemble modules de�ned in di�erent frames by means

of simulation independent metalanguages, that are a re�nement of the institution

independent metalanguages introduced by Sannella and Tarlecki. Moreover sim-

ulations are used to generalize the notion of implementation (as re�nement), by

allowing speci�cations de�ned in di�erent institutions to be related and adding,

in this way, a third dimension to the horizontal and vertical compositions.

Acknowledgments

As the modularity principle is the main stream of this thesis, it would be un-

reasonable for the acknowledgments to be unstructured; on the other hand many

people should appear in di�erent subsections, like Egidio Astesiano, that deserves

my thanks as teacher, for introducing me to the theoretical computer science,

as supervisor, for its e�orts in order to improve my expressive capabilities and

my scienti�c autonomy, and especially as colleague and friend, for its continual

support and availability. Thus I'll try to pass between Scilla and Cariddi.

xvi

Friends, Relatives and such

Since I always regarded love and friendship as the more important and basilar

needs for human life (or at least for my life), let me start this long list of people

that positively in
uenced and helped me, with the emotional supporter.

Relatives

First of all, at least for chronological reasons, I would like to thank my parents, my

dad (have some more coin for the co�ee machine) Paolo and my mom (take one

more bite) Mimma, o�cial sponsors of my studies and apparently still thinking

at me as I would be teenage, that I found greatly relaxing in a world asking me

for every time more seriousness and maturity. They helped and are still helping

me with all their strength, showing their love in a thousand little (and big) things

and making me feel that I'll have forever a safe port from any storm in my life.

I would also like to thank my sister Paola and my brother (in law

2

) Angelo,

who follow with interest my life and are always at hand to discuss, suggest or

simply have fun.

My special thanks are due to my husband, Massimo, for a thousand good

reasons, not least for (still) being my husband in spite of these last months of my

thesis development (and �rst of our marriage).

Friends

I'm in great doubt if I should thank Alessandro Garibbo here or in the above

section. Actually we are friends from so much time that he is like a brother to me

and as every brother he is never hesitant about saying me when I'm wrong, and

for this endowment especially I appreciate him.

People from my working group deserves all my gratitude for the friendly way

and naturalness they accepted me with, and in particular my special thanks go to

3

Elena Zucca, my o�ce-mate, who's always available to discuss both technicalities

and human matters, Gianna Reggio, Alessandro Giovini, Gerardo Costa, Egidio

Astesiano, our (more friend than) boss, and to Ombretta Arvigo, our part-time

secretary, whose complete availability makes possible the impossible deadlines

and whose warm humanity and ever-present humor greatly improve the o�ce

atmosphere.

Last but not least, Claudia Fassino and her husband Stefano Pasquero deserve

my thanks for a long and fruitful friendship.

2

I met Angelo for the �rst time less than 10 years ago, but is now a brother to any extent

3

order is immaterial

xvii

Scienti�c Community

Coming to the technical side, I would like to stress that, due to the friendly and

open-minded attitude of the scientists I met, people listed here could be as well

be classi�ed under \friends". Thus consider the following thanks to be for the

scienti�c help as well as for the human support.

Teachers

Just few words to thank my high-school mathematics professor, Gabriella Ferrari

Nardi Greco, who thought and taught that mathematics was more than calculi

and made me love the argument, and my high-school literature professor, Aldo

Bartarelli, who taught me the most important thing, i.e. how to study and how

to enjoy the learning process.

Computer Scientists

First of all I would like to thank the numerous scientists disseminated in Europe

and U.S.A. who devoted some of their (precious) time to exchange ideas with me

for the fruitful discussions about the arguments in my thesis, and in particular

M. Wirsing and (his student and my friend) B. Reus, J. Goguen and his group in

Oxford, that I had the pleasure to visit, D. Sannella, A. Tarlecki, H. Reichel, J.

Meseguer and his group at the S.R.I. (not only for the scienti�c discussions, but

also for the friendly welcoming in California

4

) and in particular F. Mart��-Oliet,

and E. Moggi.

My special thanks to the DISI people and in particular to my working group

for the stimulating discussions and to Marco Grandis and Marco Borga of the

Mathematics Dept. for their help respectively on category theory and logic.

Last but �rst my gratitude is due to Egidio Astesiano, my supervisor, who

introduced me to the research, leading my interests to the computer science and

supporting me for years with friendly encouragements.

L

a

T

E

X Wizards

Besides Ombretta Arvigo and Gianna Reggio, who technically speaking are not

wizards, but helped me every time I needed (or at least tried to), I must thank the

unique true guru Alessandro Giovini, who not only knows the Paths of the Faith

4

thanks also to Daniela Musto, Lorenza Moro, Elisabetta Canavesi, Susan Kelleher and Don

I-never-get-his-family-name who helped me on the practical side and made my visit a vacation

(at least at week-end time)

xviii

and the Word of Truth about T

E

X and L

a

T

E

X (and disseminates his enlightenment

on us humble people), but with his holy presence make the computers behave (it

is well known that strange phenomena stop to occur provided that the system

manager is present).

I'm also in debt with Paul Taylor for his \CommutativeDiagrams in T

E

X", that

produced the diagrams in my thesis with a minumum of pain (before founding

up the existence of such a package I �rmly decided to hand-draw any �gure)

and L.Botway and C. Biemesderfer who patiently compiled a L

a

T

E

X Command

Summary, that proved to be essential for quick �nding of the key-words.

xix

xx

Chapter 1

Speci�cation Formalisms

It is widely recognized the importance of the algebraic approach as a uniform way

to describe both data types and programs with natural techniques to structure

and re�ne the design of modules.

The basic intuition of any algebraic approach consists in describing data struc-

tures (or programs) by simply �xing the signature, i.e. the names for the di�erent

sets of involved data and for the basic operations that build/manipulate the data,

and axiomatizing their characteristic properties by means of a set of sentences

(mainly Horn-clauses) built on the signature.

The semantics of an algebraic speci�cation is then given as a class of algebras

on the signature of the speci�cation, i.e. of structures where each name of data

type has been interpreted by a set and each name of operation by a function. In

order to de�ne such a class some machinery is common to the di�erent algebraic

approaches:

� the notion of \satisfaction" or \validity" has to be de�ned, in order to restrict

the algebras to the ones that satisfy the axioms;

� terms on the signature are inductively de�ned, starting from the symbols for

constants and variables and closing under the application of operation sym-

bols and then the natural interpretation, or evaluation of terms in an algebra

under a valuation for their variables is inductively de�ned, by interpreting

the variables by their valuation and each operation symbol (including con-

stants) by its interpretation in the algebra;

� functions are de�ned between algebras, that preserve the evaluation of terms

and are usually called homomorphisms.

1

2 CHAPTER 1. SPECIFICATION FORMALISMS

Then, using terms and homomorphisms, there are three basic approaches to

give the semantics of a speci�cation; the �rst two correspond to and generalize the

mathematical principles of induction and observational/behavioural abstraction:

initial approach: the class of algebras described by the speci�cation is the

isomorphism class of the structure characterized by the two condition of no-

junk (each element is denoted by a term on the signature) and no-confusion

(two terms are equal i� they can be proved equal from the axioms); this cor-

responds to the existence of exactly one homomorphism from this structure

into each algebra satisfying the axioms;

terminal approach: the class of algebras described by the speci�cation is the

isomorphism class of the structure characterized by two condition: no-junk

and \two terms are equal i� they cannot be proved di�erent from the ax-

ioms"; this corresponds to existence of exactly one homomorphism into this

structure from each algebra satisfying the axioms and some extra conditions,

like no-junk, strictly depending on the actual algebraic formalism;

loose approach: the speci�cation describes the class of the algebras satisfying

its axioms.

Although in the �nal stage of a speci�cation process either the initial (and I

mostly prefer this because of computability considerations) or the terminal ap-

proach is usually adopted in order to de�ne exactly one structure (up to isomor-

phism), in the intermediate phases, when the speci�cation is under re�nement,

the loose approach is the most favorite, because it allows to progressively restrict

the class of models by �xing decisional details.

It is worth noting that, although the notion of term and natural interpretation

is crucial in order to de�ne axioms with their validity and homomorphisms, a

posteriori axioms and homomorphisms are su�cient to qualify the initial, the

terminal and the loose approach. Thus terms can be regarded as an auxiliary

concept used to express the main notions of axiom and homomorphism, that can

be dropped in a general theory to deal with speci�cation formalisms, provided

that the models have a categorical structure, by adopting the concepts of axiom

and validity as primitive.

The last ingredient of any algebraic formalism is the capability of structuring

speci�cations to modularly build large speci�cations. In order to put together

speci�cations, a speci�cation language is needed and although many di�erent lan-

guages have been de�ned in the last years, all share the use of renaming of the

signature symbols in order to relate basic speci�cations and in particular to instan-

tiate parametric speci�cations. In this phase it appears crucial that the change of

1.1. INSTITUTIONS 3

notation does not a�ect the validity of sentences, in order to have that the models

of a larger speci�cation, restricted to the symbols of any its subcomponent are

models of this subcomponent, too.

In order to have a formalism able to relate and/or put together speci�cations

expressed in di�erent frameworks, a precise notion of what a speci�cation frame-

work is has to be provided. This chapter is devoted to the introduction of the

notion of institution (see e.g. [44, 45, 46]), starting with the paradigmatic example

of the many-sorted framework, and the comparison of this concept to alternative

formalisms.

1.1 Institutions

As introductory example of speci�cation formalism, the probably most famous is

considered: the many-sorted algebras.

Signatures consist of a set of names for the data types and a family of function

symbols together with their functionality and the signature morphisms are the

renaming of names that preserve the functionality of operation symbols.

Def. 1.1.1 A many-sorted signature (S;F) consists of a countable set S of sorts

and of a family F = fF

w;s

g

w2S

�

;s2S

of disjoint sets of operation symbols. In the

sequel op: s

1

: : : s

n

! s stands for op 2 F

s

1

:::s

n

;s

. A generic signature will be

denoted by �.

Let �

1

= (S

1

; F

1

) and �

2

= (S

2

; F

2

) be many-sorted signatures; then a sig-

nature morphism (�; �): �

1

! �

2

consists of a sort renaming �:S

1

! S

2

and

a family � = f�

w;s

:F

1

w;s

! F

2

�(w);�(s)

g, where �(w) is inductively de�ned by

�(�) = � and �(sw) = �(s)�(w).

The algebras on a many sorted signature are the structures that associate with

each sort a carrier set and to each operation symbol a concrete function with the

proper arity; the allowed morphisms between two such structures are the mapping

of the supporting carriers that preserve the interpretation of function symbols.

Def. 1.1.2 A many-sorted algebra A on a signature � = (S;F) consists of a fam-

ily fs

A

g

s2S

of sets, the carriers, and of a family fop

A

g

op2F

w;s

;w2S

�

;s2S

of functions,

the interpretations of operation symbols, s.t.

� if w = � then op

A

2 s

A

;

� if w = s

1

: : : s

n

, where n � 1, then op

A

: s

1

A

� : : :� s

n

A

! s

A

.

4 CHAPTER 1. SPECIFICATION FORMALISMS

Often the algebra A is denoted by the couple (fs

A

g; fop

A

g), omitting the quan-

ti�cations about s and op which are associated with the signature. A many-sorted

algebra over a signature � is called a �-algebra. The class of all �-algebras is

denoted by Alg(�).

In order to unify the notation, in the sequel the constants op 2 F

�;s

are

regarded as \zeroary" operations, with the convention that s

1

: : : s

0

stands for �

and that �

A

= s

1

A

� : : :� s

0

A

is the singleton set, so that a function having it as

domain is an element of the codomain, accordingly with the de�nition of op

A

.

Let A and B be �-algebras. Then a homomorphism p from A into B is a

family of functions p = fp

s

: s

A

! s

B

g

s2S

s.t. for any op 2 F

s

1

:::s

n

;s

, with n � 0,

and any a

i

2 s

i

A

with i = 1 : : : n,

p

s

(op

A

(a

1

; : : : ; a

n

)) = op

B

(p

s

1

(a

1

); : : : ; p

s

n

(a

n

)):

In the sequel p:A! B will denote a homomorphism p from A into B.

For any signature morphism (�; �): (S

1

; F

1

) ! (S

2

; F

2

) a functor

Alg(�; �):Alg(S

2

; F

2

)! Alg(S

1

; F

1

) exists called reduct.

Def. 1.1.3 Let �

1

= (S

1

; F

1

) and �

2

= (S

2

; F

2

) be signatures and

(�; �): �

1

! �

2

be a signature morphism; then the reduct functor

Alg(�; �):Alg(�

2

)! Alg(�

1

) is de�ned by:

� for each �

2

-algebra A, the �

1

-algebra Alg(�; �)(A) consists of:

{ s

Alg(�;�)(A)

= (�(s))

A

for all s 2 S

1

{ op

Alg(�;�)(A)

= (�(op))

A

for all op 2 F

1

� for each homomorphism h between �

2

-algebras, the homomorphism

Alg(�; �)(h) is the family fAlg(�; �)(h)

s

= h

�(s)

j s 2 S

1

g.

A particular example of algebra is the term-algebra. In the sequel variables are

assumed to be \new" symbols, disjoint w.r.t. the symbols used to build signatures.

Def. 1.1.4 Let � = (S;F) be a signature and X = fX

s

g

s2S

be an S-sorted family

of variables.

� The family fT

�

(X)

js

g

s2S

of the sets of the terms is inductively de�ned by:

{ X

s

[F

�;s

� T

�

(X)

js

, for all s 2 S;

{ op(t

1

; : : : ; t

n

) 2 T

�

(X)

js

, for all op 2 F

s

1

:::s

n

;s

and all t

i

2 T

�

(X)

js

i

for

i = 1 : : : n.

1.1. INSTITUTIONS 5

� For all op 2 F

s

1

:::s

n

;s

let op

T

:T

�

(X)

js

1

� : : :�T

�

(X)

js

n

! T

�

(X)

js

be de�ned

by op

T

(t

1

; : : : ; t

n

) = op(t

1

; : : : ; t

n

) for all t

i

2 T

�

(X)

js

i

for i = 1 : : : n.

� The term-algebra over � and X, denoted by T

�

(X), or shortly T

�

if X is

the (family of) empty set, is the couple (fT

�

(X)

js

g; fop

T

g).

� Let A be a �-algebra and V = fV

s

:X

s

! s

A

j s 2 Sg be an evaluation of

the variables in A; then the natural evaluation eval

A;V

of the terms in A

w.r.t. V is inductively de�ned by:

{ eval

A;V

(x) = V

s

(x) for all x 2 X

s

and all s 2 S;

{ eval

A;V

(op(t

1

; : : : ; t

n

)) = op

A

(eval

A;V

(t

1

); : : : ; eval

A;V

(t

n

)) for all terms

op(t

1

; : : : ; t

n

).

In the sequel eval

A;V

(t) will be denoted by t

A;V

or simply by t

A

, if X is the

(family of) empty set.

To simplify the treatment of the logical component, only conditional formu-

las without variables are considered and the generalization to Horn-clauses with

variables will be introduced in the sequel.

Def. 1.1.5 Let � = (S;F) be a signature.

� A ground equality over � has the form t = t

0

for t; t

0

2 T

�

js

. The set of all

ground equalities over � will be denoted by GEq(�).

� A ground conditional formula over � has the form

t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

;

where t

1

= t

0

1

; : : : ; t

n

= t

0

n

; t = t

0

2 GEq(�). The set of all ground condi-

tional formulas over � will be denoted by GCond(�).

� If A is a many-sorted algebra and � is a formula, then � holds in A (equiva-

lently: is satis�ed by A), denoted by Aj=

GMS

�, accordingly to the following:

{ Aj=

GMS

t = t

0

i� t

A

= t

0A

;

{ let � be t

1

= t

0

1

^ : : :^ t

n

= t

0

n

� t = t

0

; then Aj=

GMS

� i� Aj=

GMS

t = t

0

,

or A 6j=

GMS

t

i

= t

0

i

for some i 2 f1 : : : ng.

For any signature morphism (�; �): (S

1

; F

1

) ! (S

2

; F

2

) it is easy to de�ne the

translation of formulas along the signature morphism as the renaming of function

symbols.

6 CHAPTER 1. SPECIFICATION FORMALISMS

Def. 1.1.6 Let �

1

= (S

1

; F

1

) and �

2

= (S

2

; F

2

) be signatures and � be the

signature morphism (�; �): �

1

! �

2

The renaming ren

�

:GCond(�

1

)! GCond(�

2

) is de�ned by

� ren

�

(t = t

0

) is ren

�

(t) = ren

�

(t

0

) and

� ren

�

(�

1

^ : : : ^ �

n

� �) is ren

�

(�

1

) ^ : : : ^ ren

�

(�

n

) � ren

�

(�)

where ren

�

(t) is inductively de�ned by

� ren

�

(op) = �

s

(op) for all op 2 F

1

�;s

;

� ren

�

(op(t

1

; : : : ; t

n

)) = �(op)(ren

�

(t

1

); : : : ; ren

�

(t

n

)) for all op 2 F

1

s

1

:::s

n

;s

.

It is easy to check that for each signature morphism the translation of a sen-

tence along the morphism is satis�ed by a model i� the reduct of this models

satis�es the sentence.

Abstracting the case of many-sorted algebras on the base of the above discus-

sion, an algebraic speci�cation formalism can be summarized by:

� a collection of signatures, together with their morphisms, corresponding to

the languages to express the data types and their translations;

� for each signature a set of sentences and for each signature morphism from

� into �

0

a renaming of sentences on � into sentences on �

0

;

� for each signature a collection of models, or algebras, on this signature,

together with their homomorphisms, and for each signature morphism from

� into �

0

a reduct functor from models on �

0

into models on �;

� for each signature a satisfaction relation, relating models and sentences on

the same signature.

and since the signature morphisms are just syntactical translations, satisfaction

changes consistently with any signature morphism. This corresponds to the notion

of institution, �rst introduced by Burstall and Goguen, to de�ne the semantic of

the language Clear.

Def. 1.1.7 [[44] def.14] An institution I consists of

� a category Sign of signatures;

� a functor Sen :Sign! Set giving the set of sentences over a given signature;

1.1. INSTITUTIONS 7

� a functor Mod:Sign

op

! Cat giving the category (sometimes called the

variety) of models of a given signature (the arrows in Mod(�) are called the

model morphisms);

� a satisfaction relation

1

j=� jMod(�)j � Sen(�)

for each � in Sign, sometimes denoted j=

�

, such that for each morphism

�: �

1

! �

2

in Sign, the Satisfaction Condition

M

0

j= Sen(�)(�) () Mod(�)(M

0

) j= �

holds for each M

0

in jMod(�

2

)j and each � in Sen(�

1

).

The many-sorted formalism is easily rephrased as an institution.

Def. 1.1.8 The institution of many sorted total algebras with ground conditional

formulas is the quadruple GMS = (Sign

MS

;Sen

GMS

;Mod

MS

; j=

GMS

), where:

the category Sign

MS

has many-sorted signatures as objects and many-sorted

signature morphisms as arrows, introduced by Def. 1.1.1

The functor Sen

GMS

:Sign

MS

! Set consists of:

� Sen

GMS

(�) = GCond(�), introduced by Def. 1.1.5, for each signature �;

� Sen

GMS

(�) = ren

�

, introduced by Def. 1.1.6, for each signature morphism

�.

The functor Mod

MS

:Sign

MS

op

! Cat consists of:

� Mod

MS

(�) is the category of many-sorted algebras, introduced by Def. 1.1.2,

for any signature �;

� Mod

MS

(�) is the reduct functor, introduced by Def. 1.1.3, for any signature

morphism �.

For any � 2 jSign

MS

j, any A 2 jMod

MS

(�)j and any � 2 Sen

GMS

(�),

Aj=

GMS

� accordingly with Def. 1.1.5.

In order to generalize the notion of sentences to allow conditional formulas

with variables, some care has to be taken to deal with the translation of variables

along signature morphisms. Following the approach in [46], the notation for many-

sorted conditional formulas has been slightly changed w.r.t. the classical algebraic

approach (see e.g. [64, 34]).

1

for any category C the class of the objects of C is denoted by jCj.

8 CHAPTER 1. SPECIFICATION FORMALISMS

Def. 1.1.9 The institution of many sorted total algebras with (open) condi-

tional formulas is the quadruple MS = (Sign

MS

;Sen

MS

;Mod

MS

; j=

MS

), where

Sign

MS

and Mod

MS

are as in Def. 1.1.8 and the functor Sen

MS

:Sign

MS

! Set

consists of:

� for any signature � = (S;F) the set Sen

MS

(�) consisting of formulas

V:t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

;

where V :X ! S is a partial typing function and t

i

2 T

�

(fV

�1

(s)g

s2S

).

� for any signature morphism (�; �), the function Sen

MS

(�; �)(V:�) =

(� � V:

�

�(�)), where

�

� is the usual rename of the function symbols leaving

the variables una�ected.

For any � 2 jSign

MS

j, any � = (V:t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

) 2

Sen

GMS

(�) and any A 2 jMod

MS

(�)j, Aj=

MS

� i� for every valuation U =

fU

s

:V

�1

(s)! s

A

g

s2S

of the variables of � in A:

Aj=

MS

U

t = t

0

or i 2 f1; : : : ; ng exists s.t. A 6j=

MS

U

t

i

= t

0

i

, where Aj=

MS

U

t = t

0

i� t

A;U

= t

0A;U

.

The institution of many sorted total algebras with (open) equational formulas

is the subinstitution

2

EMS = (Sign

MS

;Sen

EMS

;Mod

MS

; j=

MS

) of MS, where

for every signature � the sentences Sen

EMS

(�) are the subset fV:� j � = (t = t

0

)g

of Sen

MS

(�).

First Order Structures

A very close framework to standard (one-sorted) many-sorted algebras with con-

ditional sentences based on equality is the theory of (homogeneous) heterogeneous

�rst-order structures (algebras with predicates), where predicates are allowed in

order to build formulas and accordingly algebras (i.e. models) are equipped with

the truth set of each predicate, to de�ne validity of sentences, that, as usual in

computer science, are (positive) Horn-Clauses.

Besides the theoretical relevance of this approach, predicates are useful in

order to represent many central concepts in computer science, like transistions

of concurrent systems and typing relations. Thus the general theory of both

homogeneous and heterogeneous �rst-order structures is here brie
y summarized.

2

Here and in the sequel the word \subinstitution" is used rather informally to denote an

institution with less signatures and/or less sentences and/or less models, without a rigorous

categorical counterpart.

1.1. INSTITUTIONS 9

Def. 1.1.10 The institution of many-sorted �rst-order structures with equality

is the quadruple T L = (Sign

T L

;Sen

T L

;Mod

T L

; j=

T L

), where:

� Sign

T L

is the category whose objects (S;F; P) consist of a many-sorted

signature (S;F) and an S

+

-indexed family P of predicates and whose mor-

phisms (�; �; �): (S

1

; F

1

; P

1

) ! (S

2

; F

2

; P

2

) consist of a many-sorted mor-

phisms (�; �): (S

1

; F

1

) ! (S

2

; F

2

) and a type preserving S

+

-indexed family

of functions �

s

1

:::s

n

:P

1

s

1

:::s

n

! P

2

�(s

1

:::s

n

)

.

� Sen

T L

:Sign

T L

! Set is de�ned by:

{ for every signature � = (S;F; P) in Sign

T L

the set Sen

T L

(�) is

fV:�

1

^ : : : ^ �

n

� � j �

1

: : : �

n

; � 2 Atoms(�; V)g

where V is a sort assignment to the variables and Atoms(�; V) consists

of the equalities t = t

0

between �-terms (on V -sorted variables) and

the atomic formulas of the form p(t

1

; : : : ; t

k

) for t

i

terms of sort s

i

,

i = 1 : : : k, and p 2 P

s

1

:::s

k

;

{ for every signature morphism �: �! �

0

, where � = (�; �; �), the trans-

lation Sen

T L

(�) of a sentence V:� is V ��:ren(�), where ren(�) denotes

the renaming of function symbols in � by � and the predicate symbols

by �, leaving una�ected the variables.

� Mod

T L

:Sign

T L

op

! Cat is de�ned by:

{ for every signature � = (S;F; P) in Sign

T L

the category Mod

T L

(�)

consists of:

� the objects are �rst-order structures (fs

A

g

s2S

; ff

A

g

f2F

; fp

A

g

p2P

),

where (fs

A

g

s2S

; ff

A

g

f2F

) are many-sorted algebras and p

A

is a

subset of s

1

A

� : : :� s

n

A

for each p 2 P

s

1

:::s

n

;

� the morphisms are truth preserving many-sorted homomorphisms

h:A! B s.t.

if (a

1

; : : : ; a

n

) 2 p

A

, then (h

s

1

(a

1

); : : : ; h

s

n

(a

n

)) 2 p

B

for all predi-

cates p.

{ for every signature morphism �: � ! �

0

, where � = (�; �; �), the

translation Mod

T L

(�)(A

0

) of a �rst order structure A

0

is the reduct

(f�(s)

A

g

s2S

; f�(f)

A

g

f2F

; f�(p)

A

g

p2P

) and the translation of a mor-

phism h is Mod

MS

(�)(h).

10 CHAPTER 1. SPECIFICATION FORMALISMS

� For any � 2 jSign

T L

j, any � = (V:�

1

^ : : : ^ �

n

� �) 2 Sen

T L

(�) and

any A 2 jMod

T L

(�)j, Aj=

T L

� i� Aj=

T L

U

� or there exists i 2 f1; : : : ; ng s.t.

A 6j=

T L

U

�

i

for all valuations fU

s

:V

�1

(s) ! s

A

g

s2S

, where Aj=

T L

U

t = t

0

i�

t

A;U

= t

0A;U

and Aj=

T L

U

p

n

(t

1

; : : : ; t

k

n

) i� (t

1

A;U

; : : : ; t

n

A;U

) 2 p

A

.

The institution of (one-sorted) �rst-order structures with equality is the subin-

stitution L = (Sign

L

;Sen

L

;Mod

L

; j=

L

) of T L, whose signature have singleton

sets of sorts and whose sentences and models are the composition of Sen

T L

(resp.

Mod

T L

) with the embedding of Sign

L

into Sign

T L

.

Since in the homogeneous case the name of the sort is immaterial, the notation

is simpli�ed dropping the sort indexes and the typing of variables in sentences.

Alternative Formulation

There is also a more categorical formulation of the concept of institution (see

e.g. [45]), that is worth to be recalled, because it is not only more elegant, but

also easier to generalize.

Def. 1.1.11 Let C and B be categories, S :C

op

�C! B be a functor and let b

be an object of B. Then an extranatural transformation

3

�:S ! b is a function

assigning to each object c of C a morphism �

c

:S (c; c)! b in B such that for any

f : c! c

0

in C the following diagram commutes

S (c

0

; c)

S (Id

c

0

; f)

-

S (c

0

; c

0

)

S (f; Id

c

)

?

?

�

c

0

S (c; c)

�

c

-

b

An institution is a pair of functors Mod:Sign

op

! Cat and Sen :Sign! Set

with an extranatural transformation j=: jMod()j � Sen()! ftrue; falseg, where

the functor j j is the forgetful functor from Cat to Set, discarding the arrows.

1.2 Other Formalisms

In the last years a small collection of alternative notions of speci�cation formalisms

has been developed, aimed to generalize the treatment of the logical side. These

3

see e.g. [54]

1.2. OTHER FORMALISMS 11

di�erent theories can be essentially grouped in three classes, each of them facing

one of three possible lacks of generality from the institution theory:

� the satisfaction condition is claimed to be too restrictive, because it does

not capture non-monotonic reasoning, where for example adding symbols to

the language can a�ect the validity of sentences; although the motivation

seems reasonable in principle, the only signi�cant example that has been

fully developed until now, the behavioural equational speci�cations, is quite

controversial; indeed it is su�cient a slight change of the de�nition of sen-

tences to get an institution, but it is still unexplored the correspondence

between this institution and the practical use of behavioural speci�cations;

� by de�nition the satisfaction relation determines whether a sentence is, or

is not, satis�ed by a model; thus the concept of institution can capture

just two-valued logics, while many applications need more liberal notions of

validity;

� the concept of institution misses built-in tools for the treatment of deduction

and proofs, so that the theory of (automatic) theorem provers can be hardly

formalize using institutions.

In the sequel the main alternative formalisms are presented, starting with

the pre-institutions by Salibra and Scollo (see [81]) and the speci�cation logics by

Ehrig, Baldamus, Cornelius and Orejas (see [33]), where the satisfaction condition

is relaxed.

Then the galleries by Mayoh (see [61]) are brie
y sketched, where the notion of

satisfaction is replaced by the idea of \evaluation" of (possibly logical) expressions,

and compared to the generalized institutions by Burstall and Goguen (see [45]).

Finally built-in tools to deal with logical concepts are introduced with the

�-institutions by Fiadeiro and Sernadas (see [36]), where essentially models and

validity are dropped and substituted by a consequence relation, and with the

entailment systems by Meseguer (see [63]), where a notion closed to the one of �-

institution is inserted in a big \fresco", including the theory of institutions, where

notions to represent not only entailment systems, but also proofs and calculi are at

hand and the di�erent parts of the picture are strictly related by a net of (adjoint)

functors.

1.2.1 Pre-Institutions

In order to investigate which properties of a logical formalism depend on the satis-

faction condition and/or the categorical structure of the model classes, and which

12 CHAPTER 1. SPECIFICATION FORMALISMS

do not, holding for larger classes of formalisms than the institutions, recently Sal-

ibra and Scollo in [81] introduced a weakening of the notion of institution, called

pre-institution, where both the satisfaction condition and the categorical structure

of the models have been dropped.

Def. 1.2.1 A pre-institution is a 4-tuple I = (Sign;Sen ;Mod; j=), with:

� Sign is a category, whose objects are called signatures,

� Sen :Sign ! Set a functor, sending each signature � to the set Sen(�)

of �-sentences, and each signature morphism �: � ! �

0

to the mapping

Sen(�):Sen(�)! Sen(�

0

) that translates �-sentences to �

0

-sentences,

� Mod:Sign ! Set a functor, sending each signature � to the set Mod(�)

of �-models, and each signature morphism �: � ! �

0

to the �-reduction

function Mod(�):Mod(�

0

)! Mod(�),

� j=: jSignj ! jRel

!

j a function, associating each signature � with a binary

relation j=

�

� Mod(�) � Sen(�), viz. the satisfaction relation between �-

models and �-sentences.

Reduction preserves satisfaction in I (or I has the rps property, or I is rps for

short) i� for all signature morphisms � 2 Sign(�;�

0

), all sentences � 2 Sen(�)

and all models M

0

2 Mod(�

0

)

M

0

j=

�

0

Sen(�)(�)) Mod(�)(M

0

) j=

�

�

Expansion preserves satisfaction in I (or I has the eps property, or I is eps for

short) i� for all signature morphisms � 2 Sign(�;�

0

), all sentences � 2 Sen(�)

and all models M

0

2 Mod(�

0

)

Mod(�)(M

0

) j=

�

�) M

0

j=

�

0

Sen(�)(�)

I preserves satisfaction (or I has the ps property, or I is ps for short) i� I is

both rps and eps.

Thus an institution is a pre-institution that preserves satisfaction and where

model sets and reductions have categorical structure.

The focus of [81] is on the transformations of pre-institutions and the preser-

vation of logical properties by these morphisms. In particular a technique to

prove that the satisfaction condition is satis�ed is presented, consisting of cod-

ing a pre-institution in an institution (i.e. a pre-institution that is ps) preserving

satisfaction, so that the satisfactions condition re
ects from the codomain to the

domain. In the next chapters the precise de�nition of transformation will be

presented and compared with other notions of morphism between institutions.

1.2. OTHER FORMALISMS 13

1.2.2 Speci�cation Logics

Starting from the point of view that the theory of algebraic module speci�cations

and modular systems, although mainly developed in the framework of equational

algebraic speci�cations, is independent from this framework and should be stated

in a more general formulation that could be instantiated on any speci�cation for-

malism, in [33] the core of the theory of algebraic module speci�cation is rephrased

in an entirely categorical way, adopting the concept of speci�cation logic to rep-

resent a generic formalism.

Speci�cation logics are designed to capture a wider range of applications than

institutions and intuitively di�er from institutions because the satisfaction relation

is implicit, with the theory presentations (pairs of signatures and set of sentences,

in the institution language) with their categories of models as primitive concept,

and validity is not invariant under change of notation. From a technical point

of view, speci�cation logics are simply institutions without sentences, i.e. strictly

indexed categories.

Def. 1.2.2 [[33], def. 2.1] A speci�cation logic SL is a pair (ASPEC;Mod) where

ASPEC is a category of abstract speci�cations and Mod:ASPEC ! Cat

Op

is a functor that associates with every speci�cation in ASPEC its category of

models.

Note that in the de�nition of speci�cation logics there is no explicit notion

of logic not even of sentence or validity, so that much more than the intended

applications are captured.

The relationship between institutions and speci�cation logics is complex. In-

deed any institution I = (Sign;Sen ;Mod; j=) gives rise to a bunch of speci�cation

logics, one for each subcategory of its theory category.

Def. 1.2.3 Given an institution I its category Th(I) of theories has as objects

pairs T = (�;�) with � a signature and � a set of sentences on � and as morphism

�: (�;�)! (�

0

;�

0

) the signature morphisms �: �! �

0

s.t.A

0

j=

�

0

0

for all

0

2 �

0

implies A

0

j=

�

0

Sen(�)(
) for all
 2 �.

The subcategory Th

0

of Th(I) has the same objects as Th(I) and the axiom-

preserving morphisms �: (�;�)! (�

0

;�

0

) s.t. Sen(�)(�) � �

0

.

The functor Mod

I

:Th(I) ! Cat

Op

associates any theory T = (�;�) with

the full subcategory Mod

I

(T) of Mod(�) of the models of T , i.e. jMod

I

(T)j =

fA j A 2 jMod(�)j; A j=

�

;
 2 �g and any theory morphism �: (�;�)! (�

0

;�

0

)

with the restriction of Mod(�) to Mod

I

(T

0

).

14 CHAPTER 1. SPECIFICATION FORMALISMS

Note that the de�nition of morphisms and the satisfaction condition guarantee

that if A

0

2 jMod

I

(T

0

)j, then Mod(�)(A

0

) 2 jMod

I

(T)j for all �:T ! T

0

and

hence Mod

I

(�) is well de�ned.

Prop. 1.2.4 Let I be an institution and C be a (possibly non-full) subcategory

of Th(I); then (C;Mod

I

�Emb), where Emb is the embedding of C into Th(I),

is a speci�cation logic.

Proof. Trivial by de�nition of speci�cation logic.

In particular any institution induces two speci�cation logics: the trivial one,

with signatures as category of abstract speci�cations, and the \intended" one, with

theories as category of abstract speci�cations. On the other side any speci�cation

logic induces a (trivial) institution, with abstract speci�cations as category of

signatures and empty sentence sets (and hence empty satisfaction relations).

Note that if the category of abstract speci�cations is actually a category

of speci�cations, i.e. there exists a pre-institution I = (Sign;Sen ;Mod; j=) s.t.

ASPEC = Th(I), then the functoriality of Mod guarantees that I is rps. Thus

the intuition behind speci�cation logics is not dropping the satisfaction condition,

but weakening the requirement to an implication instead of an equivalence.

Prop. 1.2.5 Let I be a pre-institution s.t. (Th(I);Mod

I

) is a speci�cation logic;

then I is rps.

Proof. Assume that M

0

j=

�

0

Sen(�)(�) for some signature morphism � 2

Sign(�;�

0

), sentence � 2 Sen(�) and model M

0

2 Mod(�

0

); then, by de�ni-

tion,M

0

2 jMod

I

(�

0

; fSen(�)(�)g)j. Since � is a theory morphism from (�; f�g)

to (�

0

; fSen(�)(�)g) and Mod

I

is a countervariant functor, Mod

I

(�)(M

0

) 2

Mod

I

(�; f�g), i.e. Mod

I

(�)(M

0

) j=

�

�.

The notions of sentence and validity are reintroduced also in the framework of

speci�cation logics, with the satisfaction condition, under the name of constraints.

Def. 1.2.6 A logic of constraints LC = (Constr ; j=) on a given speci�cation

logic SL = (ASPEC;Mod) is given by a functor Constr :ASPEC ! Classes

de�ned on the category ASPEC of abstract speci�cations with values in the

(quasi)category Classes of classes and for each object T in ASPEC a relation

j=

T

� jMod(T)j �Constr(T) called satisfaction relation for constraints, such that

for all morphisms �:T ! T

0

, all objects A

0

2 jMod(T

0

)j and all constraints

c 2 Constr(T) the following satisfaction condition holds:

A

0

j=

T

0

Constr(c) () Mod(A

0

) j=

T

c:

1.2. OTHER FORMALISMS 15

Thus any logic of constraints, together with its underline speci�cation logic,

correspond to an institution in the sense of [44], exception made for the fact that

institutions have sets of sentences instead of classes of sentences.

1.2.3 Galleries

Mayoh, in [61], suggests a wide range of applications for an institution-like con-

cept that cannot be expressed in the institution formalism, because the notion

of validity is too restrictive, including the theory of knowledge representation,

data-base query systems and semantics of programming languages.

The de�nition of galleries, broadening the notion of \truth value", captures

these examples in a formalism where sentences are substituted with \expressions"

and the validity with an \evaluation" relation, so that for instance, given an

expression e in a database query language and a database D that is an acceptable

model for the language, the evaluation of e in D yields the response to the query

e for the database D.

The intuition behind galleries is to relate (by a functor) any language (signa-

ture) to a building block, called room, consisting of the expressions, called frames,

the structures on the language and of an evaluation function that on a given ex-

pression and a given model produces as output the value of the interpretation of

the expression in the model.

Due to increased expressive capability, the notions of speci�cations (theory)

or data type, have to be rephrased and generalized; as in the usual two valued

logic a speci�cation (data type) is a set of sentences and its semantics is the class

of structures that satisfy the axioms, i.e. where the evaluation of the axioms is

the true value, here, with a smaller granularity, the semantic of a data type can

be de�ned as the class of structures where the evaluation of the expressions yields

some �xed values.

Def. 1.2.7 [[61] def. 3] A room consists of a set FRM of frames, a category

STR of structures, and a functor Val from STR to B

n

(FRM), the category of

functions from FRM to Set. The data types of the room are the objects in the

category B

n

(FRM). A data type d is realisable i� there exists m 2 jSTRj s.t.

d(e) = Val (m)(e) for all e 2 FRM ; it is a truth value i� d(e) is either the empty

or the singleton set for each e 2 FRM .

The category B

n

(FRM) is the category of functors from FRM , regarded as

discrete category, in Set; thus the arrows f in B

n

(FRM) from v:FRM ! Set

in w:FRM ! Set are FRM -indexed families of functions f

e

: v(e)! w(e).

16 CHAPTER 1. SPECIFICATION FORMALISMS

Rephrased in the institution language, a room is (almost) a generalization of

the slice of an institution depending on a �xed signature �, with FRM as Sen(�),

STR as Mod(�) and Val playing the role of a generalized satisfaction relation,

because [STR ! [FRM ! Set]] is isomorphic to [STR � FRM ! Set]. In

particular if all the realisable data types are truth values, interpreting the singleton

set as the true value and the empty set as the false value, the two notions seem

to coincide (such a room is called logical). But note that, following the intuition

that Val is an evaluation and that morphisms in any algebraic setting preserve

the evaluation of expressions, any model morphism h:A ! B corresponds by

Val to a family of functions Val (h)

e

:Val (A)(e) ! Val (B)(e), translating the

interpretation of e in A in terms of interpretation of e in B. Thus if both Val (A)

and Val (B) are truth values and Val (A)(e) = true, then Val (B)(e) = true is

forced by the existence of Val (h)

e

:Val (A)(e)! Val (B)(e), because there is not a

function from true = f�g into false = ;. Therefore in a logical room only those

model morphisms preserving the truth of sentences are allowed, contrary to the

more liberal institution formalism. It is worth to note that in the usual algebraic

settings homomorphisms do not preserve the truth of sentences, not even in the

equational institution; consider indeed the following example.

Example 1.2.8 Let � be the signature with one sort, s, a constant symbol, a,

and a unary function, f and de�ne the following two �-algebras A and B.

Algebra A =

s

A

= f�g

a

A

= �

f

A

(�) = �

Algebra B =

s

B

= f1; 2g

a

B

= 1

f

B

(x) = x

Then h:A ! B, de�ned by h(�) = 1, is obviously a homomorphism; but it is

immediate to check that A satis�es the equality f(x) = a, while B does not.

A gallery associates each signature with a room, but to deal with changes of

notation, morphisms between rooms have to be de�ned �rst.

Def. 1.2.9 A morphism � from a room R = (FRM;STR;Val) to a room R

0

=

(FRM

0

;STR

0

;Val

0

) consists of a function �

6

:FRM ! FRM

0

and a functor �

]

from STR

0

to STR such that

e 2 Val (�

]

(m

0

)) () �

6

(e) 2 Val

0

(m

0

)

1.2. OTHER FORMALISMS 17

for all sentences e 2 FRM and structures m

0

2 jSTR

0

j.

A gallery G is a functor to the category of rooms from a category Sign of

signatures.

In [61] a gallery yielding a logical room on every signature is called an insti-

tution and indeed each such a gallery satis�es the de�nition of institution in [44];

but note that not every institution in the sense of [44] is a gallery yielding a logical

room, because in the gallery formalism the model homomorphisms are restricted

to the ones preserving the truth of sentences.

Following the main stream in [61], in [45] the de�nition of generalized institu-

tion is given, that introduce in the context of institutions the possibility to have

evaluation more than satisfaction, but keep the idea that model homomorphisms

are not required to preserve truth. The generalization is easy from a techni-

cal point of view, adopting the de�nition of institution in terms of extranatural

transformations.

Def. 1.2.10 [[45] def. 13

4

] Let V be a category. Then a (generalized)

V-institution is a pair of functors Mod:Sign

op

! Cat and Sen :Sign ! Set

with an extranatural transformation j=: jMod()j � Sen() ! V, where the func-

tor j j is the forgetful functor from Cat to Set, discarding the arrows.

From the above de�nition the concepts of room and room morphism can be

deduced as non-primitive.

Def. 1.2.11 [[45] def. 14] A generalized V-room consists of categories M and

S and a functor r : jMj ! [S ! V], where V is a value category, M is a model

category, S is a sentence category, and [S! V] denotes the functor category.

Let r and r

0

be generalized V-rooms. The a generalized V-room morphism

from r to r

0

is a pair of functors f :M

0

! M, g:S ! S

0

such that the following

diagram commutes:

jMj

r

-

[S! V]

6 6

jf j [g! V]

jM

0

j

r

0

-

[S

0

! V]

4

In the original de�nition the codomain of the sentence functor is Cat, and the arrows

between sentences play the role of proofs.

18 CHAPTER 1. SPECIFICATION FORMALISMS

where [g! V] on an element �:S

0

! V yields � � g.

Let Room(V) denote the category of generalizedV-rooms and generalizedV-

room morphisms; a generalized institution is a functor I:Sign! Room(V).

It is straightforward to verify that the two de�nitions of generalized institution

coincide.

1.2.4 Foundations

The starting point of this approach (see e.g. [75]) in Poign�e's words is the �rm

belief that any notion of logical system should come along with some notion of

\terms" (or rather \operators"), \formulas" and \substitution".

Following the formalization of predicate logic by indexed categories (see

e.g. [52, 53, 87]), the idea is to abstract generalized institutions (see [45]) by

requiring that the sentences form a �bration instead of a (plain) category.

Def. 1.2.12 A T-indexed category consists of

� a category T (of derived operators);

� a category P(A) (of properties or predicates) for each object A of T;

� a functor f

�

:P(B)! P(A) for each arrow f :A! B in T such that

{ Id

�

A

:P(A)! P(A) is naturally isomorphic to the identity functor;

{ for all arrows f :B ! C and g:A ! B in T the functor (f � g)

�

is

naturally isomorphic to f

�

� g

�

such functors are called (predicate) transformers.

In the case of predicate logic, the category T has sequences of sorts as objects

and k-tuples of terms of sort s

0

j

on variables x

i

of sort s

i

, with i = 1 : : : n, as

arrows from s

1

; : : : ; s

n

into s

0

1

; : : : ; s

0

k

; composition is term substitution. For any

sequence A = s

1

; : : : ; s

n

of sorts, P(A) has formulas on variables x

i

of sort s

i

,

with i = 1 : : : n, as objects and proofs as arrows; �nally the functor associated

with a tuple t

1

; : : : ; t

n

of terms on variables x

i

of sort s

i

, with i = 1 : : : k, is the

substitution of the terms for the variables in formulas.

An equivalent de�nition of indexed categories that seems to be more convenient

in the present context is that of �bration.

1.2. OTHER FORMALISMS 19

Def. 1.2.13 Let p:P! T be a functor, X an object of P and �:A ! p(X) an

arrow of T. A morphism f :�

�

X ! X is horizontal over � i� p(f) = � and any

arrow in P whose image along p factorizes through � factorizes through f , i.e.

for any g:Y ! X s.t. p(g) = � � � there exists h:Y ! �

�

X s.t. p(h) = � and

g = f � h.

A functor p:P ! T is called a �bration if given any object X of P and any

arrow �:A! p(X) of T there is some horizontal f :�

�

X ! X over �. Then T is

called the base of a �bration and P the plateau.

A morphism of �brations from p:P ! T into p

0

:P

0

! T

0

consists of two

functors F

T

:T ! T

0

and F

P

:P! P

0

s.t. p

0

(F

P

(X)) = F

T

(p(X)) for any object

X of P and (F

T

(�))

�

F

P

(X) = F

P

(�

�

X) for any arrow �:A! p(X) of T.

A �bration is called small if all the categories involved are small.

T-indexed categories are �brations in the sense that for any T-indexed cat-

egory a �bration is obtained by constructing P with objects < A;X >, A

being an object of T and X being an object of P(A). Morphisms are pairs

< �; f >:< A;X >!< B;Y >, with �:A! B and f :X ! �

�

Y .

Thus on one hand the concept of foundation is more concrete than the one of

institutions, for sentences are in some sense specialized, and on the other is more

general, because tools to deal with proofs are introduced. Following the gallery

approach by Mayoh, sentences are evaluated more than satis�ed.

Def. 1.2.14 A rich institution consists of functors, Frame:Sign ! Cat # Cat

and Mod:Sign

Op

! Cat, and a wedge []: jMod()j � Frame() ! V (in Cat #

Cat).

A foundation is a rich institution such that

� Frame(�) factorizes over the category of small �brations,

� V is a �bration, and

� []

�;C

:Frame(�)! V is a morphism of �brations for every C inMod(�).

Since any category is an indexed category too (in the trivial way), any insti-

tution is a foundation, too. Note, however, that this trivial lifting of institutions

to foundations does not correspond to the intuition of typed sentences as frames

behind the introduction of indexed categories in the case of ranked signatures.

In [76] this approach is made more complex and expressive, by the introduction

of deduction system to specialize the nature of frames. The formal complexity of

the categorical theory involved makes doubtfully whether the heavy formalism is

worthwhile, in front of the tools provided to handle proofs and sentences.

20 CHAPTER 1. SPECIFICATION FORMALISMS

1.2.5 �-Institutions and Entailment Systems

Two approaches sharing not only the intuition of the entailment (consequence)

relation as the primitive and central concept, but also most technical points are

the �-institutions by Fiadeiro and Sernadas (see e.g. [36]) and the entailment

systems by Meseguer (see e.g. [63]).

The basic idea is to de�ne a logical system through a primitive notion of con-

sequence, moving the focus away from the models to the deduction; this approach

seems greatly promising, especially considering the widening use of mechanical

theorem provers as supporting tools for the speci�cation design.

The �-institutions are proposed as an alternative to institutions, replacing the

notion of model and satisfaction by a primitive consequence operator (�a la Tarski);

then in [36] it is shown how theories can be manipulated in the framework of �-

institutions towards the desired semantics of speci�cation building.

Instead the notion of entailment system is a part of a bigger integrated frame-

work, where tools to represent entailment, proofs and calculi are at hand and

institutions are the fragment of the fresco dealing with the semantic side.

Although the two works follow di�erent development lines, the only di�er-

ence between the de�nitions of �-institution and entailment system consists of

the assumption of compactness for the �-institutions; thus the two theories are

summarized together.

The following de�nition of �-institution generalizes the notion of deductive

system in the sense of [94], relativizing the primitive concepts of proposition and

consequence subject to a given signature and then characterizing the behaviour

of these concepts under changes of notation.

Def. 1.2.15 [[36], def. 2.1] A �-institution is a triple (Sign;Sen ; fCn

�

g

�2jSignj

)

consisting of

1. A category Sign (of signatures);

2. a functor Sen :Sign! Set (giving the set of formulas over each signature);

3. for each object � 2 jSignj, a consequence operator Cn

�

de�ned in the power

set of Sen(�) satisfying for each �;� � Sen(�) and �: �! �

0

:

extensiveness � � Cn

�

(�);

idempotence Cn

�

(Cn

�

(�)) = Cn

�

(�);

compactness Cn

�

(�) =

S

���;��nite

Cn

�

(�);

structurality Sen(�)(Cn

�

(�)) � Cn

�

0

(Sen(�)(�)).

1.2. OTHER FORMALISMS 21

Def. 1.2.16 [[63], def. 1] An entailment system is a triple

E = (Sign;Sen;`)

with Sign a category whose objects are called signatures, Sen a functor

Sen :Sign ! Set and ` a function, associating with each � in Sign a binary

relation `

�

� }(Sen(�)) � Sen(�) called �-entailment such that the following

properties are satis�ed:

re
exivity for any � 2 Sen(�), f�g`

�

�;

monotonicity if �`

�

� and � � �

0

, then �

0

`

�

�;

transitivity if �`

�

�

i

for i 2 I and � [f�

i

j i 2 Ig`

�

 , then �`

�

 ;

`-translation if �`

�

�, then for any � 2 Sign(�;�

0

), Sen(�)(�) `

�

0

Sen(�)(�).

The closure f� j � ` �g of a set � is denoted by �

�

.

An entailment system is called compact i� for each � 2 jSignj and each

� � Sen(�)

�`

�

� () there exists �nite � � �s:t: �`

�

�

It is just an exercise to show that compact entailment systems and �-

institutions coincide.

Prop. 1.2.17 Let E = (Sign;Sen ;`) be an entailment system and � =

(Sign;Sen; fCn

�

g

�2jSignj

) be a �-institution.

1. F (�) = (Sign;Sen ;`

Cn

) is a compact entailment system, where `

Cn

=

f`

Cn

�

g

�2jSignj

is de�ned by: �`

Cn

�

� i� � 2 Cn

�

(�) for all � � Sen(�)

and � 2 Sen(�).

2. G(E) = (Sign;Sen ;Cn

`

) is a �-institution, where Cn

`

= fCn

`

�

g

�2jSignj

is

de�ned by: Cn

`

(�) =

S

���;� �nite

�

�

3. G(F (�)) = �;

4. if E is compact, then F (G(E)) = E.

Proof.

22 CHAPTER 1. SPECIFICATION FORMALISMS

1. Extensiveness immediately implies re
exivity, compactness implies mono-

tonicity and `-translation directly follows from structurality. To check

transitivity, assume that �`

Cn

�

�

i

for i 2 I and � [f�

i

j i 2 Ig`

Cn

�

 ,

i.e. that f�

i

j i 2 Ig � Cn

�

(�) and 2 Cn

�

(� [f�

i

j i 2 Ig); then,

by extensiveness, � [f�

i

j i 2 Ig � Cn

�

(�) and hence, by monotonicity,

 2 Cn

�

(Cn

�

(�)) so that, by idempotence, 2 Cn

�

(�), i.e. transitivity

holds, too.

2. Re
exivity and monotonicity immediately imply extensiveness.

From extensiveness Cn

`

�

(�) � Cn

`

�

(Cn

`

�

(�)); thus to show that idem-

potence holds, it is su�cient to show that Cn

`

�

(Cn

`

�

(�)) � Cn

`

�

(�). By

de�nition

Cn

`

�

(Cn

`

�

(�)) =

[

��[[

���;� �nite

�

�

];� �nite

�

�

:

But � � (

S

���;� �nite

�

�

) and � �nite, i.e. � = f�

i

j i = 1 : : : ng, imply

�

�

� (

S

���;� �nite

�

�

), because for each �

i

there exists a �nite �

i

s.t. �

i

2

�

i

�

for i = 1 : : : n, so that � � (

S

i=1:::n

�

i

�

) � �

�

and � =

S

i=1:::n

�

i

is

�nite. Therefore

[

��[[

���;� �nite

�

�

];� �nite

�

�

�

[

���;� �nite

�

�

i.e. Cn

`

�

(Cn

`

�

(�)) � Cn

`

�

(�).

Compactness follows from the obvious fact that if � is �nite, thenCn

`

�

(�) =

�

�

.

Finally structurality easily follows from `-translation.

3. Obvious, because of compactness.

4. By de�nition, because of compactness, Cn

`

(�) = �

�

.

In both framework a concept of model is provided for the theories, using the

deductive relation, in order to make institutions and both compare the di�erent

approaches and import the results.

In the case of entailment systems the construction of the model part is easier

and obviously applies to the �-institutions too, because �-institutions are entail-

ment systems.

Def. 1.2.18 Given an entailment system [�-institution] its category Th of theory

presentations has as objects pairs T = (�;�) with � a signature and � a set of

1.2. OTHER FORMALISMS 23

sentences on � and as morphism �: (�;�) ! (�

0

;�

0

) the signature morphisms

�: �! �

0

s.t. Sen(�)(�) � �

0�

[Sen(�)(�) � Cn

�

0

(�

0

)].

The full subcategory The of Th has closed theory presentations as objects,

i.e. theory presentations (�;�) s.t. � = �

�

[resp. � = Cn

�

(�)].

Note that, using the notation of Prop. 1.2.17, the de�nition of theory category

for any �-institution � coincides with the de�nition of theory category for the

entailment system F (�).

Prop. 1.2.19 Let E = (Sign;Sen ;`) be an entailment system; then I =

(Sign;Sen;Mod; j=) is an institution, where Mod(�) is the comma category

(�; ;) # Th (see e.g. [54]) and Mod(�) is the right compositionMod(�)(�) = � ��

on the objects and leaves the arrows una�ected.

Proof. See prop. 9 in [63].

Vice-versa any institution implicitly de�nes two entailment systems: the min-

imal one, where a set of sentences entails just its elements, and the maximal

(or complete) one, where a set of sentences entails the sentences that hold in

its models. Lifting up the discussion to a categorical level, in [63], the relation-

ships between entailment systems and institutions is clearly illustrated by a graph,

whose edges are (forgetful and their left/right adjoint) functors and whose nodes

are the categories of institutions, of entailment systems and of logics (institu-

tions endowed with a sound entailment system). This discussion is referred on in

chapter 4.

In [36] a more complex construction is proposed, that follows largely the same

path, but starting with a subcategory of arrows in The as models. The intuition

is that a theory morphism �:T ! T

0

is an interpreter of T in T

0

(note that the

category of interpreters of T coincides with the comma category T # T

0

), but only

the fragments of an interpretation that are image of the interpreter are relevant to

the interpretation itself. These parts, indeed, are the nucleus of the interpretation

and contain all (and only) the information characterizing the interpretation. In

this way many interpretations are identi�ed, dropping the inessential parts. Two

properties appear to characterize the notion of nucleus: on one hand the nucleus,

being the \essential" part of an interpreter, should be in some sense minimal, and

on the other hand any interpreter should be a conservative extension of its nucleus,

i.e., roughly speaking, the nucleus \plus" a disjoint (inessential) part. In a set

theoretic approach these requirements would be satis�ed, factorizing �:T ! T

0

in the composition of � itself, viewed now as a function from T into the image

T

�

of �, with the embedding of T

�

into T

0

and then using as nucleus �:T ! T

�

,

24 CHAPTER 1. SPECIFICATION FORMALISMS

minimal in the sense of surjective, so that �:T ! T

0

is a conservative extension

of the nucleus in the sense that � = � � � and the embedding � is injective. This

approach can be generalized, provided that the category of theories has an image

factorization system, playing the role of the surjective-injective factorization for

the set theoretic case.

Def. 1.2.20 [[36], def. 3.8] Given a category C, an image factorization system for

C is a pair (E;M) such that:

� E is a class of epimorphisms in C and M is a class of monomorphisms in C.

� E and M are closed under composition.

� E and M contain all isomorphisms in C.

� Every morphism f in C admits an (E;M)-factorization that is unique up

to isomorphism. That is to say, there exist e 2 E and m 2 M such that

f = m � e and if f admits another (E;M)-factorization f = m

0

� e

0

, then

there is an isomorphism h such that h � e = e

0

and m

0

� h = m.

The existence of an image factorization system for the category of theories can

be reduced to the existence of an image factorization system for the category of

signatures, so that just the syntactic part is involved.

Theorem 1.2.21 Let (E;M) be an image factorization system for Sign. Let ET

be the class of all theory morphisms � belonging to E. Let MT be the class of

all conservative theory morphisms � belonging to M , where a theory morphism

�: (�;�)! (�

0

;�

0

) is called conservative i� �

�1

(�

0

) � �.

Then (ET;MT) is an image factorization system for The.

Proof. See [36], theorem 3.10.

In the sequel the category Sign of signatures is assumed to have an image

factorization system (E;M).

Def. 1.2.22 [[36], def. 3.12, 3.14, 3.33] Given a theory T in The, a T -

interpretation is a theory T

0

together with a morphism �:T ! T

0

, called in-

terpreter .

For each theory T the category �(T) of T -interpretations is the comma category

T # The.

Given an interpreter �:T ! T

0

, the nucleus of (�; T) is the interpretation

(e; T

�

), where T

�

is the center theory for an (ET;MT) factorization of � with epi

e.

1.2. OTHER FORMALISMS 25

Given a signature �, the category Mod(�) of �-models is the full subcategory

of the comma category �(�;Cn

�

(;) whose objects are epimorphisms.

In order to de�ne how �-models are translated along signature morphisms, a

preliminary lemma is needed.

Lemma 1.2.23 Let (E;M) be an image factorization system for a category C.

Given a commutative square g � e = m � f with e 2 E and m 2M , then there is

a unique h such that h � e = f and m � h = g.

Proof. See [36], lemma 3.9.

Note that, using the above lemma, a functor from �(

�

T) to its full subcategory

�(

�

T) of epimorphisms can be de�ned, associating each interpreter with its nucleus

and each arrow �:�! �

0

, i.e. �:T ! T

0

s.t. ��� = �

0

, with the unique h:T

�

! T

0�

existing because of the above lemma, for f = e

0

and g = � �m; graphically:

T

�

h

-

T

0�

I@

@

@

e
@

@

@ �

�

�

e

0

�

�

��

m

?

�

T

?

m

0

	�

�

�

�

�

�

� @

@

@

�

0

@

@

@R

T

�

-

T

0

Def. 1.2.24 [[36], def. 3.33] Let

�

T and

�

T

0

denote (�;Cn

�

(;)) and (�

0

;Cn

�

0

(;))

respectively. For any signature morphism �: � ! �

0

the functor

Mod(�):Mod(�

0

)! Mod(�) is de�ned by:

� for any �

0

-model �

0

:

�

T

0

! T

0

the image Mod(�)(�

0

) is the nucleus of �

0

� �;

� let �

1

:

�

T

0

! T

0

1

and �

2

:

�

T

0

! T

0

2

be �

0

-models and �:�

1

! �

2

be a morphism;

let (e

1

;m

1

) and (e

2

;m

2

) denote the (ET;MT)-factorization of �

1

� � and

�

2

� � respectively. Then the image Mod(�)(�) is the unique arrow that

make the following diagram commute (that exists because of lemma 1.2.23).

26 CHAPTER 1. SPECIFICATION FORMALISMS

T

1

�

m

1

-

T

0

1

I@

@

@

e

1

@

@

@ �

�

�
�

1

�

�

��

Mod(�)(�)

?

�

T

�

- �

T

0

?

�

	�

�

�

e

2

�

�

� @

@

@

�

2

@

@

@R

T

2

�

m

2

-

T

0

2

Theorem 1.2.25 Let � = (Sign;Sen; fCn

�

g

�2jSignj

) be a �-institution such

that Sign admits an image factorization system (ET;MT). Then I =

(Sign;Sen;Mod; j=) is an institution, where Mod is de�ned as in Def. 1.2.22 and

Def. 1.2.24 and the relation j= is de�ned by: � j=

�

w i� Sen(�)(w) 2 Cn

�

0

(�

0

)

for all �: (�;Cn

�

(;))! (�

0

;�

0

).

Proof. See [36], theorem 3.36.

Chapter 2

A paradigmatic problem: the

Speci�cation of Partial Functions

The need for a systematic treatment of partial operations is clear

from practice. One must be able to handle errors and exceptions, and

account for non-terminating operations. There are several approaches

to deal with these in literature, none of which appears to be fully

satisfactory. S. Feferman [35]

Because of the great relevance of the problem and the proliferation of for-

malisms proposed to deal with it, the speci�cation of partial functions can be

assumed as a paradigmatic example of the need for comparing and relating solu-

tions expressed in di�erent frameworks.

Partial operations, besides being a useful tool to represent not yet completely

speci�ed functions during the design re�nement process, are needed to represent

recursive functions. In the practice partiality arises from situations that can be

roughly parted in three categories:

� a semidecidable predicate p has to be speci�ed, like in concurrency theory

the transition relation on processes, or the typing relation for higher-order

languages. Thus, representing p as a boolean function f

p

, it is possible to

(recursively) axiomatize the truth, but not whether f

p

yields false on some

inputs and hence f

p

is partial (or its image is larger than the usual boolean

values set);

� a usual total abstract data type, like the positive natural numbers, is en-

riched by a partial function, like the subtraction; most of the examples take

place in this category, like the famous case of the stacks, where the stacks

27

28 CHAPTER 2. A PARADIGMATIC PROBLEM

are built by the total functions empty and push and then pop and top are

de�ned on them (i.e. the result of the application of these operations is either

an \error" or a term on the primitive operations);

� the partial functions that have to be speci�ed are the \constructors" of their

image set; consider for example the de�nition of lists without repetitions of

elements, or of ordered trees; in both cases the new data type is constructed

by partial inserting operations.

Although this characterization of partiality cannot be formalized, depending

on which kind of problems is considered as the paradigmatic example of partiality,

the di�erent frameworks proposed to specify partial functions are more e�ective

on some cases than on others.

The following parade of di�erent formalisms to deal with partiality is slightly

reminiscent of [95] and the discussion in [35]. For an analysis of the relationships

between di�erent total approaches to the speci�cation of the stacks as paradig-

matic partial data type, see [17], the �rst paper that addressed the problem of the

proliferation of formalisms from the point of view of the representation of concrete

speci�cations.

2.1 The Total Approaches

In this section the approaches are grouped, where only total functions are used

and elements are in a way or the other labeled as \good values" or \errors" of

some kind. Note that these approaches also support the treatment of (some kind

of) error recovery.

2.1.1 Error Algebras

Error algebras, as introduced by the ADJ group in [41], are a special case of

many-sorted algebras; the intuitive idea is to add a constant symbol for each sort

representing the \errors" of this sort (and hence an element to each carrier of

the data type), carefully propagating the errors. The naive application of this

technique can produce a lot of troubles, as the following famous example shows.

Example 2.1.1 Let the natural numbers (positive integers) with the + and the

� operations be considered.

spec Nat =

sorts N

2.1. THE TOTAL APPROACHES 29

opns

zero:! N

S :N ! N

+:N �N ! N

�:N �N ! N

axioms

�

1

zero + x = x

�

2

S(x) + y = S(x+ y)

�

3

zero � x = zero

�

4

S(x) � y = (x � y) + y

In order to enrich Nat by the � operation an element to represent the error

obtained computing x� y for y greater than x has to be provided.

1

It is worth to stress that in this approach there are operations that, more to be

partial strictly speaking, can produce a (predictable) error; thus design re�nement

and non-recursive function speci�cation are not supported.

spec Nat

�

=

enrich Nat by

opns

err :! N

�:N �N ! N

axioms

�

5

x� zero = x

�

6

S(x)� S(y) = x� y

� zero � S(x) = err

�

S

S(err) = err

�

+

l

err + x = err

�

+

r

x+ err = err

�

�

l

err � x = err

�

�

r

x � err = err

�

�

l

err � x = err

�

�

r

x� err = err

The � axiom introduces the error to denote the subtraction of a positive num-

ber from 0 and the decorated � axioms propagate the error.

1

See [74] for an argumentation against the introduction of error elements in basic types by

the hierarchic building of more complex speci�cations

30 CHAPTER 2. A PARADIGMATIC PROBLEM

It is immediate to see that from �

3

and �

�

r

the equality zero = err follows, so

that by error propagation any term is equal to err.

To avoid this problem, the axioms �

1

: : : �

6

2

should apply only to the correct

elements, i.e. to elements that are di�erent from err . Since inequalities are not

allowed by the standard algebraic theory, to express that the variables only range

on element distinct from err , a boolean sort is introduced together with an ok

function, that is false on err and true on the other elements.

spec Nat

?

=

sorts N;B

opns

zero:! N

S :N ! N

+:N �N ! N

�:N �N ! N

�:N �N ! N

T :! B

F :! B

^:B �B ! B

if

N

:B �N �N ! N

err :! N

ok :N ! B

if ok

1

:N �N ! N

if ok

2

:N �N �N ! N

axioms

�

0

1

if ok

1

(x; zero + x) = if ok

1

(x; x)

�

0

2

if ok

2

(x; y; S(x) + y) = if ok

2

(x; y; S(x+ y))

�

0

3

if ok

1

(x; zero � x) = if ok

1

(x; zero)

�

0

4

if ok

2

(x; y; S(x) � y) = if ok

2

(x; y; (x � y) + y)

�

0

5

if ok

1

(x; x� zero) = if ok

1

(x; x)

�

0

6

if ok

2

(x; y; S(x)� S(y)) = if ok

2

(x; y; x� y)

�

0

7

T ^ x = x

�

0

8

F ^ x = F

�

0

9

if

N

(T; x; y) = x

�

0

10

if

N

(F; x; y) = y

�

1

if ok

1

(x; u) = if

N

(ok(x); u; err)

�

2

if ok

2

(x; y; u) = if

N

(ok(x) ^ ok(y); u; err)

2

the only problematic axiom is �

3

, but the treatment is wanted to be as uniform as possible

2.1. THE TOTAL APPROACHES 31

�

3

ok(err) = F

�

4

ok(zero) = T

�

5

ok(S(x)) = ok(x)

� zero � S(x) = err

�

S

S(err) = err

�

+

l

err + x = err

�

+

r

x+ err = err

�

�

l

err � x = err

�

�

r

x � err = err

�

�

l

err � x = err

�

�

r

x� err = err

The above approach can be generalized to the speci�cation of a generic data

type, with an error, an ok and an if then else for each sort and a S

�

� S-family

of If ok

s

1

;:::;s

n

;s

functions mapping terms on variables x

i

: s

i

for i = 1 : : : n to

error if any x

i

is instantiated on error (so that substituting each original axiom

u = v of the speci�cation on variables x

i

: s

i

for i = 1 : : : n with If ok

s

1

;:::;s

n

;s

(u) =

If ok

s

1

;:::;s

n

;s

(v), the new formulation of the axiom is trivially satis�ed for the

evaluations of variables on error elements). Thus non-empty error signatures

must be in�nite, having an If ok

s

1

;:::;s

n

;s

for each n 2 IN and s

i

2 S.

Def. 2.1.2 The institution of error algebras with (open) equational formulas is

the quadruple ERR = (Sign

ERR

;Sen

ERR

;Mod

ERR

; j=

ERR

), where:

� Sign

ERR

is the subcategory of Sign

MS

whose objects (S;F) include the

following signature �

bool

(S) and whose morphisms preserve the boolean sort

and the operation symbols of �

bool

(S).

sig �

bool

(S) =

sorts B; s for all s 2 S

opns

T :! B

F :! B

^ :B �B ! B

error

s

:! s for all s 2 S [fBg

ok

s

: s! B for all s 2 S [fBg

ife

s

:B � s� s! s for all s 2 S

ifok

w;s

: s

1

� : : :� s

n

� s! s for all s

1

; : : : ; s

n

; s 2 S and w = s

1

: : :s

n

� Sen

ERR

:Sign

ERR

! Set is the restriction of Sen

EMS

to the signatures in

Sign

ERR

.

32 CHAPTER 2. A PARADIGMATIC PROBLEM

� for every signature � = (S;F) in Sign

ERR

, Mod

ERR

(�) =Mod

MS

(�; Ax),

where Ax consists of the following sentences for all s 2 S:

ife

s

(T; x; y) = x

ife

s

(F; x; y) = y

ife

s

(error

B

; x; y) = error

s

ok

s

(error

s

) = F

ifok

s

1

;:::;s

n

;s

(x

1

; : : : ; x

n

; u) = ife

s

(ok

s

1

(x

1

) ^ : : : ^ ok

s

n

(x

n

); u; error

s

)

and the translation Mod

ERR

(�) along a signature morphism �: � ! �

0

is

the restriction of Mod

MS

(�) to Mod

ERR

(�

0

).

� j=

ERR

�

is the restriction of j=

MS

to jMod

ERR

(�)j � Sen

ERR

(�).

Note that, since the operation symbols in �

bool

(S) are una�ected by signature

morphisms in Sign

ERR

, the translations of the axioms inAx along suchmorphisms

are just embeddings and hence for every � 2 Sign

ERR

(�;�

0

) if an algebra A

0

is

in Mod

ERR

(�

0

), then its reduct Mod

MS

(A

0

) is in Mod

ERR

(�), because of the

satisfaction condition; thus Mod

ERR

(�) is consistently de�ned.

Note also that there is no reason to assume that just one error element is

allowed (although in the original formulation axioms to identify the errors to

error

s

are in the examples and the construction of canonical error algebras has

one error element in each sort); therefore, regarding the elements on which ok

s

yields false as errors, in this approach tools for as sophisticated as wanted error

messages and even error recovery can be found.

It is worth noting that part of the complexity and heaviness of this approach

is due to the di�culty of expressing predicates and consequences in the frame of

many-sorted algebras (chosen by historical reasons) with equalities as sentences;

for example the introduction of the If ok

s

1

;:::;s

n

;s

functions is unnecessary if con-

ditional axioms are allowed, with the possibility of adding the sentences ok

s

(x) to

the premises for all variables x of sort s. Analogously, using �rst-order structures

(algebras with predicates) instead of (plain) many-sorted algebras, the introduc-

tion of the boolean sort and related operations can be avoided.

Many other approaches
ourished from the original error algebras, re�ning the

basic idea of cataloging the elements of the data type but using more powerful

algebraic framework to express the speci�cations (see e.g. the exception algebras

in [18], where both the elements of algebras and the terms are labeled to capture

2.1. THE TOTAL APPROACHES 33

the di�erence between errors and exceptions, or the clean algebras in [38], where

an order-sorted approach is adopted to catalogue the elements of algebras). In

spite of the potentiating and the embellishments, these approaches share with

the original one the di�culties of interaction with the modular de�nition of data

types. Indeed the non-ok elements of basic types have to be designed a priori

to support error messages, or exceptions caused by other modules that use the

basic ones; thus error algebras (and variations on the theme) are more suitable

for specifying a completely de�ned system more than for re�ning a project or

represent (parts of) a library of speci�cations on the shelf.

An opposite point of view is presented by Goguen in [43], where the focus is

on the errors, that are considered as the primitive part of the speci�cation and

detected \at compile time", as terms (deduced equal to terms) where symbols

from a selected part of the signature appear.

2.1.2 Equational Type Logic

Equational type logic (see e.g. [59]) is an extension of conditional logic based on

equality, that widens \equational reasoning" toward \reasoning with equations

and type assignments". The intuition is to put together symbols to represent

both types and their elements in one carrier and use a \typing" predicate family

to describe the belonging of elements to types. This approach allows to state

equalities (or inclusions) between sorts (viewed as �rst class elements) and, repre-

senting a (total) many-sorted operation as a one-sorted function that on correctly

typed inputs yields a correctly typed output, partial functions, too, that on cor-

rectly typed inputs can yield correctly typed outputs (but can as well yield an

untyped result, representing an \unde�ned" or \non-terminating" computation,

or an error).

Technically equational type logic (from now on ET-logic for short) is a partic-

ular subcase of usual �rst-order logic with equality where the only predicate is a

binary typing relation and the sentences are positive Horn-Clauses. The technical

simplicity, even poorness, of this approach on the logical side allows the de�nition

of a very e�cient deductive calculus, but on the semantic side makes the models

of theories expressed in ET-logic di�cult to �gure and manage, with the elements

of di�erent types and the names of the sorts all together in one carrier, with a lot

of junks due to the application of functions to inputs outside their domains.

Def. 2.1.3 The institution of equational type logic is the subinstitution ET =

(Sign

ET

;Sen

ET

;Mod

ET

; j=

ET

) of L, whose signature have just one binary predi-

cate.

34 CHAPTER 2. A PARADIGMATIC PROBLEM

In the sequel the binary predicate of any ET -signature will be denoted by the

symbol : with in�x notation : .

Consider again the example of the speci�cation of natural numbers with the

plus, times and minus operations.

Example 2.1.4

spec Nat

ET

=

constants N; zero

opns

S arity 1

+; �;� arity 2

axioms

�

1

zero : N

�

2

x : N � S(x) : N

�

3

zero + x = x

�

4

S(x) + y = S(x+ y)

�

5

x � zero = zero

�

6

S(x) � y = (x � y) + y

�

7

x� zero = x

�

8

S(x)� S(y) = x� y

In the initial model of this speci�cation the subset Nat = fn j n : Ng together

with the restriction of the operations +, � and � to Nat is (a representation

of) the natural numbers; however note that in the carrier there are elements to

represent not only the \errors", like zero � S(S(zero)), but also \meaningless"

expressions, like zero � S(zero +N) or N �N .

The amount of junk in the carrier of ET -models quickly increases if non-

homogeneous data types are de�ned; for example de�ning the stacks of natural

numbers enriching the above speci�cation, terms intuitively non-well formed, as

S(pop(N) + empty), have to be interpreted.

2.1.3 Uni�ed Algebras

The uni�ed algebras by Mosses (see e.g. [68]) are based on the intuition that the

values in the carrier represent not only elements of the data, but also classi�cations

of elements into sorts, i.e. the elements of the carrier are values, set of values and

names for these sets. To formalize the idea that the carriers of uni�ed algebras are

set of sets, the carriers are required to be distributive lattices with bottom and

2.1. THE TOTAL APPROACHES 35

the lattice partial order represents sort inclusion, so that the bottom represents

the \empty-sort".

The \empty-sort" is quite natural to represent the lack of result of partial

operations as well as a \sort" that classi�es several elements may be regarded as

a non-deterministic choice between those elements, providing a tool to formalize

non-deterministic results of a computation.

Having sort names as elements in the carrier also allows to apply functions to

sorts, so that on one hand many useful classi�cations of elements can be expressed

directly, without naming them by constants (for example the sort of positive natu-

ral number is represented by the application of the successor operation to the sort

symbol Nat classifying the natural numbers) and on the other sort constructors

of dependent or generic data types are just usual operations.

Def. 2.1.5 [[68]] The institution of uni�ed algebras is the subinstitution UNI =

(Sign

UNI

;Sen

UNI

;Mod

UNI

; j=

UNI

) of L, where:

� Sign

UNI

is the subcategory of Sign

L

whose objects includes the constant

symbol nothing, two binary operations j and & , and the two predicate

symbols � and : ; the arrows are the signature morphisms preserving

these symbols.

� Sen

UNI

:Sign

UNI

! Set is the restriction of Sen

L

to Sign

UNI

;

� Mod

UNI

:Sign

UNI

op

! Cat is de�ned by:

{ for every signature � in Sign

UNI

the category Mod

UNI

(�) is the full

subcategory of Mod

L

(�) whose objects A satisfy the following condi-

tions

� the carrier of A is a distributive lattice with j

A

as join, &

A

as

meet and nothing

A

as bottom;

� there is a distinguished set of values E

A

� A (the elements of A);

� f

A

is monotone w.r.t. the partial order of the lattice for all f 2 Op;

� x �

A

y holds i� xj

A

y = y (i.e.�

A

is the partial order of the lattice);

� x :

A

y holds i� x 2 E

A

and x �

A

y.

{ for every signature morphism �: �! �

0

, the functor Mod

UNI

(�) is the

restriction of Mod

L

(�) to Mod

UNI

(�

0

).

� Aj=

UNI

�

is the restriction of j=

L

to jMod

UNI

(�)j � Sen

UNI

(�).

36 CHAPTER 2. A PARADIGMATIC PROBLEM

Note that the uni�ed algebras are the model class of the following Horn-Clause

set on the minimal uni�ed signature.

spec Sp

Uni

=

nothing � x

x � y ^ y � x � x = y

x � y ^ y � z � x � z

x � x

x � z ^ y � z � xjy � z

x � xjy

y � xjy

z � x ^ z � y � z � x&y

x&(yjz) = (x&y)j(x&z)

xj(y&z) = (xjy)&(xjz)

x : x ^ x � y � x : y

x : y � x : x

x : y � x � y

x

1

� x

0

1

^ : : :^ x

n

� x

0

n

� f(x

1

; : : : ; x

n

) � f(x

0

1

; : : : ; x

0

n

) for all f 2 Op

n

Therefore the results about initiality and deduction of homogeneous Horn-

Clauses logic also hold for uni�ed theories.

From a practical point of view, speci�cations in the uni�ed algebra frameworks

are equivalent to the ones in the ET -logic, in the sense that the logical side is

quite simple (although the axioms of Sp

Uni

are implicit in any theory and must

be carefully taken in account to correctly specify data types), but the models of

speci�cations have carriers full of junk.

2.2 The Order-Sorted Approach

The order-sorted approach adds, as its name states, a partial order on the sorts,

that re
ects on the semantic side as an inclusion between the correspondent car-

riers and in particular modi�es the de�nition of terms, having that if t is a term

of sort s and s is a subsort of s

0

, then obviously t is a term of sort s

0

too.

The overloading of function symbols, common to most algebraic frameworks

and (meta)programming practice, gets a new
avor interacting with the order-

sorted feature. Consider indeed two paradigmatic examples:

� the integer numbers are included (as subtype) by the rational numbers; in

this case functions like sum and product are de�ned twice: on the integers

2.2. THE ORDER-SORTED APPROACH 37

and on the rational numbers; but obviously the interpretation of these op-

erations for the rational case should agree with the interpretation for the

integers on integers values.

� booleans with and, denoted by �, and or, denoted by +, are interpreted by

the natural numbers subset f0; 1g in the usual way; in this case there is

no reason to require that the interpretation of � or + on the natural num-

bers restricted to the subsort of boolean values coincides with the boolean

interpretation of � or +.

Since most concrete cases follow the pattern of the �rst example, in the original

papers on order-sorted Goguen and Meseguer (see e.g. [39, 40]) restricted signa-

tures to the monotonic ones, where if both f : s

1

; : : : ; s

n

! s and f : s

0

1

; : : : ; s

0

n

! s

0

for some s

i

� s

0

i

for i = 1 : : : n, then s � s

0

and accordingly algebras to those where

function symbols on subsorts are interpreted by the restriction of the interpreta-

tions on the sorts, i.e., using the above example, where f

s

0

1

;:::;s

0

n

;s

0

A

(a

1

; : : : ; a

n

) =

f

s

1

;:::;s

n

;s

A

(a

1

; : : : ; a

n

) for all a

i

2 s

i

A

and i = 1 : : : n. More recently Goguen and

Diaconescu in [47] relaxed this condition by allowing a subsignature to be declared

non-monotonic.

A more model-theoretic approach to overloading in the order sorted paradigm

(see e.g. [37, 73, 88]) consists of requiring that the interpretations of the same

function symbol, disregarding its functionality, produces the same output if pro-

vided with the same input values, i.e. if f : s

1

; : : : ; s

n

! s and f : s

0

1

; : : : ; s

0

n

! s,

then f

s

1

;:::;s

n

A

(a

1

; : : : ; a

n

) = f

s

0

1

;:::;s

0

n

A

(a

1

; : : : ; a

n

) for all a

i

2 (s

i

A

\ s

0

i

A

), or equiv-

alently each function symbols is interpreted by a partial function on a universe,

including the carriers of the algebra, s.t. if f : s

1

; : : : ; s

n

! s, then s

1

A

� : : :� s

n

A

is in the domain of f

A

and f(s

1

A

� : : :� s

n

A

) � s

A

. This approach is contrary

to the abstractness of usual algebraic frameworks, where carriers are considered

equivalent if (set-theoretically) isomorphic.

In order to have that the order-sorted terms with the usual (unparsed) func-

tional notation can be given a unique interpretation, the concept of least sort

of a term is introduced and in order to the least sort exists for every term, the

regularity condition on the signature is required. Finally to have that validity is

invariant under algebra isomorphism (that seems quite a reasonable requirement

for any algebraic framework), the signature has to be coherent.

Def. 2.2.1 An order sorted signature is a triple (S;�; F) s.t. (S;F) is a many-

sorted signature and (S;�) is a poset. In the sequel the symbol � is also used to

denote the extension of the partial order � on strings of sorts (s

1

: : : s

n

� s

0

1

: : : s

0

n

0

38 CHAPTER 2. A PARADIGMATIC PROBLEM

i� n = n

0

and s

i

� s

0

i

for i = 1 : : : n) and on pairs (w; s), where w 2 S

�

and s 2 S

((w; s) � (w

0

; s

0

) i� both w � w

0

and s � s

0

).

An order sorted signature � = (S;�; F) is monotone i� f 2 F

w;s

\ F

w

0

;s

0

and

w � w

0

implies s � s

0

. � is regular i� it is monotone and given f 2 F

w

1

;s

1

and

w

0

� w

1

, there is a least rank (w; s) s.t. w

0

� w and f 2 F

w;s

; � is coherent

i� it is regular and each connected component of (S;�) (equivalence class of the

symmetric and transitive closure of �) is �ltered i.e. for any s; s

0

in the connected

component of �s there exists s

00

in the same component s.t. s; s

0

� s

00

.

An order sorted algebra A on an order sorted signature (S;�; F) is a many-

sorted algebra on (S;F) s.t. s

A

� s

0A

for all s � s

0

in (S;�). An order sorted

homomorphism h:A ! B between order sorted algebras on (S;�; F) is a many-

sorted homomorphism s.t. h

s

is the restriction of h

s

0
to s

A

for all s � s

0

in (S;�).

An order sorted algebra A on (S;�; F) is monotone on a function symbol f i�

f 2 F

w;s

\ F

w

0

;s

0

and (w; s) � (w

0

; s

0

) imply that f

w;s

A

is the restriction of f

w

0

;s

0

A

to s

1

A

� : : :� s

n

A

for w = s

1

; : : : ; s

n

.

Then to represent a partial function, a sort has to be added to the signature,

that denotes the domain of this function and is a subsort of the function source.

A minor problem of this point of view is that to deal with non-unary functions,

the set of sorts have to be closed under product formation (or at least under some

products) and accordingly projection and tupling operations have to belong to the

function symbol set, so that the syntax of types results heavier than necessary and

the models carry redundant structure, unless some ad hoc solution is adopted, as

in the following speci�cations of rational numbers.

Example 2.2.2 Consider the usual speci�cation of integers and enrich it to de�ne

the rational numbers.

spec Int

OSA

=

sorts Z

opns

0:! Z

s; p:Z ! Z

+ ; � ; � :Z � Z ! Z

axioms Var x; y:Z

�

1

p(s(x)) = x

�

2

s(p(x)) = x

�

3

0 + x = x

�

4

s(x) + y = s(x+ y)

�

5

p(x) + y = p(x+ y)

2.2. THE ORDER-SORTED APPROACH 39

�

6

x� 0 = x

�

7

x� s(y) = p(x� y)

�

8

x� p(y) = s(x� y)

�

9

0 � x = 0

�

10

s(x) � y = (x � y) + y

�

11

p(x) � y = (x � y)� y

In order to be able to \statically" distinguish if an integer is not zero, and

hence can be used as denominator to build rational numbers, the sort of (strictly)

positive integers has to be introduced, contrary to the modularity principles.

spec Rat

OSA

=

enrich Int

OSA

by

sorts N

+

� N � Z � Q

opns

0:! N

s:N ! N

+

= :Z �N

+

! Q

� :N

+

�N

+

! N

+

+ ; � ; � :Q� Q! Q

axioms Var x; y:Z; z; t : N

+

�

1

(x � t) = (z � y) � (x=z) = (y=t)

�

2

(x=z) + (y=t) = ((x � t) + (z � y))=(z � t)

�

3

(x=z)� (y=t) = ((x � t)� (z � y))=(z � t)

�

4

(x=z) � (y=t) = (x � y)=(z � t)

Note that the operation � :N

+

�N

+

! N

+

is introduced just in order to the

terms in axioms �

2

, �

3

and �

4

are well-formed. This is a quite common situation,

using order-sorted speci�cations, that an operation is de�ned also on sub-sorts to

express that the results on restricted inputs are typed in a smaller sort.

Although the \static" check has its fascination, it is worth to note that terms

intuitively well-formed are inadmissible; consider indeed in the above speci�cation

the string 0=(s(0) + s(0)); this is not a well formed term, because s(0) + s(0) has

type Z instead of N

+

, although s(0) + s(0) is reducible, by �

3

and �

4

to s(s(0))

that has the correct type N

+

. To solve this problem retracts are used, that

\try" to apply a more restrictive typing to terms. Formally retracts are unary

functions from a supsort into a subsort, in the above example the retract would

be r

Z;N

+

:Z ! N

+

, and a term on the enriched signature is interpreted as a value

i� it reduces to a term on the original signature, as in the example above the

term 0=r

Z;N

+

(s(0)+s(0)) that reduces to 0=s(s(0)), otherwise it can be seen as an

40 CHAPTER 2. A PARADIGMATIC PROBLEM

error, as 0=r

Z;N

+

(0) that cannot be further reduced. Thus the original elegance of

the order-sorted approach is reduced to another variation on the theme of error

algebras.

A classical example where the standard approach with product sorts is more

comfortable is the speci�cation of the minus operation on natural numbers.

Example 2.2.3 In the following speci�cation besides the data type operations 0,

successor, +, and minus, the projections and tupling are introduced to handle the

product sort and a constructor of the domain of the minus; the axioms de�ning the

mutual behaviour of projections and tupling are standard not only in this example,

but also in the general case, so that they could be introduced automatically as

well as the operations themselves.

spec Minus =

sorts N;D � N
N

opns

0:! N

s:N ! N

+ :N �N ! N

minus:D! N

< ; >:N �N ! N
N

�

1

:N
N ! N

�

2

:N
N ! N

constr :N �N ! D

axioms Var x; y:N

�

1

�

1

(< x; y >) = x

�

2

�

2

(< x; y >) = y

�

3

< �

1

(z); �

2

(z) >= z

�

1

0 + x = x

�

2

s(x) + y = s(x+ y)

�

3

constr(x; y) =< x+ y; y >

�

4

minus(constr(x; y)) = x

If n � m, then < n;m >= constr(n � m;m) and hence constr builds

the set f(n;m) j m � ng, intended domain of the minus operation, but

it seems quite counterintuitive to express for example s(s(s(0))) � s(0) by

minus(constr(s(s(0)); s(0))).

2.3. THE PARTIAL APPROACH 41

It is also worth to note that partial functions whose domains are \dependent"

types are not supported by the order-sorted approach. Consider indeed the spec-

i�cation of the arrow composition in a category; then f ; g is de�ned i� the target

of f matches the source of g. Apparently there is no way of de�ning the domain of

the composition in the order-sorted style. The solution in similar cases is to (pos-

sibly automatically) introduce supersorts of \possibly erroneous elements" and

duplicate the operations on the new sorts too and then to forget/hide this \error"

part. But, since there is no explicit type declaration mechanism, the use of error

supersort not always works in combination with loose semantics. In particular in

the case of categories there is no way to impose that the composition of correctly

composable arrows is in the subsort of (correct) arrows.

Example 2.2.4 Note that the introduction of errors on arrows to specify the

composition also requires to introduce errors on objects (on any other sort related

to them by an operation) to propagate the errors. Note also that there are no

constants, so that the initial model is empty; the following is intended to be

the speci�cation of categories in the sense that (small) categories satisfy this

speci�cation, but it has also non-standard models.

spec Categories =

sorts obj � obj

Err

; arr � arr

Err

opns

id : obj ! arr

�

0

; �

1

: arr ! obj

; : arr

Err

� arr

Err

! arr

Err

�

0

; �

1

: arr

Err

! obj

Err

axioms Var A:obj; f; g; h : arr

Err

�

1

�

0

(id(A)) = A

�

2

�

1

(id(A)) = A

�

3

�

0

(f ; g) = �

0

(f)

�

4

�

1

(f ; g) = �

1

(g)

�

5

(f ; g); h= f ; (g; h)

�

6

id(�

0

(f)); f = f

�

7

f ; id(�

1

(f)) = f

2.3 The Partial Approach

The theory of partial algebras has been developed by di�erent groups, so that a

common notation is missing and sometimes there are subtle di�erences between

42 CHAPTER 2. A PARADIGMATIC PROBLEM

apparently equivalent de�nitions. The notation here coincides more or less with

that used by Goguen and Meseguer in [64] for the total case and Broy and Wirsing

in [23]. For general and exhaustive expositions on the subject see [26, 80]; here the

main concepts and results are summarized in order to support a deep discussion

on a more general kind of partial speci�cations.

In the following the symbol = will always denote strong equality, i.e. if p and

q are expressions in the metalanguage, then p = q holds i� either both p and q

are unde�ned, or both are de�ned and equal.

Partial algebras di�er from many-sorted total ones, because the operation

symbols are interpreted by partial functions, i.e. by functions whose domains are

(possibly proper) subsets of their sources.

Def. 2.3.1

� A partial algebra A on a many-sorted signature � = (S;F) consists of a

family fs

A

g

s2S

of sets, the carriers, and of a family fop

A

g

op2F

w;s

;w2S

�

;s2S

of

partial functions, the interpretations of operation symbols, s.t.

{ if w = � then either op

A

is unde�ned or op

A

2 s

A

;

{ if w = s

1

: : : s

n

, where n � 1, then op

A

: s

1

A

� : : :� s

n

A

p

! s

A

.

Often the partial algebra A is denoted by the couple (fs

A

g; fop

A

g), omitting

the quanti�cations about s and op which are associated with the signature.

A partial algebra over a signature � is called a �-algebra. The class of all

�-algebras is denoted by PA(�).

� Let A be a partial algebra on a signature � = (S;F); then a �- algebra

B is a subalgebra (regular subobject) of A i� s

B

� s

A

for all s 2 S and

op

B

(b

1

; : : : ; b

n

) = op

A

(b

1

; : : : ; b

n

) for all op 2 F

s

1

:::s

;

s

and all b

i

2 s

i

B

for

i = 1 : : : n.

As in the many-sorted total case, in the sequel the constant op 2 F

�;s

is

regarded as a \zeroary" operation, with the convention that s

1

A

� : : :� s

0

A

is the

singleton set, so that a partial function having it as domain is either unde�ned on

an element of the codomain, accordingly with the de�nition of op

A

.

The de�nition of homomorphism adopted here, well known in literature, see

e.g. [26, 22] (where it is called total �- homomorphism), is used in the initial and

loose approaches, because, preserving existential equalities, makes the initial ob-

ject in a class, if any, to satisfy the no-junk and no-confusion conditions (rephrased

with existential equalities) and accordingly structures the model class.

2.3. THE PARTIAL APPROACH 43

Def. 2.3.2 Let A and B be two �-algebras and p be a family of total functions

p = fp

s

: s

A

! s

B

g

s2S

. Then p is a homomorphism from A into B i� for any

op 2 F

s

1

:::s

n

;s

, with n � 0, and any a

i

2 s

i

A

with i = 1 : : : n:

op

A

(a

1

; : : : ; a

n

) 2 s

A

implies p

s

(op

A

(a

1

; : : : ; a

n

)) = op

B

(p

s

1

(a

1

); : : : ; p

s

n

(a

n

)).

In the following any homomorphism p from A into B is denoted by p:A! B.

For each signature � = (S;F) the category PAlg(�) of partial �-algebras

consists of:

� the set of objects of PAlg(�) is PA(�);

� PAlg(�)(A;B) = fp:A! B j p homomorphismg for all A;B 2 PA(�);

� the identity morphism Id

A

is Id

A

= fId

s

Ag

s2S

, where Id

s

A is de�ned by

Id

s

A(a) = a for all a 2 s

A

and all �-algebras A;

� let A, B and C be �-algebras, p:A! B and q:B ! C be homomorphisms;

then q � p is the family fq

s

� p

s

g

s2S

.

Let C be a class of �-algebras and X be a family of variables s.t. there exists at

least an A 2 C and a valuation for X in A. A couple (Fr;m), where Fr is a

�-algebra and m is a valuation for X in Fr, is free over X in C i�

� Fr 2 C;

� for all A 2 C and all valuations V for X in A, there exists a unique homo-

morphism p

V

from Fr into A s.t. p

V

(m(x)) = V (x) for all x 2 X.

Let C be a class of �-algebras; an algebra I is initial in C i� it is free over the empty

set in C, i.e. i� I 2 C and for all A 2 C there exists a unique homomorphism

from I into A.

Note that the de�nition of free object coincide with the usual de�nition in

category theory, for free object generated by X w.r.t. the forget functor from

PAlg(�) into Set

S

(the category of S-sorted sets), see e.g. [54].

The natural interpretation of (usual total) terms in a partial algebra is de�ned

as in the total case substituting each variable for its valuation and each operation

symbol for its interpretation in the algebra. It is worth to note that the natural

interpretation is strict in the sense that if the natural interpretation of a subterm

is unde�ned, then the natural interpretation of the term is unde�ned, too, because

the functions of algebras are strict, too.

44 CHAPTER 2. A PARADIGMATIC PROBLEM

Def. 2.3.3 Let A be a �-algebra, X = fX

s

g

s2S

be an S-sorted family of variables

and V = fV

s

:X

s

! s

A

g

s2S

be a family of total functions, called a valuation for

X in A.

� Then the natural interpretation of terms w.r.t.A and V , denoted by eval

A;V

,

is the partial function inductively de�ned by the following clauses, where t

A;V

stands for eval

A;V

(t):

{ x

A;V

= V

s

(x), for all x 2 X

s

and op

A;V

= op

A

, for all op 2 F

�;s

;

{ (op(t

1

; : : : ; t

n

))

A;V

= op

A

(t

A;V

1

; : : : ; t

A;V

n

) for all op 2 F

s

1

:::s

n

;s

, with

n � 1, and all t

i

2 T

�

(X)

js

i

.

When restricted to T

�

, eval

A;V

is denoted by eval

A

and, correspondingly,

t

A;V

becomes t

A

.

� The term-image algebra V (A) is the subalgebra of A de�ned by:

s

V (A)

= fa j there exists t 2 T

�

(X)

js

s:t: a = t

A;V

g for all s 2 S:

� The kernel of the natural interpretation of terms w.r.t. A and V , denoted by

K

A;V

(X) or simply byK

A

ifX is the empty set, is the family fK

A;V

(X)

s

g

s2S

where

K

A;V

(X)

s

= f(t; t

0

) j t; t

0

2 T

�

(X)

js

; t

A;V

; t

0A;V

2 s

A

and t

A;V

= t

0A;V

g:

� If eval

A

is surjective, then A is called term-generated.

As in the total case homomorphisms preserve the evaluation of terms and this

property is essential to have that the no-confusion property holds for the initial

(free) model in a class, if any.

Prop. 2.3.4 Let A and B be two �-algebras, X be a family of variables, V

A

and

V

B

be two valuations for X in A and B resp.

1. If p:A ! B is a homomorphism s.t. p(V

A

(x)) = V

B

(x) for all x 2 X, then

p(t

A;V

A

) = t

B;V

B

for all t 2 T

�

(X)

js

s.t. t

A;V

A

2 s

A

.

2. If eval

A;V

A

is surjective, then there exists at the most one homomorphism

q:A! B s.t. q(V

A

(x)) = V

B

(x) for all x 2 X.

Proof. By structural induction over T

�

(X) .

2.3. THE PARTIAL APPROACH 45

In order to show that the initial model in a class, if any, satis�es the no-

junk condition, i.e. that any its element is denoted by some term, it is useful to

introduce the notions of congruence and quotient.

Def. 2.3.5

� Given a signature � = (F; S) and a �-algebra A, a congruence � over A

is a family of binary relations f�

s

g

s2S

satisfying the following conditions

(where the obvious quanti�cations over sorts is omitted):

{ �

s

� s

A

� s

A

, and �

s

is symmetric and transitive; in the following the

set fa j a �

s

ag is denoted by Dom(�

s

) and a�

s

D

a

0

holds i� either

a �

s

a

0

or a; a

0

=2 Dom(�

s

);

{ for all op 2 F

s

1

:::s

n

;s

and all a

i

; a

0

i

2 s

i

A

, with i = 1: : :n, if a

i

�

s

i

a

0

i

for

i = 1 : : : n, then op

A

(a

1

; : : : ; a

n

)�

s

D

op

A

(a

0

1

; : : : ; a

0

n

).

{ for every op 2 F

s

1

:::s

n

;s

and every a

i

2 s

i

A

, with i = 1 : : : n, if

op

A

(a

1

; : : : ; a

n

) 2 Dom(�

s

), then a

i

2 Dom(�

s

i

), for i = 1 : : : n.

� Let � be a congruence over a �-algebra A; let [a] denote the equivalence

class of a in �

s

for all s 2 S and all a 2 s

A

. The quotient algebra of A w.r.t.

�, denoted by A= �, is de�ned by:

{ s

A=�

= f[a] j a 2 Dom(�

s

)g, for all s 2 S;

{ op

A=�

([a

1

]; : : : ; [a

n

]) = [op

A

(a

1

; : : : ; a

n

)] if op

A

(a

1

; : : : ; a

n

) 2 Dom(�

s

),

otherwise op

A=�

([a

1

]; : : : ; [a

n

]) is unde�ned, for all op 2 F

s

1

:::s

n

;s

and all

a

i

2 Dom(�

s

i

) with i = 1 : : : n.

Prop. 2.3.6 Let A be a �-algebra, � be a congruence, X be a family of variables

and V , V

0

be valuations respectively for X in A and for X in A= � s.t. V

0

(x) =

[V (x)]. Then [t

A;V

] = t

A=�;V

0

for every term t 2 T

�

(X)

js

.

Proof. By structural induction over T

�

(X).

The Prop. 2.3.6 implies, in particular, that if eval

A;V

is surjective, then

eval

A=�;V

0

is surjective, too; thus in particular, for A = T

�

(X) and V the em-

bedding, every quotient of a term-algebra is term-generated on the same variable

set.

Prop. 2.3.7 LetA be a �-algebra and V be a valuation for a familyX of variables

in A.

1. The kernel K

A;V

(X) is a congruence over T

�

(X).

46 CHAPTER 2. A PARADIGMATIC PROBLEM

2. The algebras V (A) and T

�

(X)=K

A;V

(X) are isomorphic.

Proof.

1. The proof easily follows from the de�nition of K

A;V

(X).

2. It is easy to check that p:T

�

(X)=K

A;V

(X) ! V (A), de�ned by p

s

([t]) =

t

A;V

, and q:V (A) ! T

�

(X)=K

A;V

(X), de�ned by q

s

(a) = [t], where t 2

T

�

(X)

js

and t

A;V

= a, are homomorphisms and that both p�q = Id

V (A)

and

q � p = Id

T

�

(X)=K

A;V

(X)

by de�nition of p and q.

Note that in particular if A is generated by X via V , i.e. eval

A;V

is surjective,

then A is isomorphic to a quotient of T

�

(X).

Prop. 2.3.8 Let A be a �-algebra and �

1

, �

2

be congruences over A. The

function M :A= �

1

! A= �

2

, de�ned by M([a]

1

) = [a]

2

, is a homomorphism i�

�

1

��

2

.

Proof. The proof easily follows from the de�nitions of congruence and homo-

morphism.

The above proposition suggests that if the initial object of a class is term-

generated, and hence isomorphic to the quotient of the term algebra by the kernel

of the natural interpretation, then its kernel is contained in the kernel of any

algebra of the class, i.e. it is the intersection of all kernels. It is easy to check that

intersection of congruences is a congruence.

Def. 2.3.9 Let C be a class of �-algebras and X be a family of variables s.t.

there exists at least an A 2 C and a valuation for X in A.

� For every family �= f�

i

g

i2I

of congruences over a �-algebra A the inter-

section of �, denoted by \(�), is the congruence f\

i2I

�

i

s

g

s2S

.

� K

C

(X) is the intersection of the family

fK

A;V

(X) j A 2 C; V :X ! Ag:

If X is the empty set, K

C

(X) is simply denoted by K

C

. Moreover

T

�

(X)=K

C

(X) is denoted by Fr

C

(X) and the valuation m

C

:X ! Fr

C

(X),

de�ned by m

C

(x) = [x]

K

C

(X)

, by m

C

.

� Gen(C;X) is the subclass of C de�ned by:

fA j A 2 C; there exists V :X ! A s:t: eval

A;V

(T

�

(X)) = Ag:

If X is the empty set, then Gen(C;X) is shortly denoted by Gen(C).

2.3. THE PARTIAL APPROACH 47

Under minimal assumptions about the closure w.r.t. subalgebras and isomor-

phisms, existence and characterization of the free model for a class C of algebras

can be stated independently from the fact that C is the model class of a set of

(some kind of) sentences, because the nature of the free object is obliged by the

de�nition of homomorphism.

Prop. 2.3.10 Let X be a family of variables and C be a class of �-algebras

closed w.r.t. sub-algebra and isomorphism s.t. there exists at least an A 2 C and

a valuation for X in A. The following conditions are equivalent:

1. there exists a free object for X in C;

2. Fr

C

(X) belongs to C;

3. (Fr

C

(X);m

C

) is free for X in C;

4. there exists a free object for X in Gen(C;X).

Proof.

1!2 Let (Fr;m) be the free object for X in C. Since C is closed w.r.t.

sub-algebra, m(Fr) 2 C and hence T

�

(X)=K

Fr;m

(X) 2 C, too, due to

Prop. 2.3.7, because C is closed w.r.t. isomorphism. Therefore, in order to

show that Fr

C

(X) 2 C, it is su�cient proving that K

C

(X) = K

Fr;m

(X).

By de�nition K

C

(X) � K

Fr;m

(X), thus just K

Fr;m

(X) � K

C

(X) has to be

shown. Assume that (t; t

0

) 2 K

Fr;m

(X), i.e. t

Fr;m

= t

0Fr;m

2 Fr and con-

sider any V :X ! A with A 2 C; by de�nition of free object, p

V

:Fr ! A

exists s.t. p

V

� m = V and hence, by Prop. 2.3.4(1), t

A;V

= p

V

(t

Fr;m

) and

t

0A;V

= p

V

(t

0Fr;m

), so that from t

Fr;m

= t

0Fr;m

2 Fr also t

A;V

= t

0A;V

2 A

follows.

2!3 Let A belong to C, V :X ! A be a valuation and de�ne

p

V

:Fr

C

(X) ! A by p

V

([t]) = t

A;V

; p

V

is a function because K

C

(X) �

K

A;V

(X) and obviously is a homomorphism. Finally p

V

is unique because

of Prop. 2.3.4.

3!4 Since Fr

C

(X) 2 Gen(C;X) by de�nition and (Fr

C

(X);m

C

) is free for X

in C, then (Fr

C

(X);m

C

) is also free for X in Gen(C;X).

4!2 Let (Fr;m) be the free object for X in Gen(C;X); then Fr

Gen(C;X)

(X) 2

Gen(C;X) � C, because of 1!2 applied to Gen(C;X). To show

that Fr

C

(X) = Fr

Gen(C;X)

(X) it is su�cient to show that K =

48 CHAPTER 2. A PARADIGMATIC PROBLEM

K

Gen

, where K = fK

A;V

(X) j A 2 C; V :X ! Ag and K

Gen

=

fK

A;V

(X) j A 2 Gen(C;X); V :X ! Ag, so that K

C

(X) = K

Gen(C;X)

(X).

Since Gen(C;X) � C, K

Gen

� K. On the contrary let A belong to C and

V be a valuation for X in A; then V (A) 2 C, because C is closed w.r.t. sub-

algebras, and hence V (A) 2 Gen(C;X), so that K

A;V

= K

V (A);V

2 K

Gen

;

thus K � K

Gen

. Therefore K = K

Gen

and hence Fr

C

(X) = Fr

Gen(C;X)

(X),

so that Fr

C

(X) 2 C, because Fr

Gen(C;X)

(X) 2 C.

3!1 Obvious.

The above proposition can be specialized for the initial case.

Cor. 2.3.11 Let C be a class of �-algebras closed w.r.t. sub-algebra and isomor-

phism. The following conditions are equivalent:

1. there exists an initial object in C;

2. T

�

=K

C

belongs to C;

3. T

�

=K

C

is initial in C;

4. there exists an initial object in Gen(C)

Proof. From Prop. 2.3.10, for X = ;.

The partial logic is built on two notions of equality: the existential equality,

denoted by =

e

, that holds i� both sides represent the same element of the car-

rier, and the strong equality, denoted by =, that holds i� either both sides are

unde�ned or the existential equality holds. In the sequel, since the hypothesis

is not restrictive from an applicative point of view and simpli�es the proofs of

some technical lemmas below, variables and both sorts and functions are assumed

to be denumerable (at the most). In particular a denumerable universe Var of

variables is assumed to be �xed and the families of variables used in the following

statements are contained in Var .

Def. 2.3.12 Let � = (S;F) be a signature and X be a family of S-sorted vari-

ables.

� An elementary formula over � and X has the form either D(t) or t=t

0

for

t; t

0

2 T

�

(X)

js

, where D denotes the de�nedness predicate (one for each

sort; but sorts are omitted). The set of all elementary formulas over � and

X will be denoted by EForm(�;X).

2.3. THE PARTIAL APPROACH 49

� A conditional formula over � and X has the form � � �, where � is a

countable set of elementary formulas over � and X and � is an elementary

formula over � and X too. The set of all conditional formulas on � and X

will be denoted by SC (�;X).

If � is the empty set, then � � � is an equivalent notation for the elementary

formula �.

� A positive conditional formula over � and X is a conditional formula � � �

over � and X s.t. D(t) or D(t

0

) belongs to � for every t=t

0

belonging to �.

The set of all positive conditional formulas on � and X will be denoted by

Cond(�;X).

� For every formula � let V ar(�) denote the set of all variables which appear

in �. A formula � is called ground i� V ar(�) is empty.

� If A is a partial algebra, � is a formula and V is a valuation for V ar(�) in

A, then � holds for V in A (equivalently: is satis�ed for V by A) and write

Aj=

PAR

V

� accordingly to the following:

{ Aj=

PAR

V

D(t) i� t

A;V

is de�ned; Aj=

PAR

V

t=t

0

i� t

A;V

and t

0A;V

are

either both de�ned and equal or both unde�ned;

{ let � be � � �; then Aj=

PAR

V

� i� Aj=

PAR

V

�, or A 6j=

PAR

V

� for some

� 2 �;

For any formula �, � holds in (equivalently: is satis�ed by, is valid in) A,

denoted by Aj=

PAR

�, i� Aj=

PAR

V

� for all valuations V for V ar(�) in A.

Remark.

� From the de�nition of validity, in the particular case t = x, Aj=

PAR

D(x) for

all variables x follows, because V (x) = x

A;V

is de�ned for every valuation

V , valuations being total functions.

� Note that D(t) can be equivalently expressed by t=

e

t; hence elementary

formulas are just equalities either strong or existential. Analogously, since

t=

e

t

0

is logically equivalent to D(t) ^ t=t

0

, positive conditional formulas

are (�rst-order equivalent to) conditional formulas whose premises are just

existential equalities.

� The above notion of validity is the usual one in the many-sorted case; how-

ever some comments can be helpful. If V ar(�)

s

6= ; and s

A

= ;, then

50 CHAPTER 2. A PARADIGMATIC PROBLEM

Aj=

PAR

� holds; hence for any class C of algebras, Cj=

PAR

� i� Aj=

PAR

� for

all A 2 C s.t. V ar(�)

s

6= ; implies s

A

6= ;. Thus if C contains an algebra

with all carriers non-empty (as it will always happen in the sequel), then the

notion of validity for the class coincides with the classical one; for example

it could not be that both Cj=

PAR

� and Cj=

PAR

:� (but note that negation

is not in the language). Finally it is also useful to emphasize that here it is

possible to stay within a two-valued logic, since any conditional formula is

always either true or false for a (total) valuation of its variables.

In the following a generic elementary formula will be denoted by � or � or

or �, while a generic conditional formula will be denoted by � or � or ; moreover

for all conditional formulas � = (� � �) the set � is denoted by prem(�) and �

by cons(�); �nally �

1

^ : : :^ �

n

� � is the same as f�

1

: : : �

n

g � � for all elementary

formulas �

1

: : : �

n

; �.

Def. 2.3.13 The institution of many-sorted partial algebras with conditional ax-

ioms is the quadruple PAR = (Sign

PAR

;Sen

PAR

;Mod

PAR

; j=

PAR

), where:

� Sign

PAR

is the category of many-sorted signatures Sign

MS

.

� let X be a denumerable set of variables; for every signature � the set

Sen

PAR

(�) is fV:� j V :X ! S; � 2 SC (�; Y) for Y

s

= V

�1

(s)g. For every

signature morphism �: �! �

0

, where � = (�; �), the translation Sen

PAR

(�)

of a sentence V:� is V � �:ren(�), where ren(�) denotes the renaming of

function symbols in � by �, leaving una�ected the variables.

� Mod

PAR

:Sign

PAR

op

! Cat is de�ned by:

{ for every signature � = (�; �) the category Mod

PAR

(�) = PAlg(�)

has partial algebras as objects and partial algebra homomorphisms as

arrows;

{ for every signature morphism �: � ! �

0

, where � = (�; �), the

translation Mod

PAR

(�)(A

0

) of a partial algebra A

0

is the reduct

(f�(s)

A

g

s2S

; f�(f)

A

g

f2F

and the translation of a morphism h is

fh

�(s)

g

s2S

.

� For any � 2 jSign

PAR

j, any A 2 jMod

PAR

(�)j and any (V:�) 2 Sen

PAR

(�),

Aj=

PAR

V:� i� Aj=

PAR

� accordingly with Def. 2.3.12 for � 2 SC (�; Y) and

Y

s

= V

�1

(s).

2.3. THE PARTIAL APPROACH 51

The institution of many-sorted partial algebras with positive conditional axioms

is the quadruple PPAR = (Sign

PAR

;Sen

PPAR

;Mod

PAR

; j=

PAR

) with positive

conditional axioms as sentences and the same signatures, models and validity

relation as PAR, i.e. Sen

PPAR

(�) = fV:� j � 2 Cond(�; fV

�1

(s)g)g.

Positive conditional axioms always have an initial object and their model class

form a quasi-variety (see e.g. [92]); thus technically they are not so far away

from the total many-sorted approach. Moreover positive conditional axioms are

su�ciently powerful to de�ne most data types used in computer science. Consider

again the examples used in the previous sections to illustrate the characteristics

of the di�erent approaches and see their simple partial speci�cations.

Example 2.3.14 The following speci�cation of natural numbers with the minus

operation is given in a modular style, enriching the usual (total) speci�cation of

natural numbers �a la Peano by the binary operations +, � and �

spec Nat =

sorts N

opns

0:! N

s:N ! N

+; �;�:N �N ! N

axioms

�

1

D(0)

�

2

D(s(x))

�

3

0 + x = x

�

4

s(x) + y = s(x+ y)

�

5

x � 0 = 0

�

6

s(x) � y = (x � y) + y

�

7

x� 0 = x

�

8

s(x)� s(y) = x� y

The initial model of this speci�cation is (a representation of) the natu-

ral numbers. Note that the axiom �

2

states that the successor opera-

tion is a total function, while plus and times are not required to be to-

tal, although they are interpreted as total function in the initial object, be-

cause the elements of the initial object are (denoted by) terms of the form

s

n

(0) and hence using axioms �

3

and �

4

(resp. �

5

and �

6

) the application

s

n

(0) + s

m

(0) reduces to the de�ned term s

k

(0), for k = n + m, and analo-

gously s

n

(0) � s

m

(0) reduces to s

k

(0), for k = n �m. Axioms �

7

and �

8

make the

52 CHAPTER 2. A PARADIGMATIC PROBLEM

application of the minus operation to terms s

n

(0) and s

m

(0), for n � m, reduce

to s

k

(0), for k = n �m, accordingly with the intuition; but nothing is required

on s

n

(0)� s

m

(0) in the case n < m (or on non standard elements), so that in the

initial model, because of the no-junk condition, the result is unde�ned; however

in the model class there are algebras where the result is de�ned and can be used

as an \error message", as in the total style. Thus this can be seen as a minimal

speci�cation of the minus on natural numbers that can be further re�ned �xing

which kind of error messages are wanted.

The following construction of rational numbers can be easily generalized to

the construction of quotient �eld on any integral domain, provided that a tool to

distinguish the additive identity is at hand; note that this tool is also needed to

impose that the ring is an integral domain. In the more general construction the

positive predicate below would be changed in a non-zero predicate.

Example 2.3.15 Consider the usual (total) speci�cation of integers and enrich

it to de�ne the rational numbers.

spec Int =

sorts Z

opns

0:! Z

s; p:Z ! Z

+ ; � ; � :Z � Z ! Z

axioms

�

1

D(0)

�

2

D(s(x))

�

3

D(p(x))

�

1

p(s(x)) = x

�

2

s(p(x)) = x

�

3

0 + x = x

�

4

s(x) + y = s(x+ y)

�

5

p(x) + y = p(x+ y)

�

6

x� 0 = x

�

7

x� s(y) = p(x� y)

�

8

x� p(y) = s(x� y)

�

9

0 � x = 0

�

10

s(x) � y = (x � y) + y

�

11

p(x) � y = (x � y)� y

2.3. THE PARTIAL APPROACH 53

In order to distinguish non zero numbers, that can be used as denumerator,

the predicate positive should be axiomatized; since predicates are not part of this

paradigm, this predicate is represented as a boolean function, whose truth only is

stated.

spec Rat =

enrich Int by

sorts B;Q

opns

T :! B

positive:Z ! B

= :Z � Z ! Q

+ ; � ; � :Q� Q! Q

axioms

�

4

D(T)

�

5

positive(x) = T � D(y=x)

1

positive(s(0)) = T

1

positive(x) = T � positive(s(x)) = T

�

1

(x � t) = (z � y) � (x=z) = (y=t)

�

2

(x=z) + (y=t) = ((x � t) + (z � y))=(z � t)

�

3

(x=z)� (y=t) = ((x � t)� (z � y))=(z � t)

�

4

(x=z) � (y=t) = (x � y)=(z � t)

Note that if z is a negative number, then x=z is deduced equal to

(0 � x)=(0 � z), by �

1

and the axiomatization of the operations on integers, and

hence is de�ned too, because (0� z) is positive, and hence positive(0 � z) = T .

As a �nal comparative example, consider again the (loose) speci�cation of

categories.

Example 2.3.16 As in the order-sorted approach there are no constants, so that

the initial model is empty; but in this case the models of the speci�cation are all

and only the (small) categories.

spec Categories =

sorts obj ; arr

opns

id : obj ! arr

�

0

; �

1

: arr ! obj

54 CHAPTER 2. A PARADIGMATIC PROBLEM

; : arr � arr ! arr

axioms

�

1

D(�

0

(f))

�

2

D(�

1

(f))

�

3

D(id(A))

�

4

D(�

1

(f))^ �

1

(f) = �

0

(g) � D(f ; g)

�

5

D(f ; g)� �

1

(f) = �

0

(g)

�

1

�

0

(id(A)) = A

�

2

�

1

(id(A)) = A

�

3

D(f ; g)� �

0

(f ; g) = �

0

(f)

�

4

D(f ; g)� �

1

(f ; g) = �

1

(g)

�

5

(f ; g); h= f ; (g; h)

�

6

id(�

0

(f)); f = f

�

7

f ; id(�

1

(f)) = f

The � axioms guarantee that source and target are total functions, that any ob-

ject has its identity and that the composition is de�ned i� its arguments are

composable.

2.4 Strong Partial Logic

Although the positive conditional axioms are su�ciently powerful to de�ne most

part of the more common data types, they fail to specify sets of partial functions.

Consider, indeed, the following speci�cation of the (�nite) maps, that are widely

used in computer science, for example to represent environments and memories.

Example 2.4.1 Let X and Y be the sorts of the source and target respectively of

the maps that are being speci�ed, given respectively by the speci�cations sp

X

and

sp

Y

accordingly with the modular approach. The operations on maps supported

by this module are the update of a mapm by an association (x; y), that corresponds

to the insertion of a new couple if x is not in the domain of m and to the real

update if an old couple (x; z) were already in m, and the query of the Y value

correspondent to an X \address" in a map m. On X a decidable equality must

be (pre)de�ned in order to the query have sense, so the existence of eq:X ! B

is assumed, where B is the boolean sort with constants T :! B and F :! B, s.t.

for any terms x; y of type X the equality eq(x; y) reduces either to T or to F .

spec Maps =

enrich sp

X

; sp

Y

by

sorts map

2.4. STRONG PARTIAL LOGIC 55

opns

initial status :! map

upd:X � Y �map ! map

query :map �X ! Y

axioms

�

1

D(initial status)

�

2

D(update(x; y;m))

�

1

eq(x; z) = T � query(update(x; y;m); z) = y

�

2

eq(x; z) = F � query(update(x; y;m); z) = query(m; z)

Since the axioms do not impose equalities on the sort map, there is no way to

deduce the intuitive identity of maps that give the same answer on eachX element.

Informally an axiom of the form

? (query(m;x) = query(m

0

; x)8x 2 X) � m = m

0

would be needed, but the ? axiom is not positive conditional, because of two

reasons:

� the quanti�cation on x only involves the premises;

� the equality in the premises is strong.

The �rst point can be disposed of, at least for term generated models, by means

of an in�nitary conjunction in the premises:

fquery(m;x) = query(m

0

; x) j x 2 T

�

g � m = m

0

(see also [66, 67]), but the equality remains strong.

The following sections are devoted to the exposition of the recent results in [1,

7, 29] regarding the properties of non-positive conditional speci�cations.

It is worth noting that (both positive and non-positive) partial conditional

speci�cations are aimed to deal with partiality due to still progressing re�nement

of speci�cations (loose approach) or to non-terminating computations. The treat-

ment of errors and exception handling for the partial framework is (at the author's

knowledge) still unexplored.

2.4.1 Conditional Speci�cations

The above and similar examples, especially from the higher-order paradigm, that is

now becoming a rather popular and useful tool in algebraic speci�cations (see [66,

67]) lead to consider non-positive conditional speci�cations.

56 CHAPTER 2. A PARADIGMATIC PROBLEM

Notation.

� A conditional speci�cation is a theory in PAR. A generic conditional spec-

i�cation will be denoted by sp; the formulas belonging to Ax are called the

axioms of sp and usually denoted by �.

� A positive conditional speci�cation is a theory in PPAR, i.e. a conditional

speci�cation s.t. all its axioms are positive conditional formulas; a generic

positive conditional speci�cation will be usually denoted by PSp.

� For any conditional speci�cation sp = (�; Ax), PMod(sp) denotes the object

class of Mod

PAR

(sp), i.e.

PMod(sp) = fA j A 2 PA(�); Aj=

PAR

� for all � 2 Axg;

an algebra A 2 PMod(sp) is called a model of sp.

� For every conditional speci�cation sp = (�; Ax) and every family X of vari-

ables, K(Sp;X) denotes the congruence K

PMod(sp)

(X), i.e. the intersection

of all kernels of natural interpretations of T

�

(X) in a model of sp; as an

abbreviation let Fr(sp;X) denote Fr

PMod(sp)

(X) and m(sp;X) denote the

valuation m

PMod(sp)

(X) (often Fr and m will be used when Sp and X are

clear from the context).

� For every conditional speci�cation sp = (�; Ax), PGen(sp;X) denotes the

class Gen(PMod(sp);X); moreover if X is empty, PGen(sp;X) is simply

denoted by PGen(sp).

Note that PMod(sp) is not empty for all conditional speci�cations sp, since

the trivial (total) algebra Z, with singleton sets as carriers and the obvious (total)

interpretations of function symbols, is always a model. Moreover the trivial alge-

bra Z has all carriers non-empty, so that there exists a valuation for all families

X in Z and hence K(sp;X) is always well de�ned.

Prop. 2.4.2 For all conditional speci�cations sp the class PMod(sp) is closed

under sub-algebras and isomorphisms.

Proof. The closure under isomorphism easily follows from the de�nition of va-

lidity; thus just consider the closure under sub-objects. Let A belong to PMod(sp)

and B be a sub-algebra of A. Let � be an axiom and V be a valuation for V ar(�)

into B; then V is also a valuation for V ar(�) into A. Moreover it is easy to check

that t

A;V

= t

B;V

for all t 2 T

�

(V ar(�)) and hence that Aj=

PAR

V

� i� Bj=

PAR

V

�

2.4. STRONG PARTIAL LOGIC 57

for all � 2 EForm(�; V ar(�)). Therefore Aj=

PAR

V

�, because A is a model of sp,

and hence Bj=

PAR

V

�.

Thus Prop. 2.3.10 can be instantiated on PMod(sp).

Prop. 2.4.3 Let X be a family of variables and sp = (�; Ax) be a conditional

speci�cation. The following conditions are equivalent:

1. there exists a free object for X in PMod(sp);

2. Fr(sp;X) 2 PMod(sp);

3. (Fr(sp;X);m(sp;X)) is the free object for X in PMod(sp);

4. there exists a free object for X in PGen(Sp;X).

Proof. From Prop. 2.3.10, as PMod(sp) is closed under sub-algebras and iso-

morphisms because of Prop. 2.4.2.

Contrary to the case of positive conditional speci�cations, in general the class

of models of a conditional speci�cation is not necessary closed under binary prod-

uct, as the following example shows.

spec sp

1

=

sorts s

opns

a; b:! s

axioms

a=b � D(a)

Let A and B be the models of sp

1

de�ned by:

Algebra A =

s

A

= f1g

a

A

is unde�ned

b

A

= 1

Algebra B =

s

B

= s

A

a

B

= 1

b

B

is unde�ned

Then the algebra A�B consists of:

58 CHAPTER 2. A PARADIGMATIC PROBLEM

Algebra A �B =

s

A�B

= f(1; 1)g

a

A�B

= (a

A

; a

B

) is unde�ned; because a

A

is unde�ned

b

A�B

= (b

A

; b

B

) is unde�ned; because b

B

is unde�ned

Therefore A�B is not a model of sp

1

, because A�Bj=

PAR

a=b, both a and

b being unde�ned, but A�B 6j=

PAR

D(a).

While in the case of positive conditional speci�cations the closures under iso-

morphism, subalgebra and products are su�cient to guarantee the existence of

(free) initial objects, in general the model class of a conditional speci�cation is

not required to have initial object. Indeed consider again the above speci�cation

sp

1

; since an initial model, if any, is minimally de�ned, if an algebra I is initial in

PMod(sp

1

), then both a and b are unde�ned, because they are unde�ned respec-

tively in A and B, and hence I is not a model of Sp

1

. It is easy to see that more

sophisticated speci�cations exist, that admit initial model, but not free model for

non-empty X; consider indeed the following speci�cation sp

2

.

spec sp

2

=

sorts s

opns

zero:! s

f; Succ: s! s

axioms

�

1

Succ(x)=f(x) � D(Succ(x))

�

2

D(Succ(zero))

�

3

D(Succ(x)) � D(Succ(Succ(x)))

The initial model I of Sp

2

consists of:

Algebra I =

s

I

= IN

zero

I

= 0

Succ

I

(a) = a+ 1

f

I

is the totally unde�ned function

Let A and B be the models of Sp

2

and V

A

, V

B

the valuations for X = fxg in

A, B resp. de�ned by:

Algebra A =

s

A

= IN [f1g

zero

A

= 0

2.4. STRONG PARTIAL LOGIC 59

Succ

A

(a) = a+ 1 ifa 2 IN

Succ

A

(1) is unde�ned

f

A

(a) =1

V

A

(x) =1

Algebra B =

s

B

= s

A

zero

B

= 0

Succ

B

(b) = b+ 1 ifb 2 IN

Succ

B

(1) =1

f

B

is the totally unde�ned function

V

B

= V

A

Because of Prop. 2.4.3, in order to show that sp

2

has not a free model for X

it is su�cient to show that Fr(sp

2

;X) =2 PMod(sp

2

). Since both Succ(x)

A;V

A

and f(x)

B;V

B

are unde�ned, Succ(x); f(x) =2 Dom(K(sp

2

;X)). Therefore

Fr(sp

2

;X)j=

PAR

m(sp

2

;X)

Succ(x) = f(x) and Fr(sp

2

;X) 6j=

PAR

m(sp

2

;X)

D(Succ(x))

so that Fr(sp

2

;X) does not satisfy �

1

and hence is not a model of sp

2

.

Since the existence of a free model of a speci�cation sp for a family X of

variables is equivalent to Fr(sp;X) 2 PMod(sp), by Prop. 2.4.3, conditions that

guarantee that Fr(sp;X) satis�es the axioms of sp are interesting. Since Fr(sp;X)

is a quotient of a term algebra, it satis�es a formula � for a valuation V i� it

satis�es an instantiation �(�) for the valuation m(sp;X), where � substitutes

each variable x for a a representative of the congruence class V (x). Therefore a

speci�cation sp has a free model for a family X of variables i� Fr(sp;X) satis�es

the instantiations of the axioms (on de�ned terms) for m(sp;X).

Def. 2.4.4 Let sp = (�; Ax) be a conditional speci�cation, X be a family of

variables, Fr denote Fr(sp;X) and m denote m(sp;X). The set SNF(sp;X),

where SNF stands for Semantic Naughty Formulas, consists of all conditional

formulas � � � over � and X s.t.

snf

1

� � � is �[t

y

=y j y 2 V ar(�)] for some � 2 Ax and some t

y

2 T

�

(X) s.t.

Fr j=

PAR

m

D(t

y

) for all y 2 V ar(�);

snf

2

Fr j=

PAR

m

� for all � 2 �;

snf

3

Fr 6j=

PAR

m

�.

60 CHAPTER 2. A PARADIGMATIC PROBLEM

Some short notations are introduced in order to make the presentation simpler.

Notation. Let X and Y be two families of variables, K be a congruence over

T

�

(Y) and V be a valuation for X in T

�

(Y)=K. For every x 2 X a term t

V;x

2

dom(K) s.t. V (x) = [t

V;x

] is denoted by t

V;x

, by V (t) the term t[t

V;x

=x j x 2 X]

for every term t, by V (�) the formula �[t

V;x

=x j x 2 X] for every formula � and

by V (�) the set fV (
) j
 2 �g for every set � of formulas.

Note that if A = T

�

(Y)=K, then t

A;V

is the equivalence class of V (t) in K, by

Prop. 2.3.6, and that Aj=

PAR

V

 i� Aj=

PAR

m

V (
), where m(x) = [x]

K

.

Theorem 2.4.5 For every speci�cation sp and every family X of variables, the

following conditions are equivalent:

1. there exists a free object for X in PMod(sp);

2. Fr(sp;X) 2 PMod(sp);

3. (Fr(sp;X);m(sp;X)) is free for X in PMod(sp);

4. there exists a free object for X in PGen(Sp;X);

5. SNF(sp;X) = ;.

Proof. 1 , 2 , 3 , 4 Follows from Prop. 2.4.3. Thus only 2 , 5 have to be

shown. Let sp be the speci�cation (�; Ax), Fr denote Fr(sp;X) and m denote

m(sp;X).

) Assume that � satis�es snf

1

and snf

2

and show that � does not satisfy

snf

3

. Because of snf

1

, � is �[t

y

=y j y 2 V ar(�)] for some � 2 Ax and

t

y

2 T

�

(X) s.t. Fr j=

PAR

m

D(t

y

). Let the valuation V for V ar(�) in Fr be

de�ned by V (y) = [t

y

]; note that V is well de�ned, because Fr j=

PAR

m

D(t

y

)

by snf

1

and hence [t

y

] 2 Fr. Since Fr is a model of sp, Fr j=

PAR

V

�, i.e.

Fr j=

PAR

m

V (�) = �. Therefore, since Fr j=

PAR

m

� for all � 2 prem(�) be-

cause of snf

2

, Fr j=

PAR

m

cons(�), i.e. � does not satisfy snf

3

.

(Let � be an axiom of sp and V be a valuation for V ar(�) in Fr . Then

for all y 2 V ar(�) t

V;y

2 Dom(K(sp;X)), i.e. Fr j=

PAR

m

D(t

V;y

) and hence

V (�) satis�es snf

1

. Thus, since SNF(sp;X) is empty, V (�) does not sat-

isfy snf

2

or snf

3

, i.e. either Fr 6j=

PAR

m

� for some � 2 prem(V (�)) or

Fr j=

PAR

m

cons(V (�)). Thus Fr j=

PAR

m

V (�) and hence Fr j=

PAR

V

�.

The well known result of existence of a free model for positive conditional

speci�cations can be obtained just as a corollary of theorem 2.4.5.

2.4. STRONG PARTIAL LOGIC 61

Cor. 2.4.6 If PSp is a positive conditional speci�cation, then for all families X

of variables (Fr(PSp;X);m(PSp;X)) is free for X in PMod(PSp).

Proof. Let Fr denote Fr(PSp;X) and m denote m(PSp;X). Because of the-

orem 2.4.5, it is su�cient to show that SNF(PSp;X) is empty. Assume that �

satis�es snf

1

and snf

2

and show that � does not satisfy snf

3

. Because of snf

1

, � is

�[t

y

=y j y 2 V ar(�)] for some � 2 Ax and some t

y

2 T

�

(X) s.t. Fr j=

PAR

m

D(t

y

);

since PSp is a positive conditional speci�cation, all the premises of � are existen-

tial equalities. Thus Fr j=

PAR

m

� impliesAj=

PAR

V

� for all modelsA, all valuations

V :X ! A and all � 2 prem(�), by de�nition of Fr . Analogously Fr j=

PAR

m

D(t

y

)

implies Aj=

PAR

V

D(t

y

) and hence V

0

:V ar(�)! A, de�ned by V

0

(y) = t

y

A;V

, is a

valuation; moreover, since A is a model of sp, Aj=

PAR

V

0

� and hence Aj=

PAR

V

�.

Therefore from Aj=

PAR

V

� and Aj=

PAR

V

� for all � 2 prem(�), Aj=

PAR

V

cons(�)

follows for all models A and all valuations V :X ! A, so that Fr j=

PAR

m

cons(�),

i.e. snf

3

does not hold.

Note that there exist classes PMod(sp) admitting free objects for all families

X of variables which are not de�nable by only positive conditional formulas, as

the following example shows.

spec sp

3

=

sorts s

opns

a; b; c; d:! s

axioms

� a=b � c=d

Then for all families X of variables there exists a free object (Fr ;m) for sp

3

,

de�ned by:

Algebra Fr =

s

Fr

= X

a

Fr

; b

Fr

; c

Fr

; d

Fr

are unde�ned

m(x) = x

In order to show that PMod(sp

3

) cannot be the model class of a positive

conditional speci�cation it is su�cient to show that it is not closed under non-

empty products, being the model class of a positive conditional speci�cation a

quasi-variety (see e.g. [92]). Let A and B be the models of sp

3

de�ned by:

Algebra A =

s

A

= f1; 2g

a

A

= 1; b

A

unde�ned

c

A

= 2; d

A

unde�ned

62 CHAPTER 2. A PARADIGMATIC PROBLEM

Algebra B =

s

B

= s

A

a

B

unde�ned; b

B

= 1

c

B

= 2; d

B

unde�ned

Both are models of sp

3

; but their product is the algebra C de�ned by:

Algebra C =

s

C

= f1; 2g � f1; 2g

a

C

; b

C

; d

C

unde�ned; c

C

= (2; 2)

that is not a model of sp

3

.

Both in the total conditional and in the partial positive conditional cases the

closure under non-empty products of the model class guarantees that for any sort

either the corresponding carrier is a singleton set in all models or there are models

having this carrier of arbitrary cardinality. Indeed assume that there is a model A

s.t. s

A

has cardinality at least 2; then for any (possibly in�nite) set I the product

�

I

A is a model, because the model class is closed under non-empty products, and

s

�

I

A

has cardinality at least 2

I

. The lack of closure under non-empty products

for the partial conditional case makes this property false; more precisely, denoting

by j X j the cardinality of any set X, for any n 2 IN there exists a conditional

speci�cation sp

n

= (�

n

; Ax

n

) s.t.

� j s

A

j� n for all A 2 PMod(sp

n

) and all s 2 S;

� there exists A 2 PMod(sp

n

) and s 2 S s.t. j s

A

j= n.

Consider the following example.

spec Sp

n

=

sorts s

i

for i = 1 : : :n

opns

a

i;j

:! s

i

for i = 1 : : :n; j = 1 : : : i

�

i

: s

i+1

! s

i

for i = 1 : : :n � 1

axioms

� x = a

1;1

�

i;j

D(a

i;j

) for i = 1 : : :n; j = 1 : : : i

i

�

i

(x)=�

i

(y) � x=y for i = 1 : : :n� 1

Let A be a model of sp

n

and inductively show that j s

i

A

j� i for i = 1 : : : n.

� s

1

A

is the singleton set fa

1;1

A

g, because of �;

2.4. STRONG PARTIAL LOGIC 63

� assume that j s

i

A

j� i; for any a 2 s

i+1

A

either �

i

A

(a) 2 s

i

A

or �

i

A

(a) is

unde�ned and hence there are j s

i

A

j +1 possibilities to de�ne �

i

A

(a); thus,

as �

i

A

is an injective partial function by

i

, j s

i+1

A

j�j s

i

A

j +1 � i+ 1.

Moreover it is easy to check that I is a model of sp

n

, where I is de�ned by:

Algebra I =

s

i

I

= f1 : : : ig

a

i;j

I

= j for all i = 1 : : :n and all j = 1 : : : i

�

i

I

(j) = j for j = 1 : : : i; �

i

I

(i+ 1) is unde�ned for i = 1 : : :n� 1

Note that in the total frame, from j s

1

A

j= 1 and the injectivity of �

i

A

, j s

2

A

j=

1 follows and so, inductively, j s

i

A

j= 1 for all i. On the converse, in the partial

positive frame, changing

i

in �

i

(x)=

e

�

i

(y) � x=y, many di�erent elements are

allowed to have unde�ned image along �

i

and hence there are models having the

carriers of sort s

i

of arbitrary cardinality for all i = 1; : : : n.

Prop. 2.4.7 The existence of free objects for �nitary conditional speci�cations

is not decidable.

Proof. For every Thue system E over an alphabet A and every couple of

non-empty strings u and w over A a speci�cation sp

E;u;w

is exhibited s.t.

SNF(sp

E;u;w

; ;) is empty i� u=w follows from E.

Therefore, since the set f(E; u;w) j E ` u=wg is not decidable (see e.g. [20])

and the emptiness of SNF(Sp

E;u;w

; ;) is equivalent to the existence of an initial

model for Sp

E;u;w

, the existence of the initial model for the class of the conditional

speci�cations Sp

E;u;w

is not decidable too.

It is well known that every Thue system E over an alphabet A may be repre-

sented by the total equational one-sorted speci�cation

Sp

E;A

= (�

A

; E [f�(�(x; y); z) = �(x; �(y; z)g)

where �

A

consists of just one sort s, of a constant symbol a for each a 2 A and

of a binary symbol � representing the concatenation, in the sense that for all non-

empty streams u and w over A the equality u = w follows from E i� it holds in

all models of Sp

E;A

.

Then for each Thue system E over A and all non-empty streams u and w over

A let Sp

E;u;w

be the speci�cation having the signature �

A

[(fs

0

g; fb; b

0

:! s

0

g)

and the axioms

E[f�(�(x; y); z)=�(x; �(y; z)g[fD(�(x; y));D(a) j a 2 A;u=w � D(b); b=b

0

� D(b)g:

It is easy to check that SNF(Sp

E;u;w

; ;) is empty i� u=w follows from E.

64 CHAPTER 2. A PARADIGMATIC PROBLEM

2.4.2 Free objects and logical deduction

In the following when referring to generic formulas and inference systems formulas

and inference systems within an in�nitary logic which extends �rst-order logic

by admitting denumerable conjunctions (, disjunctions) and quanti�cation over

denumerable sets of variables are considered (see e.g. [51]).

Notation. Since formulas of the form fD(x) j x 2 Xg [� � � will be often

needed, a short notation for these formulas is introduced. In the following for all

families X = fX

s

g

s2S

of variables the set of formulas fD(x) j x 2 X

s

; s 2 Sg will

be denote by D(X).

Note that, as usual, quanti�cation is always implicit and is universal, as it may

be easily deduced from the de�nition of validity, i.e. every formula � is a short

notation for the formula f8x: s j x 2 V ar(�)

s

g

s2S

:�. However (as in the total

many-sorted frame) this short notation may cause a subtle error whenever empty

carriers are allowed, as the following example shows.

spec sp

4

=

sorts s

1

; s

2

opns

a; b:! s

1

f : s

2

! s

1

axioms

�

1

D(a)

�

2

D(b)

�

3

a=f(x)

�

4

f(x)=b

The deduction of a=b from the axioms a=f(x) and f(x)=b by transitivity is

unsound; for example T

�

is a model of sp

4

(actually it is initial) but T

�

6j=

PAR

a=b.

This may happen, since T

�

js

2

= ;.

Indeed Huet noted that, in the framework of many-sorted algebras, the family

R = f(t; t

0

) j t; t

0

2 T

�

(X)

js

; Aj=

MS

t=t

0

g

s2S

may fail to be a congruence; in the example T

�

j=

MS

a=f(x) and

T

�

j=

MS

f(x)=b, since T

�

js

2

= ; and hence there does not exist any valuation

for fxg in T

�

, but T

�

6j=

MS

a=b so that R is not transitive. He suggested to avoid

unsound ground deductions in the case of total algebras by restricting signatures

to those whose corresponding carriers either are guaranteed to be non-empty by

the existence of ground terms of that sort, or are in a sense absolutely disconnected

by the non-empty carriers (the rigorous notion is that of sensible signature, see

2.4. STRONG PARTIAL LOGIC 65

e.g. [50]). This approach fails in the partial framework since a ground termmay be

unde�ned in an algebra and hence its existence does not guarantee that the corre-

sponding carrier is not empty; thus conditions on the signature are not su�cient

to guarantee that all carriers are not empty.

The same problem was also tackled by Goguen and Meseguer in [64] with

a particular interest to logical deduction. They proposed a system working on

equalities of the form (8X)t=t

0

, where V ar(t) [V ar(t

0

) � X, which produces

(8X � fxg)t=t

0

, eliminating a variable x from X, only if x does not appear in

t=t

0

and can be instantiated by a ground term. In this framework in the previous

example from (8fxg)f(x) = b and (8fxg)a = f(x) it can be deduced (8fxg)a= b,

that holds also in T

�

, but a = b cannot be deduced, as x cannot be instantiated

on a ground term, because T

�

js

2

is empty. A similar approach can be used also

in the partial framework, only permitting the elimination of those variables that

can be instantiated on ground terms whose de�nedness is provable. For another

system of equational deduction handling the empty carrier problem see [58].

However the problem can be handled in a way that is more natural for the

partial approach; indeed the existential equalities t=

e

t, or de�nedness assertions

D(t), are at hand and can be used to replace in a formula the explicit indication of

the variables to which the valuation refers. Thus the ([64])-like formula (8X)� � �

here becomes D(X) [� � �. Moreover, since D(y) holds in all algebras for any

y, the presence of D(y) in the left-hand side of a conditional formula has the only

e�ect of possibly increasing the set of variables appearing in the axiom and to

which the valuation refers and hence the explicit indication of the de�nedness of

the variables appearing in � � � can be forgot, what makes the partial deduction

more concise.

In order to stress that D(x) in the premises of a deduced formula just states

the use af the variable x to make the deduction, a short notation is introduced

for every inference system L, every conditional formula � and every family X

of variables; in the sequel the notation L`

X

� stands for \X

0

� X exists s.t.

L ` D(X

0

) ^ prem(�) � cons(�)". Using the above remark, a general de�nition

of logical systems which takes care of the empty-carrier problem can be given as

follows.

Def. 2.4.8 For a conditional speci�cation sp = (�; Ax), a conditional system

L(sp) for sp, in the following simply called system if there is no ambiguity, is an

inference system L(sp) s.t.:

de�nedness of variables L(sp) ` D(x) for all variables x;

axioms L(sp) ` � for all � 2 Ax;

66 CHAPTER 2. A PARADIGMATIC PROBLEM

congruence for all families X of variables the family �

L(sp)

(X) consists of

f�

L(sp)

(X)

s

g

s2S

, where �

L(sp)

(X)

s

is the set

f(t; t

0

) j t; t

0

2 T

�

(X)

js

;L(sp)`

X

D(t);L(sp)`

X

t=t

0

g

is a congruence over T

�

(X) s.t.

Dom(�

L(sp)

(X)

s

) = ft j t 2 T

�

(X)

js

;L(sp)`

X

D(t)g;

substitution for all conditional formulas � � �, all families

X � V ar(� � �), Z

x

of variables s.t. L(sp)`

Z

x

D(t

x

) for all x 2 X,

L(sp) ` � � � implies

L(sp)`

[

x2X

Z

x

f�[t

x

=x j x 2 X] j � 2 �g � �[t

x

=x j x 2 X];

modus ponens for any countable set of elementary formulas �, �, �

and any

elementary formula � L(sp) ` � [� � � and L(sp) ` �

�
 for all
 2 �

implies

L(sp)`

[

2�

V ar(
)

� [([

2�

�

) � �;

soundness for any formula �, L(sp) ` � implies M j=

PAR

� for all M 2

PMod(sp).

Note that, since �

L(sp)

(X) is a congruence, in the conditional system L(sp) the

standard rules for re
exivity, symmetry, transitivity and functionality (in the

slightly generalized form admitting a D(X) in the premises) should be derivable.

In order to make the presentation more concrete and to prepare the way to a

completeness result, a particular system is introduced, for the moment just as an

example, is reminiscent of systems found in the literature (see e.g. [22, 21]), but

taking care of the soundness problem like the previous remark suggests.

Def. 2.4.9 The US (sp) system for a conditional speci�cation sp = (�; Ax) con-

sists of the axioms Ax and of the following axioms and inference rules, where,

as usual, � 2 EForm(�;Var), �;�

;� are countable subsets of EForm(�;Var),

x 2 Var and t; t

0

; t

00

; t

i

; t

0

i

2 T

�

(Var).

1. De�nedness of variables

D(x)

2. Congruence

(a) t=t

(b) t=t

0

� t

0

=t

2.4. STRONG PARTIAL LOGIC 67

(c) t=t

0

^ t

0

=t

00

� t=t

00

(d) t

1

=t

0

1

^ : : : ^ t

n

=t

0

n

� op(t

1

; : : : ; t

n

)=op(t

0

1

; : : : ; t

0

n

)

3. Strictness

D(op(t

1

; : : : ; t

n

)) � D(t

i

)

4. De�nedness and equality

D(t) ^ t=t

0

� D(t

0

)

5. Modus Ponens

� [� � �; f�

�
 j
 2 �g

D(V ar(�)� V ar([

2�

�

[� � �)) [� [([

2�

�

) � �

6. Instantiation/Abstraction

� � �

fD(t

x

) j x 2 X

s

; s 2 Sg [f�

]

j � 2 �g � �

]

where �

]

denotes �[t

x

=x j x 2 X

s

; s 2 S] for every elementary formula � and

t

x

2 T

�

(Var)

js

for all x 2 X

s

.

Remark. It is worth to note that instantiation and abstraction are both han-

dled by the above rule 6 to keep the system as economical as possible; indeed

instantiation corresponds to X being the family of variables of the formula that

has to be instantiated and abstraction corresponds to X being a family of vari-

ables which do not appear in the formula that has to be abstracted and t

x

= x

for all x 2 X. Thus rule 6 may be replaced by the following � and ?.

� Instantiation

� � �

fD(t

x

) j x 2 X

s

; s 2 Sg [f�

]

j � 2 �g � �

]

where �

]

denotes �[t

x

=x j x 2 V ar(� � �)

s

; s 2 S] for every elementary formula �

and t

x

2 T

�

(Var)

js

8x 2 X

s

? Abstraction

� � �

D(X) [� � �

68 CHAPTER 2. A PARADIGMATIC PROBLEM

Obviously both � and ? are a particular case of 6 and it is easy to check that

any application of 6 may be replaced by an application of ? to increase the number

of variables and an application of � to instantiate the variables:

Using ? and �

� � �

D(X) [� � �

D(X) [� � �

�

Def

[f�[t

x

=x j x 2 X

s

; s 2 S] j � 2 �g � �[t

x

=x j x 2 X

s

; s 2 S]

Using 6

� � �

�

Def

[f�[t

x

=x j x 2 X

s

; s 2 S] j � 2 �g � �[t

x

=x j x 2 X

s

; s 2 S]

where �

Def

= fD(t

x

) j x 2 X

s

; s 2 Sg.

Prop. 2.4.10 For all conditional speci�cations sp, US (sp) is a system for sp.

Proof. Because of rule 1, the condition on de�nedness of variables is satis�ed;

since the axioms of sp belong to US (sp), obviously the condition on the axioms

is satis�ed and, because of rules 2: : : 5, also the condition on congruence is

satis�ed. Moreover, because of rules 5 and 6, US (sp) satis�es the condition on

substitution and, because of rule 5, the condition on modus ponens. Thus it

is su�cient to show that it is sound; this is done by induction over the rules of

US (sp). It is obvious that the rules 1: : : 4 are sound, by de�nition of validity for

the de�nedness predicate and the equality; thus only consider rules 5 and 6.

Assume that the hypotheses of rule 5 are satis�ed, i.e. that US (sp) ` �, where

� is � [� � �, and that US (sp) ` �

for all
 2 �, where �

is �

�
; then

US (sp) ` �

0

, where �

0

is

D(V ar(�) � V ar(� [[

2�

�

� �)) [� [([

2�

�

) � �;

and show that Aj=

PAR

� and Aj=

PAR

�

for all
 2 � implies Aj=

PAR

�

0

for all

A 2 PMod(sp). Then let V be a valuation for V ar(�

0

) in A 2 PMod(sp) s.t.

Aj=

PAR

V

� for all � 2 prem(�

0

) and show that Aj=

PAR

V

cons(�

0

).

First of all note that V ar(�

0

) is the same set as V ar(�)[[

2�

V ar(�

), so that

V is also a valuation for V ar(�) and for V ar(�

) in A. Moreover, for all
 2 �,

prem(�

) � prem(�

0

) and hence, because of Aj=

PAR

V

� for all � 2 prem(�

0

),

Aj=

PAR

V

� for all � 2 prem(�

); thus, since by inductive hypothesis Aj=

PAR

�

,

Aj=

PAR

V

 for all
 2 �.

2.4. STRONG PARTIAL LOGIC 69

Analogously, since � � prem(�

0

), Aj=

PAR

V

� for all � 2 � and hence

Aj=

PAR

V

� for all � 2 prem(�) = � [�, so that Aj=

PAR

V

cons(�), because

Aj=

PAR

V

�. Finally cons(�) = cons(�

0

) and hence Aj=

PAR

V

�

0

.

The case of rule 6 can be similarly developed. Assume that US (sp) ` �, where

� is � � �; then US (sp) ` �

0

, where �

0

is the formula

fD(t

x

) j x 2 X

s

; s 2 Sg[f�[t

x

=x j x 2 X

s

; s 2 S] j � 2 �g � �[t

x

=x j x 2 X

s

; s 2 S];

and show that Aj=

PAR

� implies Aj=

PAR

�

0

for all A 2 PMod(sp).

Then let V be a valuation for V ar(�

0

) in A 2 PMod(sp) s.t. Aj=

PAR

V

� for all

� 2 prem(�

0

) and show that Aj=

PAR

V

cons(�

0

).

Since fD(t

x

) j x 2 X

s

; s 2 Sg � prem(�

0

) and Aj=

PAR

V

� for all � 2 prem(�

0

),

then Aj=

PAR

V

D(t

x

) for all x 2 X; thus V

0

:V ar(�)! A de�ned by V

0

(x) = t

x

A;V

if x 2 X, otherwise V

0

(x) = V (x) is a valuation for V ar(�) in A. More-

over, by de�nition of V

0

, for all elementary formulas � on V ar(�) Aj=

PAR

V

0

� i�

Aj=

PAR

V

�[t

x

=x j x 2 X

s

; s 2 S]. Thus, since Aj=

PAR

V

�[t

x

=x j x 2 X

s

; s 2 S] for

all � 2 prem(�),Aj=

PAR

V

0

� follows, for all � 2 prem(�), and hence, sinceAj=

PAR

�

too, Aj=

PAR

V

0

cons(�), i.e. Aj=

PAR

V

0

�, so that Aj=

PAR

V

�[t

x

=x j x 2 X

s

; s 2 S],

i.e. Aj=

PAR

V

cons(�

0

).

The focus of algebraic logic deduction is on equational deduction, because

an inference system complete w.r.t. the (existential) equations gives the (initial)

free model, if any. Since equations with explicit quanti�cation 8(X [V ar(�)):�

are here equivalent to formulas of the form D(X) � �, notions of soundness and

completeness also dealing with such particular conditional formulas are given;

these notions subsume the usual ones only dealing with equalities.

Def. 2.4.11 Let sp be a conditional speci�cation, X be a family of vari-

ables and L(sp) be a system for sp. In the following Fr(L(sp);X) stands for

T

�

(X)=�

L(sp)

(X) and m(L(sp);X):X ! Fr(L(sp);X) is the valuation de�ned by

m(L(sp);X)(x) = [x]. Moreover let EEq(L(sp);X) be the following set

fD(t) j t 2 T

�

(X)

js

g[

ft=t

0

j t; t

0

2 T

�

(X)

js

;L(sp)`

X

D(t) or L(sp)`

X

D(t

0

)g:

L(sp) is existentially equationally complete for X and sp, in the following

simply called eeq-complete, i� for any � 2 EEq(L(sp);X) if M j=

PAR

D(X) � �

for all M 2 PMod(sp), then L(sp)`

X

�.

L(sp) is strongly equationally complete for X and sp, in the following sim-

ply called seq-complete, i� for any elementary formula � over � and X if

M j=

PAR

D(X) � � for all M 2 PMod(sp), then L(sp)`

X

�.

70 CHAPTER 2. A PARADIGMATIC PROBLEM

It is worth noting that the easier formulation of completeness

: : : if M j=

PAR

D(X) � � for all M 2 PMod(sp), then L(sp) ` D(X) � �: : :

is too restrictive. Indeed, although most systems have a rule of abstraction which

allows to deduce L(sp) ` D(X

0

) [fxg � � from L(sp) ` D(X

0

) � �, in general

if X is an in�nite set L(sp) ` D(X

0

) � � does not imply L(sp) ` D(X) � � and

in particular this happens for any �nitary system, as the one presented in the

Sect. 4.4.1 below and in [7].

Note that Fr(L(sp);X) is well de�ned because of condition on congruence of

Def. 2.4.8, which makes �

L(sp)

(X) a congruence, and that m(L(sp);X) is really a

valuation, i.e. a total function, because of condition on de�nedness of variables of

Def. 2.4.8.

Any formula in EEq(L(sp);X) plays the role of a (quanti�ed) existential equal-

ity; this justi�es calling \existentially equational completeness" the completeness

w.r.t. EEq(L(sp);X). Thus an eeq-complete system deduces all existential equal-

ities holding in all models and hence Fr(L(sp);X) is exactly Fr(sp;X).

Prop. 2.4.12 For all conditional systems L(sp) for sp the system L(sp) is eeq-

complete for X and sp i� Fr(L(sp);X) coincides with Fr(sp;X).

Proof. LetK(sp;X) be shortly denoted byK and �

L(sp)

(X) by�. By de�nition

Fr(L(sp);X) coincides with Fr(sp;X) i� � and K are the same and hence it is

su�cient to show that L(sp) is eeq-complete i� � and K are the same.

Because of the soundness of L(sp), �� K. Indeed if (t; t

0

) 2� , then,

by de�nition of � , there exist X

0

;X

00

� X s.t. L(sp) ` D(X

0

) � D(t) and

L(sp) ` D(X

00

) � t=t

0

.

Thus, as L(sp) is sound, for all models A and all valuations V for X in A,

Aj=

PAR

V

D(X

0

) � D(t) and Aj=

PAR

V

D(X

00

) � t=t

0

; moreover, by de�nition of

valuation, Aj=

PAR

V

D(x) for all x 2 X and hence Aj=

PAR

V

D(t), Aj=

PAR

V

t=t

0

,

i.e. (t; t

0

) 2 K

A;V

(X). Therefore (t; t

0

) 2 K.

So the thesis is K �� i� L(sp) is eeq-complete.

) Let formulas in EEq(L(sp);X) be shortly denoted by existential equalities;

assume that t=

e

t

0

2 EEq(L(sp);X) and L(sp) 6̀ D(X

0

) � t=

e

t

0

for all X

0

�

X. Since L(sp) 6̀ D(X

0

) � t=

e

t

0

for any X

0

� X, (t; t

0

) =2� and hence, as

�= K, (t; t

0

) =2 K. Thus there exist a model A 2 PMod(sp) and a valuation

V :X ! A s.t. t

A;V

6= t

0A;V

, i.e. A 6j=

PAR

V

t=

e

t

0

.

(If (t; t

0

) 2 K, then for all models A and all valuations V :X ! A,

(t; t

0

) 2 K

A;V

(X), i.e. both Aj=

PAR

V

D(t) and Aj=

PAR

V

t=t

0

and hence

Aj=

PAR

V

D(X) � D(t) and Aj=

PAR

V

D(X) � t=t

0

. Thus, as L(sp) is eeq-

complete, L(sp)`

X

D(t) and L(sp)`

X

t=t

0

, i.e. (t; t

0

) 2�.

2.4. STRONG PARTIAL LOGIC 71

Note that, as the following example shows, in general a conditional system is

not eeq-complete for conditional speci�cations also in the more restrictive hypoth-

esis that there exists a free object for every family of variables; moreover the free

object may be di�erent from (Fr(L(sp);X);m(L(sp);X)).

spec sp

5

=

sorts s

opns

a:! s

f; g: s! s

axioms

�

1

f(x)=g(x) � D(f(a))

�

2

D(f(x)) � f(x)=g(x)

�

3

D(g(x))� f(x)=g(x)

�

4

D(a)

Because of �

2

and �

3

, f(x)=g(x) holds in all models of sp

5

and hence, instan-

tiating �

1

for x = a, that is de�ned by �

4

, D(f(a)) holds too, while, for example,

US (sp

5

) 6̀ D(f(a)) and hence US (sp

5

) is not eeq-complete for ; and sp

5

. More-

over for every family X of variables Fr(sp

5

;X), de�ned as follows, is a model and

hence, because of Theorem 2.4.5, it is the free object for X in PMod(sp

5

).

Algebra Fr(sp

5

; X) =

s

Fr(sp

5

;X)

= X [f1; 2g

a

Fr(sp

5

;X)

= 1

f

Fr(sp

5

;X)

= � = g

Fr(sp

5

;X)

where � is de�ned only on 1 and �(1) = 2.

Thus in general the existence of a free object does not imply that Fr(L(sp);X)

is a model; however if Fr(L(sp);X) is a model, then it is also the free object for

X in PMod(sp), L(sp) being sound, as the following proposition shows.

Prop. 2.4.13 For all families X of variables and all systems L(sp) for sp the

algebra Fr(L(sp);X) is a model of sp i� (Fr(L(sp);X);m(L(sp);X)) is free for X

in PMod(sp).

Proof. Let Fr denote Fr(L(sp);X) and m denote m(L(sp);X).

) Because of Theorem 2.4.5, it is su�cient to show that �

L(sp)

(X) =

K(Sp;X). As in Prop. 2.4.12, �

L(sp)

(X) � K(Sp;X), because of sound-

ness of L(sp). On the contrary if Fr is a model, then K(sp;X) � K

Fr;m

=

�

L(sp)

(X); thus K(Sp;X) = �

L(sp)

(X).

72 CHAPTER 2. A PARADIGMATIC PROBLEM

(Obvious.

It is now convenient to give a notion of naughty formula related to a system,

since it allows to connect the existence of a free model with logical inference

systems.

Def. 2.4.14 Let L(sp) be a system for a conditional speci�cation sp, X be a

family of variables, Fr denote Fr(L(sp);X) and m denote m(L(sp);X). The set

NF(L(sp);X) (NF for Naughty Formulas) consists of all conditional formulas �

s.t.

nf

1

� is �[t

y

=y j y 2 V ar(�)] for some � 2 Ax and t

y

2 T

�

(X) s.t.

Frj=

PAR

m

D(t

y

);

nf

2

Frj=

PAR

m

� for all � 2 prem(�);

nf

3

Fr 6j=

PAR

m

cons(�).

Prop. 2.4.15 The set NF(L(sp);X) consists of all conditional formulas � s.t.

nf

0

1

� is �[t

y

=y j y 2 V ar(�)] for some � 2 Ax and t

y

2 T

�

(X) s.t. L(sp)`

X

D(t

y

);

nf

0

2

for each � 2 prem(�) L(sp)`

X

� or � is t=t

0

and L(sp) 6̀

X

D(t) and

L(sp) 6̀

X

D(t

0

);

nf

0

3

L(sp) 6̀

X

cons(�) and cons(�) 2 EEq(L(sp);X).

Proof. By de�nition of Fr(L(sp);X) and m(L(sp);X), for all terms t; t

0

2

T

�

(X):

� Fr(L(sp);X)j=

PAR

m

D(t) i� L(sp)`

X

D(t) and

� Fr(L(sp);X)j=

PAR

m

t=t

0

i� L(sp)`

X

t=t

0

or both L(sp) 6̀

X

D(t) and

L(sp) 6̀

X

D(t

0

).

Thus the equivalence between nf

i

and nf

0

i

easily follows.

Theorem 2.4.16 Let L(sp) be a system for sp and X be a family of variables.

The set NF(L(sp);X) is empty i� Fr(L(sp);X) is a model of sp.

Proof. Let Fr denote Fr(L(sp);X) and m denote m(L(sp);X).

2.4. STRONG PARTIAL LOGIC 73

) Let � be an axiom of sp and V be a valuation for V ar(�) in Fr. Then

t

V;y

2 Dom(�

L(sp)

(X)), i.e. Frj=

PAR

m

D(t

V;y

), for all y 2 V ar(�) and hence

V (�) satis�es condition nf

1

. Thus, since NF(L(sp);X) is empty, V (�) does

not satisfy condition nf

2

or nf

3

, i.e. Frj=

PAR

m

V (cons(�)) or Fr 6j=

PAR

m

�

for some � 2 V (prem(�)), i.e. , by de�nition of V (�), Frj=

PAR

V

cons(�) or

Fr 6j=

PAR

V

� for some � 2 prem(�) and hence Frj=

PAR

V

�.

(Let Fr belong to PMod(sp) and � satisfy conditions nf

1

, nf

2

of Def. 2.4.14.

Because of nf

1

, � is �[t

y

=y j y 2 V ar(�)] for some � 2 Ax and t

y

2 T

�

(X)

s.t. Frj=

PAR

m

D(t

y

) and hence the valuation V for V ar(�) in Fr can be

de�ned by V (y) = [t

y

]. Since Fr is a model of sp, Frj=

PAR

V

�, i.e., by

de�nition of �, Frj=

PAR

m

�.

Therefore Frj=

PAR

m

�, and, because of nf

2

, that Frj=

PAR

m

� for all � 2

prem(�); thus Frj=

PAR

m

cons(�) and hence nf

3

does not hold.

Putting together Props. 2.4.12, and 2.4.13 and Theorem 2.4.16 the conditions

for the existence and characterization of free models can be rephrased in terms of

logical systems.

Theorem 2.4.17 Let sp be a conditional speci�cation,X be a family of variables,

Fr denote Fr(L(sp);X) and m denote m(L(sp);X). For every system L(sp) for sp

the following conditions are equivalent:

1. the set NF(L(sp);X) is empty;

2. the algebra Fr is a model of sp;

3. the couple (Fr;m) is free for X in PMod(sp).

If (one of) the above conditions hold, then L(sp) is eeq-complete for X and sp

and Fr(L(sp);X) = Fr(sp;X).

If L(sp) is eeq-complete then each one of the above conditions is equivalent to

4. there exists a free object for X in PMod(sp);

5. there exists a free object for X in PGen(sp;X).

Proof.

1 , 2 By Theorem 2.4.16.

2 , 3 By Prop. 2.4.13.

74 CHAPTER 2. A PARADIGMATIC PROBLEM

Assume that one among conditions 1, 2 and 3 holds, and show that L(sp)

is eeq-complete and that Fr(L(sp);X) = Fr(sp;X). Let t=

e

t

0

shortly denote a

formula of EEq(L(sp);X) s.t. L(sp) 6̀

X

t=

e

t

0

; then, by de�nition of Fr and m,

Fr 6j=

PAR

m

t=

e

t

0

and hence, as Fr is a model of sp, L(sp) is eeq-complete. Thus,

because of Prop. 2.4.12, Fr(L(sp);X) = Fr(sp;X).

Assume now that L(sp) is eeq-complete.

4 , 5 Because of Theorem 2.4.5

4 , 2 Since L(sp) is eeq-complete, Fr = Fr(sp;X) because of Prop. 2.4.12 and

hence the thesis follows by Theorem 2.4.5.

Both the eeq-completeness of every conditional system and the well known

results guaranteeing the existence of a free model in the cases of positive condi-

tional (see e.g. [22]) and total conditional (see e.g. [64]) speci�cations can be get

as corollaries. At this end a preliminary result is needed.

Prop. 2.4.18 Let sp = (�; Ax) be a conditional speci�cation, X be a family

of variables, L(sp) be a conditional system for sp and � 2 Ax be a positive

conditional axiom. Any instantiation of � does not belong to NF(L(sp);X).

Proof. Assume that � is an instantiation of � satisfying nf

1

and nf

2

and show

that � does not satisfy nf

3

. Since � is an instantiation of � satisfying nf

1

, � =

�[t

y

=y j y 2 V ar(�)] for some t

y

2 T

�

(X) s.t. L(sp)`

X

D(t

y

) and hence, because

of the condition on deducibility of the axioms and instantiation for conditional

systems, L(sp)`

X

�, i.e. L(sp) ` D(X

0

) [prem(�) � cons(�) for some X

0

� X.

Since � is a positive conditional axiom, by de�nition of Fr(L(sp);X), condition

nf

2

, i.e. Fr(L(sp);X)j=

PAR

m(L(sp);X)

� for all � 2 prem(�), implies that L(sp)`

X

�,

i.e. that X

�

� X exists s.t. L(sp) ` D(X

�

) � � for any � 2 prem(�).

Therefore, because of condition on modus ponens, by

L(sp) ` D(X

0

) [prem(�) � cons(�)

and L(sp) ` D(X

�

) � � for all � 2 prem(�),

L(sp) ` D(X

0

[[

�2prem(�)

X

�

[X

00

) � cons(�)

for some X

00

� V ar(prem(�)) � X, i.e. condition nf

3

does not hold.

Cor. 2.4.19 Let X be a family of variables, PSp = (�; Ax) be a positive condi-

tional speci�cation and L(sp) be a conditional system for PSp.

1. (Fr(L(sp);X);m(L(sp);X)) is free for X in PMod(PSp);

2.5. PARTIAL HIGHER-ORDER SPECIFICATIONS 75

2. L(sp) is eeq-complete for sp and X.

Proof. Because of Prop. 2.4.18, NF(L(sp);X) is empty; thus, because of The-

orem 2.4.17, (Fr(L(sp);X);m(L(sp);X)) is free for X in PMod(PSp) and hence,

because of Theorem 2.4.17, L(sp) is eeq-complete.

Since total conditional speci�cations are a special case of (partial) positive

conditional ones, this result applies to that frame too.

Remark. Note that in general a conditional system is not seq-complete for

positive conditional speci�cations, as the following example shows.

spec sp

6

=

sorts s

opns

a:! s

f; g: s! s

axioms

�

1

D(f(x)) � f(x)=g(x)

�

2

D(g(x))� f(x)=g(x)

Since one amongD(f(x)), D(g(x)) and f(x)=g(x) holds by de�nition of strong

equality, from �

1

and �

2

the validity of f(x)=g(x) in all models of sp

6

follows,

while, for example, US (sp

6

) 6̀ f(x)=g(x) and hence US (sp

6

) is not seq-complete

for ; and sp

6

.

2.5 Partial Higher-Order Speci�cations

As in [67], higher-order speci�cations are reduced to particular classes of �rst-order

speci�cations.

Def. 2.5.1

� If S is a set of basic sorts, then the set S

!

of functional sorts over S is

inductively de�ned by: S � S

!

and if s

1

; : : : ; s

n

; s

n+1

2 S

!

, then s =

(s

1

; : : : ; s

n

! s

n+1

) 2 S

!

for all n � 1.

A subset S

0

� S

!

is downward-closed i� s

1

; : : : ; s

n

; s

n+1

2 S

0

for all

(s

1

; : : : ; s

n

! s

n+1

) 2 S

0

.

� A higher-order signature F� is a signature (S;F), where S is a downward-

closed set of functional sorts, s.t. for any s = (s

1

; : : : ; s

n

! s

n+1

) 2 S with

76 CHAPTER 2. A PARADIGMATIC PROBLEM

n � 1 there exists a distinguished operator apply

s

2 F

ss

1

;:::;s

n

;s

n+1

. In the

sequel apply

s

(f; a

1

; : : : ; a

n

) will be denoted by f(a

1

; : : : ; a

n

) using an in�x

notation and dropping the sort indexes when there is no ambiguity. More-

over the apply functions will be not explicitly mentioned in the de�nitions

of concrete functional signatures.

� Let F� = (S;F) be a higher-order signature; then A 2 PA(F�) is an ex-

tensional partial algebra, from now on E-algebra, i� it satis�es the following

extensionality condition:

for all s = (s

1

; : : : ; s

n

! s

n+1

) 2 S, with n � 1 and for all f; g 2 s

A

, if for

all a

i

2 s

i

A

, i = 1; : : : ; n, f(a

1

; : : : ; a

n

) = g(a

1

; : : : ; a

n

), then f = g.

The class of all E-algebras over F� is denoted by EPA(F�).

� The institution PHO = (Sign

PHO

;Sen

PHO

;Mod

PHO

; j=

PAR

) of partial

higher-order algebras consists of

{ Sign

PHO

is the subcategory of Sign

PAR

whose objects are higher-order

signatures and whose morphisms (�; �):F�! F�

0

preserve functional

sorts and apply functions, i.e. s.t.:

� �(s

1

; : : : ; s

n

! s

n+1

) = �(s

1

) : : : �(s

n

) ! �(s

n+1

) for every func-

tional sort s

1

; : : : ; s

n

! s

n+1

of F�;

� �(apply

s

) = apply

�(s)

for every functional sort s of F�.

In the sequel let E denote the embedding of Sign

PHO

into Sign

PAR

.

{ Sen

PHO

= Sen

PAR

� E ;

{ Mod

PHO

(F�) is the full subcategory of Mod

PAR

(F�) whose objects

are EPA(F�) for every higher-order signature F� and Mod

PHO

(�) =

Mod

PAR

(�)

jEPA(F�

0

)

for every �:F�! F�

0

in Sign

PHO

.

� The institution FPHO = (Sign

PHO

;Sen

FPHO

;Mod

PHO

; j=

PAR

) of partial

higher-order algebras with �nitary sentences is the subinstitution of PHO

whose sentences Sen

FPHO

(F�) are f� j prem(�) are �niteg for every higher-

order signature F�.

� A (positive) conditional higher-order speci�cation (P)FSp = (F�; Ax) con-

sists of a higher-order signature F� and a set Ax of (positive) conditional

axioms over F�. In general (positive) higher-order speci�cations will be

denoted by (P)FSp. The class of extensional models of FSp, denoted by

EMod(FSp), is Mod(FSp) \ EPA(F�); while EGMod(FSp) is the class of

extensional term-generated models, i.e. GMod(FSp) \ EPA(F�).

2.5. PARTIAL HIGHER-ORDER SPECIFICATIONS 77

Note that for any higher-order signature F� = (S;F), S is required to be

downward closed in order that the operators apply

s

have arity in S

�

� S.

Remark. Any A 2 EPA(F�) is isomorphic to an algebra where the carriers

of higher-order sort (s

1

; : : : ; s

n

! s

n+1

) are subsets of the space of the partial

functions from s

1

A

�: : :�s

n

A

into s

n+1

A

and the apply

s

operators are interpreted

in the standard way. Therefore in the following examples the higher-order carriers

are assumed to be function spaces and the apply

s

functions to be interpreted

accordingly.

It is easy to check that �rst-order speci�cations are a special case of higher-

order ones; indeed any (�rst-order) signature is a higher-order one, because there

are no functional sorts and hence no apply function is required. Moreover the ex-

tensionality condition is satis�ed by all partial algebras over a �rst-order signature,

because all sorts are basic, so that also the models of a �rst-order speci�cation

and its extensional models coincide.

Note the di�erence between f 2 F

�;s!s

0

and f 2 F

s;s

0

; indeed in the �rst case

the interpretation of f is an element of the corresponding carrier, and hence the

extensionality condition (and any proper axiom involving a variable of sort s! s

0

,

too) applies to it, while in the second one the interpretation of f is a function

(living in some meta-level world) from the carrier of sort s into the carrier of sort

s

0

. This di�erence is better illustrated by an example.

spec FSp

0

=

sorts N; (N ! N)

opns

Z:! N

S; P;+2:N ! N (�)

Inc: (N ! N)! (N ! N)

axioms

�

1

D(Z)

�

2

D(S(x))

�

3

P (S(x)) = x

�

4

+2(x) = S(S(x))

�

5

Inc(f)(x) = S(f(x))

�

6

f = Inc(g) � D(P (Z))

Then there are no closed terms of sort (N ! N) and the following algebra is

obviously an extensional model of FSp

0

, where D(P (Z)) does not hold:

Algebra A =

N

A

= IN

(N ! N)

A

= ;

78 CHAPTER 2. A PARADIGMATIC PROBLEM

Z

A

= 0

S

A

(x) = x+ 1 for all x 2 IN

P

A

(x) = x� 1 for all x � 1; P

A

(0) is unde�ned

+2

A

(x) = x+ 2 for all x 2 IN

Inc

A

is the totally unde�ned function

Consider now the speci�cation FSp

0

0

, equal to FSp

0

with the exception of the

operations (�) changed to

(?) S; P;+2:! (N ! N);

It would seem natural that any model B of FSp

0

could be made a model of FSp

0

0

,

putting S

B

, P

B

and +2

B

into the carrier (N ! N)

B

and closing the carrier w.r.t.

the Inc operation; but this cannot be done. Indeed for the speci�cation FSp

0

0

,

S, P and +2 are closed terms of sort (s ! s), de�ned in all models because

of �

1

; �

2

; �

3

and �

4

; thus the variables f and g may be instantiated on S and

+2. Moreover from �

5

, for f instantiated on S, Inc(S)(x) = S(S(x)) follows

and hence, from �

4

, Inc(S)(x) = +2(x). Thus, because of the extensionality

condition, Inc(S) = +2 holds in all models and hence D(P (Z)) holds, from �

6

.

Therefore D(P (Z)) holds in all extensional models of FSp

0

0

and hence there

is no way of transforming the above algebra A into an extensional model of FSp

0

0

leaving the interpretations of P and Z unchanged.

The above example shows that functions between carriers introduce less re-

strictions than constants in functional carriers. Note that the two levels describe

conceptually di�erent objects: functions between carriers are meta-objects which

describe properties of the elements of the carriers, while the elements of functional

carriers are the objects in discussion.

Since the class of extensional models is not closed under sub-objects, there is

no guarantee that the initial (free) model (for X), if any, is term-generated (by

X) nor that there exists an initial model in the whole model class i� there exists

one in the subclass of the term-generated models.

Indeed both properties are missing for the class of extensional models, because

there are speci�cations having a non-term-generated initial model and there are

speci�cations whose term-generated model class has initial model while the whole

model class has not.

Analogously to the case of higher-order total algebras, the class of extensional

algebras is not closed w.r.t. subobjects; thus, in particular, the class of extensional

algebras cannot be expressed as the model class of a conditional speci�cation,

because the model class of any conditional speci�cation is closed under subobjects.

But, while in the total case the extensional algebras are closed w.r.t. non-empty

2.5. PARTIAL HIGHER-ORDER SPECIFICATIONS 79

direct products (of course performed in the class of all algebras), as claimed for

example by the theorem 5.3 in [62], in the partial frame also this closure is missing.

Fact 2.5.2 Let F� be a higher-order signature; in general EPA(F�) is not closed

w.r.t. subobjects, nor w.r.t. non-empty direct products

Proof. Consider the signature F� = (S;F), where S = fs; (s ! s)g and F =

fF

w;s

0

g

w2S

�

;s

0

2S

, with just two constants f and g of sort s ! s. Consider the

algebras A , B and C, de�ned by:

Algebra A =

s

A

= f�g

(s! s)

A

= f?; Idg

f

A

= Id g

A

= ?

?(�) is unde�ned, Id(�) = �

Algebra B =

s

B

= s

A

(s! s)

B

= (s! s)

A

f

B

= ? g

B

= Id

Algebra C =

s

C

= ;

(s! s)

C

= (s! s)

A

f

C

= f

A

g

C

= g

A

Then obviously A;B 2 EPA(F�), while C =2 EPA(F�) and C is a subalgebra

of A, by de�nition. Therefore EPA(F�) is not closed w.r.t. subobjects. Let A�B

be de�ned as follows:

Algebra A �B =

s

A�B

= f(�; �)g

(s! s)

A�B

= (s! s)

A

� (s! s)

B

f

A�B

= (f

A

; f

B

) = (Id;?)

g

A�B

= (g

A

; g

B

) = (?; Id)

So (s ! s)

A�B

has cardinality 4, while there are just two distinct partial

functions from s

A�B

into s

A�B

, the identity and the totally unde�ned function,

because s

A�B

has cardinality 1. Thus A�B =2 EPA(F�) and hence EPA(F�) is

not closed w.r.t. non-empty direct products.

As in the non-positive conditional partial case, the lack of closure w.r.t. non-

empty products allows to de�ne non-trivial speci�cations whose models are all of

bounded cardinality.

80 CHAPTER 2. A PARADIGMATIC PROBLEM

It is easy to see that initial and terminal algebras in PA(F�) are respectively

characterized by s

I

= ; for all s 2 S, f

I

totally unde�ned for all f 2 F and

by s

Z

= f�g for all s 2 S, f

Z

total for all f 2 F . Obviously they are also

extensional and hence initial and terminal in EPA(F�); but, although EPA(F�)

has an initial model, in general both the class of extensional models and the class

of term-generated models for equational speci�cations do not have initial model.

Fact 2.5.3 Let F� = (S;F) be a higher-order signature and FSp be an equa-

tional speci�cation (F�; Ax). Then in general there does not exist an E-algebra

initial in EMod(FSp) nor in EGMod(FSp).

Proof. Consider the following example.

spec FSp

1

=

sorts s; (s! s)

constants

e of type s

f; g of type s! s

axioms

D(e)

D(f)

D(g)

Proceed by contradiction assuming that there exists I initial in EMod(FSp

1

)

(resp. in EGMod(FSp

1

)). Let F and G be the E-algebras de�ned by:

Algebra F =

s

F

= f�g

(s! s)

F

= f?; Idg

e

F

= �

f

F

= Id

g

F

= ?

where ?(�) is unde�ned, Id(�) = �

Algebra G =

s

G

= s

F

(s! s)

G

= (s! s)

F

e

G

= �

f

G

= ?

g

G

= Id

Both F and G belong obviously to EGMod(FSp

1

); thus, because of the initial-

ity of I, there exist two homomorphisms p

F

: I ! F and p

G

: I ! G. It is routine

2.5. PARTIAL HIGHER-ORDER SPECIFICATIONS 81

to show that the existence of such p

F

and p

G

implies that for all a 2 s

I

both f

I

(a)

and g

I

(a) are unde�ned and hence that f

I

= g

I

, because of extensionality; thus

g

F

= p

F

(g

I

) = p

F

(f

I

) = f

F

follows, in contradiction with the de�nition of f

F

and g

F

.

The above example suggests that for the existence of the initial model, the

minimal de�nedness may con
ict with the minimal equality. Indeed if the elements

in the domain are too few, then the functions cannot be distinguished by them and

hence the minimal de�nedness (on the arguments) may force the maximal equality

(on the functions). For the same reason two functions having the same result

over every tuple of terms because of the axioms, may di�er on some non-term-

generated argument-tuple, so that the equalities between ground terms holding

in the term-generated models may be strictly more than the equalities holding in

all models. In particular the equalities between ground terms holding in all the

term-generated models may de�ne an extensional algebra, so that there exists an

initial model in EGMod(FSp), while the equalities between ground terms holding

in all models are too few.

Fact 2.5.4 Let F� = (S;F) be a higher-order signature and FSp be an equa-

tional speci�cation (F�; Ax) s.t. I is initial in EGMod(FSp). Then in general I

is not initial in EMod(FSp) and the sets

f� j � 2 EForm(F�; ;);EMod(FSp)j=

PAR

�g

and

f� j � 2 EForm(F�; ;);EGMod(FSp))j=

PAR

�g

are di�erent.

Proof. Consider the following example.

spec FSp

2

=

sorts s

1

; s

2

; (s

1

! s

2

)

constants

e of type s

1

f; g of type (s

1

! s

2

)

axioms

�

1

D(f(e))

�

2

f(e) = g(e)

Then all term-generated models are isomorphic to I, de�ned by:

82 CHAPTER 2. A PARADIGMATIC PROBLEM

Algebra I =

s

I

1

= f�g

s

I

2

= f�g

(s

1

! s

2

)

I

= fIdg

where Id(�) = �

e

I

= �

f

I

= g

I

= Id

So that I is initial in EGMod(FSp

2

); however I is not initial in EMod(FSp

2

),

since there are (non term-generated) models A for which f

A

6= g

A

.

Moreover EGMod(FSp

2

)j=

PAR

f = g, while EMod(FSp

2

) 6j=

PAR

f = g, be-

cause A 6j=

PAR

f = g.

In the total case if a family X of variables has a su�ciently high cardinality,

then there exists the free model for X in the class of all extensional models of an

equational speci�cation (see theorems 3.7 and 5.7 of [62]). Instead in the partial

case there are equational speci�cations whose classes of extensional models do not

admit free models whatever the cardinality of the family of variables is.

Fact 2.5.5 Let F� = (S;F) be a higher-order signature, FSp be an equational

speci�cation (F�; Ax) and X be a family of variables of arbitrary cardinality.

Then in general there does not exist a free model for X in EMod(FSp).

Proof. Consider again the speci�cation FSp

1

and the algebras F and G de�ned

in Fact 2.5.3 and show that there does not exist a free model for X in EMod(FSp

1

).

Assume by contradiction that (Fr; v) is free in EMod(FSp

1

) for a family X

of variables. Let V

F

:X ! F and V

G

:X ! G be any valuations, which always

exist, because F and G have all carriers non-empty. Because of the freeness of

Fr, there exist two homomorphisms p

F

: Fr! F and p

G

: Fr! G s.t. p

F

� v = V

F

and p

G

� v = V

G

. Thus, as in in Fact 2.5.3, g

F

= p

F

(g

Fr

) = p

F

(f

Fr

) = f

F

, in

contradiction with the de�nition of f

F

and g

F

.

Note that the above counter-example also applies to the subclass EGMod(FSp;X)

of extensional models generated by the family X of variables, i.e.

EGMod(FSp;X) = PGen(FSp;X) \ EMod(FSp);

because F and G, being term-generated, belong to EGMod(FSp;X).

In the (both total and partial) �rst-order case the free model (if any) for X in

a class speci�ed by conditional axioms is term-generated by X; the proof, in both

cases, depends on the closure w.r.t. subalgebras.

2.5. PARTIAL HIGHER-ORDER SPECIFICATIONS 83

In [62], under the hypothesis T

F�

js

6= ; for all s 2 S, it is shown that if X

has a su�ciently high cardinality, then a quotient of T

F�

(X) is a free model for

X in the class of total models of a higher-order equational speci�cation (but the

same proof technique applies to the conditional case too). That result can be

strengthened to show that if a free model for X exists, then it is term-generated

by X, whatever the cardinality of X.

Theorem 2.5.6 Let FSp = (F�; Ax) be a conditional higher-order speci�cation

s.t. T

F�

s

6= ; for all s 2 S, denote by TMod(FSp) the class of total extensional

models of FSp and assume that (Fr; v) is free for X in TMod(FSp). Then Fr is

term-generated by X via v , i.e. eval

Fr;v

is surjective.

Proof. Because of theorems 3.7 and 5.7 of [62], there exists Y � X of suitably

high cardinality s.t. (T

F�

(Y)= �; i) is free for Y in TMod(FSp), where � is the

intersection of all kernels of natural evaluations K

A;V

, and i :Y ! T

F�

(Y)= � is

the valuation de�ned by i(y) = [y].

In the sequel let [t] denote the equivalence class of any term t in T

F�

(Y)= �

and V denote any valuation V :Y ! F s.t. V (x) = v(x) for all x 2 X and

V (y) = t

y

F

for some t

y

2 T

F�

for all y 2 Y �X. Note that there exists such a V

because of the assumption T

F�

js

6= ;, so that v may be extended to Y .

Two homomorphisms, p

V

:T

F�

(Y)= �! Fr and h: Fr! T

F�

(Y)= � are exhib-

ited s.t. p

V

([y]) = V (y) and p

V

� h = Id

Fr

; then it is shown that this implies that

eval

Fr;v

is surjective.

The existence of such p

V

and h is now proved. Since T

F�

(Y)= �2 TMod(FSp),

i � e:X ! T

F�

(Y)= � is a valuation, where e denotes the embedding of X into Y ,

and (Fr; v) is free for X in TMod(FSp), there exists a (unique) homomorphism

h: Fr! T

F�

(Y)= � s.t. h � v = i � e.

Since Fr 2 TMod(FSp) and (T

F�

(Y)= �; i) is free for Y in TMod(FSp), there

exists a (unique) homomorphism p

V

:T

F�

(Y)= �! Fr s.t. p

V

� i = V .

Since (Fr; v) is free forX in TMod(FSp), the unique homomorphism p: Fr! Fr

s.t. p�v = v is the identity, and hence p

V

�h = Id

Fr

, because p

V

�h�v = p

V

�i �e =

V � e = v .

The homomorphism eval

Fr;v

is proved to be surjective, i.e. for every a 2 s

Fr

a

term t 2 T

F�

(X) in exhibited s.t. a = t

Fr;v

.

By de�nition of T

F�

(Y)= �, there exists t

0

2 T

F�

(Y) s.t. h(a) = [t

0

] and [t

0

] =

t

0T

F�

(Y)=�;i

. Thus a = p

V

(h(a)) = p

V

(t

0T

F�

(Y)=�;i

); moreover p

V

(t

0T

F�

(Y)=�;i

) =

t

0Fr;p

V

�i

and, since p

V

� i = V , t

0Fr;p

V

�i

= t

0Fr;V

, so that a = t

0Fr;V

.

Finally, by de�nition of V , t

0Fr;V

= t

0

[t

y

=yjy 2 Y �X]

Fr;v

; thus a = t

Fr;v

with

t = t

0

[t

y

=yjy 2 Y �X] 2 T

F�

(X) and hence a 2 eval

Fr;v

(T

F�

(X)).

84 CHAPTER 2. A PARADIGMATIC PROBLEM

Therefore in the total case if (Fr; v) is free for X in the class of extensional

models of a conditional speci�cation, then it is also term-generated by X and

hence it is the quotient of T

F�

(X) w.r.t. the intersection of the kernels of natural

evaluations of T

F�

(X) in the models.

In the partial higher-order case both the closure under subalgebras (which is

true for both the total and the partial �rst-order case) and the existence of free

models for families of variables of su�ciently high cardinality (which is true for

the total higher-order) are missing, so that neither style of proof applies. Indeed,

rather surprisingly, there are positive conditional speci�cations whose initial model

is not term-generated, as the following Fact 2.5.7 shows.

Fact 2.5.7 Let F� = (S;F) be a higher-order signature and FSp be a positive

conditional speci�cation (F�; Ax) s.t. T

F�

s

6= ; for all s 2 S and there exists an

initial model I in EMod(FSp); then in general I is not term-generated .

Proof.

Let MB

F�

denote the set of F�-equations which force the models of

(F�;MB

F�

) to be the total trivial algebra, i.e. MB

F�

consists of

fx

s

= y

s

js 2 Sg for some distinct x

s

; y

s

2 V ar

s

and all s 2 S;

fD

s

(t)jt 2 T

F�

(X)

s

g where X is a family of denumerable sets of variables.

Then any non-trivial model of the set of axioms f� � � j � 2 MB

F�

g, from

now on denoted by � �MB

F�

, does not satisfy �.

Consider now the following speci�cation FSp

3

= (F�; Ax).

spec FSp

3

=

sorts s; (s! s); ((s! s)! s)

constants

k of type s

? of type (s! s)

�

1

;�

2

of type ((s! s)! s)

opns

�: (s! s)! ((s! s)! s)

axioms

x 2 Var

s

; f; g 2 Var

(s!s)

; F 2 Var

(s!s)!s

;

� D(�(f))

�

1

x = k

�

2

F (?) = k

�

3

�

1

= �

2

� MB

F�

�

4

D(?(x)) � MB

F�

2.5. PARTIAL HIGHER-ORDER SPECIFICATIONS 85

�

5

�

1

(f) = k

�

6

�(?) = �

1

�

7

�(f) = �(g) � f = g

�

8

D(k)

�

9

D(?)

�

10

D(�

1

)

�

11

D(�

2

)

The speci�cation FSp

3

has exactly one non-trivial model (modulo isomor-

phism), in the sequel called A, uniquely de�ned by the axioms:

� �

1

implies that s

A

is a singleton set f1g and k

A

= 1; therefore, because of

the extensionality, (s! s)

A

has at most two elements: the identity Id and

the totally unde�ned function ?.

If (s ! s)

A

is a singleton, then (s ! s)

A

= f?

A

g and hence, because of

�

2

, �

A

1

(?

A

) = �

A

2

(?

A

) would follow and hence �

A

1

= �

A

2

, by extensionality,

contrary to �

3

, which implies that �

1

A

and �

2

A

are di�erent, because A is

non-trivial. Therefore (s! s)

A

= fId;?g.

� �

4

implies that ?

A

= ?, because A is non trivial.

� �

2

implies that F (?) = 1 for any F 2 ((s ! s) ! s)

A

and hence

((s ! s) ! s)

A

has at most two elements: �

1

, de�ned by �

1

(Id) = 1,

�

1

(?) = 1, and �

2

, de�ned by �

2

(?) = 1, �

2

(Id) is unde�ned. Moreover

((s ! s) ! s)

A

has at least two distinguished elements, �

A

1

and �

A

2

, be-

cause of �

3

; therefore ((s! s)! s)

A

= f�

1

; �

2

g.

� �

5

implies that �

1

A

= �

1

; thus, since �

1

A

and �

2

A

are di�erent, �

2

A

= �

2

.

� �

6

implies that �

A

(?) = �

1

.

� � and �

7

imply that �

A

is a total injective function and hence �

A

(Id) = �

2

.

Thus the speci�cation FSp

3

has the unique (extensional) non-trivial model A,

de�ned by:

Algebra A =

s

A

= fk

A

g

(s! s)

A

= f?

A

; Idg

Id(k

A

) = k

A

, ?

A

(k

A

) is unde�ned

((s! s)! s)

A

= f�

A

1

;�

A

2

g

�

A

1

(?

A

) = k

A

, �

A

1

(Id) = k

A

and �

A

2

(?

A

) = k

A

, �

A

2

(Id) is unde�ned

�

A

(?

A

) = �

A

1

�

A

(Id) = �

A

2

86 CHAPTER 2. A PARADIGMATIC PROBLEM

It is easy to check, then, that A is initial in EMod(FSp

3

). Indeed there is just

one homomorphism from A into the trivial model, because the trivial model is

total and has just one element in any carrier. Moreover the only element in A

which is not interpretation of a constant (and hence whose homomorphic image

is not �xed a priori) is Id and the homomorphic image of Id must satisfy the

equation �

A

2

= h(�

A

(Id)) = �

A

(h(Id)); since �

A

is injective by �

7

, h(Id) = Id

follows. Thus the identity is the only homomorphism of A into itself.

Remark. Note that in the above counter-example speci�cation FSp

3

the only

partial functions are the interpretations of the (implicit) apply operators that

must be partial in order to specify carriers of partial functions. Moreover the

equalities used to specify FSp

3

can be replaced by existential equalities leaving

una�ected the model class. Thus FSp

3

is in some sense a total speci�cation of

partial functions and its pathologies only depend on the partiality of the objects

that are being speci�ed, i.e. the choice of the partial frame to axiomatize such a

set of partial (higher-order) functions is immaterial.

Chapter 3

Relating Speci�cation

Formalisms

As illustrated by the last chapter for the particular case of the speci�cation of

partial functions, a considerable proliferation of formalisms has been produced in

the last years, as a result both of theoretical investigations and of preliminary

attempts at applications. One of the reasons behind this proliferation is that the

convenience of a formalismmay depend on the application and until now no \best

formalism" has been found, though from time to time somebody claims that there

is one.

Now this fragmentation of frames is con
icting with some essential require-

ments of any speci�cation formalism, i.e. the ability of supporting modularity and

re�nement, which are clearly related to the problem of reuse of speci�cations. It is

becoming important to assemble, possibly at di�erent levels of implementative de-

tail, speci�cation modules in di�erent formalisms; thus it is convenient (we believe

fundamental) to have theoretically sound means for passing from one formalism

to another in a way that preserves some essential properties. Rephrasing the title

of a landmark paper by Burstall and Goguen [27], the issue is \putting together

theories from di�erent formalisms to make speci�cations".

Another hot point due to the existence of so many formalisms is the meaning

of \equivalence" between approaches to the same problem in di�erent frameworks.

Indeed in the literature it is often claimed that a frame is equivalent to another

one, usually in the sense that both solve the same kind of problems, or that in

both the results are equivalently (un)satisfactory. But the meaning of equivalence

is usually not formally de�ned and quite often used to denote di�erent levels of

relationship.

Both problems can be solved by a notion of formalism translator that on

87

88 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

one hand allows theories expressed in di�erent frameworks to be transformed in a

common formalism and then assembled, and on the other relates the speci�cations

de�ned in several formalisms, so that they can be compared. Since frameworks

are formalized as institutions, such a translator should be some kind of morphism

(in the categorical sense) between institutions. Starting from a signi�cant set of

concrete examples that should be captured by this notion of formalism translator,

it is immediately apparent that themorphisms of institutions, originally de�ned by

Burstall and Goguen in [44] to support categorical constructions on institutions,

do not represent the wanted examples. Therefore a new kind of morphisms has

been introduced in [2, 8], called simulations.

The basic idea of simulation is encoding the syntax, i.e. signatures and sen-

tences, of a new frame by that of an already known formalism in a way consistent

with the semantics, in order to transfer results and tools. To formalize the con-

sistency of the translation of the syntax w.r.t. the semantics, every model of the

new frame is required to be represented by at least one of the old frame that

satis�es the same sentences (under translation). Thus a simulation consists of

three components: the two maps translating new signatures and sentences into

old ones, and a partial surjective map which translates old models into new ones.

Simulations are very close tomaps of institutions, independenlty developped by

Meseguer in [63], that di�er from simulations because associate each new signature

with an old theory, whose models alone are translated (so that the expressive

power of the old institution is required to be su�cient to describe the domain

of the model translator) non-necessary in a surjective way. For a more complete

comparison of the two approches see Sect. 3.3.1 below

In this chapter simulations are introduced, compared with other morphisms

of institutions and used to deeply analyze the di�erent levels of relationship be-

tween logical formalisms, �rst following the total representations of partiality as

a paradigmatic case to show that three degrees of connection can be found, re-

spectively between individual models, categories of models and theories, and then

applying the same technique to the coding of non-strict functions in total ap-

proaches, after a summary of the results in [4, 5] about non-strictness.

3.1 Simulations

To introduce the concept of simulation and the corresponding notation from an

intuitive point of view, the reduction of many-sorted equational Horn-clauses

logic MS, to one-sorted logic L, making explicit the typing of the variables (see

e.g. [71]), is illustrated as a paradigmatic example of the kind of translations that

3.1. SIMULATIONS 89

have to be captured by the de�nition of simulation.

3.1.1 An Introductory Example

In the following a simulation is denoted by �, possibly decorated.

Example 3.1.1 Let � be a many-sorted signature with sorts S and function

symbols F . The translation of � into a one-sorted signature �

M

Sign

(�) is de�ned,

by setting �

M

Sign

(�) = (Op

0

; P

0

), where Op

0

n

is the disjoint union of F

s

1

:::s

n

;s

, i.e.

of the n-ary function symbols, disregarding the type of the arguments (so that

any �-term is a (Op

0

; P

0

)-term, too) and P

0

contains only the typing predicates,

i.e. P

0

1

= f : s j s 2 Sg, where the symbol denotes the place of the argument in

a pre�x notation, and P

0

k

= ; for all k 6= 1.

With the help of the typing predicates, any many-sorted conditional equation

over � can be translated into a one-sorted equivalent one over �

M

Sign

(�). Consider

indeed a many-sorted formula

� = (V:t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

)

over � and the variables x

i

, where V (x

i

) = s

i

for i = 1 : : : k, and de�ne

�

M

Sen

�

(�) = x

1

: s

1

^ : : : ^ x

k

: s

k

^ t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

:

Then in �

M

Sen

�

(�), the translation of � over �

M

Sign

(�), the information about

the typing of the variables is carried by the predicates x

i

: s

i

in the premises.

To illustrate in which sense �

Sen

�

(�) is equivalent to �, a class dom(�)

�

of one-

sorted algebras is chosen, which soundly represents the many-sorted algebras and

s.t. a one-sorted algebra satis�es �

Sen

�

(�) i� the many-sorted algebra represented

by it satis�es �. Again the typing predicates are used to simulate the di�erent car-

riers of a many-sorted algebra: a one-sorted algebra A

0

is a sound representation

of a many-sorted algebra A, denoted by A = �

Mod

�

(A

0

), i� whenever the argu-

ments of a function are appropriately typed also the result is appropriately typed,

i.e. a

i

: s

i

A

0

for i = 1 : : : n implies f

A

0

(a

1

; : : : ; a

n

) : s

A

0

for any f 2 F

s

1

:::s

n

;s

. If

A

0

satis�es this condition, then A is the many-sorted algebra (fs

A

g

s2S

; ff

A

g

f2F

),

where s

A

= fa j a : s

A

0

g and f

A

is the restriction of f

A

0

to s

1

A

� : : :� s

n

A

; the

above condition guarantees that the interpretation of the function symbols in A

yields total functions. It is easy to check that A

0

satis�es �

Sen

�

(�) i� A satis�es

�.

Note that one-sorted algebras di�ering only on elements which do not satisfy

any typing predicate represent the same many-sorted algebra.

90 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Thus for every many-sorted signature �, a homogeneous signature �

Sign

(�)

and two functions are de�ned: �

Sen

�

, which translates many sorted equational

conditional sentences on � into homogeneous conditional sentences on �

Sign

(�)

built on typing predicates and equalities, and �

Mod

�

, which partially translates

homogeneous �rst-order structures on �

Sign

(�) into many-sorted algebras on �

and is surjective, as it is immediate to check.

Since the change of notation, via signature morphisms, has a great relevance

in the algebraic approach, being used for example to bind the actual to the formal

parameters in parameterized speci�cations and to \put theories together to make

speci�cations", the compatibility between the coding functions �

Sen

�

and �

Mod

�

de�ned for any signature � and the changes of notation has to be investigated.

Let ��: �

1

! �

2

be a morphism of many-sorted signatures. Then �� naturally

induces a homogeneous signature morphism �

Sign

(��) = (

0

; �

0

) from �

Sign

(�

1

)

into �

Sign

(�

2

), de�ned by

0

(f) = �(f) for any f 2 F and �

0

(: s) = : �(s) for

any s 2 S. It is easy to check that the translation of sentences is compatible with

signature morphisms, i.e. that �

Sen

�

2

(��(�)) = �

Sign

(��)(�

Sen

�

1

(�)).

Instead the partiality of the translation of algebras makes the compatibility

between the algebra translations and signature morphisms delicate. Indeed it is

intuitive to expect that the translation along a signature morphism of a one-sorted

algebra simulating a many-sorted algebra simulates the translation of that many-

sorted algebra; more formally, recalling that algebras are translated along signa-

ture morphisms in a countervariant direction into their reduct, if A

0

2 dom(�)

�

2

,

then A

0

j�

Sign

(��)

2 dom(�)

�

1

and (�

Mod

�

2

(A

0

))

j��

= �

Mod

�

1

(A

0

j�

Sign

(��)

).

But the converse of the �rst implication does not hold, i.e. A

0

j�

Sign

(��)

2

dom(�)

�

1

does not imply A

0

2 dom(�)

�

2

, as illustrated by the following example.

Let �

2

be the many-sorted signature

sig �

2

=

sorts nat

opns

0:! nat

inc; dec:nat! nat

�

1

be its subsignature where the dec operation has been dropped

sig �

1

=

sorts nat

opns

0:! nat

inc:nat! nat

3.1. SIMULATIONS 91

and �� be the embedding of �

1

into �

2

.

Consider now the one sorted algebra A

0

on �

Sign

(�

2

), de�ned by

Algebra A

0

=

jA

0

j = =Z

a : nat

A

0

() a 2 IN

0

A

0

= 0

inc

A

0

(x) = x+ 1

dec

A

0

(x) = x� 1

Then A

0

=2 dom(�)

�

2

, because 0 : nat holds, but dec

A

0

(0) : nat does not and

hence dec

A

0

on appropriately typed input yields an untyped output. However

A

0

j��

is the same as A

0

but dec has been dropped, hence it obviously belongs to

dom(�)

�

1

.

Therefore a weaker condition (called partial naturality) has to be required for

algebras than the one for sentences: if A

0

2 dom(�)

�

2

, then A

0

j�

Sign

(��)

2 dom(�)

�

1

and (�

Mod

�

2

(A

0

))

j��

= �

Mod

�

1

(A

0

j�

Sign

(��)

).

3.1.2 Simulations of Basic Speci�cations

Abstracting from the above construction, the general aspects of the coding of a

new (many-sorted) into an old (one-sorted) formalism are:

� to each new signature an old signature corresponds;

� to each new sentence an old sentence corresponds;

� not any old algebra represents a new one, but to each new algebra at least

one old corresponds, so that old algebras are (partially) translated by a

surjective mapping.

This scheme generalizes to the frame of institutions by lifting maps to the

proper categorical objects, taking care of the delicate points due to the partiality

of model translation, and requiring that the only non-categorical structure, i.e.

the validity relation, is preserved by them.

Since models are partially mapped, the usual notion of natural transforma-

tion is insu�cient to describe the translation of the (old) model functor; thus

\partially"-natural transformations are introduced to explicitly deal with the par-

tiality of the model translation.

Def. 3.1.2 Let I = (Sign;Sen ;Mod; j=) and I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be in-

stitutions. Then a simulation �:I ! I

0

consists of

92 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

� a functor �

Sign

:Sign! Sign

0

;

� a natural transformation �

Sen

:Sen ! Sen

0

� �

Sign

, i.e. a natural family of

functions �

Sen

�

:Sen(�)! Sen

0

(�

Sign

(�)), and

� a surjective partially-natural transformation

�

Mod

:Mod

0

� �

Sign

!Mod ;

that is a family of functors �

Mod

�

: dom(�)

�

! Mod(�), where dom(�)

�

is

a (non-necessarily full) subcategory of Mod

0

(�

Sign

(�)) s.t.

{ �

Mod

�

is surjective on jMod(�)j;

{ the family is partially-natural, i.e. for any signature morphism � 2

Sign(�

1

;�

2

)

Mod(�) � �

Mod

�

2

= [�

Mod

�

1

�Mod

0

(�

Sign

(�))]

jdom(�)

�

2

s.t. the following satisfaction condition holds:

A j= �

Sen

�

(�) () �

Mod

�

(A) j= �

for all � 2 jSignj, all A 2 jdom(�)

�

j and all � 2 Sen(�).

Note that the partial-naturality condition implies

Mod

0

(�

Sign

(�))(dom(�)

�

2

) � dom(�)

�

1

:

In the sequel, for any simulation �, the symbol � will be used to denote its

components, too, if the context makes clear the nature of the component.

Following the intuition that simulations corresponds to some sort of imple-

mentation or coding of a unknown formalism into a well known one, in the sequel

the domain I of a simulation �:I ! I

0

will be possibly referred to as higher-level

or new and accordingly to I

0

as lower-level or old.

It is easy to check that �:MS ! L, whose components were informally

sketched in Example 3.1.1, is a simulation, from now on denoted �

M

(the su-

perscript M stands for Many-sorted) in order to reserve the symbol � to denote

a generic simulation.

It is possible to use simulations as morphisms in a category, by de�ning the

composition of simulations componentwise and the identical simulation, whose

components are identities. Hence, taking care of avoiding foundation problems,

categories of institutions can be de�ned with simulations as morphisms, so that

some usual concepts, like subobject, product and sum, are implicitly de�ned too.

3.1. SIMULATIONS 93

Def. 3.1.3 Let I = (Sign;Sen;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) and I

00

=

(Sign

00

;Sen

00

;Mod

00

; j=

00

) be institutions, �:I ! I

0

, where � = (�

Sign

; �

Sen

; �

Mod

),

and �:I

0

! I

00

, where � = (�

Sign

; �

Sen

; �

Mod

), be simulations.

Then � � �:I ! I

00

is the composition componentwise, i.e. it consists of:

� (� � �)

Sign

= �

Sign

� �

Sign

;

� (� � �)

Sen

�

= �

Sen

�

Sign

(�)

� �

Sen

�

;

� (� � �)

Mod

�

= �

Mod

�

� �

Mod

�

Sign

(�)

.

Moreover �

I

= (�

I

Sign

; �

I

Sen

; �

I

Mod

) is the simulation from I into I de�ned by:

� �

I

Sign

is the identity functor on Sign;

� �

I

Sen

= fId

Sen(�)

g

�2jSignj

, where Id

Sen(�)

is the identity function on Sen(�);

� �

I

Mod

= fId

Mod(�)

g

�2jSignj

, where Id

Mod(�)

is the identity functor on

Mod(�).

It is obvious from the de�nition that the composition of simulation is a sim-

ulation too, that �

I

is the identity simulation, i.e. that �

I

� � = � = � � �

I

0

, and

that simulations are associative, i.e. that (���)� � = �� (� � �); thus it is possible

to use simulations as morphisms in a category.

Some simple examples are sketched here in order to get a better intuitive

understanding of the notion of simulation. More examples are disseminated in

the next chapters.

Example 3.1.4 The equality between meta-terms can be interpreted by the iden-

tity, i.e. two terms are equal i� are denotations of the same concrete object, or

more generally by a congruence relation, that is an equivalence relation preserv-

ing the structure of the working environment, for abstract data types usually the

functional application. This second notion is used, for example in [35, 25], in or-

der to represent the concept of implementation or representation; indeed in such

a way more models are allowed, through an abstraction process, where di�erent

objects are regarded as equal on the base of some criteria.

The two notions are strictly related from an intuitive point of view and this

relationship can be formalized by the de�nition of a simulation from the institu-

tion where equality is interpreted as identity into the institution where equality

is represented by a predicate. In the sequel the simulation of (total) many-sorted

algebras by typed logic is presented, but it is immediate to generalize this very

construction to any \algebraic" case, where here \algebraic" is loosely used to

94 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

denote the formalisms with an explicit notion of sort and operation (correspond-

ingly of carrier and function) and sentences built on terms, including the total,

partial, order-sorted algebras with or without predicates.

The basic idea is to introduce a binary predicate to represent the equality,

substitute this symbol for the identity and translate back each algebra where the

equality predicate is interpreted as a congruence into its quotient.

� let �

=

Sign

:Sign

MS

! Sign

T L

be the functor associating each many-sorted

signature (S;F) with the typed logic signature (S;F; feq

s

: ssg

s2S

) and

each many-sorted signature morphism (�; �) with the typed logic signature

morphism (�; �; �), de�ned by �(eq

s

) = eq

�(s)

for all s 2 S;

� let �

=

Sen

:Sen

MS

! Sen

T L

be the natural transformation translating each

equality symbol between terms t and t

0

of sort s into eq

s

(t; t

0

);

� let �

=

Mod

:Mod

MS

!Mod

T L

be de�ned by:

let � = (S;F) be a many sorted signature;

{ the domain of �

=

Mod

�

is the full subcategory of Mod

T L

(�) whose ob-

jects A satisfy the following axioms:

eq

s

(x; x)

eq

s

(x; y) � eq

s

(y; x)

eq

s

(x; y) ^ eq

s

(y; z) � eq

s

(x; z)

eq

s

1

(x

1

; y

1

) ^ : : : ^ eq

s

n

(x

n

; y

n

) � eq

s

(f(x

1

; : : : ; x

n

); f(y

1

; : : : ; y

n

))

{ for any A

0

2 jdom(�

=

)

�

j the translation A = �

=

Mod

�

(A

0

) consists of:

� the carriers of A are the quotients of the carriers of A

0

w.r.t. the

equality predicate: s

A

= s

A

0

=eq

s

A

0

for all s 2 S;

� the interpretation of function symbols goes through the classes:

f

A

([a

1

]; : : : ; [a

n

]) = [f

A

0

(a

1

; : : : ; a

n

)] for all f 2 F ;

for any algebra morphism h

0

:A

0

! B

0

the translation h = �

=

Mod

�

(h

0

)

is de�ned on equivalence classes by h([a]) = [h

0

(a)]

It is easy to check that �

=

Sen

is natural, being a renaming, that �

=

Mod

is

partially-natural, because its domains are model classes of theories and that �

=

Mod

is surjective, because each algebra A is represented by the �rst-order structure

whose algebraic component is A and the eq

s

predicates are interpreted by the

identity; thus �

=

is a simulation.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 95

Another example reminiscent of the concept of implementation is the simula-

tion representing the implementation of a concrete data type (i.e. an algebra) by

another one (possibly on a di�erent signature).

Example 3.1.5 To sketch this simulation, the institution (without sentences)

I(A;�) representing an algebra A on a signature � is introduced �rst.

Let A be a many-sorted algebra on a signature � = (S;F); the institution

I(A;�) consists of a category Sign

�

, that has strings of sorts as objects and k-

tuple of terms t

i

of sort s

i

on variables x

1

; : : : ; x

n

of sorts s

0

1

; : : : ; s

0

n

respectively

as arrows from s

0

1

; : : : ; s

0

n

into s

1

; : : : ; s

k

, with substitution as composition, of the

empty natural transformation of sentences (and empty satisfaction) and of the

model functor Mod

A

:Sign

�

! Cat

Op

yielding for each sort stream s

1

; : : : ; s

n

the

set s

1

A

� : : :� s

n

A

and for each k-tuple of terms the evaluation function.

The implementation of a many-sorted algebra A on a signature � by a many-

sorted algebra A

0

on �

0

is formalized by a simulation from I(A;�) into I(A

0

;�

0

),

where the signature component represents the abstraction function associating

each \higher-level" syntactic object with a derived one at the \lower-level" and

the model component represents the association of concrete objects with their ab-

stract correspondent. The functoriality of the signature components guarantees

that the functionality is preserved by the abstraction of the syntax; the natural-

ity of the model component represents, in algebraic language, the intuition that

the translation of elements is homomorphic w.r.t. the \higher-level" syntax, while

surjectivness and partiality of simulations correspond to each \higher-level" ele-

ment being represented by at least a \lower-level" one and non all \lower-level"

elements being signi�cant as \higher-level" objects.

3.2 Relationships between Institutions

In the literature it is often claimed that a frame is equivalent to another one,

usually in the sense that both solve the same kind of problems, or that in both

the results are equivalently (un)satisfactory. But the meaning of equivalence is

usually not formally de�ned and quite often used to denote di�erent levels of

relationship. Indeed three di�erent levels can be distinguished (and formalized

by means of simulations), depending on whether the correspondence is between

models, or categories of models, or speci�cations (theories).

At the set-theoretic level, for every model in the new frame a model in the old

frame can be found that represents the given one, in the sense that it satis�es the

same formulas, or, more precisely, that it satis�es corresponding formulas. This

96 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

is formalized by requiring that there exists a simulation from the new into the

old frame (s.t. the domains of the model component corresponds to any, possibly

non-full, subcategory of the old models). At this level most properties are missing,

in particular no structured way of de�ning models is guaranteed to be preserved,

because it usually involves categorical constructions. To have a categorical cor-

respondence between two frames, at least the domain of the simulation has to

be a full subcategory of the old models; moreover some more properties have to

be required depending on the categorical structures that are intended to be pre-

served. Here the focus is on the initial structures and minimal conditions are given

to preserve initiality. Even if there is a categorical simulation, the power of the

speci�cation languages in the two frames can be quite di�erent; in particular it is

possible that in the new frame some categories are de�nable by sets of sentences

that are not so in the old one (and vice versa). To guarantee that the relationship

is at the logical level, i.e. for every speci�cation (i.e. the class of models which

satisfy a set of sentences) in the new frame there exists a speci�cation in the old

frame equivalent to the given one in the categorical sense, it has to be required

not only that the domain of the model component is a full subcategory of the

category of old models, but also that it is described by a set of old sentences.

3.2.1 A Paradigmatic Example: Partial versus Total

Speci�cations

Here the use of the notion of simulation, with its various specializations, is illus-

trated as a tool for understanding the relationship between two formalisms with

respect to the solution of a problem. As a paradigmatic example, the speci�cation

of (strict) partial functions in a partial and a total frame has been chosen, picking

up from the discussion in Chapter 2 just few representative cases.

The following analysis, though not pretending to be exhaustive especially on

the pragmatic side, will highlight the subtleties of the relationship between the

two frames and possibly reveal some misbeliefs.

Semantic Level

The relationship between partial and total frames is �rst analyzed from a se-

mantic point of view, i.e. disregarding their logics. Formally this means that the

institutions are without sentences.

Def. 3.2.1 Let PAR

0

denote the institution (Sign

PAR

; ;;Mod

PAR

; ;) of partial

algebras without sentences and MS

0

denote the institution

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 97

(Sign

MS

; ;;Mod

MS

; ;) of total many-sorted algebras without sentences.

In the algebraic community there is a widespread belief that partiality can also

be handled without explicit partial functions, in the usual total frame, simply

by introducing a distinguished constant ? (one for each sort) to represent the

unde�ned computations; in this way to any partial algebra A its trivial totalization

corresponds (see e.g. the error algebras for a more sophisticated version of this

idea). Following this intuition it is possible to de�ne a simulation �

?

0

of partial by

total algebras, where every partial algebra is simulated by its trivial totalization;

but some homomorphisms between the trivial totalizations of partial algebras

cannot be translated into homomorphisms of partial algebras, because the image

of some de�ned element (i.e. of elements di�erent from ?) may be unde�ned (i.e.

equal to ?), while the homomorphisms of partial algebras are total functions.

Therefore the domain of the simulation is not a full subcategory of the models

and hence most categorical properties are missing.

Def. 3.2.2 The simulation �

?

0

:PAR

0

!MS

0

consists of:

� �

?

0

Sign

:Sign

PAR

! Sign

MS

is de�ned by �

?

0

Sign

(S;F) = (S;F

0

), where if

w 6= ;, then F

0

w;s

= F

w;s

else F

0

;;s

= F

;;s

[f?

s

g, and by �

?

0

Sign

(�; �) =

(�; �

0

),where �

0

(f) = �(f) for any f 2 F

w;s

and �(?

s

) = ?

�(s)

.

� �

?

0

Sen

: ; ! ; is the empty natural transformation;

� �

?

0

Mod

:Mod

MS

� �

?

0

Sign

!Mod

PAR

is de�ned by:

{ dom(�

?

0

)

�

is the subcategory of Mod

MS

(�

?

0

Sign

(�)) whose objects are

the total algebras A

0

s.t. f

A

0

(a

1

; : : : ; a

n

) 6= ?

s

implies a

i

6= ?

A

0

s

i

for

all i = 1 : : : n for every f 2 F

s

1

:::s

n

;s

(strictness) and whose arrows are

the many-sorted homomorphisms h

0

2 Mod

MS

(�

?

0

Sign

(�))(A

0

; B

0

) s.t.

a 6= ?

A

0

s

implies h

0

s

(a) 6= ?

A

0

s

for any s 2 S.

{ for each A

0

2 dom(�

?

0

)

�

the partial algebra A = �

?

0

Mod

�

(A

0

) consists of

s

A

= s

A

0

� f?

A

0

s

g for every s 2 S and for every f 2 F

s

1

:::s

n

;s

and every

a

i

2 s

A

i

for i = 1 : : : n, if f

A

0

(a

1

; : : : ; a

n

) 6= ?

A

0

s

, then f

A

(a

1

; : : : ; a

n

) =

f

A

0

(a

1

; : : : ; a

n

), else f

A

0

(a

1

; : : : ; a

n

) is unde�ned;

{ �

?

0

Mod

�

(h

0

) is the restriction of h

0

to s

�

?

0

Mod

�

(A

0

)

.

Note that formally strictness is not needed, because there are no sentences

whose validity has to be preserved; however it is preferable to require the strictness

condition, because it is more intuitive specifying strict partial algebras and it will

be needed in the sequel, to deal with logics.

98 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Although obviously A

0

and �

?

0

Mod

�

(A

0

) are strictly related from a set theoretic

point of view, the correspondence, due to the domain of �

?

0

being a non-full

subcategory, is not adequate for categorical purposes, in particular the initial

model is not preserved by �

?

0

.

Indeed in both frames the initial model is characterized by the no junk and

no confusion conditions of [64], which mean that every element is denoted by

some term and that two ground terms are equal in the initial object i� they are

equal in every algebra of the class (in the partial frame the existential equality is

considered, holding if both sides denote the same element of the carrier, so that

also the minimal de�nedness holds). Thus the minimal equality (no-confusion) of

the initial model in the total frame implies, in particular, the minimal equality

with ? and hence the maximal de�nedness of its translation; therefore in most

cases the translation of the initial model is not initial.

Categorical Level

Another way of coding partiality in terms of total algebras is to split every carrier

by a typing predicate in typed (i.e. de�ned) and untyped elements and to represent

every partial function by a total one which results in an untyped element over

every input outside its domain (for similar approaches see e.g. [60], where one-

sorted total algebras are used, [69] and [70]). Moreover, in order to handle logical

formulas in the sequel, a binary predicate, that plays the role of the existential

equality, and holds on a

0

and b

0

i� a

0

and b

0

are equal and appropriately typed is

introduced. The corresponding simulation is as follows.

Def. 3.2.3 Let T L

0

denote the institution (Sign

T L

; ;;Mod

T L

; ;) of typed �rst-

order structures (total many-sorted algebras with predicates) without sentences.

The simulation �

P

0

:PAR

0

! T L

0

consists of:

� �

P

0

Sign

:Sign

PAR

! Sign

T L

consists of �

P

0

Sign

(S;F) = (S

0

; F

0

; P

0

), where

S

0

= S, F

0

= F and if w = ss, then P

0

ss

= feq

s

g, if w = s, then P

0

s

= fD

s

g,

otherwise P

0

w

= ;, and �

P

0

Sign

(�; �) = (�

0

; �

0

; �

0

),where �

0

= �, �

0

= �,

�

0

(D

s

) = D

�(s)

and �

0

(eq

s

) = eq

�(s)

.

� �

P

0

Sen

is the empty natural transformation;

� �

P

0

Mod

:Mod

T L

� �

P

0

Sign

! Mod

PAR

is de�ned by:

{ dom(�

P

0

)

�

is the full subcategory of Mod

T L

(�

P

Sign

(�)) whose ob-

jects are the total algebras A

0

s.t. for every f 2 F

s

1

:::s

n

;s

if

D

s

A

0

(f

A

0

(a

1

; : : : ; a

n

)) holds, then D

s

i

A

0

(a

i

) holds, too, for every i =

1 : : : n (strictness) and eq

A

0

s

(a; b) i� a = b and D

s

A

0

(a), D

s

A

0

(b).

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 99

{ for every A

0

2 dom(�

P

)

�

the partial algebra A = �

P

0

Mod

�

(A

0

) consists

of s

A

= D

s

A

0

for every s 2 S and for every f 2 F and every a

i

2 s

i

A

for i = 1 : : : n if D

s

A

0

(f

A

0

(a

1

; : : : ; a

n

)) holds, then f

A

(a

1

; : : : ; a

n

) =

f

A

0

(a

1

; : : : ; a

n

), else f

A

(a

1

; : : : ; a

n

) is unde�ned.

{ for any h 2 dom(�

P

0

)

�

(A

0

; B

0

) the arrow �

P

Mod

�

(h

0

) is h

0

j�

P

Mod

�

(A

0

)

.

Now initial models are translated along �

P

0

to initial models; the proof follows

a pattern common to most algebraic frames. First it is shown that the translation

I of an initial object is weakly initial (i.e. that there exists at least one arrow from

I into any object), so that the no-confusion condition holds; the weak initiality

comes from dom(�

P

0

)

�

being a full subcategory of the total models and �

P

0

Mod

being surjective on the objects. Then I is shown to be term-generated, so that

the no-junk condition holds, too, because the total initial object is term-generated

and term-generatedness is preserved by �

P

0

.

Abstracting from the two main points of the above proof technique, the cat-

egorical simulations are de�ned, which preserve \term-generatedness" and whose

domains are full subcategories, and show that categorical simulations preserve

initiality.

Def. 3.2.4 Let C be a category and c be an object of C; then c is called inductive

i� C(c; c

0

) has at most one element for every c

0

2 C. For every subcategory C

0

of C, c is called weakly initial in C

0

i� C

0

(c; c

0

) has at least one element for every

c

0

2 C

0

.

Let I and I

0

be institutions and � be a simulation from I into I

0

. Then � is

called categorical i� every dom(�)

�

is a full sub-category of Mod

0

(�) and �

Mod

�

preserves the inductive objects of Mod

0

(�

Sign

(�)) belonging to dom(�)

�

.

Note that the property of being categorical only involves the model compo-

nents of simulations (and, implicitly, the translation of signatures); thus if two

simulations coincide on signatures and models and the �rst is categorical, then

also the second one is so, independently of the formulas that are chosen as sen-

tences of the institutions and their translation.

In most algebraic frames the interesting classes of models are closed w.r.t. sub-

algebras and this guarantees that their initial models, if any, are term-generated;

this can be generalized to every categorical frame, noting that the notion of sub-

algebra generalizes to the categorical concept of regular subobject.

Def. 3.2.5 Let C be a category and f; g 2 C(A;B) be a pair of parallel arrows.

Then an arrow e 2 C(E;A) is an equalizer of f and g i� it satis�es the following

conditions

100 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

� f � e = g � e (e equalizes f and g);

� for any k 2 C(K;A) s.t. f � k = g � k there exists a unique � 2 C(K;E) s.t.

e � � = k (k factorizes through e).

If e 2 C(E;A) is an equalizer of some f and g, then E is a regular subobject of

A.

Lemma 3.2.6 Let C be a category having equalizers and C

0

be a subcategory of

C closed under equalizers and regular subobjects. Then I is initial in C

0

only if

I is inductive in C.

Proof. Let I be initial in C

0

, assume that there exist f; g 2 C(I;A) for some

A 2 jCj and show that f = g. Since C has equalizers, there exists the equalizer

e 2 C(E; I) of f and g. Since C

0

is closed w.r.t. regular subobjects, E 2 jC

0

j and

hence there exists a unique !

E

2 C(I;E) and e�!

E

= Id

I

, because the identity is

the unique arrows from I into I, as I is initial. Thus f = f � (e�!

E

) = (f � e)�!

E

and analogously g = (g � e)�!

E

; since e is the equalizer of f and g, f � e = g � e

and hence f = (f � e)�!

E

= (g � e)�!

E

= g, i.e. f = g.

It is worth to note that both the institutions of partial as well as total many-

sorted algebras, with or without predicates, do have equalizers, and that the model

classes of positive Horn-clauses are closed w.r.t. regular subobjects (in general they

are not closed w.r.t. generic subobjects); thus the following proposition applies in

most cases.

Prop. 3.2.7 Let I = (Sign;Sen ;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be insti-

tutions s.t. for any �

0

2 jSign

0

j the category Mod

0

(�

0

) has equalizers and � be

a categorical simulation from I into I

0

. If I

0

is initial in a full subcategory C

0

of dom(�)

�

closed w.r.t. regular subobjects (performed in Mod

0

(�

Sign

(�))), then

�

Mod

�

(I

0

) is initial in �

Mod

�

(C

0

).

Proof. To show that I = �

Mod

�

(I

0

) is initial in C = �

Mod

�

(C

0

), it is su�cient

to prove that I is weakly initial in C and that it is inductive, so that C(I;A) has

exactly one element. Since dom(�)

�

is a full subcategory of Mod

0

(�

Sign

(�)), and

I

0

is initial in C

0

for any A = �

Mod

�

(A

0

) 2 jCj there exists �

Mod

�

(!

A

0

) 2 C(I;A),

where !

A

0

is the unique arrows from the initial object I

0

into A

0

, and hence I is

weakly initial in C. Because of the above Lemma 3.2.6, I

0

is inductive and hence

I is inductive, too, because categorical simulations preserve inductive objects.

Cor. 3.2.8 Let C

0

be a full subcategory of dom(�

P

0

)

�

closed w.r.t. subalgebras

and I

0

be the initial object in C

0

. Then �

P

0

Mod

(I

0

) is initial in �

P

0

Mod

(C

0

).

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 101

Proof. Since inductive in Mod

MS

(�

P

0

Sign

(�)) coincides with term-generated

and �

P

0

does not introduce function symbols, �

P

0

preserves inductive objects;

moreover its domain is a full subcategory by de�nition. Therefore �

P

0

is categor-

ical; moreoverMod

MS

(�

P

0

Sign

(�)) has equalizers, which are (usual) subalgebras,

and hence the Prop. 3.2.7 applies.

Logical Level.

Consider now the logical aspect of partial and total frames and investigate the

equivalences of their expressive power. In the total [partial] frame the institution

T L [PPAR] of positive Horn-clauses [built on existential equality] and its subin-

stitution GT L [GPAR], where the sentences are without variables, are considered.

Consider �rst the trivial simulation �

?

0

. Let A

0

be in dom(�

?

0

)

�

and consider

a ground existential equality t = t

0

; then A = �

?

0

Mod

�

(A

0

) satis�es t = t

0

i� t

A

and t

0A

denote the same element of s

A

= s

A

0

� f?

s

g, i.e. i� t

A

0

= t

0A

0

6= ?

s

;

thus to generalize �

?

0

to a simulation from GPAR, a stronger (and unusual) logic

than the positive Horn-clauses is needed in the total frame. Therefore the trivial

totalization fails in both the categorical and the logical aspects, in the sense that,

although it is true that any partial algebra is equivalent from a set theoretic

point of view to its trivial totalization, the equivalence becomes false if algebra

morphisms are considered; moreover it relates Horn-Clauses to a more powerful

�rst-order fragment.

Consider now the simulation �

P

0

. Every ground Horn-clause is naturally trans-

lated into the total frame, just by replacing every existential equality symbol with

the corresponding predicate eq. However if variables appear in the formula, this

translation from the partial to the total frame does not preserve the validity of

sentences. Indeed, consider for exampleD

s

(x); then obviously any partial algebra

satis�es it (unde�ned elements do not exist), while some total algebras in the

domain of �

P

0

do not, because valuations of variables in the total frame range

also over the elements which do not satisfy the de�nedness predicates (and hence

are dropped by the simulation). More generally the valuations for the total frame

which range over unde�ned elements must not be taken in account, in order to es-

tablish the validity of translations of partial sentences. To overcome this problem

it is su�cient to add to the premises of every sentence the de�nedness assertions

for each of its variables, so that every valuation s.t. V (x) = a and :D(a) satis�es

the sentence, because one of the premises is false; thus the validity only depends

on \de�ned" valuations also in the total case. Note that in this way equations

with variables in the partial frame are translated into conditional axioms of the

total formalism. This, together with the fact that the simulation �

P

0

(properly

102 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

generalized to deal with sentences) is categorical, illustrates the deep reason for

the model classes of partial equational speci�cations being quasi-varieties (see

[92]), like the model classes of total conditional speci�cations, and not varieties,

as the model classes of total equational speci�cations are (see [64]).

Def. 3.2.9 The categorical simulation �

P

:PPAR ! T L coincides with �

P

0

on

signatures and models, and on sentences is de�ned by

�

P

Sen

�

(�) = D

s

1

(x

1

) ^ : : : ^D

s

k

(x

k

) ^ eq

s

0

1

(t

1

; t

0

1

) ^ : : : ^ eq

s

0

n

(t

n

; t

0

n

) � eq

s

(t; t

0

)

where � = (t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

) and x

1

; : : : ; x

k

are the variables of

�.

Since the domain of �

P

is the model class of the following axioms th(�

P

):

D

s

(f(x

1

; : : : ; x

n

)) � D

s

i

(x

i

) for i = 1 : : : n (strictness) and

D

s

(x) ^D

s

(y) ^ x = y , eq

s

(x; y), i.e.

D

s

(x) ^ D

s

(y) ^ x = y � eq

s

(x; y), eq

s

(x; y) � D

s

(x), eq

s

(x; y) � D

s

(y) and

eq

s

(x; y) � x = y, every model class of a partial presentation (�; Ax) is simulated

by the model class of the total presentation

(�

P

Sign

(�); �

P

Sen

�

(Ax) [th(�

P

)):

This kind of simulation, translating presentations into presentations is called log-

ical .

Def. 3.2.10 Let I = (Sign;Sen ;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be insti-

tutions and � be a simulation from I into I

0

. Then � is called logical i� dom(�)

�

is the full subcategory of Mod

0

(�

Sign

(�)) whose objects are the model class of a

set th(�)

�

� Sen

0

(�

Sign

(�)) of sentences for every � 2 jSignj.

Although in general the family fth(�)

�

g

�2jSignj

is not functorial, i.e. it is not

possible to de�ne a sub-functor F of Sen s.t. F (�) = th(�)

�

, if the family of their

closures under logical consequences fth(�)

�

�

g

�2jSignj

is considered, where th(�)

�

�

=

f� j A

0

j=

0

� for all A

0

2 dom(�)

�

g, then the partial-naturality condition on

fdom(�)

�

g

�2jSignj

guarantees the functoriality of fth(�)

�

�

g

�2jSignj

and hence every

logical simulation is a map of institutions, too (see [63]).

Since the translations via �

P

of ground partial Horn Clauses are ground Horn

Clauses, �

P

can be specialized to a simulation between the institutions GPAR

and GT L. It is still categorical, but is not logical anymore; indeed axioms with

variables are needed to de�ne the domain, as the following example shows.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 103

Example 3.2.11 For any signature � = (S;F) 2 jSign

PAR

j with at least one

function symbol there does not exist a set th

0

� Sen

0

(�

P

Sign

(�)) of ground sen-

tences s.t. dom(�

P

)

�

is the class of models of th

0

. Indeed an algebra A

0

exists

belonging to the model class of any set of ground Horn-clauses that is not in

dom(�

P

)

�

. Let A

0

be de�ned by s

A

0

= f1

s

; 2

s

g for all s 2 S, f

A

0

(x

1

; : : : ; x

n

) = 1

s

for all f 2 F

s

1

:::s

n

;s

, eq

A

0

s

= f(1

s

; 1

s

)g and D

s

A

0

= f1

s

g. Then for any ground

term t 2 T

�

s

, its evaluation in A

0

is 1

s

and hence A

0

satis�es any ground formula.

But A

0

does not belong to dom(�

P

)

�

, because functions are not strict; indeed

D

s

A

0

(f

A

0

(2

s

1

; : : : ; 2

s

n

)) but :D

s

i

A

0

(2

s

i

).

3.2.2 Non-strict Speci�cations

The same technique of the last section can be applied also in the case of spec-

i�cation of non-strict functions, i.e. of functions that can yield a result also on

incomplete inputs, like the ubiquitous if then else.

In the next subsections the results about non-strict don't care algebras are

summarized and then in the following section the relationship between non-strict

and total algebras is analyzed, showing that the the same pattern as for the partial

adversus total case applies in this case, too.

Non-Strict Don't Care Algebras

In this approach to the algebraic speci�cation of non-strict functions, (see e.g. [4,

5]), the basic idea is the one of partial product.

Usually the product A

1

� : : :�A

n

is the set of all (total) functions g from f1 : : : ng

into A

1

[: : : [A

n

s.t. g(i) 2 A

i

. This concept is generalized by allowing partial

functions.

In order to keep the notation as similar as possible to the usual one, the symbol

? is used to denote the \unde�ned" elements.

Def. 3.2.12 Let A

1

,: : : , A

n

be sets. The partial product �

p

fA

1

; : : : ; A

n

g of

A

1

; : : : ; A

n

consists of all partial functions from f1; : : : ; ng into A

1

[: : : [A

n

s.t.

if g(i) is de�ned, then g(i) 2 A

i

. If n � 2, instead of �

p

fA

1

; : : : ; A

n

g the in�x

notation A

1

�

p

: : :�

p

A

n

, reminiscent of the standard notation, is also used.

Over �

p

fA

1

; : : : ; A

n

g is naturally de�ned a partial order � by a � b i� a(i) 2

A

i

implies b(i)=

e

a(i) for all i = 1 : : : n.

A partial function g from �

p

fA

1

; : : : ; A

n

g into a set A is called strict i�

g(a) 2 A implies a(i) 2 A

i

for all i = 1; : : : ; n and is called monotonic if a � b

and g(a) 2 A implies g(a)=

e

g(b).

104 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

In the sequel an element a 2 �

p

fA

1

; : : : ; A

n

g is denoted by (a

1

; : : : ; a

n

), where

a

i

= a(i) if a(i) 2 A

i

and a

i

=? otherwise.

Two remarks are in order here. First note that A and �

p

fAg are not in general

isomorphic; for example, if A has �nite cardinality k, then in �

p

fAg there is one

more element, the totally unde�ned tuple, so that �

p

fAg has cardinality k + 1.

Moreover, while the usual product coincides with the categorical product in

the category of sets with total functions as arrows, the partial product is not

the categorical product in the category of sets with partial functions as arrows,

because the uniqueness of the factorization through the partial product fails. In-

deed consider a singleton set X and its binary partial product Y = X �

p

X, with

projections �

i

(x) = x(i); the factorization through Y of the couple of functions

h = <?;?>, where ? is the totally unde�ned function on X, is not unique,

because �

i

� f = ? = �

i

� g for both f; g:X ! Y , respectively de�ned by f(�)

is unde�ned and g(�) is the partial function x, where both x(1) and x(2) are

unde�ned.

Def. 3.2.13 Let � = (S;F) be a many-sorted signature; a non-strict �-algebra

consists of a family fs

A

g

s2S

of sets, the carriers, and of a family ff

A

g

f2F

w;s

;w2S

�

;s2S

of partial functions, the interpretations of operation symbols, s.t. if f 2 F

�;s

,

then either f

A

is unde�ned or f

A

2 s

A

, otherwise f 2 F

s

1

:::s

n

;s

with n � 1 and

f

A

: s

1

A

�

p

: : :�

p

s

n

A

! s

A

is a monotonic function.

An algebra A is called strict if f

A

is strict for any f 2 F ; moreover a strict

algebra is called total if a(i) 2 s

A

i

for all i = 1 : : : n implies f

A

(a) 2 s

A

for all f 2

F

s

1

:::s

n

;s

. The class of all non-strict �-algebras will be denoted by NSAlg(�).

Then, by de�nition, strict algebras are exactly the partial algebras and total

algebras are the usual ones.

Note that in non-strict algebras no extra-elements are in the carriers to de�ne

non-strict functions. This on one hand corresponds to the intuition that functions

like if then else are able to compute the result on incomplete input, but on the

other side does not support the idea of (di�erentiating) error recovery or exception

handling.

Depending on the partiality of the functions, there are several possibilities to

de�ne homomorphisms, each one being useful for a di�erent purpose (see e.g. [22,

26, 80]). Here the choice follows the tradition of partial algebras (see e.g. [1, 26,

22, 92]), where they are used in order to get a no-junk&no-confusion initial object

(see [64]).

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 105

Def. 3.2.14 Let � = (S;F) be a signature, A and B be non-strict algebras over

�. Then a homomorphism h:A ! B is a family fh

s

: s

A

! s

B

g

s2S

of total

functions s.t. f

A

(a) 2 s

A

implies h

s

(f

A

(a)) = f

B

(h � a), where h � a is de�ned by h � a(i) = h

s

i

(a(i)) for

i = 1 : : : n, for all f 2 F

s

1

:::s

n

;s

and all a 2 s

1

A

�

p

: : :�

p

s

n

A

.

The category NSAlg(�) is de�ned by:

� the objects of NSAlg(�) are NSAlg(�);

� the arrows in NSAlg(�) are all the homomorphisms;

� composition is done componentwise;

� the identity on A is fId

s

A
g

s2S

.

Note that each homomorphism between strict algebras is a total homomor-

phism of partial algebras and each homomorphism between total algebras is a

usual total homomorphism; thus the category both of total algebras and of par-

tial algebras with total homomorphisms are full sub-categories of NSAlg(�).

The term evaluation is de�ned like in the partial strict frame, but also partial

valuations for variables have to be allowed. Valuations being partial functions, it

is possible to de�ne in a canonical way an order on them, with the empty valuation

as minimal element.

Def. 3.2.15 Let � = (S;F) be a signature, X = fX

s

g

s2S

be a family of S-sorted

variables. For all algebras A 2 NSAlg(�) and all valuations V = fV :X

s

! s

A

g

s2S

for X in A, where V is a partial function, the evaluation eval

A;V

:T

�

(X) ! A is

inductively de�ned by:

� eval

A;V

(x) = V (x) for all x 2 X;

� eval

A;V

(f) = f

A

for all f 2 F

�;s

;

� eval

A;V

(f(t

1

; : : : ; t

n

)) = f

A

(a), where a(i) = eval

A;V

(t

i

) with i = 1 : : : n for

all f 2 F

s

1

:::s

n

;s

and t

i

2 T

�

(X)

s

i

for i = 1 : : : n.

Let V; V

0

:X ! A be valuations; then V � V

0

i� V (x) 2 s

A

implies

V

0

(x)=

e

V (x) for all x 2 X. The valuation V

?

for X in A is the empty map,

i.e. V

?

(x) is unde�ned for all x 2 X

s

and all s 2 S .

In the sequel eval

A;V

(t) will be denoted by t

A;V

; moreover ifX is the empty set

(so that there exists a unique valuation V

?

for X in A), eval

A;V

will be denoted

simply by eval

A

and eval

A;V

(t) by t

A

. Finally a, de�ned by a(i) = t

i

A;V

for

i = 1; : : : n, will be denoted by (t

1

A;V

: : : ; t

n

A;V

).

106 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

It is worth to note that the order on the valuations is preserved by the evalu-

ation, i.e. V � V

0

implies eval

A;V

� eval

A;V

0

.

Prop. 3.2.16 Let � = (S;F) be a signature, A be a non-strict algebra over �, X

be an S-sorted family of variables, V and V

0

be valuations for X in A s.t. V � V

0

.

For all terms t 2 T

�

(X)

s

if t

A;V

2 s

A

then t

A;V

0

=

e

t

A;V

.

Proof. By induction over the de�nition of terms, because operation symbols are

interpreted by monotonic functions.

In the total frame, the term-algebras are the free objects in the class of all total

algebras, because of the uniqueness of the evaluation w.r.t. a valuation. Here, as

in the partial case, term-algebras are not free, because the evaluations are not

homomorphisms, being partial functions. However a derived property holds also

in this case, although a bit relaxed. Indeed in the total frame the freeness of the

term algebra implies that if the upper triangle of the diagram 1 commutes, then

the triangle below commutes too. Analogously in this frame if h � V � V

0

, then

h � eval

A;V

� eval

A

0

;V

0

, so that the diagram 2 is obtained.

X X

	�

�

�

V

�

�

� @

@

@

V

0

@

@

@R 	�

�

�

V

�

�

� @

@

@

V

0

@

@

@R

A

h

-

A

0

A

h

-

� A

0

I@

@

@

eval

A;V @

@

@ �

�

�

eval

A

0

;V

0

�

�

�� I@

@

@

eval

A;V @

@

@ �

�

�

eval

A

0

;V

0

�

�

��

T

�

(X) T

�

(X)

diagram 1 diagram 2

This result also holds in the partial frame and is crucial in order to get that the

initial object in a class, if any, satis�es the no-junk and no-confusion properties

(see [64]). Indeed the diagram 2 where A is the initial object and h the unique

homomorphism from the initial object into A

0

, states that each term de�ned in A

has to be de�ned in A

0

(no-junk) and that two terms existentially equal in A have

to be existentially equal in A

0

(no-confusion).

Prop. 3.2.17 Let � = (S;F) be a signature and X = fX

s

g

s2S

be a family of

S-sorted variables. For all non-strict algebras A;A

0

2 NSAlg(�), all valuations V

for X in A and V

0

for X in A

0

and all homomorphisms h:A! A

0

s.t. h � V � V

0

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 107

1. t

A;V

2 s

A

implies h(t

A;V

)=

e

t

A

0

;V

0

for all t 2 T

�

(X);

2. t

A;V

=

e

t

0A;V

implies t

A

0

;V

0

=

e

t

0A

0

;V

0

for all t; t

0

2 T

�

(X).

Proof. By induction over the de�nition of terms.

An ad hoc de�nition of congruence and of quotient on term algebras is intro-

duced, whose use is limited to the study of the existence of the initial model. From

now on let X denote a family X = fX

s

g

s2S

of variables s.t. X

s

is non-empty for

all s 2 S.

Def. 3.2.18 Let � = (S;F) be a signature; a congruence � is a family �=

f�

s

g

s2S

s.t.

1. �

s

� T

�

(X)

s

� T

�

(X)

s

for all s 2 S; (a; b) 2�

s

is denoted by a �

s

b;

2. �

s

is symmetric and transitive, i.e. t �

s

t

0

implies t

0

�

s

t and t �

s

t

0

,

t

0

�

s

t

00

imply t �

s

t

00

for all t; t

0

; t

00

2 T

�

(X). Denoting by Dom(�

s

) the set

ft j t �

s

tg, de�ne t �

D

s

t

0

i� either t �

s

t

0

or t; t

0

=2 Dom(�

s

);

3. t

i

�

D

s

i

t

0

i

for i = 1 : : : n and f 2 F

s

1

:::s

n

;s

imply f(t

1

; : : : ; t

n

)�

D

s

f(t

0

1

; : : : ; t

0

n

);

4. f(t

1

; : : : ; t

n

) 2 Dom(�), t

i

=2 Dom(�

s

i

) imply

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) �

s

f(t

1

; : : : ; t

i�1

; t; t

i+1

; : : : ; t

n

)

for all t 2 T

�

(X)

s

and all x 2 X

s

i

;

5. x =2 Dom(�

s

) for all x 2 X

s

.

Denoting by [t] the equivalence class of t in �, i.e. ft

0

j t � t

0

g, the quotient

T

�

(X)= � is the non-strict algebra de�ned by:

� s

T

�

(X)=�

is f[t] j t 2 Dom(�

s

)g for all s 2 S;

� f

T

�

(X)=�

(t) = [f(t

1

; : : : ; t

n

)], where if t(i) 2 s

T

�

(X)=�

then t

i

2 t(i) else

t

i

2 X

s

i

, if f(t

1

; : : : ; t

n

) 2 Dom(�

s

), else f

T

�

(X)=�

(t) is unde�ned, for all

f 2 F

s

1

:::s

n

;s

.

Note that f

T

�

(X)=�

is well de�ned. Indeed let t

i

; t

0

i

belong to t(i) for all i

s.t. t(i) 2 s

T

�

(X)=�

, otherwise t

i

; t

0

i

belong to X

s

i

and hence t

i

; t

0

i

=2 Dom(�

s

i

)

because of 6; then t

i

�

D

t

0

i

for i = 1 : : : n and hence, because of 3, f(t

1

; : : : ; t

n

) �

D

f(t

0

1

; : : : ; t

0

n

) so that [f(t

1

; : : : ; t

n

)] = [f(t

0

1

; : : : ; t

0

n

)].

As in more familiar frames, also in this case the evaluation of a term in a

quotient algebra is the equivalence class of the term where variables have been

replaced by (a representative of) their valuation.

108 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Prop. 3.2.19 Let � = (S;F) be a signature, � a congruence, Y an S-sorted

family of variables, V a valuation for Y in T

�

(X)= �, U a substitution for T

�

(Y)

in T

�

(X) s.t. V (y) = [U(y)] for all y 2 Y . Then t

T

�

(X)=�;V

= [U(t)] for any term

t.

Proof. By induction over the structure of t.

In order to apply the categorical construction of the initial object seen in the

last section, the categorical structure of non-strict algebras is investigated, with a

particular interest into two classical algebraic issues, the notion of subalgebra and

product.

Def. 3.2.20 Let A be the non-strict algebra (fs

A

g

s2S

; ff

A

g

f2F

); the algebra B

is a weak subalgebra of A i�

� s

B

� s

A

for all s 2 S;

� f

B

(b) � f

A

(b) for all f 2 F

s

1

:::s

n

;s

and all b 2 s

1

B

�

p

: : :�

p

s

n

B

.

A weak subalgebra B of A is a subalgebra i� f

B

(b) = f

A

(b) for all f 2 F

s

1

:::s

n

;s

and all b 2 s

1

B

�

p

: : :�

p

s

n

B

.

It is easy to check, by induction on the structure of terms, that if B is a

weak subalgebra of A and V :X ! B is a valuation, then t

B;V

� t

A;e�V

for any

t 2 T

�

(X), where e:B ! A is the embedding and analogously that if B is a

subalgebra of A, then t

B;V

= t

A;e�V

.

Weak subalgebras are categorical subobjects, i.e. are (up to isomorphism) the

domains of monomorphisms, and subalgebras are regular subobjects, i.e. are (up

to isomorphism) the domains of equalizers, as the following propositions state.

Prop. 3.2.21 Let h:A

1

! A

2

be a homomorphism; then h is a monomorphism

i� h

s

is injective for all s 2 S i� A

1

is isomorphic to a weak subalgebra of A

2

.

Proof. Assume that m is a monomorphism and show that m

s

is injective for all

s 2 S. Assume by contradiction that there exists s 2 S s.t. m

s

is not injective,

i.e. that there exist distinct a; b 2 s

A

1

s.t. m

s

(a) = m

s

(b), and show that there

exist two homomorphisms g; h:C ! A

1

s.t. m � g = m � h, but g 6= h.

Let C be the algebra de�ned by s

C

= ; for all s 6= s, s

C

= fxg and f

C

totally

unde�ned for all f 2 F .

Since f

C

is totally unde�ned for all f 2 F , every function from C into A

1

is a homomorphism; let g be de�ned by g(x) = a and h by h(x) = b. Then

m � g = m � h, but g 6= h, in contradiction with the assumption that m is a

monomorphism.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 109

It is immediate to check that if m:A

1

! A

2

is injective, then A

1

is isomorphic

to the weak subalgebra B of A

2

, de�ned by:

Algebra B =

s

B

= fm(a) j a 2 s

A

1

g for all s 2 S

f

B

(m � a) = m(f

A

1

(a)) for all f 2 F

where f

B

is well de�ned, becausem is a total injective function, and f

B

� f

A

2

,

because m is a homomorphism.

It remains to be shown that if A

1

is (isomorphic to) a weak subalgebra of A

2

,

then it is the domain of a monomorphism; let m:A

1

! A

2

be the embedding and

show that m is mono.

Let g; h:C ! A

1

be homomorphisms s.t.m�g = m�h; thenm(g(c)) = m(h(c))

for any c 2 s

C

, i.e., as m is injective, g(c) = h(c). Therefore g = h.

Prop. 3.2.22 Any two parallel homomorphisms g; h:A

1

! A

2

have an equalizer

e:E(g; h)! A

1

, the embedding of E = E(g; h) into A

1

, where E is de�ned by:

Algebra E =

s

E

= fa j a 2 s

A

1

; g(a) = h(a)g for all s 2 S

f

E

(a) = f

A

1

(a) for all f 2 F and all a 2 s

1

E

�

p

: : :�

p

s

n

E

Moreover a homomorphism e:E ! A is an equalizer i� E is (isomorphic to) a

subalgebra of A.

Proof. In order to show that such an E(g; h) is the equalizer of g and h, �rst

note that, by de�nition of homomorphism, g(a) = h(a) and f

A

1

(a) 2 s

A

1

imply

g(f

A

1

(a)) = h(f

A

1

(a)), so that f

E

is well de�ned.

Moreover the embedding e of E into A

1

obviously equalizes g and h. Thus it

remains to be shown that any m:C ! A

1

s.t. g �m = h �m factorizes in a unique

way through e. Since g �m = h �m, m(C) � E(f; g) and hence m:C ! E(g; h)

is the unique factorization of m through e.

Therefore if e:E ! A

1

is the equalizer of g and h, then, equalizers being

unique up to isomorphism, E is isomorphic to the subalgebra E(g; h) of A

1

.

In order to show, on the converse, that any subalgebra is the domain of an

equalizer, let B be a subalgebra of A and de�ne C as follows:

� s

C

= f(0; a); (1; a) j a 2 s

A

g= �, where (i; a) � (i

0

; a

0

) i� a = a

0

and (i = i

0

or a 2 s

B

);

� for each f 2 F if there is i 2 f0; 1g s.t. for every k the de�nedness of c(k)

implies c(k) = [(i; a

k

)], then f

C

(c) = [(i; f

A

(a))], where a(k) = a

k

for each

k s.t. c(k) = [(i; a

k

)] is de�ned and a(k) is unde�ned otherwise, else f

C

(c)

is unde�ned.

110 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

It is immediate to check that � is an equivalence relation; thus in order to

have that C is an algebra, it remains to be shown that f

C

is well de�ned.

Let c be s.t. there are i; i

0

2 f0; 1g s.t. for every k the de�nedness of c(k)

implies c(k) = [(i; a

k

)] = [(i

0

; a

0

k

)]; since (i; a

k

) � (i

0

; a

0

k

), a

k

= a

0

k

and i = i

0

, so

that (i; f

A

(a)) = (i

0

; f

A

(a)), or a

k

2 s

B

for every k s.t. a(k) is de�ned, so that,

since B is a subalgebra, f

A

(a) either is unde�ned or belongs to s

B

and hence

in both cases (i; f

A

(a)) �

D

(i

0

; f

A

(a)). Therefore f

C

is well de�ned; moreover

it is immediate to check that it is monotonic and hence C is an algebra; de�ne

g; h:A! C as follows and show that B = E(g; h).

g(a) = [(0; a)] and h(a) = [(1; a)] for all a 2 s

A

:

Assume that f

A

(a) is de�ned; then g(f

A

(a)) = [(0; f

A

(a))] = f

C

(c) for c de�ned

by c(k) = [(0; a(k))], i.e. for c = g � a and hence g is a homomorphism. Thus

g(f

A

(a)) = f

C

(g � a). It is analogously easy to check that h is a homomorphism,

too.

Finally g(a) = h(a) i� [(0; a)] = [(1; a)], i.e. i� a 2 s

B

; therefore B =

E(g; h).

The product of non-strict algebras is de�ned in the usual way.

Def. 3.2.23 Let � = (S;F) be a signature and D be a non-empty set of non-

strict algebras over �. The product

Q

A2D

A is the non-strict algebra P over �

de�ned by:

� for all s 2 S let s

P

be

A2D

Y

s

A

= fg:D ! [

A2D

s

A

j g(A) 2 s

A

for all A 2 Dg;

� for all f 2 F

s

1

:::s

n

;s

let f

P

be the function de�ned by: for every p 2

s

1

P

�

p

: : :�

p

s

n

P

f

P

(p) is de�ned i� f

A

(a) is de�ned for all A 2 D , where a

is de�ned by a(i) = p(i)(A) for i = 1 : : : n, and in this case f

P

(p) is de�ned

by f

P

(p)(A) = f

A

(a) for all A 2 D .

The projection of

Q

A2D

A intoA, denoted by �

A

, is the homomorphism de�ned

by:

�

A

(g) = g(A) for all g 2 s

Q

A2D

A

and all s 2 S:

In the sequel if D is the �nite set fA

1

; : : : ; A

n

g, then

Q

A2D

A is also denoted by

A

1

� : : :�A

n

.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 111

Prop. 3.2.24 Non-strict weak subalgebras coincide with categorical subobjects,

i.e. domain of monomorphisms, non-strict subalgebras coincide with categorical

regular objects, i.e. domain of equalizers, and the product de�ned in Def. 3.2.23

coincides with the categorical product.

Proof. Because of Props. 3.2.21 and 3.2.22, B is a weak subalgebra i� it is the

domain of a monomorphism, and it is a subalgebra i� it is the domain of an

equalizer. Moreover it is trivial to check that the product de�ned in Def. 3.2.23

satis�es the universal property of the categorical product.

The concept of inductive algebra, i.e. algebra satisfying the no-junk condition,

is �rst introduced and then related to the idea of term-generated. Then it is shown

that in every class of algebras closed w.r.t. inductive subalgebras the initial object,

if any, is characterized by the no-junk and no-confusion properties.

Def. 3.2.25 Let A be a non-strict algebra; its inductive part <A> is a family

fs

<A>

g

s2S

of its carrier sub-sets inductively de�ned by:

f

A

2 s

A

f

A

2 s

<A>

for all f 2 F

�;s

a 2 s

1

<A>

�

p

: : :�

p

s

n

<A>

; f

A

(a) 2 s

A

f

A

(a) 2 s

<A>

for all f 2 F

s

1

:::s

n

;s

The inductive subalgebra B of A consists of:

� s

B

= s

<A>

for all s 2 S;

� f

B

(b) = f

A

(b) for all f 2 F

s

1

:::s

n

;s

and all b 2 �

p

fs

1

<A>

; : : : ; s

n

<A>

g.

In the sequel the inductive subalgebra of an algebra A will be denoted by

<A>.

A non-strict algebra A is inductive i� A = <A>.

The embedding of <A> into A is the homomorphism e = fe

s

g

s2S

de�ned by

e

s

(a)=

e

a for all a 2 s

<A>

.

For any non-strict algebra A let �

A

be the congruence de�ned by t �

A

t

0

i�

t

A;V

?

=

e

t

0A;V

?

and i

A

:T

�

(X)= �

A

! <A> be the isomorphism de�ned by i

A

([t]) =

t

A;V

?

.

Let C be a class of non-strict algebras on a signature �; the subclass Ind(C)

of C consists of fA j A 2 C ; A is inductiveg.

112 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Note that the de�nition of s

<A>

guarantees both the well de�nedness of f

<A>

and the embedding being a homomorphism.

The usual equivalence between inductive and term-generated algebras has to

be a little relaxed, because functions over terms are total, while in inductive

algebras may also be non-strict. Thus some syntactic elements are needed to play

the role of the \unde�ned" elements which cooperate to build the carriers; for

that a family X of variables with the totally unde�ned valuation V

?

over them is

used.

Prop. 3.2.26 Let � = (S;F) be a signature, X be any family fX

s

g

s2S

of vari-

ables s.t. X

s

6= ; for all s 2 S and A a non-strict algebra; the following conditions

are equivalent.

1. A is inductive;

2. eval

A;V

?

:T

�

(X) ! A is surjective;

3. for any algebra B there exists at most one homomorphism k:A! B;

4. A has no proper subalgebras.

Proof.

1) 2 Since A is inductive, s

A

= s

<A>

and hence we show by induction that for

all

a 2 s

<A>

there exists t 2 T

�

(X) s.t. t

A;V

?

= a.

If a = f

A

for some f 2 F

�;s

, then f 2 T

�

(X)

s

by de�nition of term algebra

and a = f

A;V

?

.

Otherwise a = f

A

(a) for some f 2 F

s

1

:::s

n

;s

and a 2 s

1

<A>

�

p

: : :�

p

s

n

<A>

;

because of inductive hypothesis for each i s.t. a(i) 2 s

i

<A>

there exists

t

i

2 T

�

(X)

s

i

s.t. a(i) = t

i

A;V

?

. For all i s.t. a(i) =2 s

i

<A>

let t

i

be any

element of X

s

i

, which exists because X

s

is non-empty for all s 2 S. Then

a(i) = t

i

A;V

?

for all i = 1 : : : n, by de�nition of t

i

and of V

?

, and hence

f(t

1

; : : : ; t

n

)

A;V

?

= f

A

(a), i.e. f(t

1

; : : : ; t

n

)

A;V

?

= a.

2) 3 Let h; k:A ! B be homomorphisms; by hypothesis for each a 2

s

A

there exists t 2 T

�

(X) s.t. t

A;V

?

=

e

a; moreover t

A;V

?

2 s

A

implies

h(t

A;V

?

)=

e

t

B;V

?

=

e

k(t

A;V

?

), because of Prop. 3.2.17. Therefore h(a)=

e

k(a)

for all a 2 s

A

and hence h = k.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 113

3) 4 Assume that E is a subalgebra of A; then there exist g; h:A! B s.t. E is

their equalizer, because of Prop. 3.2.21. By hypothesis g = h and hence, by

construction of equalizer, E = A. Thus A has no proper subalgebras.

4) 1 Since A has no proper subalgebras and <A> is a subalgebra of A, A =

<A>.

Prop. 3.2.27 Let � = (S;F) be a signature, X any family fX

s

g

s2S

of variables

s.t. X

s

is non-empty for all s 2 S and C be a class of non-strict algebras over �

closed w.r.t. inductive subalgebras, i.e. s.t. A 2 C implies <A> 2 C .

A non-strict algebra I 2 C is initial in C i� it satis�es the following two

conditions

1. I is inductive (no-junk);

2. t

I;V

?

=

e

t

0I;V

?

implies t

A;V

?

=

e

t

0A;V

?

for all A 2 C and all t; t

0

2 T

�

(X) (no-

confusion).

Moreover I is initial in C i� it is initial in Ind(C).

Proof. I is initial in C i� it satis�es conditions 1 and 2.

) Let I be initial in C ; then I 2 C and hence, since C is closed w.r.t. inductive

subalgebras, <I> 2 C , too. Thus there exists one morphism h: I ! <I>,

because I is initial. Let e denote the embedding of <I> into I; since e is

a homomorphism, e � h is a homomorphism too and hence is the identity.

Therefore, by de�nition of e, h is the identity too and hence I = <I>, i.e.

I satis�es 1.

Assume that t

I;V

?

=

e

t

0I;V

?

for certain t; t

0

2 T

�

(X); then for each A 2 C ,

because of Prop. 3.2.17 for h the unique homomorphism from I into A and

V = V

?

= V

0

, t

A;V

?

=

e

t

0A;V

?

.

(Let I satisfy conditions 1 and 2 and h

A

: I ! A be de�ned by h

A

(t

I;V

?

) = t

A;V

?

for all t 2 T

�

(X) and all A 2 C ; then h

A

is a well de�ned total function

from eval

I;V

?

(T

�

(X)) into A, because of condition 2. Thus, eval

I;V

?

being

surjective because of Prop. 3.2.26 and condition 1, h

A

is a well de�ned total

function from I into A. Finally h

A

is a homomorphism by de�nition and it

is unique, because of Prop. 3.2.26 and condition 1.

I is initial in C i� it is initial in Ind(C).

114 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

) Let I be initial in C ; then I satis�es condition 1 and hence I 2 Ind(C).

Since I is initial in C , for all A 2 Ind(C) � C there exists exactly one

homomorphism from I into A; thus I is initial in Ind(C).

(Let I be initial in Ind(C) and A belong to C ; then <A> 2 C and hence

<A> 2 Ind(C). Therefore there exists one morphism h: I ! <A>. Thus

the composition e � h of h with the embedding e of <A> into A is a homo-

morphism and it is unique, because of Prop. 3.2.26 and I being inductive.

Therefore for all A 2 C there exists exactly one homomorphism from I into

A, i.e. I is initial in C .

To check the existence of an initial model in a class closed w.r.t. inductive

subalgebras, because of the above Prop. 3.2.27, it is su�cient to work on the

subclass of inductivemodels; this is a real simpli�cation, because the (isomorphism

classes of) algebras form a proper class, while the subclass of the (isomorphism

classes of) inductive algebras is a set. Thus the syntactical characterization of the

initial model suggested by Prop. 3.2.27, as a quotient of a term algebra w.r.t. the

intersection of the kernels of the natural evaluation of terms in all models, does

not introduce foundational problems, because it is possible to work on the set of

(canonical representatives for the isomorphism classes of) inductive models.

Def. 3.2.28 Let C be a non-empty class of non-strict algebras over � and D be

the set of non-strict algebras de�ned by D = fT

�

(X)= �

A

j A 2 Cg. Then I(C)

denotes the inductive sub-algebra of the product

Q

B2D

B.

Theorem 3.2.29 Let � = (S;F) be a signature and C be a class of non-strict

algebras over � closed under isomorphisms and inductive subalgebras. The fol-

lowing conditions are equivalent:

1. there exists an initial object in C ;

2. there exists an initial object in Ind(C);

3. I(C) belongs to C ;

4. I(C) is initial in C .

Proof.

1, 2 Because of Prop. 3.2.27.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 115

2) 3 Let I be initial in Ind(C); since C is closed under isomorphism, it is su�-

cient to show that I is isomorphic to I(C).

Since C is closed under inductive subobjects and isomorphisms, for any

A 2 C the algebra T

�

(X)= �

A

2 C and hence, as I is initial in Ind(C), there

exists (a unique) h

A

: I ! T

�

(X)= �

A

. Therefore, by de�nition of product

in a categorical setting, there exists a morphism h: I !

Q

B2D

B, where D

is the set fT

�

(X)= �

A

j A 2 Cg.

Since I is inductive, Prop. 3.2.26 implies that such a h is unique and, by

construction, h: I ! <

Q

B2D

B> i.e. h: I ! I(C). Since both I and I(C)

are inductive, to show that h is an isomorphism it is su�cient to show that

there exists a homomorphism k: I(C)! I; indeed h�k should be the unique

homomorphism from I(C) into itself, i.e. the identity, and analogously for

k � h.

Consider the composition of the following homomorphisms:

� the embedding e: I(C)!

Q

B2D

B;

� the projection �

I

:

Q

B2D

B ! T

�

(X)= �

I

;

� the isomorphism i

I

:T

�

(X)= �

I

! <I>;

� the embedding e

I

:<I>! I;

and get the thesis for k = e

I

� i

I

� �

I

� e.

3) 4 Let I(C) belong to C and A be any element of C ; since I(C) is induc-

tive, there exists at most one homomorphism from I into A, because of

Prop. 3.2.26, so that it is su�cient to prove that there exists a homomor-

phism h

A

from I(C) into A.

To de�ne such a homomorphism consider the composition of the following

homomorphisms:

� the embedding e: I(C)!

Q

B2D

B;

� the projection �

A

:

Q

B2D

B ! T

�

(X)= �

A

;

� the isomorphism i

A

:T

�

(X)= �

A

! <A>;

� the embedding e

A

:<A>! A;

and get the thesis for h

A

= e

A

� i

A

� �

A

� e.

4) 1 Trivial.

116 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Non-strict Theories

Usually in both the total and the partial frame, logical formulas (equations and

positive Horn clauses) are considered s.t. their model classes are non-empty and

closed w.r.t. non-empty products and sub-objects, so that the model classes satisfy

a fortiori the closure w.r.t.

I(C) which is necessary and su�cient for the existence of an initial model,

by Theorem 3.2.29, for classes closed under subobjects and isomorphisms. In the

non-strict frame, the same way cannot be followed, because there are �nite sets of

equations whose model classes are neither closed w.r.t. I(C), nor w.r.t. non-empty

products. This claim is informally shown by a simple example.

spec sp

7

=

sorts s

opns

k; k

0

:! s

f : s! s

axioms

f(k)=

e

k

0

The following two algebras are obviously models of sp

7

:

Algebra A =

s

A

= f�g

k

A

= k

0A

= �

f

A

is the total strict function de�ned by f

A

(�) = �

Algebra B =

s

B

= f�g

k

0B

= � and k

B

is unde�ned

f

B

(b) = � for all b 2 �

p

s

B

Let C be the model class of sp

7

. By de�nition of product, both k

A�B

and k

I(C)

are

unde�ned, because k

B

is unde�ned, and analogously both f

A�B

(g) and f

I(C)

(g),

where g is the totally unde�ned function, are unde�ned too,

because f

A

is strict. Therefore both f(k)

A�B

and f(k)

I(C)

are unde�ned and

hence both A�B and I(C) are not models of sp

7

.

In the above example the problem arises because of the monotonicity of the

interpretation of the function symbols; indeed from f(a)=

e

b in each model A

either a=

e

a or f(x)=

e

b holds. Thus equations implicitly introduce disjunctions.

Moreover, using conditional axioms, it is possible to code each disjunction and

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 117

hence in the non-strict frame it is equivalent to deal with equations or disjunctions.

Consider the following informal proof of this claim.

Let �

1

_ : : : _ �

n

_ :�

1

_ : : : _ :�

m

, where

�

1

; : : : ; �

n

; �

1

; : : : ; �

m

are all existential equalities; then �

1

_ : : :_ �

n

_:�

1

_ : : :_

:�

m

may be coded by the set:

�

i

D(f

i

(x)) ^ �

1

^ : : : ^ �

m

� �

i

for i = 1 : : : n and

� D(f

n

(f

n�1

(: : : (x) : : :)

where f

1

; : : : ; f

n

are auxiliary unary functions. Indeed each algebra A satisfy-

ing � satis�es also at least one D(f

i

(x)) and hence if A satis�es also �

i

either

there exists an �

j

s.t. A does not satisfy �

j

or A satis�es �

i

, so that A satis�es

�

1

_ : : : _ �

n

_ :�

1

_ : : : _ :�

m

Vice versa if �

1

_ : : : _ �

n

_ :�

1

_ : : : _ :�

m

holds

for A, then A may generalize to a model of �

1

; : : : ; �

n

; �, suitably de�ning the

interpretation of f

1

; : : : ; f

n

. Therefore in the sequel the focus is on disjunctive

speci�cations.

Def. 3.2.30 Let � = (S;F) be a signature and X be a family of S-sorted vari-

ables.

� The set Eq(�;X) of equalities on � and X consists of t=

e

t

0

for all

t; t

0

2 T

�

(X)

s

, s 2 S; the set At(�;X) of atomic formulas on � and X

is Eq(�;X) [f:� j � 2 Eq(�;X)g.

� The set Form(�;X) of all well-formed formulas is inductively de�ned by:

{ Eq(�;X) � Form(�;X).

{ � [f�; �

0

g � Form(�;X) implies ^�;_�;:�; � � �

0

2 Form(�;X).

For every well-formed formula �, V ar(�) denotes the set of variables which

appear in �.

� The set Cond(�;X) of conditional formulas on � and X is the set

f^� � � j � [f�g � Eq(�;X)g. If � is the empty set, then ^� � �

is an equivalent notation for � and hence Eq(�;X) � Cond(�;X).

� The set DForm(�;X) of disjunctive formulas on � and X is the set

f_� j � � At(�;X)g. If � consists of one atomic formula �, then _�

is an equivalent notation for � and hence At(�;X) � DForm(�;X).

118 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Def. 3.2.31 Let � = (S;F) be a signature, X be a family of S-sorted variables

and A be a non-strict �-algebra.

If � is a formula and V is a valuation for V ar(�) in A, then � holds for V in

A (equivalently: is satis�ed for V by A), denoted by Aj=

DNS

V

�, accordingly to

the following de�nitions.

� Aj=

DNS

V

t=

e

t

0

i� t

A;V

t

0A;V

2 s

A

and t

A;V

= t

0A;V

;

� Aj=

DNS

V

^ � i� Aj=

DNS

V

� for all � 2 �;

� Aj=

DNS

V

_ � i� there exists � 2 F s.t. Aj=

DNS

V

�;

� Aj=

DNS

V

:� i� A 6j=

DNS

V

�;

� Aj=

DNS

V

� � �

0

i� Aj=

DNS

V

�

0

or A 6j=

DNS

V

�.

A formula � holds in (equivalently: is satis�ed by, is valid in) A, denoted by

Aj=

DNS

�, i� Aj=

DNS

V

� for all valuations V for V ar(�) in A. Let D(t) shortly

denote the equality t=

e

t, where both sides are the same term, because t=

e

t simply

states the de�nedness of t.

Note that Aj=

DNS

V

^ ; for all non-strict algebras A and all valuations V

because obviously Aj=

DNS

V

� for all � 2 ;, so that ^; plays the role of the

constant True, and A 6j=

DNS

V

_ ; for all non-strict algebras A and all valuations

V because obviously there does not exist � 2 ; s.t. Aj=

DNS

V

�, so that _; plays

the role of the constant False.

Remark. In both the total and the partial frame, since valuations are total

functions, the relation � on T

�

(X), de�ned by t � t

0

i� A j= t=

e

t

0

, may be not an

equivalence relation if empty carriers are allowed, because it may be not transitive,

as it has been shown in Sect. 2.4.2 and this fact has consequences in the case of

inference systems, which have to deal very carefully with the elimination of the

variables.

On the contrary, in the non-strict frame these problems do not arise, because

valuations are partial functions, so that there exists at least the totally unde�ned

valuation for all families of variables and all non-strict algebras. Moreover the

following Prop. 3.2.32 shows that � coincides with the relation �

?

, de�ned by

t �

?

t

0

i� Aj=

DNS

V

?

t=

e

t

0

, and hence is an equivalence relation for any non-strict

�-algebra A.

Manca and Salibra in [58] introduced the partial valuations to solve the empty-

carriers problem and keep the original Birkho� equational calculus, by changing

the concept of validity; but note that here the introduction of partial valuations

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 119

has a completely di�erent
avor; indeed it is not a technical device as in [58], but

it arises naturally from the setting, since functions are non-strict and variables

have to represent all the possible arguments.

Prop. 3.2.32 Let � = (S;F) be a signature, X be a family of S-sorted variables,

� be a set of equalities over � and X.

Then Aj=

DNS

t=

e

t

0

i� Aj=

DNS

V

?

t=

e

t

0

for all terms t and t

0

for every non-strict

�-algebra A and moreover the following conditions are equivalent:

1. Aj=

DNS

_�;

2. Aj=

DNS

V

?

_�;

3. there exists � 2 � s.t. Aj=

DNS

�;

Proof. It is �rst shown that Aj=

DNS

t=

e

t

0

i� Aj=

DNS

V

?

t=

e

t

0

.

) If Aj=

DNS

t=

e

t

0

, then, by de�nition of validity, Aj=

DNS

V

t=

e

t

0

for all valua-

tions V , so that in particular Aj=

DNS

V

?

t=

e

t

0

.

(Since Aj=

DNS

V

?

t=

e

t

0

, t

A;V

?

; t

0A;V

?

2 s

A

and V

?

� V for all valuation V by def-

inition of V

?

; thus, by Prop. 3.2.16, t

A;V

=

e

t

A;V

?

and t

0A;V

=

e

t

0A;V

?

. Therefore

from t

A;V

?

=

e

t

0A;V

?

, t

A;V

=

e

t

0A;V

follows and hence Aj=

DNS

V

?

t=

e

t

0

.

The above conditions are now shown to be equivalent.

1) 2 IfAj=

DNS

_�, then, by de�nition of validity,Aj=

DNS

V

_� for all valuations

V , so that in particular Aj=

DNS

V

?

_�.

2) 3 Assume that Aj=

DNS

V

?

_ �; then, by de�nition of validity, there exists

t=

e

t

0

2 � s.t. Aj=

DNS

V

?

t=

e

t

0

; thus, since it has already be shown that

Aj=

DNS

t=

e

t

0

i� Aj=

DNS

V

?

t=

e

t

0

, Aj=

DNS

t=

e

t

0

.

3) 1 Trivial.

Note that if � is a set of atoms, i.e. of equalities and negated equalities, then

Aj=

DNS

V

?

_ � does not imply Aj=

DNS

_ �. For example if � is f:D(x)g, then

_� is satis�ed for the totally unde�ned valuation, while each non-empty algebra

does not satisfy it.

Def. 3.2.33 A speci�cation sp consists of a signature � and of a set of well-formed

formulas over �, called axioms of sp.

A speci�cation is called respectively disjunctive, conditional, equational, if all

the axioms are disjunctions, conditional formulas, equalities, respectively.

120 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Let sp = (�;Ax) be a speci�cation; the class NSMod(sp) of models of sp is

fA j A 2 NSAlg(�); Aj=

DNS

� for all � 2 Axg:

A model of sp is initial for sp i� it is initial in NSMod(sp).

Remark. Note that disjunctive speci�cations are su�cient to de�ne any class

of models de�nable using well-formed formulas. Indeed each well-formed formula

over the usual logical connectives may be expressed in conjunctive normal form, as

it is possible to prove directly in the non-strict frame following the same pattern

of the proof in �rst-order logic. Since a conjunction of formulas is logically equiv-

alent to the set of the formulas in the conjunction, each well-formed formula (in

conjunctive normal form) is logically equivalent to a set of disjunctive formulas.

The expressive power of equalities in a non-strict frame is quite di�erent from

the usual one; for instance NSMod(sp) may be empty also for equational speci�-

cations. For example if D(x) is an axiom of the speci�cation, then no algebra can

satisfy this axiom w.r.t. the valuation completely unde�ned, so that the speci�-

cation has no models.

Def. 3.2.34 A speci�cation sp is consistent i� NSMod(sp) is not empty.

Although the class of models of a disjunctive speci�cation is not a variety,

because it is not closed under products nor quotients, it is at least closed un-

der (inductive) subalgebras and isomorphisms and these closures are su�cient to

instantiate Prop. 3.2.27 and Theorem 3.2.29.

Prop. 3.2.35 The class of models of a disjunctive speci�cation is closed w.r.t.

subalgebras and isomorphisms.

Proof. Let sp = (�;Ax) be a disjunctive speci�cations and C denote

NSMod(sp). By de�nition of validity, if A and B are isomorphic non-strict alge-

bras, then Aj=

DNS

� i� Bj=

DNS

� for all disjunctive formulas �; thus C is closed

w.r.t. isomorphisms.

Let B be a subalgebra of A, for some A 2 C , and show that B 2 C . Let

� belong to Ax and V be a valuation for the variables of � in B; then it is

also a valuation for the variables of � in A and hence Aj=

DNS

V

�, because A 2

NSMod(sp). Since B is a subalgebra of A, t

A;V

= t

B;V

for all terms t and hence,

by de�nition of validity, Aj=

DNS

V

� i� Bj=

DNS

V

� for all equalities �. Thus, � being

a disjunctive formula, Aj=

DNS

V

� implies Bj=

DNS

V

�.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 121

Note that model classes of disjunctive speci�cations may be non-closed w.r.t.

weak subalgebras; indeed consider for example the axiom D(a), which simply

states the de�nedness of a constant a; then in any model A of D(a) the constant

a denotes an element a

A

of the carrier of A, but a weak subalgebra B of A may

exist s.t. a

B

is unde�ned, so that B is not a model of D(a).

Theorem 3.2.36 Let � = (S;F) be a signature and sp = (�;Ax) be a disjunc-

tive speci�cation. The following conditions are equivalent:

1. there exists an initial model in NSMod(sp);

2. there exists an initial model in Ind(NSMod(sp));

3. I(NSMod(sp)) 2 NSMod(sp);

4. I(NSMod(sp)) is initial in NSMod(sp).

Moreover a non-strict algebra I 2 NSMod(sp) is initial in NSMod(sp) i� it is

initial in Ind(NSMod(sp)) i� it is isomorphic to I(NSMod(sp)) i� it satis�es the

following two conditions

a I is inductive;

b Ij=

DNS

t=

e

t

0

implies Aj=

DNS

t=

e

t

0

for all A 2 NSMod(sp) and all t; t

0

2 T

�

(X),

where X is an S-sorted family of variables s.t. X

s

is non-empty for all s 2 S.

Proof. Because of Prop. 3.2.35, NSMod(sp) is closed w.r.t. inductive subalge-

bras and isomorphisms, so that Theorem 3.2.29 and Prop. 3.2.27 apply.

Fact 3.2.37 Equational consistent speci�cations may do not have an initial

model.

Proof.

spec sp

8

=

sorts s

opns

f; g: s! s

axioms

D(g(f(x)))

Then sp

8

is a consistent equational speci�cation, because the non-strict algebra

A, de�ned as follows, is a model of sp

8

.

122 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Algebra A =

s

A

= f�g

f

A

(a) = g

A

(a) = � for all a 2 �

p

fs

A

g

There are two models A and B of sp

8

, de�ned below, s.t. respectively f

A

(?) =2 s

A

and g

B

(?) =2 s

B

and hence for any algebra I satisfying the condition 3.2.36 of

Theorem 3.2.36 g

I

(f

I

(?)) =2 s

I

so that it is not a model of sp

8

; thus sp

8

has no

initial model, because of Theorem 3.2.36.

Algebra A =

s

A

= f�g

f

A

is totally unde�ned

g

A

(a) = � for all a 2 �

p

fs

A

g

Algebra B =

s

B

= f�g

f

B

(b) = � for all b 2 �

p

fs

B

g

g

B

is totally unde�ned

To give necessary and su�cient conditions for the existence of the initial model,

some preliminary results are needed.

Variables play the role of the \unde�ned" objects and hence, because of mono-

tonicity, they may be replaced by any other term in any formula without a�ecting

its validity. Moreover this replacementmay be also \asymmetric", changing di�er-

ent occurrences of the same variable in a formula by di�erent terms; for example

fromAj=

DNS

f(x)=

e

f

0

(x), for the valuation V

?

in an algebra A, f

A

(?)=

e

f

0A

(?) and

hence, by monotonicity, f

A

(a)=

e

f

0A

(b) for all a; b 2 A; thus Aj=

DNS

f(x)=

e

f

0

(y).

Lemma 3.2.38 Let A be an algebra over a signature � = (S;F); then

Aj=

DNS

D(f(t

1

; : : : ; t

n

)) implies

Aj=

DNS

f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) _D(t

i

);

for every i = 1 : : : n.

Proof. Assume that Aj=

DNS

D(f(t

1

; : : : ; t

n

)); then in particular

Aj=

DNS

V

?

D(f(t

1

; : : : ; t

n

)) so that eitherAj=

DNS

V

?

D(t

i

) or t

i

A;V

?

= x

A;V

?

and hence

Aj=

DNS

V

?

f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

):

Therefore

Aj=

DNS

V

?

D(t

i

) _ f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

)

and hence, because of Prop. 3.2.32,

Aj=

DNS

D(t

i

) _ f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

):

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 123

The initial model of a disjunctive speci�cation exists i� any disjunction of

non-negated atoms which is valid in all models has a privileged element holding

in all models; thus disjunctions, which potentially cause troubles, may be solved

and replaced by atoms. Moreover it is su�cient to check the property for just two

kinds of disjunctions:

1. the disjunctions implicitly introduced because of monotonicity (see

Lemma 3.2.38);

2. the disjunctions coming from instantiations of proper axioms.

Theorem 3.2.39 Let sp = (�;Ax) be a consistent disjunctive speci�cation. The

following conditions are equivalent:

1. there exists I initial in NSMod(sp).

2. there exists I initial in Ind(NSMod(sp)).

3. I(NSMod(sp)) 2 NSMod(sp).

4. I(NSMod(sp)) is initial in NSMod(sp).

5. for all sets � of equalities

Aj=

DNS

_� for all A 2 NSMod(sp)

implies

there exists � 2 �s:t: Aj=

DNS

� for all A 2 NSMod(sp)

6. (a) for all f 2 F

s

1

:::s

n

;s

Aj=

DNS

D(f(t

1

; : : : ; t

n

)) for all A 2 NSMod(sp)

implies that (at least) one between the following properties holds

� Aj=

DNS

D(t

i

) for all A 2 NSMod(sp)

� Aj=

DNS

f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for all A 2

NSMod(sp)

(b) for all _� 2 Ax and all substitutions U :T

�

(V ar(_�))! T

�

(X)

Aj=

DNS

t=

e

t

0

for all A 2 NSMod(sp) and all :t=

e

t

0

2 U(�)

implies

there exists � 2 U(�)\Eq(�;X)s:t: Aj=

DNS

� for all A 2 NSMod(sp)

124 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

7. the relation � over T

�

(X), de�ned by t � t

0

i� Aj=

DNS

t=

e

t

0

for all A 2

NSMod(sp), is a congruence and T

�

(X)= � is a model.

8. the relation � over T

�

(X), de�ned by t � t

0

i� Aj=

DNS

t=

e

t

0

for all A 2

NSMod(sp), is a congruence and T

�

(X)= � is the initial model.

Proof.

1, 2 Because of Theorem 3.2.36.

2, 3 Because of Theorem 3.2.36.

3, 4 Because of Theorem 3.2.36.

4) 5 Let I = I(NSMod(sp)) be the initial model and � be a set of equalities;

thus

Aj=

DNS

_ � for all A 2 NSMod(sp) implies in particular Ij=

DNS

_ �.

Because of Prop. 3.2.32, Ij=

DNS

_ � implies that there exists t=

e

t

0

2 �

s.t. Ij=

DNS

t=

e

t

0

; then, because of Theorem 3.2.36, Aj=

DNS

t=

e

t

0

for all A 2

NSMod(sp).

5) 6 Assume that Aj=

DNS

D(f(t

1

; : : : ; t

n

)) for all A 2 NSMod(sp).

Then Aj=

DNS

D(t

i

) _ f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for all A 2

NSMod(sp), by Lemma 3.2.38, and hence

Aj=

DNS

f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

)

for all A 2 NSMod(sp) or Aj=

DNS

D(t

i

) for all A 2 NSMod(sp), because of

condition 5; thus 6a holds.

Assume that there exists _� 2 Ax and U :T

�

(V ar(_�)) ! T

�

(X) s.t.

Aj=

DNS

t=

e

t

0

for all A 2 NSMod(sp) and all :t=

e

t

0

2 U(�). Then, since

both Aj=

DNS

t=

e

t

0

for all :t=

e

t

0

2 U(�) and Aj=

DNS

_ U(�), as A is a

model of sp, Aj=

DNS

_ U(�) \ Eq(�;X) so that, because of 5, there exists

� 2 U(�) \ Eq(�;X) s.t. Aj=

DNS

� for all A 2 NSMod(sp) and hence 6b

holds.

6) 7 It is easy to show that under the hypothesis 6a � is a congruence; thus it

is su�cient to show that T

�

(X)= � is the initial model.

Let I denote T

�

(X)= �, � = _� be an axiom of sp, V be a valua-

tion for V ar(�) in I; if there exists :t=

e

t

0

2 � s.t. I 6j=

DNS

V

t=

e

t

0

, then

Ij=

DNS

V

:t=

e

t

0

and hence Ij=

DNS

V

_ �. Thus assume that Ij=

DNS

V

t=

e

t

0

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 125

for all :(t=

e

t

0

) 2 �; let U be a substitution for T

�

(V ar(�)) in T

�

(X) s.t.

V (y) = [U(y)] for all y 2 V ar(�) and U(�) denote �[U(y)=y j y 2 V ar(�)]

for all formulas �.

Because of Prop. 3.2.19, Ij=

DNS

V

t=

e

t

0

implies U(t) � U(t

0

) and hence, by

de�nition of �, Aj=

DNS

U(t=

e

t

0

) for all A 2 NSMod(sp) and all :t=

e

t

0

2 �.

Therefore, because of 6.6b, there exists t=

e

t

0

2 � \ Eq(�; V ar(�)) s.t.

Aj=

DNS

U(t=

e

t

0

) for all A 2 NSMod(sp) and hence U(t) � U(t

0

), so that

Ij=

DNS

V

t=

e

t

0

.

7) 8 Since I satis�es conditions 1 and 2 of Theorem 3.2.36 by de�nition, it is

initial in NSMod(sp).

8) 1 Obvious.

The results of the above theorem apply to a wide range of speci�cations,

because of the great generality of non-strict disjunctive speci�cations.

In particular if all the proper axioms are conditional, then condition 6b is

always satis�ed, while if axioms are imposed so that all models are strict, then

condition 6a is satis�ed. Thus for total and partial conditional speci�cations

both 6a and 6b hold, so that the known results about the existence of an initial

model in those cases are a specialization of Theorem 3.2.39.

The conditional speci�cations are a particular case of disjunctive speci�-

cations; indeed the conditional formula ^� � � is logically equivalent to

_f:� j � 2 �g [f�g; in other words conditional formulas are disjunctions where

exactly one non-negated equality appear, i.e. are positive Horn clauses. In this

case the necessary and su�cient conditions for the existence of an initial object

are partially simpli�ed.

Theorem 3.2.40 Let sp = (�;Ax) be a consistent conditional speci�cation. The

following conditions are equivalent:

1. There exists I initial in NSMod(sp).

2. There exists I initial in Ind(NSMod(sp)).

3. I(NSMod(sp)) 2 NSMod(sp).

4. I(NSMod(sp)) is initial in NSMod(sp).

5. for all sets � of equalities

Aj=

DNS

_� for all A 2 NSMod(sp)

126 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

implies

there exists � 2 �s:t: Aj=

DNS

� for all A 2 NSMod(sp)

6. for all f 2 F

s

1

:::s

n

;s

Aj=

DNS

D(f(t

1

; : : : ; t

n

)) for all A 2 NSMod(sp)

implies that (at least) one between the following properties holds

� Aj=

DNS

D(t

i

) for all A 2 NSMod(sp)

� Aj=

DNS

f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for allA 2 NSMod(sp)

7. the relation � over T

�

(X), de�ned by t � t

0

i� Aj=

DNS

t=

e

t

0

for all A 2

NSMod(sp), is a congruence and T

�

(X)= � is a model.

8. the relation � over T

�

(X), de�ned by t � t

0

i� Aj=

DNS

t=

e

t

0

for all A 2

NSMod(sp), is a congruence and T

�

(X)= � is the initial model.

Proof. First any conditional speci�cation is shown to be equivalent to a dis-

junctive one which condition 6b is always satis�ed for. Let sp be the consistent

conditional speci�cation (�;Ax) and de�ne Ax

0

= fdisj (�) j � 2 Axg, where

disj (^� � �) = _f:� j � 2 �g [f�g, and sp

0

= (�; Ax

0

). Since, by de�nition of

validity, any algebra A satis�es � i� satis�es disj (�) for all conditional formulas

�, NSMod(sp) = NSMod(sp

0

).

By Theorem 3.2.39 it is su�cient to show that for such a sp

0

condition 3.2.40(6)

is equivalent to conditions 3.2.39 (6a and 6b), i.e. that condition 3.2.39(6b) is

satis�ed too. Let ^� � � be an axiom of sp, U :V ar(^� � �) ! X be a

substitution and assume that Aj=

DNS

t=

e

t

0

for all :t=

e

t

0

2 U(disj (^� � �)), i.e.

for all t=

e

t

0

2 U(�), for all A 2 NSMod(sp). Then for all A 2 NSMod(sp),

since Aj=

DNS

U(^� � �) and Aj=

DNS

t=

e

t

0

for all t=

e

t

0

2 U(�), Aj=

DNS

U(�), so

that 3.2.39(6b) is satis�ed.

3.2.3 Relating total and non-strict algebras

This section is devote to relating the non-strict frame with the more usual total

one, following the same scheme applied to the relationship between partial and

total many-sorted algebras.

Def. 3.2.41 The institution of non-strict algebras without sentences is the

quadruple NS = (Sign

NS

; ;;Mod

NS

; ;), where

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 127

� Sign

NS

= Sign

MS

is the category of many-sorted signatures.

� Mod

NS

:Sign

NS

! Cat

Op

is the functor which yields for any signature

� the category NSAlg(�) of non-strict algebras (see Def. 3.2.13) and

for any signature morphism (�; �) 2 Sign

NS

(�

1

;�

2

) the reduct functor

Mod

NS

(�; �):NSAlg(�

2

)! NSAlg(�

1

), de�ned by:

Mod

NS

(�; �)(A

2

) = (f�(s)

A

2

g

s2S

; f�(f)

A

2

g

f2F

)

and

Mod

NS

(�; �)(h

2

) = fh

2

�(s)

g

s2S

:

Following the intuition that a simulation codes a new into an old frame, a

simulation of non-strict by total algebras is de�ned.

Since the partial product of s

1

A

; : : : ; s

n

A

is isomorphic, from a set-theoretical

point of view, to the (usual) product of s

1

A

[f?

s

1

g; : : : ; s

n

A

[f?

s

n

g, where the

symbol [denotes the disjoint union, any non-strict algebra A is in some sense

equivalent to the total algebra A

?

, de�ned by:

Algebra A

?

=

s

A

?

= s

A

[f?

s

g

for any a

i

2 s

i

A

?

for i = 1 : : :n let a be de�ned by a(i) = a

i

if a

i

2 s

i

A

and a(i) is unde�ned if a

i

= ?

s

i

f

A

?

(a

1

; : : : ; a

n

) = f

A

(a)if f

A

(a) is de�ned; else f

A

?

(a

1

; : : : ; a

n

) = ?

s

for all f : s

1

� : : :� s

n

! s.

However this equivalence disregards the homomorphisms; indeed some homo-

morphism h between the trivial totalizations cannot be translated into the non-

strict frame, because h maps \de�ned" into \unde�ned" elements, i.e. h(a) = ?

s

for some a 6= ?

s

, while the non-strict homomorphisms are total functions. More-

over some non strict homomorphisms have no total correspondent, because the

introduction of one element to represent all the unde�ned terms may cause the

lack of the existence of homomorphisms, as it is shown by the following example.

Example 3.2.42 Let � be the one-sorted signature consisting of just three con-

stant symbols a; b; c and A, B be the non-strict algebras over �, de�ned by:

Algebra A =

s

A

= f1g

a

A

= 1

b

A

; c

A

are unde�ned

128 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Algebra B =

s

B

= f1g

a

B

= 1

b

B

= 1

c

B

is unde�ned

then there is a non-strict homomorphism h:A! B, de�ned by h(1) = 1. Consider

now the trivial totalizations of A and B.

Algebra A

?

=

s

A

?

= f1;?g

a

A

?

= 1

b

A

?

= ?

c

A

?

= ?

Algebra B

?

=

s

B

?

= f1;?g

a

B

?

= 1

b

B

?

= 1

c

B

?

= ?

then there does not exist any total homomorphism from A

?

into B

?

, because

b

A

?

= c

A

?

, while b

B

?

6= c

B

?

.

Summarizing the above discussion, a simulation of non-strict by total algebras

is de�ned, that is a rigorous formalization of the usual totalization by ?.

Def. 3.2.43 The simulation �

?

0

:NS !MS

0

is de�ned by:

� �

?

0

(S;F) = (S;F [f?

s

g

s2S

) and �

?

0

(�; �) = (�; �

0

), where �

0

(f) = �(f) for

all f 2 F and �

0

(?

s

) = ?

�(s)

;

� dom(�

?

0

) is the category whose objects are the total algebras A

0

where the

interpretation of function symbols are regular function, i.e.

f

A

0

(a

1

; : : : ; a

i�1

;?

s

i

; a

i+1

; : : : ; a

n

) 6= ?

A

0

s

implies

f

A

0

(a

1

; : : : ; a

i�1

;?

s

i

; a

i+1

; : : : ; a

n

) = f

A

0

(a

1

; : : : ; a

i�1

; a

i

; a

i+1

; : : : ; a

n

)

for any a

i

, and whose morphisms h preserve de�nedness, i.e. a 6= ?

A

0

s

implies

h(a) 6= ?

B

0

s

;

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 129

� for any A

0

in the objects of dom(�

?

0

) the translation A = �

?

0

(A

0

) is the

non-strict algebra, which consists of s

A

= s

A

0

�f?

A

0

s

g for any s 2 S and for

any f 2 the function f

A

is de�ned by:

for any a 2 s

1

A

�

p

: : :�

p

s

n

A

let a

i

be a(i), if a(i) is de�ned, ?

s

i

otherwise; if

f

A

0

(a

1

; : : : ; a

n

) 6= ?

s

i

, then f

A

(a) = f

A

0

(a

1

; : : : ; a

n

), else f

A

(a) is unde�ned;

for any arrow h

0

in dom(�

?

0

) the translation h = �

?

0

(h

0

) is the restriction of

h

0

to �

?

0

(A

0

).

It is easy to check that the components of �

?

0

w.r.t. the models are partially

natural and hence that �

?

0

is a simulation.

Since �

?

0

does not take in account the categorical structure, the initiality in

the total and in the non-strict frames are unrelated; indeed the trivial totalization

of an initial model satis�es a lot of equalities between \unde�ned" terms, which

are not satis�ed by other models in the class, so that the no-confusion condition

in the total frame is not satis�ed and hence the trivial totalization of an initial

model is in general not initial. Vice versa if the trivial totalization of a non-strict

algebra is initial, then the algebra is maximally de�ned and hence it is not initial

in the non-strict frame.

In order to have a representation of the category of non-strict algebras, a de�-

nition of (total) homomorphism is needed, which does not involve the \unde�ned"

part. To do this it is useful, not to say necessary, having a tool to individuate

the \unde�ned" elements, for example a family of unary predicates, one for each

sort, dividing the carriers in \de�ned" and \unde�ned". Following a similar idea

both [24] and [74] de�ne homomorphisms which are partial functions, having as

domain the \de�ned" part; this approach can be generalized in order to include

non-strictness.

Following the same pattern seen for the partial case, the basic idea of the

following simulation of non-strict by �rst-order structures is to split the carriers

of a �rst-order structure into de�ned and unde�ned elements, provided that at

least one unde�ned element, denoted by ?, exists, by means of unary de�nedness

predicates. Thus the simulation is de�ned on any �rst-order structure satisfying

the monotonicity condition and where ? is unde�ned; it yields the non-strict

algebra where the unde�ned part of the carriers has been dropped. Since the

homomorphisms in the �rst-order frame preserve the truth of predicates, any

homomorphism between such two �rst-order structures can be translated into

a non-strict homomorphism, too. Thus the domain of this simulation is a full

subcategory.

Def. 3.2.44 The simulation �

P

0

:NS ! T L

0

is de�ned by:

130 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

� �

P

0

(S;F) = (S;F [f?

s

g

s2S

; fD

s

: s; eq

s

: s � sg

s2S

) and �

P

0

(�; �) =

(�; �

0

; �), where �

0

(f) = �(f) for all f 2 F , �

0

(?

s

) = ?

�(s)

, �(D

s

) = D

�(s)

and �(eq

s

) = eq

�(s)

;

� dom(�

P

0

) is the full sub-category whose objects are the �rst-order structures

A

0

s.t.

1. D

s

A

0

(f

A

0

(a

1

; : : : ; a

n

)) implies D

s

i

A

0

(a

i

) or for all a

f

A

0

(a

1

; : : : ; a

i�1

; a; a

i+1

; : : : ; a

n

) = f

A

0

(a

1

; : : : ; a

n

);

2. eq

A

0

s

(a; a

0

) i� D

s

A

0

(a), D

s

A

0

(a

0

) and a = a

0

;

3. :D

s

A

0

(?

A

0

s

);

for any A

0

in the objects of dom(�

P

0

) the translation A = �

P

0

(A

0

) is the

non-strict algebra, which consists of s

A

= D

s

A

0

for any s 2 S and for any

f 2 F the function f

A

is de�ned by:

for any a 2 s

1

A

�

p

: : :�

p

s

n

A

let a

i

be a(i), if a(i) is de�ned, ?

s

i

otherwise; if

D

s

A

0

(f

A

0

(a

1

; : : : ; a

n

)), then f

A

(a) = f

A

0

(a

1

; : : : ; a

n

), else f

A

(a) is unde�ned;

for any arrow h

0

in dom(�

P

0

) the translation h = �

P

0

(h

0

) is the restriction

of h

0

to �

P

0

(A

0

).

Prop. 3.2.45 The simulation �

P

0

:NS ! T L

0

de�ned in Def. 3.2.44 is categor-

ical. Moreover for any class C

0

� dom(�

P

0

) of �rst-order structures closed w.r.t.

subalgebras, if I

0

is initial in C

0

, then �

P

0

(I

0

) is initial in �

P

0

(C

0

).

Proof. By de�nition dom(�

P

0

) is a full subcategory; moreover in both frames

inductive objects coincide with term-generated algebras and it is easy to check that

term-generated �rst-order structures are translated via �

P

0

into term-generated

non-strict algebras. Therefore �

P

0

is categorical and hence Prop. 3.2.7 applies,

because the category of �rst-order structures has equalizers, which coincide with

subalgebras.

The relationship between non-strict algebras and �rst-order structures de-

scribed by the categorical simulation �

P

0

is strengthened by the existence of left

adjoints, from now on denoted by Tot , of the model components of �

P

0

corre-

sponding, as usual, to free constructions. Indeed Tot preserves initiality, because

left adjoints do; moreover, because of Prop. 3.2.45, �

P

0

preserves initiality, too,

and hence the existence of the initial model in the non-strict and in the total

frame are completely equivalent.

To build such Tot some preliminary technical results are needed.

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 131

Lemma 3.2.46 Let � = (S;F) be a non-strict signature, A be a non-strict alge-

bra over �, X

A

be the S-sorted family de�ned by X

s

= s

A

[f?g for all s 2 S and

V

A

:X

A

! A be the valuation de�ned by V

A

(a) = a if a 2 s

A

, V

A

(?) unde�ned.

Let �

A

denote the total many-sorted congruence over T

�

(X

A

) generated by:

f(t; t

0

) j t 2 T

�

(X

A

); Aj=

DNS

V

A

t=

e

t

0

g

and Tot(A) denote the total �rst-order structure

(T

�

(X

A

)= �

A

; f?

Tot(A)

s

g

s2S

; fD

s

Tot(A)

; eq

s

Tot(A)

g

s2S

);

where ?

s

Tot(A)

= [?]

�

A
, D

s

Tot(A)

([t]) i� Aj=

DNS

V

A

D(t) and eq

s

Tot(A)

([t]

�

A
; [t

0

]

�

A
)

i� Aj=

DNS

V

A

t=

e

t

0

.

The following facts hold

1. t �

A

t

0

and Aj=

DNS

V

A

D(t) or Aj=

DNS

V

A

D(t

0

) imply Aj=

DNS

V

A

t=

e

t

0

;

2. Tot(A) belongs to dom(�

P

0

);

3. �

A

:A! �

P

0

(Tot(A)), de�ned by �

A

(a) = [a]

�

A, is an isomorphism.

Proof.

1. It is immediate to verify, by induction over the de�nition of �

A

, that t �

A

t

0

implies t

A;V

A

= t

0A;V

A

. Thus the thesis follows.

2. Because of 1 and of the de�nition of both D

s

Tot(A)

and eq

s

Tot(A)

,

the conditions 2 and 3 of Def. 3.2.44 are satis�ed. Assume that

[f(t

1

; : : : ; t

n

)]

�

A 2 D

s

Tot(A)

and [t

i

]

�

A =2 D

s

i

Tot(A)

; then, by de�nition of

D

s

Tot(A)

, f(t

1

; : : : ; t

n

)

A;V

A

2 s

A

and t

i

A;V

A

=2 s

i

A

, i.e.

f

A

(t

1

A;V

A

; : : : ; t

A;V

A

i�1

; ?; t

A;V

A

i+1

; : : : ; t

n

A;V

A

) 2 s

A

and hence, because of the monotonicity of f

A

,

f

A

(t

1

A;V

A

; : : : ; t

A;V

A

i�1

; ?; t

A;V

A

i+1

; : : : ; t

n

A;V

A

)

is existentially equal to

f

A

(t

1

A;V

A

; : : : ; t

A;V

A

i�1

; t

A;V

A

; t

A;V

A

i+1

; : : : ; t

n

A;V

A

)

for all t 2 T

�

P

0

(�)

(X

A

) so that f(t

1

; : : : ; t

n

) �

A

f(t

1

; : : : ; t

i�1

; t; t

i+1

; : : : ; t

n

)

and hence also condition 1 is satis�ed.

132 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

3. Obvious because of 1.

Consider a non-strict homomorphism h:A ! B. In order to de�ne its image

along Tot , h is used as a valuation from X

A

into X

B

and then it is shown that

t �

A

t

0

implies h(t) �

B

h(t

0

), so that Tot(h)([t]

�

A) = [h(t)]

�

B is well de�ned.

A X

A

-

T

�

(X

A

)= �

A

?

h h

? ?

Tot(h)

B X

B

-

T

�

(X

B

)= �

B

Lemma 3.2.47 Let A and B be non-strict algebras over � and h:A ! B be a

non-strict homomorphism. Using the notation of Lemma 3.2.46

1. for any t 2 T

�

(X

A

) let h(t) denote the term t[h(a)=a j a 2 s

A

] 2 T

�

(X

B

);

then for all t; t

0

2 T

�

(X

A

) if t �

A

t

0

, then h(t) �

B

h(t

0

);

2. Tot(h):Tot(A) ! Tot(B), de�ned by Tot(h)([t]

�

A) = [h(t)]

�

B, is a homo-

morphism of �rst-order structures.

Proof.

1. It is easy to check that, by de�nition of congruence,

f(h(t); h(t

0

)) j t �

A

t

0

g ��;

where � is the congruence generated by

f(h(t); h(t

0

)) j Aj=

DNS

V

A

t=

e

t

0

g;

because �

A

is generated by f(t; t

0

) j Aj=

DNS

V

A

t=

e

t

0

g. Thus it is su�cient

to show that ���

B

. To do this assume that Aj=

DNS

V

A

t=

e

t

0

for some

t; t

0

2 T

�

(X

A

) and show thatBj=

DNS

V

B

h(t)=

e

h(t

0

). Because of Prop. 3.2.17,

Bj=

DNS

h�V

A

t=

e

t

0

, and hence, since t

B;h�V

A

= h(t)

B;V

B

by de�nition of V

A

and

V

B

, Bj=

DNS

V

B

h(t)=

e

h(t

0

).

2. Because of 1, Tot(h) is a well-de�ned many-sorted homomorphism; thus

it is su�cient to show that it preserves the operations ?

s

and the truth

of the predicates. By de�nition Tot(h)([?]

�

A) = [h(?)]

�

B = [?]

�

B . Be-

cause of Lemma 3.2.46, [t]

�

A 2 D

s

Tot(A)

implies Aj=

DNS

V

A

D(t) and hence,

because of Prop. 3.2.17, Bj=

DNS

h�V

A

D(t), i.e. Bj=

DNS

V

B

D(h(t)), so that

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 133

Tot(h)([t]

�

A) = [h(t)]

�

B 2 D

s

Tot(B)

. Analogously ([t]

�

A; [t

0

]

�

A)=

e

Tot(A)

im-

plies Aj=

DNS

V

A

t=

e

t

0

, so that Bj=

DNS

V

B

h(t)=

e

h(t

0

), and hence

([h(t)]

�

B; [h(t

0

)]

�

B)=

e

Tot(B)

. Therefore Tot(h) is a homomorphism of �rst-

order structures.

And �nally, putting together Lemma 3.2.46 and Lemma 3.2.47, the functor

Tot is de�ned.

Theorem 3.2.48 Let � = (S;F) be a non-strict signature; using the notation of

Lemma 3.2.46 and Lemma 3.2.47, Tot is a functor and is the left adjoint and left

inverse of

�

P

0

. Moreover if I is initial in a class C of non-strict algebras closed w.r.t.

isomorphisms, then Tot(I) is initial in �

P

�1

0

(C).

Proof. It is just a trivial check to prove that Tot is a functor.

Thus it is su�cient to show that Tot is the left adjoint of �

P

0

and that the fam-

ily of the isomorphisms �

A

, de�ned in Lemma 3.2.46, is the unit of the adjunction.

Let A be a non-strict algebra, B

0

a �rst-order structure belonging to dom(�

P

0

)

and h:A ! �

P

0

(B

0

) a non-strict homomorphism. The homomorphism de�ned

by k

B

0

([t]

�

B

0

) = t

V;B

0

for V :�

P

0

(B

0

) ! B

0

the identical valuation is denoted by

k

B

0

:Tot(�

P

0

(B

0

)) ! B

0

; it is su�cient to show that h

]

= k

B

0

� Tot(h) is the

unique homomorphism from Tot(A) into B

0

s.t. the following diagram commutes.

A

�

A

-

�

P

0

(Tot(A)) Tot(A)

@

@

@

h

@

@

@R

?

�

P

0

(h

]

)

?

h

]

�

P

0

(B

0

) B

0

By de�nition of �

A

and h

]

,

�

P

0

(h

]

) � �

A

(a) = �

P

0

(h

]

)([a]

�

A) = �

P

0

(k

B

0

� Tot(h))([a]

�

A)

and

�

P

0

(k

B

0

� Tot(h))([a]

�

A) = k

B

0

� Tot(h)([a]

�

A) = k

B

0

([h(a)]

�

B

0

);

because �

P

0

is the restriction; �nally k

B

0

([h(a)]

�

B

0

) = h(a), by de�nition of k

B

0

,

so that the diagram commutes.

Moreover h

]

is the unique arrow which makes the diagram commute. Indeed

let k be s.t. �

P

0

(k) � �

A

= h; then, by de�nition of �

P

0

and �

A

, �

P

0

(k) � �

A

=

134 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

k([a]

�

A) = h(a) for any a 2 s

A

and hence k and h

]

coincide on the (equivalence

classes of) variables and hence, by induction, on Tot(A).

Finally, since left adjoints preserve initiality and Tot is the left adjoint of �

P

0

,

if I is initial in C , then Tot(I) is initial in any class C

0

s.t. both Tot :C ! C

0

and �

P

0

:C

0

! C ; in particular, if C is closed w.r.t. isomorphisms, also �

P

�1

0

(C)

is closed w.r.t. isomorphisms and hence, as A is isomorphic to �

P

0

(Tot(A)) by

Lemma 3.2.46, Tot :C ! �

P

�1

0

(C) and obviously �

P

0

:�

P

�1

0

(C) ! C , so that

Tot(I) is initial in �

P

�1

0

(C).

Coming to the logical aspects of the relationships between non-strict and total

algebras, the institutions CNS and DNS of non-strict algebras, respectively with

conditional and disjunctive axioms as sentences and the institutions T L and DT L

of �rst-order structures, respectively with conditional and disjunctive axioms built

on atomic formulas of the form p(t

1

; : : : ; t

k

) as sentences, are considered.

Consider �rst the trivial totalization �

?

0

. Let A

0

belong to dom(�

?

0

) and con-

sider a ground existential equality t=

e

t

0

; then A = �

?

0

(A

0

) satis�es t=

e

t

0

i� both

t and t

0

denote the same element of s

A

= s

A

0

� f?

A

0

s

g, i.e. i� t

A

0

= t

0A

0

6= ?

A

0

s

.

Thus to extend �

?

0

to a simulation working on equations of the non-strict frame,

inequalities are needed in the total frame. This is another inadequacy of the triv-

ial totalization, which has already been proved unable to deal with the categorical

structure of the non-strict frame.

Consider now the simulation �

P

0

, de�ned in Def. 3.2.44; it is easy to extend

�

P

0

to work on conditional (disjunctive) formulas, i.e. to de�ne two simulations

�

C

: CNS ! T L and �

D

:DNS ! DT L coinciding with �

P

0

on signatures and

models. Indeed any conditional (disjunctive) formula can be naturally

translated from the non-strict into the �rst-order frame, by just replacing

the existential equalities by the eq

s

predicates, which were indeed introduced to

represent existential equalities.

Def. 3.2.49 The simulation �

C

: CNS ! T L is the extension of

�

P

0

:NS ! T L, which on ^ft

i

=

e

t

0

i

j i 2 Ig � t=

e

t

0

yields

^feq

s

i

(t

i

; t

0

i

) j i 2 Ig � eq

s

(t; t

0

):

The simulation �

D

:DNS ! DT L is the extension of �

P

0

:NS ! T L,

which on _ft

i

=

e

t

0

i

j i 2 Ig _ f:t

j

=

e

t

0

j

j j 2 Jg yields

_feq

s

i

(t

i

; t

0

i

) j i 2 Ig _ f:eq

s

j

(t

j

; t

0

j

) j j 2 Jg:

Since the domain of �

D

is the model class of the set Ax

DC

consisting of the

following disjunctive axioms:

3.2. RELATIONSHIPS BETWEEN INSTITUTIONS 135

� :D

s

(f(x

1

; : : : ; x

n

))_D

s

i

(x

i

)_eq

s

(f(x

1

; : : : ; x

i�1

; y; x

i+1

; : : : ; x

n

); f(x

1

; : : : ; x

n

))

for every f 2 F

s

1

:::s

n

;s

;

� eq

s

(x; x

0

) _ :D

s

(x) _ :D

s

(x

0

) _ :x = x

0

for every s 2 S;

� :eq

s

(x; x

0

) _D

s

(x) for every s 2 S;

� :eq

s

(x; x

0

) _D

s

(x

0

) for every s 2 S;

� :eq

s

(x; x

0

) _ x = x

0

for every s 2 S;

� :D

s

(?

s

) for every s 2 S;

the non-strict model class of a set Ax of disjunctive formulas is simulated by

the total model class of the set �

D

(Ax)[Ax

DC

of disjunctive formulas in the �rst-

order frame. Therefore �

D

induces a correspondence between the speci�cations

in the two formalisms and hence both frames have the same expressive power.

Instead the simulation �

C

does not relate conditional to conditional speci�ca-

tions, because proper disjunctive speci�cations are required to describe the do-

main of the simulation; indeed there does not exist a total conditional speci�cation

whose model class is dom(�

P

0

), because the trivial total algebra Tr over �

P

0

(�),

having singleton sets as carriers, the unique obvious interpretation of function

symbols and the totally true predicates, i.e. D

s

Tr

= s

Tr

and eq

s

Tr

= s

Tr

� s

Tr

, is

a model of each conditional speci�cation while

does not belong to the domain. Therefore in general it is impossible to translate

a conditional (equational) non-strict speci�cation into a conditional �rst-order

one, because it is impossible at least for the speci�cation without axioms (�; ;).

Since the �rst-order structures representing the models of a non-strict disjunc-

tive speci�cations are the models of a (total) disjunctive speci�cation and initiality

is both preserved,

because �

P

0

is categorical, and re
ected, because of the existence of the left

adjoint Tot , by �

P

0

, the existence of an initial model for a non-strict disjunctive

speci�cation is equivalent to the existence of an initial model for the �rst-order

disjunctive speci�cation which is simulating it.

Cor. 3.2.50 Let sp = (�;Ax) be a non-strict disjunctive speci�cation and

�

P

0

(sp) denote the �rst-order disjunctive speci�cation

(�

P

0

(�); �

P

0

(Ax) [Ax

DC

):

Then I is initial for sp i� Tot(I) is initial for �

P

0

(sp).

136 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Proof. Since the model classes of disjunctive speci�cations in both frames

are closed w.r.t. isomorphisms and regular subobjects, Prop. 3.2.45 and Theo-

rem 3.2.48 apply.

If I is initial for sp, then Tot(I) is initial for �

P

0

(sp), because of Theo-

rem 3.2.48, and if Tot(I) is initial for �

P

0

(sp), then I � �

P

0

(Tot(I)) is initial

for sp, because of Prop. 3.2.45.

3.3 Arrows between Institutions

Due to the relevance of the interaction of di�erent formal systems, several concepts

of arrows between institutions have been developed or are under development.

However the nature of the relationships induced by the various arrows is quite

di�erent; moreover some of them are not conveying the meaning of translation

and some others are serving di�erent purposes than simulations.

3.3.1 Maps of Institutions

The maps of institutions, developed by Meseguer in the big fresco of General

Logic (see [63]), is the closest concept to simulations; indeed the components of

simulations and maps have the same direction, models are partially mapped in

both cases and the satisfaction condition is the same. However the two notions are

not exactly the same; indeed maps of institutions are not required to be surjective

(but if they are, then are also simulations), on the converse the domains of the

maps model components are required to be the model classes of (a natural family

of) sets of new sentences and hence only logical simulations are also maps.

The de�nition of map of institution shares with the map of entailment systems

the component dealing with signature and sentences, so that it can seem more

complex than needed. In order to capture the relevant cases of translation of the

logical part three levels of increasing di�culty are possible choices

� each signature � is translated into a signature �(�) and each sentence �

into a sentence �(�) (on �(�) in a uniform way); then a theory (�; Ax)

is translated into (�(�); f�(�) j � 2 Axg). In this case the map is called

simple.

� each signature � is translated into a theory �(�) and each sentence � into

a sentence �(�) (on �(�) in a uniform way); then a theory (�; Ax) is trans-

lated into (�

0

; f�(�) j � 2 Axg [Ax

0

), where �(�) = (�

0

; Ax

0

). In this case

the map is called plain.

3.3. ARROWS BETWEEN INSTITUTIONS 137

� theories are translated into theories accordingly with the translation of sen-

tences but the image theory cannot be divided in the part representing the

signature and the translation of the sentences; the simplest example of this

kind of translation is the closure of theories under deduction; a perhaps more

signi�cant example is the unfailing Knuth-Bendix completion.

Notation. Due to the extensive use of theories in the sequel, some short notation

is in order here; given an institution I = (Sign;Sen ;Mod; j=), the symbol Sen is

used to denote the composition Sen � sign, where sign denotes the projection of

theories in I to their signatures, too.

Def. 3.3.1 Given institutions I = (Sign;Sen ;Mod; j=) and

I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

), a map of institution (�; �; �):I ! I

0

consists of a

natural transformation �:Sen ! Sen

0

� �, an �-sensible functor �:Th

0

! Th

0

0

,

and a natural transformation �:Mod

0

��!Mod such that for each � 2 jSignj,

each � 2 Sen(�) and eachM

0

2Mod

0

(�(�; ;)) the following property is satis�ed:

M

0

j=

0

�

0

�

�

(�) i� �

(�;;)

(M

0

) j=

�

�

where �

0

is the signature of the theory �(�; ;) and � is �-sensible i�

1. there is a functor �

�

:Sign ! Sign

0

s.t. sign

0

� � = �

�

� sign, where sign

(sign

0

) denotes the projection of theories in I (I

0

) to their signatures;

2. for any theory T = (�;�), �(T) has the same theorems as

�(�; ;) [(�

�

(�); �

�

(�)).

Given a map of institution � = (�; �; �):I ! I

0

, the map � is called plain i�

�(�;�) coincides with �(�; ;) [(�

�

(�); �

�

(�)) and is simple i� it is plain and

�

�

(�) has no axioms.

Note that from a model theoretic point of view two theories having the same

deductive closure are equivalent, in the sense that they have the same model class;

thus plain maps are su�cient to deal with the translation of institutions and maps

of institutions are based on the general condition of �-sensibility because are part

of a big framework where tools to deal with entailment systems and proof calculi

are strictly interconnected.

It is immediate to check that, by suitably lifting functors and natural trans-

formations to work on the right objects, every surjective map of institutions is a

simulation, too.

138 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Prop. 3.3.2 Let I = (Sign;Sen ;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be insti-

tutions and (�; �; �):I ! I

0

be a map of institution s.t. �

(�;;)

is surjective on the

objects for each � 2 jSignj; then �:I ! I

0

is a simulation, where

� �

Sign

:Sign! Sign

0

is the composition sign � �;

� �

Sen

:Sen ! Sen

0

� �

Sign

is �;

� �

Mod

:Mod

0

� �

Sign

! Mod is de�ned by �

Mod

�

= �

(�;;)

for all � 2 jSignj.

Proof. Trivial check from the de�nitions.

On the converse any logical simulation de�nes a plain map of institutions.

Prop. 3.3.3 Let I = (Sign;Sen ;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be insti-

tutions and �:I ! I

0

be a logical simulation.

Then (�; �; �):I ! I

0

is a plain map of institution, where

� �

�

:Sign ! Th

0

0

is de�ned by �

�

(�) = (�

Sign

(�);�

�

) for all � 2 jSignj,

where

�

�

= f�

0

j �

0

2 Sen

0

(�

Sign

(�)); A j=

�

Sign

(�)

�

0

for all A 2 dom(�)

�

g;

and �

�

(�) = �

Sign

(�) for all signature morphism � in Sign;

� �:Sen ! Sen

0

� �

�

is �

Sen

and

�(�;�) = (sign(�

�

(�)); axiom(�

�

(�)) [�(�))

� �:Mod

0

��! Mod has components �

(�;�)

that are the restrictions of �

Mod

to the models of � for all � 2 jSignj.

Proof. Since � is logical, for each � 2 jSignj there exists a subset �

0

�

of

Sen

0

(�

Sign

(�)) s.t. dom(�)

�

is the model class of the theory (�;�

0

�

) and by

de�nition �

0

�

� �

�

; thus dom(�)

�

is the model class of �

�

(�). Moreover if

A

0

2 dom(�)

�

0

, then Mod

0

(�

Sign

(�))(A

0

) 2 dom(�)

�

for every signature mor-

phism �: � ! �

0

, by partial-naturality, and hence if
 2 �

�

, i.e. A j=

�

 for all

A 2 dom(�)

�

, then, in particular,Mod

0

(�

Sign

(�))(A

0

) j=

�

 for all A

0

2 dom(�)

�

0

,

so that A

0

j=

�

0

Sen

0

(�

Sign

(�))(
), by satisfaction condition, for all A

0

2 dom(�)

�

0

,

i.e. Sen

0

(�

Sign

(�))(
) 2 �

�

0

. Therefore �

�

(�) = �

Sign

(�) is a theory morphism

from �

�

(�) into �

�

(�

0

).

From this it is trivial to check that �

�

is a functor and that (�; �; �) is a map

of institutions, that is plain by de�nition.

3.3. ARROWS BETWEEN INSTITUTIONS 139

Note that the Example 3.2.11 guarantees that a map of institutions between

GPAR (the ground partial Horn Clauses institution) and GT L (the ground total

many-sorted Horn Clauses institution) does not exist coinciding with the simula-

tion �

P

on models and sentences. Thus non all simulations can be made maps

of institutions, because the expressive power of the target institution may be too

poor to de�ne the domain of the simulation.

3.3.2 Institutions Morphisms

The Institution Morphisms, introduced in [44], captures the idea of enriching an

institution by new features and was designed to build new institutions where the

logical tools from two or more basic institutions are available at a time. Technically

morphisms di�er from simulations in one essential point: they translate signatures

and models together, and sentences in the opposite direction; while inverting the

arrow both between models and between sentences seems essential for capturing

the idea of translating formalisms.

Def. 3.3.4 Given institutions I = (Sign;Sen ;Mod; j=) and

I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

), a morphism of institution (�; �; �):I ! I

0

consists

of

� a functor �:Sign! Sign

0

;

� a natural transformation �:Sen

0

� �! Sen and

� a natural transformation �:Mod !Mod

0

� �

such that for each � 2 jSignj, each �

0

2 Sen

0

� �(�) and each M 2 Mod(�) the

following property is satis�ed:

M j=

�

�

�

(�

0

) i� �

�

(M)j=

0

�(�)

�

0

:

Notice that simulations and institutions morphisms are not dual concepts, be-

cause in the case of the simulation models are countervariant w.r.t. sentences and

signatures, while in the case of institution morphisms sentences are countervariant

w.r.t. models and signatures. However these two notions are strictly related and

in particular institution isomorphisms and isosimulations coincide.

Prop. 3.3.5 Let I = (Sign;Sen ;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be insti-

tutions.

1. If �:I ! I

0

is a simulation s.t.

140 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

� a functor F :Sign

0

! Sign exists s.t. �

Sign

�F = Id

Sign

0

, i.e. �

Sign

is a

retraction;

� dom(�)

�

= Mod

0

(�

Sign

(�)) for all � 2 jSignj;

then (F ; �

Sen

F

1

; �

Mod

F

) is an institution morphism from I

0

into I.

2. If (�; �; �):I ! I

0

is an institution morphism s.t.

� a functor F :Sign

0

! Sign exists s.t. � � F = Id

Sign

0

, i.e. � is a

retraction;

� �

�

is surjective on the objects for all � 2 jSignj;

then (F ; �

Sen

F

; �

Mod

F

) is a simulation from I

0

into I.

3. � is an iso-simulation i� (�

Sign

�1

; �

Sen

�

Sign

�1

; �

Mod

�

Sign

�1

) is an institution

isomorphism.

Proof. It is immediate to check that 1 and 2 holds from the de�nitions and then

3 follows.

3.3.3 Pre-Institution Transformations

In the frame of pre-institution (see [81]), generalizing some concrete examples

in [60], the notion of pre-institution transformation is introduced, to relate pre-

institutions and hence, in particular, institutions. A transformation translates

signatures, set of sentences and models all covariantly and associate each signature

with a signature, each set of sentences with a set of sentences and each model with

a non-empty set of models.

The motivating example to relate set of sentences instead of sentences is the

\equivalence" between the institutions of partial algebras respectively with pos-

itive conditional axioms, i.e. Horn-Clauses built on de�nedness predicates and

strong equality s.t. for every strong equality t=t

0

in the premises D(t) or D(t

0

)

is in premises too, and Horn-Clauses built on existential equality as sentences.

In this case both the signature and the models are una�ected (i.e. translated by

identities), but each positive conditional axiom of the form �

1

^ : : : ^ �

n

� t=t

0

logically corresponds to the couple of Horn-Clauses �

1

^ : : : ^ �

n

^D(t) � t=

e

t

0

and �

1

^ : : : ^ �

n

^ D(t

0

) � t=

e

t

0

, where if �

i

is D(t), then �

i

is t=

e

t and if �

i

is

t=t

0

, then �

i

is t=

e

t

0

.

1

Here, as usual, the composition of a natural transformation �:F) G with a functor H

(right-composable with F and G), yielding a natural transformation from F �H into G �H , is

denoted by �

H

3.3. ARROWS BETWEEN INSTITUTIONS 141

Def. 3.3.6 Let I = (Sign;Sen ;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be pre-

institutions and Pre (Pre

0

) denotes the presentation functor that is the composition

of the sentence functor with the power functor, i.e. Pre = } � Sen :Sign ! Set

(Pre

0

= } � Sen

0

:Sign

0

! Set), where }:Set ! Set sends every set to the

collection of its subsets and every function f to the function yielding the f -image

of each subset.

A pre-institution transformation T :I ! I

0

consists of:

� a functor Si

T

:Sign! Sign

0

;

� a natural transformation Pr

T

:Pre) Pre

0

� Si

T

;

� a natural transformation Mo

T

:Mod) } � Mod

0

� Si

T

s.t. Mo

T

�

(M) is a

non-empty set for every � 2 jSignj and each M 2 Mod(�);

s.t. the following satisfaction invariant holds

M j=

�

E () Mo

T

(M)j=

0

Si

T

(�)

Pr

T

(E)

for all � 2 jSignj, all E 2 Pre(�) and all M 2 Mod(�).

Three main di�erences can be seen distinguishing pre-institution transforma-

tions between institutions and simulations:

� sets of sentences are translated by pre-institution transformations instead of

single sentences;

� models are translated by pre-institution covariantly w.r.t. signature instead

that countervariantly;

� satisfaction invariant relates the satisfaction by Mo

T

(M) as a whole with

that by the individual model M .

Since any institution I implicitly de�ne an institution }(I) where the sentence

functor has been substituted with the presentation functor, the �rst point may

be solved relating institution transformations between I and I

0

to simulations

between }(I) and }(I

0

). Note that the institutions I and }(I) are logically

equivalent, because any theory th in }(I) corresponds to the theory of I whose

axiom set is the union of the axioms of th, in the sense that both theories describe

the same model class. Moreover each deductive tool for I may be easily (and

automatically) lifted to work on }(I), so that the equivalence of I and }(I) is

complete. The following lemma formally de�ne }(I).

142 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Lemma 3.3.7 Let I be an institution and }(I) denote the quadruple

(Sign;Pre;Mod; j=

}

), where, for all � 2 jSignj, all E 2 Pre(�) and all M 2

Mod(�), M j=

}

�

E i� M j=

�

� for all � 2 E.

Then }(I) is an institution with the same expressive power of I, i.e. for every

theory th = (�; Ax) in }(I) a theory th

0

= (�; Ax

0

) in I exists s.t. the models of

th are the models of th

0

and vice versa.

Proof. In order to show that }(I) is an institution it is su�cient to prove

that the satisfaction condition holds; let �: � ! �

0

be a signature morphism,

E 2 Pre(�) be a sentence of }(I) and M

0

2 Mod(�

0

) be a model. Then

Mod(�)(M

0

)j=

}

�

E i� Mod(�)(M

0

) j=

�

� for all � 2 E, i.e. by the satisfaction

condition in I, i� M

0

j=

�

0

Sen(�)(�) for all � 2 E, i.e. i� M

0

j=

}

�

0

Pre(�)(E),

because Pre(�)(E) = fSen(�)(�) j � 2 Eg.

Let th = (�; Ax) be a theory of }(I) and de�ne the theory th

0

= (�; Ax

0

) of I

by Ax

0

= [

�2Ax

�; by de�nitionM j= �

0

for all �

0

2 Ax

0

i� M j=

}

� for all � 2 Ax.

Vice versa let th

0

= (�; Ax

0

) be a theory of I and de�ne the theory th = (�; Ax)

of }(I) by Ax = ff�g j � 2 Axg; by de�nitionM j= �

0

for all �

0

2 Ax

0

i� M j=

}

�

for all � 2 Ax.

In the sequel the validity j=

}

in the }(I) institution will be denoted by j=,

provided that no ambiguity arises.

Consider now the second di�erence between pre-institution transformations

and simulations. It is easy to see that translating models from I into I

0

-model sets

has the
avor of translating models from I

0

into I by a partial surjective function.

Indeed the naturality of the model component of a pre-institution transformation

guarantees that its counterimage has the partial-naturality property; a minor

point is that to the counterimage be a function, the images of distinct models

have to be disjoint; but until now no relevant counter-examples have been found

where the images of distinct models are non-disjoint. So long simulations and

transformations do not seem too far away, but the last point cannot be so easily

disposed of; indeed the individual models in the image of a model M along a

transformation are not required to satisfy the same sentences (under translation)

asM , because the satisfaction invariant involvesMo

T

(M) as a whole. In fact there

are transformations that cannot be expressed as simulations, but if in Mo

T

(M)

a \canonical" representative can be found, satisfying the same sentences as M ,

then a simulation can be de�ned rephrasing the transformation.

Prop. 3.3.8 Let I = (Sign;Sen ;Mod; j=) and I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be ps-

pre-institutions and T :I ! I

0

be a preinstitution transformation (Si

T

;Pr

T

;Mo

T

)

s.t.

3.3. ARROWS BETWEEN INSTITUTIONS 143

� for every � 2 jSignj if Mo

T

�

(M) \Mo

T

�

(M

0

) is non-empty then M =M

0

;

� for everyM 2 jMod(�)j an M

0

2 Mo

T

�

(M) exists fully representing M , i.e.

s.t. M j=

�

E i� M

0

j=

0

Si

T

(�)

Pr

T

(E) for all E 2 Pre(�)

Then �:}(I)! }(I

0

) is a simulation, where �

Sign

= Si

T

, �

Sen

= Pr

T

and �

Mod

is

de�ned by:

dom(�)

�

= fM

0

j M

0

2 Mo

T

�

(M);M

0

is fully representing some M 2 Mod(�)g

and if M

0

2 Mo

T

�

(M), then �

Mod

�

(M

0

) =M .

Proof. The only non-trivial point is to show that �

Mod

is partially-natural;

consider a signature morphism �: � ! �

0

and let M

0

belong to dom(�)

�

0

,

i.e. M

0

fully represents M for some M 2 Mod(�

0

) and �

Mod

�

0

(M

0

) =

M . Then Mod

0

(Si

T

(�))(M

0

) 2 Mo

T

�

(Mod(�)(M)), because Mo

T

is a nat-

ural transformation; thus in order to show that �

Mod

�

(Mod

0

(Si

T

(�))(M

0

)) =

Mod(�)(�

Mod

�

0

(M

0

)) it is su�cient to prove that Mod

0

(Si

T

(�))(M

0

) fully rep-

resent Mod(�)(M) = Mod(�)(�

Mod

�

0

(M

0

)). Let E belong to Pre(�), then, by

satisfaction condition, Mod(�)(M) j=

�

E i� M j=

�

0

Pre(�)(E), i.e., as M

0

fully

represents M , i� M

0

j=

0

Si

T

(�

0

)

Pr

T

(Pre(�)(E)), i.e., by satisfaction condition, i�

Mod

0

(Si

T

(�))(M

0

)j=

0

Si

T

(�)

Pr

T

(E).

Therefore any pre-institution transformation satisfying these properties is a

simulation too; however notion like adequacy or �nitarity (see [81]) are more

naturally expressed for pre-institution transformations and hence working on the

classical logical side, investigating for example compactness properties, may result

easier in the preinstitution framework than using simulations. Moreover the equiv-

alence between transformations providing a fully representative for every model

and simulations follows from the ps-property of institutions and does not work on

pre-institutions missing such property.

Note that the partial-naturality property is too weak to guarantee that

T :I ! I

0

is a preinstitution transformation, where Si

T

= �

Sign

, Pr

T

= } � �

Sen

and Mo

T

�

(M) = fM

0

j �

Mod

�

(M

0

) =Mg, because the naturality of Mo

T

may be

missing. Consider, indeed, a signature morphism �: � ! �

0

and let M

0

belong

to Mod(�

0

); then Mod

0

(�

Sign

(�))Mo

T

�

0(M

0

) is a subset of Mo

T

�

(Mod(�)(M

0

)),

because �

Mod

is partially-natural, but non every N 2 Mo

T

�

(Mod(�)(M

0

)) =

fN j �

Mod

�

(N) = Mod(�)(M

0

)g is required to be the image along Mod

0

(�

Sign

(�))

of some

N

0

2 Mo

T

�

0
(M

0

) = fN

0

j �

Mod

�

0

(N

0

) =M

0

g;

so that Mod

0

(�

Sign

(�))Mo

T

�

0(M

0

) may be a proper subset of Mo

T

�

(Mod(�)(M

0

)).

144 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

3.3.4 Institution Coding and Representations

The institution coding were presented in a draft paper [93] to investigate on the ex-

pressive power of LF (Edinburgh Logical Framework) and on \putting together"

representation of logics in the common frame of the LF -institution. To sim-

plify the presentation in [93], the simplest version of the concept of institution

is adopted, which does not incorporate the notion of model morphism, so that

sets (classes) of models are used instead of categories. Using the language of pre-

institutions this corresponds to work on ps pre-institutions, i.e. on pre-institutions

that preserve satisfaction.

Def. 3.3.9 Let I = (Sign;Sen ;Mod; j=) and I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) be ps

pre-institutions; then an institution coding �:I ! I

0

consists of:

� a functor �

Sign

:Sign! Sign

0

;

� a natural transformation �

Sen

:Sen ! Sen

0

� �

Sign

;

� a natural transformation �

Mod

:Mod

0

� �

Sign

!Mod .

An institution representation �:I ! I

0

is an institution coding

� = (�

Sign

; �

Sen

; �

Mod

) s.t. the following representation condition holds

for any � 2 jSignj, any � 2 Sen(�) and any M 2 Mod(�)

M j=

�

� () (�

Mod

�

)

�1

(M)j=

0

�

Sign

(�)

�

Sen

(�)

Note that if M does not belong to the image of �

Mod

, i.e. (�

Mod

�

)

�1

(M) = ;,

then the representation condition requires thatM satis�es all sentences in Sen(�);

thus the \non-represented" models do not carry relevant information from a logical

point of view.

It is important to note that the representation condition capture the intuition

that a model M is not represented by any model M

0

whose image along �

Mod

is

M but logically corresponds to its counterimage as whole class. Indeed also in

the particular case of institution coding � s.t. �

Mod

is surjective the representation

condition is, in general, weaker than the following strong representation condition,

that more closely resemble the satisfaction condition, because the strong repre-

sentation condition relates the validity of individual models:

for any � 2 jSignj, any � 2 Sen(�) and any M

0

2 Mod

0

(�

Sign

(�))

�

Mod

�

(M

0

) j=

�

� () M

0

j=

0

�

Sign

(�)

�

Sen

(�)

3.3. ARROWS BETWEEN INSTITUTIONS 145

The strong representation condition is too restrictive to capture many intuitively

acceptable representations of logical systems; but if it holds for a surjective insti-

tution representation �, then � is a (total) simulation, too.

Since the representation condition involves classes of I

0

-models, it would seem

reasonable trying to apply a technique similar to the one proposed to relate sim-

ulations and pre-institution transformations, building an institution I

0

}

whose

models are classes of I

0

-models and where a class satisfy a sentence � i� all

its elements do satisfy �. At this point, to make any institution representation

�:I ! I

0

a simulation �:I ! I

0

}

, two possible choices of �

Mod

seem natural: the

total one where �

Mod

= } � �

Mod

and the �-closed where if C = �

Mod

�1

(M), then

�

Mod

(C) = M , else �

Mod

(C) is unde�ned. But for the �rst one the satisfaction

condition may be false, because classes of models that contain just pieces of the

counterimage of I-models are translated, so that the representation condition does

not apply to them, and the second one fails to be partially-natural, because in

generalMod

0

(�

Sign

(�))(�

Mod

�1

(M

0

)) is strictly contained in �

Mod

�1

(Mod(�)(M

0

)).

Thus although the two notion seems strictly related and share most motivating

examples, they are not the same. However, as in the case of transformations,

many representations, providing for each I-model a fully representative, can be

rephrased as simulations.

146 CHAPTER 3. RELATING SPECIFICATION FORMALISMS

Chapter 4

Translating Tools

The use of logic in computer science is experiencing vigorous growth. Since the

applications are many, there are increasingly stronger interactions between the

two �elds that are having a profound impact on both of them. New logics are

frequently been proposed, and new variants or adaptations of existing logics for

new purposes are widespread.

This proliferation of logics|although certainly a sign of vitality and intellec-

tual creativity|brings with it important conceptual challenges. In a sense, each

logic is a di�erent language and, as in the case of natural languages, there is often

a serious need to bridge the gap between di�erent languages by means of appro-

priate translations, and the danger of serious confusion when translations are not

correct. There is also a related need to understand the essential features shared

by logics in general so that systematic methods can be developed to deal with

these problems.

It can be greatly advantageous to reuse entire logics, or key components of

such logics. The advantages may be not only conceptual, although of course this

is important; due to the existence of software systems supporting mechanized

reasoning in a given logic, it may be possible to reuse a system developed for one

logic|for example, a theorem-prover|to obtain a new system for another.

Translations between logics by appropriate mappings|especially if they are

conservative in the sense of [63]|may provide a �rst way of reusing tools of one

logic in another, by translating the appropriate sentences or proofs and using the

original tool on the translations. This idea is here generalized to the case where

entire components|for example the proof theory|of one of the logics involved

may be completely missing, so that the appropriate mapping could not even be

de�ned. The idea then is to borrow the missing components (as well as their

associated tools if they exist) from a logic that has them in order to create, ex

147

148 CHAPTER 4. TRANSLATING TOOLS

nihilo as it were, the full-
edged logic and tools that we desire. The relevant

structure is transported using maps that only involve a limited aspect of the two

logics in question|for example their model theory.

The constructions accomplishing this kind of borrowing of logical structure are

very general and simple. Indeed they only depend upon a few abstract properties

that hold under very general conditions given a pair of categories linked by adjoint

functors. Therefore, the constructions capitalize on the fact that, as was shown in

[63], the di�erent components of a logic: entailment relation, model theory, and

proof theory, are in a very precise technical sense modular , namely in that they

can be added or deleted by means of constructions that are adjoint functors.

Speci�cally, it is shown that, given two institutions I and I

0

and a map of

institutions I �! I

0

, the entailment relation or the proof theory (or both things)

can be borrowed from I

0

if they exist to use them for I, and that completeness, if

it holds, is preserved by the borrowing. Similarly, given two entailment systems

E and E

0

|i.e., the provability relations of two logics|and a map of entailment

systems E �! E

0

, it is shown that the proof theory can be borrowed from E

0

if it

exists to endow E with a proof theory.

4.1 Introductory Examples

In this section the basic results in [8] are presented in the original form, in order

to give some intuition of the general categorical construction presented in the next

section. Thus the notion of inference system, and accordingly of soundness and

completeness, are given in a rougher form than the corresponding notions for the

entailment systems as presented in the next sections. It seems however useful to

keep the original concreteness on one hand to get the intuition behind the general

categorical construction illustrated here and on the other hand to state a weaker

result than the categorical one, but with a larger spectrum of applicability.

According to the intuition that a simulation codes a new institution in terms

of an old one, inference systems are translated backward via simulation; so that,

starting from an inference system for I

0

and using a simulation �:I ! I

0

, a new

system for I is built, which consists of: the preprocessing �

Sen

of the sentences of

I, coding them as sentences of I

0

, followed by the application of the given system

for I

0

, and possibly by the postprocessing �

Sen

�1

to decode the results.

Def. 4.1.1 Let I = (Sign;Sen ;Mod; j=) be an institution and ` be an inference

system for Sen(�), i.e. any relation `� }(Sen(�))�Sen(�). Then ` is sound for

C � jMod(�)j i� for every � 2 Sen(�) and every � � Sen(�), � ` � implies that

4.1. INTRODUCTORY EXAMPLES 149

for all A 2 C if A j=

�

 for all
 2 �, then A j=

�

�. If C is jMod(�)j, then ` is

shortly said sound.

For every 	 � Sen(�) and every C � jMod(�)j, the system ` is complete

w.r.t. 	 and C i� for every 2 	 and every � � Sen(�)

A j=

�

 for all
 2 � implies A j=

�

 for every A 2 C

implies � ` . If C is jMod(�)j, then ` is shortly said complete w.r.t. 	.

For every simulation �:I ! I

0

and every inference system `

0

for

Sen

0

(�

Sign

(�)), the inference system `

�

for Sen(�) is de�ned by: � `

�

� i�

�

Sen

(�) `

0

�

Sen

(�).

The de�nition of completeness as it stands is a generalization of the notion of

completeness in algebraic frames; indeed, for examples, in the frame of (both par-

tial and total) conditional speci�cations the equational completeness of a system

` means that if an equation t = t

0

holds in the model class of a set of conditional

axioms �, then � ` t = t

0

. Thus the premises � are any set of sentences, while

the consequence has to be an equation, i.e. a sentence in the selected subclass.

Note that if re
exivity, monotonicity and transitivity are required by the de�-

nition of inference system, as for the entailment systems of [63], then simulations

preserve these properties, so that the translation of an entailment system is an

entailment system, too.

The properties of simulations guarantee that if a system `

0

in the old institution

I

0

is sound and complete w.r.t. the domain of the simulation �, then the obtained

system `

�

is sound and complete for I, too, as the following theorem shows.

Theorem 4.1.2 Let I and I

0

be institutions, �:I ! I

0

be a simulation and `

0

be an inference system for Sen

0

(�

Sign

(�));

1. if `

0

is sound for jdom(�)

�

j, then `

�

is sound, too;

2. if `

0

is complete for C

0

� jdom(�)

�

j and 	

0

� Sen

0

(�

Sign

(�)), then `

�

is

complete for �

Mod

�

(C

0

) and �

Sen

�1

(

0

).

Proof.

1. Assume that � `

�

�, i.e. that �

Sen

(�) `

0

�

Sen

(�), and that A j=

�

 for

all
 2 � for some A 2 jMod(�)j and show that A j=

�

�. Since �

Mod

�

is surjective on the objects, there exists A

0

2 jdom(�)

�

j s.t. �

Mod

�

(A

0

) =

A and hence A

0

j=

0

�

Sign

(�)

�

Sen

(
) for all
 2 �, due to the satisfaction

condition. Thus, since ` is sound for dom(�)

�

and �

Sen

(�) `

0

�

Sen

(�),

A

0

j=

0

�

Sign

(�)

�

Sen

(�). Therefore, due to the satisfaction condition, A j=

�

�.

150 CHAPTER 4. TRANSLATING TOOLS

2. Let � � Sen(�) and � 2 �

Sen

�1

�

() be s.t. A j= � for every A 2 �

Mod

�

(C

0

)

s.t. A j=
 for all
 2 �. Then A

0

j=

0

�

Sen

�

(�) for every A

0

2 C

0

s.t. A

0

j=

0

�

Sen

�

(
) for all
 2 �, due to the satisfaction condition, i.e.

A

0

j=

0

0

for all

0

2 �

Sen

�

(�) and hence, since `

0

is complete for C

0

and

	

0

, �

Sen

�

(�) `

0

�

Sen

�

(�), i.e. � `

�

�.

Note that if a system `

0

is sound for Mod

0

(�

Sign

(�)), then it is sound for

any of its subcategories and hence any general system for I

0

is su�cient, if only

soundness matters; but if completeness is considered too, then the system `

0

is

required to be complete for the domain of the simulation, which is a subclass of the

whole model class, and hence in general does not need be even sound for the whole

model class. Thus in general `

0

is not a general system for the new institution,

but it is tailored to the simulation, contrary to the intuition that simulations

translate general results from one formalism to another. However, if the domain

of � coincides with the model class of some set th

0

of sentences, and hence in

particular if � is logical, then starting from any sound and complete inference

system w.r.t. the whole class of models, the above theorem can be applied to the

system `

0

th

0

, de�ned by � `

0

th

0

� i� � [th `

0

�, thus recovering the desired level

of generality. It is worth noting that this last construction is an instance of the

categorical result presented in the next section, while the system `

�

cannot be

obtained in such a canonical way for the general case.

Cor. 4.1.3 Let I and I

0

be institutions, �:I ! I

0

be a simulation s.t. dom(�)

�

=

fA

0

j A

0

j=

0

�

Sign

(�)

�

0

; �

0

2 th

0

g for some th

0

� Sen

0

(�

Sign

(�)) and `

0

be an in-

ference system for Sen

0

(�

Sign

(�)), which is sound and complete w.r.t. 	

0

�

Sen

0

(�

Sign

(�)). Then `

�

th

0

is sound and complete w.r.t. �

Sen

�1

(

0

), where `

th

0

denotes the system de�ned by �

0

`

th

0

�

0

i� �

0

[th

0

` �

0

.

Proof. Trivial instantiation of the Theorem 4.1.2.

So far the main interest was on the translation of inference systems from the old

into the new frame; however, note that soundness and completeness are preserved

in the opposite direction, too.

4.2 Transporting Structures Across Categories

The transportation of structure that is studied here will involve two categories

of logical structures, C and D, and functors U :D ! C and R:C ! D with R

4.2. TRANSPORTING STRUCTURES ACROSS CATEGORIES 151

right adjoint to U . In the applications presented here U , in spite of being a left

adjoint, will have the
avor of a forgetful functor

1

.

For the example presented in the last section, roughly speaking, C was a

category of institutions, D was a category of logics, i.e. institutions endowed with

a compatible inference system, U was the functor forgetting the deductive part

and R was the functor adding the validity as (complete) inference system.

The basic construction applies to arbitrary categoriesC andD with functors U

and R as above, and consists in the process of transporting to an object c 2 jCj

the structure of an object d 2 jDj via a map f : c ! U (d). The transported

structure is enjoyed by an object

e

c 2 jDj which roughly speaking corresponds to c

plus the features of d translated by f ; formally it is the pullback of the following

diagram, where �

d

is the unity of the adjunction for the object d, and hence is

strongly dependent on f and d.

R(c)

R(f)

-

R(U (d))

6 6

j

f;c

�

d

e

c

e

f

-

d

Moreover the construction is functorial, in the sense that preserves the f -

consistent translations of c and d. Indeed it is a functor between two comma

categories.

Theorem 4.2.1 Let C and D be categories and let R:C ! D be the right

adjoint of U :D! C, with �: 1

D

! R � U the unit of the adjunction.

Denote by D

0

the comma category D # 1

D

(see e.g. [54]) and by C

0

the comma

category C # U .

1. Let U

0

:D

0

! C

0

be the functor de�ned as follows:

� U

0

(d:D ! D

0

) = (U (d):U (D) ! U (D

0

);D

0

) for every object

(d:D ! D

0

) 2 jD

0

j;

� U

0

(f; f

0

) = (U (f); f

0

) for every arrow

(f; f

0

) 2 D

0

((d

1

:D

1

! D

0

1

); (d

2

:D

2

! D

0

2

)).

1

This is of course some what counterintuitive, but it is partly explained by the fact that in

most examples U �R is the identity on C with the co-unity �

C

= Id

C

for every object C 2 C.

152 CHAPTER 4. TRANSLATING TOOLS

2. If for every object C 2 jCj, every object D

0

2 jDj and every arrow c 2

C(C;U (D

0

)) the pullback of R(c) and �

D

0

exists, then there is a functor

R

0

:C

0

! D

0

, de�ned as follows:

� for each object (c:C ! U (D

0

);D

0

) 2 jC

0

j the object R

0

(c;D

0

) =

(

e

c:

e

C ! D

0

) is de�ned by the following pullback:

R(C)

R(c)

-

R � U (D

0

)

6 6

j

c;D

0

�

D

0

e

C

e

c

-

D

0

� for each arrow (g; g

0

) in C

0

from (c

1

:C

1

! U (D

0

1

);D

0

1

) into

(c

2

:C

2

! U (D

0

2

);D

0

2

) the arrow R

0

(g; g

0

) = (g

]

; g

0

), where g

]

is de�ned

as the unique arrow in D

0

into the pullback

e

c

2

s.t. both

(a) j

c

2

;D

0

2

� g

]

= R(g) � j

c

1

;D

0

1

;

(b)

e

c

2

� g

]

= g

0

�

e

c

1

.

If such a functor R

0

exists, then C is said to admit generalization under R

and U .

3. Under the hypothesis of 2, R

0

is the right adjoint of U

0

.

Proof.

1. It is immediate to see that U

0

is a functor, because it is basically the com-

ponentwise application of U .

2. For each (g; g

0

) 2 C

0

((c

1

:C

1

! U (D

0

1

);D

0

1

); (c

2

:C

2

! U (D

0

2

);D

0

2

)) the exis-

tence of such a g

]

is shown �rst. For this purpose, given that (

e

c

2

; j

c

2

;D

0

2

), is the

pullback of R(c

2

) and �

D

0

2

, it is su�cient to show that R(c

2

)�R(g)� j

c

1

;D

0

1

=

�

D

0

2

� g

0

�

e

c

1

.

Consider the following diagram:

4.2. TRANSPORTING STRUCTURES ACROSS CATEGORIES 153

R(C

1

)

R(c

1

)

-

R � U (D

0

1

)

6 6

@

@

@

R(g)

@

@

@R

�

D

0

1

@

@

@

R � U (g

0

)

@

@

@R

j

c

1

;D

0

1

R(C

2

)

R(c

2

)

-

R � U (D

0

2

)

6 6

j

c

2

;D

0

2

f

C

1

e

c

1

-

D

0

1

�

D

0

2

@

@

@

g

0

@

@

@R

f

C

2

e

c

2

-

D

0

2

The front and the back faces of this cube are commutative, by de�nition of

f

C

2

and

f

C

1

as pullbacks; the upper side is commutative, too, since (g; g

0

) is an

arrow from c

1

into c

2

and �nally the right side is commutative, because � is

a natural transformation from the identity functor into R�U . Therefore, all

paths on the cube from

f

C

1

into R �U (D

0

2

) are equal and hence, in particular

R(c

2

) � R(g) � j

c

1

;D

0

1

= �

D

0

2

� g

0

�

e

c

1

.

Therefore, since

e

c

2

is the pullback of R(c

2

) and �

D

0

2

, there exists a unique g

]

s.t. both

(a) j

c

2

;D

0

2

� g

]

= R(g) � j

c

1

;D

0

1

;

(b)

e

c

2

� g

]

= g

0

�

e

c

1

.

The last property guarantees that (g

]

; g

0

) is an arrow from

e

c

1

into

e

c

2

. More-

over, since obviously (Id

e

C

; Id

D

0

) and (�g

]

� g

]

; �g

0

� g

0

) satisfy the above con-

ditions respectively for the identity and the composition, the uniqueness

guarantees that Id

]

(c:C!U (D

0

);D

0

)

= Id

ec:

e

C!D

0

and (�g � g)

]

= �g

]

� g

]

, so that R

0

preserves identities and compositions and hence it is a functor.

3. To show that U

0

is the left adjoint of R

0

, an arrow �

X

:X ! R

0

� U

0

(X) for

each object X = (x:X ! X

0

) in D

0

is �rst de�ned and then (R

0

�U

0

(X); �

X

)

is shown to be a universal object from X to R

0

.

154 CHAPTER 4. TRANSLATING TOOLS

Consider any object X = (x:X ! X

0

) in D

0

, then R

0

� U

0

(X) =

(

]

U (x):

^

U (X) ! X

0

) is de�ned by the following pullback diagram.

R � U (X)

R � U (x)

-

R � U (X

0

)

6 6

j

U (x);X

0

�

X

0

^

U (X)

]

U (x)

-

X

0

Since � is a natural transformation from the identity functor into R � U ,

R � U (x) � �

X

= �

X

0

� x and hence, by

]

U (x) being a pullback, there exists

a unique �

X

:X !

^

U (X) commuting the following diagram

X

x

-

X

0

�

�

�

�

�

�

�

X

�

X

�

�

�

�

�

_

@

@

@

x

@

@

@R

?

Id

X

0

^

U (X)

]

U (x)

-

X

0

	�

�

�

j

U (x);X

0

�

�

�

	�

�

�
�

X

0

�

�

�

R � U (X)

R �U (x)

-

R � U (X

0

)

i.e., such that

(a) �

X

= j

U (x);X

0

� �

X

;

(b) x =

]

U (x) � �

X

.

The second condition guarantees that the pair (�

X

; Id

X

0

), from now on ab-

breviated by �

X

, is an arrow from X to R

0

� U

0

(X) in D

0

.

To show that (R

0

� U

0

(X); �

X

) is universal, it is su�cient to prove

that for every object Y = (y:C ! U (D

0

);D

0

) in C

0

and every ar-

row f = (f; f

0

):X ! R

0

(Y) there exists a unique

�

k:U

0

(X) ! Y s.t.

R

0

(

�

k) � �

X

= f.

4.2. TRANSPORTING STRUCTURES ACROSS CATEGORIES 155

X

�

X

-

R

0

� U

0

(X) U

0

(X)

�

�

�

�

�

@

@

@

f

@

@

@R

�

�

�

�

�

�

_

R

0

(

�

k)

?

�

k

R

0

(Y) Y

Consider the following diagram, that is commutative, because it is obtained

by pasting together the two commutative diagrams given by the pullback

de�nition of

e

C and by f being an arrow from X to R

0

(Y) in D

0

.

X

f

-

e

C

j

y;D

0

-

R(C)

x

? ?

e

y

?

R(y)

X

0

f

0

-

D

0

�

D

0

-

R � U (D

0

)

Since U is the left adjoint of R, there exists a unique k

f

:U (X) ! C s.t.

j

y;D

0

� f = R(k

f

) � �

X

, and there exists a unique g

f

:U (X) ! U (D

0

) s.t.

R(y) � j

y;D

0

� f = R(g

f

) � �

X

.

In order to show that

�

k = (k

f

; f

0

) is an arrow from U

0

(X) into Y in C

0

, i.e.

that U (f

0

) � U (x) = y � k

f

, it is su�cient to show that both sides satisfy

the equation required for g

f

.

Since (f; f

0

) is an arrow in D

0

, R(U (f

0

)�U (x))��

X

= R(U (

e

y�f))��

X

, and,

since � is a natural transformation, R(U (

e

y�f))��

X

= �

D

0

�

e

y �f . Moreover,

by de�nition of

e

y, �

D

0

�

e

y � f = R(y) � j

y;D

0

� f and hence g

f

= U (f

0

) �U (x).

Moreover R(y � k

f

) � �

X

= R(y) � j

y;D

0

� f by de�nition of k

f

and hence

g

f

= y � k

f

, too, so that U (f

0

) � U (x) = y � k

f

.

It is shown that f = R

0

(

�

k) � �

X

, i.e. that

� f = k

]

f

� �

X

;

� f

0

= f

0

� Id

X

0

The second property is trivial; to show the �rst, because of the uniqueness

of factorization through the pullback

e

C, it is su�cient to show the two

equalities

� j

y;D

0

� f = j

y;D

0

� (k

]

f

� �

X

);

156 CHAPTER 4. TRANSLATING TOOLS

�

e

y � f =

e

y � (k

]

f

� �

X

)

Because of condition 2a, j

y;D

0

� k

]

f

� �

X

= R(k

f

) � j

U (x);X

0

� �

X

and, because

of condition 3a, R(k

f

) � j

U (x);X

0

� �

X

= R(k

f

) � �

X

; �nally, by de�nition of

k

f

, R(k

f

) � �

X

= j

y;D

0

� f .

Because of condition 2b,

e

y � k

]

f

� �

X

= f

0

�

]

U (x) � �

X

and, because of

condition 3b, f

0

�

]

U (x) � �

X

= f

0

� x; �nally, since (f; f

0

) is an arrow in D

0

,

f

0

� x =

e

y � f .

It is shown that

�

k is the unique arrow that makes the diagram commute.

Assume that f = R

0

(

�

h) ��

X

for some

�

h = (h; h

0

) and prove that

�

h =

�

k. It is

immediate to see that h

0

� Id

X

0

= f

0

= k

0

� Id

X

0

, so that h

0

= k

0

= f

0

.

Since f = h

]

��

X

, j

y;D

0

�f = j

y;D

0

�h

]

��

X

and, because of 2a, j

y;D

0

�h

]

��

X

=

R(h) � j

x;X

0

� �

X

.

Moreover, because of 3a, R(h)� j

x;X

0

��

X

= R(h)��

X

, so that, by de�nition

of k

f

, h = k

f

.

It is also worth noting that the naturality of � is su�cient for the �rst two

statements and that the adjoint situation between U and R is needed just to get

that U

0

and R

0

are adjoint, too. In the next sections this general construction

will be applied to the particularly interesting cases of building logics and logical

systems starting from institution maps and of building proof calculi starting from

maps of entailment systems.

4.3 General Logics

Since the signi�cant examples of application of the general categorical construction

are all largely based on the concepts of general logic (see [63]), this section is

devoted to recall the basic de�nitions and results of this theory that were not

presented in Sects. 3.3 and 1.2; for a detailed discussion of these concepts see [63].

Putting together an institution and a compatible entailment system, i.e. an en-

tailment system that is sound w.r.t. the institution, a logic is obtained, where tools

to deal with inference and model theoretic aspects are both at hand. But, since

entailment systems disregard the computational aspects, the concept of (struc-

tured) proofs is not formalized; thus proof calculi are introduced to cover also this

feature.

Def. 4.3.1 A logic (see [63], def. 6) is a 5-tuple L = (Sign;Sen ;Mod; j=;`) such

that:

4.3. GENERAL LOGICS 157

1. (Sign;Sen;`) is an entailment system;

2. (Sign;Sen;Mod; j=) is an institution, and

3. the following soundness condition is satis�ed: for every � 2 jSignj, � �

Sen(�) and � 2 Sen(�), �`

�

�) � j=

�

�.

A proof calculus (see [63], def. 12) is a 6-tuple

P = (Sign;Sen;`; P;Pr; �)

with:

1. (Sign;Sen;`) is an entailment system;

2. P :Th

0

! Struct

P

a functor; for each theory T , the object P (T) 2 Struct

P

is called its proof-theoretic structure;

3. Pr:Struct

P

! Set a functor; for each theory T , the set Pr(P (T)) is

called its set of proofs. Then proofs will denote the composite functor

Pr �P :Th

0

! Set;

4. �: proofs) Sen a natural transformation, such that for each theory T =

(�;�), the image of �

T

: proofs(T)! Sen(T) is the set �

�

of all sentences �

s.t. � ` �.

A logical system (see [63], def. 12) is a 8-tuple

S = (Sign;Sen;Mod;`; j=; P;Pr; �)

with:

1. (Sign;Sen;Mod; j=;`) is a logic;

2. (Sign;Sen;`; P;Pr; �) is a proof calculus.

The crucial point of any categorical approach is the choice of arrows between

objects more than the objects themselves. In [63] the maps of entailment systems,

institutions, logics, proof calculi and logical systems are discussed in detail and

their de�nitions are carefully motivated; here just the de�nitions are presented.

Def. 4.3.2 Given entailment systems E = (Sign;Sen ;`), E

0

= (Sign

0

;Sen

0

;`

0

),

a map of entailment systems (�; �): E ! E

0

consists of a natural transformation

158 CHAPTER 4. TRANSLATING TOOLS

�:Sen) Sen

0

�� and �-sensible functor �:Th

0

! Th

0

0

satisfying the following

property:

� `

�

� implies �

�

(�) `

0

�(�)

�

�

(�);

where for every theory th

0

= (�

0

;�

0

) in Th

0

0

, every �

0

� Sen

0

(�

0

) and every

�

0

2 Sen

0

(�

0

) the notation �

0

`

0

th

0

�

0

stands for �

0

[�

0

`

0

�

0

�

0

.

Given logics L = (Sign;Sen ;Mod; j=;`), L

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

;`

0

),

a map of logics (�; �; �):L ! L

0

is a map of the underling institution s.t.

(�; �): ent (L)! ent(L

0

) is a map of the underlying entailment systems, too.

Given proof calculi P = (Sign;Sen ;`; P;Pr; �) and

P

0

= (Sign

0

;Sen

0

;`

0

; P

0

; P r

0

; �

0

), a map of proof calculi (�; �;
):P ! P

0

consists

of a map (�; �): ent (P)! ent(P

0

) of the underlying entailment systems together

with a natural transformation
: proofs) proofs

0

� � such that �

0

�

�
 = � � �.

Given logical systems S = (Sign;Sen;Mod;`; j=; P;Pr; �) and S

0

=

(Sign

0

;Sen

0

;Mod

0

;`

0

; j=

0

; P

0

; P r

0

; �

0

), a map of logical systems

(�; �; �;
):S ! S

0

consists of a map of the underling logics (�; �; �): log(S)! log(S

0

) and a map of

the underlying proof calculi (�; �;
): pcalc(S)! pcalc(S

0

).

The relationships among the categories of entailment systems, institutions,

logics, proof calculi, and logical systems are clearly illustrated by the following

diagram, where the arrows are forgetful functors

2

LogSys

	�

�

�

log

�

�

� @

@

@

pcalc

@

@

@R

Log PCalc

	�

�

�

inst

�

�

� @

@

@

ent

@

@

@R 	�

�

�

ent

PC

�

�

�

Inst Ent

It is also interesting to note that both log and ent

PC

have a right adjoint, corre-

sponding to regard theorems as proofs of themselves; moreover inst has both a left

and a right adjoint, obtained by adding respectively the subset and the validity

relations as entailment, and �nally ent has a right adjoint, too, whose construction

uses comma categories to build models and was sketched in Sect. 1.2.5.

2

In [63] a more complex diagram is presented, where also subcalculi are considered in order

to be able to capture e�ectiveness and e�ciency considerations

4.4. BUILDING LOGICS 159

4.4 Building Logics

Since there are di�erent ways of translating institutions (and hence logics), there

are also several possibilities of building a logic on top of an institution I using an

already known logic L

0

and a translation of I into the institution underlying L

0

,

by applying the construction introduced in the above section. The most promising

case is using maps of institutions (see e.g. [63]), because completeness is preserved

and the entailment system ` de�ned for I by the pullback can be easily described

as the coding of the theories via a map and the application of the entailment

system `

0

of L

0

, so that any (�nitary) description of `

0

is also a description of `.

Indeed the entailment system ` coincides with the system `

�

th

0

introduced in the

�rst section.

Prop. 4.4.1 Denote by Log the category of logics with maps of logics as arrows

and by Inst the category of institutions with maps of institutions as arrows. Then

the functor ()

+

: Inst ! Log, de�ned by

� (I)

+

= (Sign;Sen ;Mod; j=;`

j=

), where �`

j=

� i� A j= � for ev-

ery model A s.t. A j=
 for all
 2 �, for every institution

I = (Sign;Sen ;Mod; j=) and

� (�)

+

= � for every map �,

is the right adjoint of the forgetful functor inst :Log ! Inst , de�ned by inst(L) =

(Sign;Sen;Mod; j=) for every logic L = (Sign;Sen;Mod ; j=;`) and inst(�) = �

for every map �.

Moreover the unity of the adjunction is the (family of the) embedding of

(Sign;Sen;Mod; j=;`) into (Sign;Sen ;Mod; j=;`

j=

).

Proof. Proposition 31 of [63].

Although in general Log does not have pullbacks, they do exist in the particular

case of pulling back the unit of the adjunction along a generic map.

Lemma 4.4.2 Let I = (Sign;Sen ;Mod; j=) be an institution, L

0

a logic and

�:I ! inst (L

0

) a map of institutions. Denoting by �

L

0

the embedding of L

0

into

(inst(L

0

))

+

, the following diagram is a pullback, whereL = (Sign;Sen ;Mod; j=;`)

160 CHAPTER 4. TRANSLATING TOOLS

and ` is de�ned by: � `

�

� i� both �

�

(�) `

0

�(�;;)

�

�

(�) and � j=

�

�.

(I)

+

(�)

+

-

(inst(L

0

))

+

6 6

(Id

Sign

; Id

Sen

; Id

Mod

) �

L

0

L

(�)

+

-

L

0

Proof. Routine checks.

Because of the above Prop. 4.4.1 and Lemma 4.4.2, the Theorem 4.2.1 applies

and for every map � between institutions builds the entailment system that in [8]

was denoted by `

�

th

for th = ax (�(�)).

Prop. 4.4.3 The category Inst admits generalization under ()

+

and the forgetful

functor inst.

Proof. By Theorem 4.2.1, that applies because of Prop. 4.4.1 and Lemma 4.4.2.

For every map of institution from I into U (L

0

), the entailment system built

for I can be informally described by:

� coding sentences by means of the map;

� using the entailment system of L

0

;

� checking the soundness of the deduction.

Moreover, if the component of the map dealing with the models is surjective, the

last step is not needed. Indeed for every model A 2 jMod(�;�)j there exists

(at least) a model A

0

2 jMod

0

(�(�;�))j s.t. �

�

(A

0

) = A so that A j=

�

� i�

A

0

j=

0

sign(�(�))

�

�

(�). Thus � j=

�

� i� �(�;�)j=

0

sign(�(�))

�

�

(�) and hence, because

of the soundness of `

0

, if �

�

(�) `

0

�(�;;)

�

�

(�), then �(�;�)j=

0

sign(�(�))

�

�

(�) and

hence � j=

�

�. Therefore, an e�ective way of generating the entailment system of

L

0

, if any, can also be used to check whether � ` �.

It is also worth pointing out that completeness is preserved by this construc-

tion, as the following proposition shows.

Prop. 4.4.4 Using the notation of Lemma 4.4.2, if L

0

is complete, then L is

complete, too.

4.4. BUILDING LOGICS 161

Proof. Indeed assume to have for some � � Sen(�) and 2 Sen(�) that

A j= for all A 2 jMod(�)j s.t. A j=
 for all
 2 �. Then, validity being

both preserved and re
ected by maps, A

0

j=

0

�() for all A

0

2 jMod

0

(�(�))j s.t.

A

0

j=

0

�(
) for all
 2 � and hence, `

0

being complete, �(�) `

0

�(�)

�(). Thus, by

de�nition, � `

�

 .

Example 4.4.5 Consider again the reduction of many-sorted equational Horn-

clause logic to one-sorted Horn-clause logic by the logical simulation (and hence

surjective map of logic) �

M

.

As entailment system of the logic L

L

having the one-sorted institution as

underline institution, the entailment generated by (a version

3

of) the classical

Birkho�'s deductive system has been chosen.

For every one-sorted signature � = (Op; P) and every set � of conditional

sentences on �, �`

B

�

� i� � is in the inductive closure of � and the following

axioms qualifying the equality, where t; t

0

; t

00

; t

i

; t

0

i

are terms on Op, p 2 P

n

and

f 2 Op

n

:

t = t

t = t

0

� t

0

= t

t = t

0

^ t

0

= t

00

� t = t

00

t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

^ p(t

1

; : : : ; t

n

) � p(t

0

1

; : : : ; t

0

n

)

t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� f(t

1

; : : : ; t

n

) = f(t

0

1

; : : : ; t

0

n

)

w.r.t. the following inference rules of weakening, instantiation and modus ponens.

weakening

�

1

^ : : : ^ �

n

� �

�

1

^ : : : ^ �

n

^ �

1

^ : : : ^ �

k

� �

instantiation

�

�[t

1

=x

1

: : : t

n

=x

n

]

t

i

terms of the same sort as x

i

modus ponens

�

1

^ : : : ^ �

n

� �; �

1

^ : : : ^ �

k

� �

i

�

1

^ : : : ^ �

i�1

^ �

1

^ : : : ^ �

k

^ �

i+1

^ : : : ^ �

n

� �

Since `

B

is de�ned as an inductive closure, obviously it is monotonic, tran-

sitive and re
exive; moreover it is easy to check from the de�nition that it

also satis�es the `-translation condition and that it is sound, so that L

L

=

(Sign

L

;Sen

L

;Mod

L

; j=

L

;`

B

) is a logic.

Then, by applying the above theorem, an entailment system ` for MS is de-

�ned by:

3

the weakening rule is usually not included in the de�nition of the classical Birkho� system,

but it is needed to achieve a system complete w.r.t. conditional sentences. Moreover this system

works on conditional formulas built on both equalities and predicates.

162 CHAPTER 4. TRANSLATING TOOLS

for every many-sorted signature � = (S;F) and every set � of conditional sen-

tences on �,

�`

�

V:t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

(for V (x

i

) = s

i

for i = 1 : : : k and V (x) unde�ned otherwise) i�

x

1

: s

1

^ : : : ^ x

k

: s

k

^ t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

is in the inductive closure of the following axioms, where t; t

0

; t

00

; t

i

; t

0

i

are terms on

Op

n

for Op

n

= [

s

1

;:::;s

n

;s2S

F

s

1

:::s

n

;s

, f 2 Op

n

and op 2 F

s

1

:::s

k

;s

:

x

1

: s

1

^ : : : ^ x

k

: s

k

� op(x

1

; : : : ; x

k

) : s

x

1

: s

1

^ : : : ^ x

k

: s

k

^ t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

t = t

t = t

0

� t

0

= t

t = t

0

^ t

0

= t

00

� t = t

00

t = t

0

^ t : s � t

0

: s

t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� f(t

1

; : : : ; t

n

) = f(t

0

1

; : : : ; t

0

n

)

w.r.t. the inference rules of weakening, instantiation and modus ponens.

Since `

B

is complete w.r.t. conditional sentences, as it is provable by standard

techniques, this completeness is inherited by `, because of Prop. 4.4.4; thus the

logic L

MS

= (Sign

MS

;Sen

MS

;Mod

MS

; j=

MS

;`) is complete for the many-sorted

institution.

Some more applications may be found in [60], where translations of partial,

of Horn-clauses and of order-sorted logics in terms of equational type logic are

presented in order to use the ET -inference system and the connected rewrite

tools; although these translations are not formalized as logical simulations, they

can be so and the results obtained by their applications are an instance of the

ones presented here.

Consider now simulations as arrows between institutions and entailment-

preserving simulations as arrows between logics. In this case, since the translation

of models is partial, the condition � j= � does not imply that �

Sen

(�)j=

0

�

Sen

(�)

for some simulation �:I ! I

0

, because an I

0

-model may exist satisfying �

Sen

(�)

but for which �

Sen

(�) does not hold, provided that such a model does not belong

to the simulation domain. Thus adding to any institution the validity relation as

entailment system does not give a functor. Since this is the only reasonable way

to de�ne a right adjoint of the forgetful functor from logics into institutions (that

is also a left inverse, at the least), the general construction does not apply.

4.4. BUILDING LOGICS 163

It is also worth pointing out that considering morphisms of institutions (see

e.g. [44]) as arrows, requiring that entailment is preserved in the case of logics,

the forgetful functor does have a right adjoint (adding the minimal entailment

relation), so that also in this case the institutions category admits generalization.

The entailment built by this construction can be informally described by � ` �

i� � j= � and there are �

0

and �

0

s.t. �(�

0

) = �, �(�

0

) = � and �

0

`

0

�

0

. Thus `

is in general of no use, because it requires to \invent" the �

0

and �

0

or to check a

usually in�nite set of possibility.

4.4.1 Applications

Recently higher-order speci�cations have become a standard tool in algebraic

speci�cations, with a particular interest in the speci�cation of partial higher-

order functions. Higher-order functional spaces can be handled using the usual

�rst-order algebraic speci�cations (see e.g. [66]), by restricting the signatures

(S;F) to the ones where S is a subset of a set of functional sorts s.t. for ev-

ery (s

1

� : : :� s

n

! s

n+1

) 2 S an explicit application operator belongs to the

signature; moreover the models are required to be extensional, i.e. two elements

of a functional sort yielding the same result on every input have to be equal. From

a logical point of view, in the total case (see [62, 77]) an equationally complete

system for the higher-order models may be obtained by enriching any (�rst-order)

equationally complete system by the rule

�

f(x

1

; : : : ; x

n

) = g(x

1

; : : : ; x

n

)

f = g

where f; g are terms of sort (s

1

� : : :� s

n

! s

n+1

) and each x

i

is a variable of sort

s

i

not appearing in f and g.

Instead in the partial case the above rule � is insu�cient to achieve a complete

system as the following example shows

4

.

Fact 4.4.6 Let FSp be a conditional higher-order speci�cation. Then the system,

from now on denoted by US (FSp)

?

, consisting of all the axiom schemas and

4

It is interesting noting that US (PSp) is complete w.r.t. any positive conditional speci�ca-

tion PSp (and in general US (sp) is not w.r.t. non-positive sp), but the same counter-example

applies to the system CL

v

(sp) introduced in the sequel, that is seq-complete w.r.t. conditional

speci�cations. The point is that, due to the logical equivalence between strong equalities and

disjunctions (of a particular form), it is not necessary to deduce the equality of the application

of two functions to general terms representing a generic input in order to get their identity.

164 CHAPTER 4. TRANSLATING TOOLS

inference rules of US (FSp) (see Sects. 2.4, 2.5) and of the following additional

inference rule:

?

f(x

1

; :::; x

n

) = g(x

1

; :::; x

n

)

f = g

where f; g 2 T

�

(X � fx

1

; : : : ; x

n

g)

js

1

�:::�s

n

!s

, x

i

2 X

s

i

is not complete for EMod(FSp) and the empty family of variables.

Proof. Consider the following speci�cation

spec FSp

4

=

sorts s; (s! s)

constants

f; g of type (s! s)

e of type s

axioms

�

1

D(f) ^ f=g � D(e)

�

2

D(f(x)) � D(e)

�

3

D(g(x))� D(e)

�

4

D(g)

�

5

D(f)

Then e is de�ned in each model A of FSp

4

; indeed either there exists an element

a s.t. f

A

(a) or g

A

(a) is de�ned, and in this case, because of �

2

and �

3

, also e

A

is

de�ned, or both f

A

and g

A

are de�ned, because of �

4

and �

5

, and their result over

any possible assignment is unde�ned so that, because of the extensionality, f

A

=

g

A

and henceD(e) follows from �

1

. But it easy to check that US (FSp)

?

6̀ D(e).

However there is a logical simulation, i.e. a surjective map of institution, based

on a skolemization procedure of higher-order by strongly conditional partial al-

gebras, so that Props. 4.4.3 and 4.4.4 apply and hence an equationally complete

system for the higher-order models may be simulated by any equationally complete

system for strongly conditional partial models. The intuition of this construction

is that for each couple f; g of distinct functional elements a witness of their dif-

ference, i.e. an input (tuple) a s.t. f(a) 6= g(a), exists; thus it is su�cient to

introduce function symbols to denote the witnesses.

Def. 4.4.7 Denoting by PAR

Fin

the subinstitution of PAR whose sentences

are �nitary, let �

E

:PHO ! PAR (�

E

:FPHO ! PAR

Fin

) be the simulation

consisting of:

4.4. BUILDING LOGICS 165

� �

E

Sign

:Sign

PHO

! Sign

PAR

is de�ned by �

E

Sign

(S;F) = (S

0

; F

0

), where

S = S

0

and

F

0

= F [

s=(s

1

�:::�s

n

!s

n+1

)2S

fx

s;i

: s� s! s

i

j i = 1; : : : ; ng

and �

E

Sign

(�; �) = (�; �

0

), where �

0

(f) = �(f) for all f 2 F and �(x

s;i

) =

x

�(s);i

.

� �

E

Sen

:Sen

PHO

! Sen

PAR

��

E

Sign

is the natural transformation whose com-

ponents are embedding.

� �

E

Mod

:Mod

PAR

� �

E

Sign

! Mod

PHO

is de�ned by

{ dom(�

E

)

�

is the full subcategory of Mod

PAR

(�

E

Sign

(�; �)) whose ob-

jects are the partial algebras A which satisfy the set th(�

E

) of axioms

f(x

s;1

(f; g); : : : ; x

s;n

(f; g)) = g(x

s;1

(f; g); : : : ; x

s;n

(f; g)) � f = g

for all (s

1

� : : :� s

n

! s

n+1

) 2 S

{ Let �: � ! �

E

Sign

(�) be the signature embedding; then �

E

Mod

(A

0

) =

Mod

PHO

(�)(A

0

) and �

E

Mod

(h

0

) = Mod

PHO

(�)(h

0

). In the sequel A

0

j�

denotes Mod

PHO

(�)(A

0

) and h

0

j�

denotes Mod

PHO

(�)(h

0

).

Since �

E

Sen

is the identity and �

E

Mod

is a family of forgetful functors, it is

quite easy to check that �

E

is a simulation; the only non-trivial step is to check

that �

E

Mod

is surjective on the objects, i.e. that for every extensional algebra A

an expansion A

0

of A exists (i.e. an algebra A

0

s.t. A

0

j�

= A) s.t. A

0

2 jdom(�

E

)

�

j.

Hence it is su�cient to de�ne x

A

0

s;i

on A in such a way that A

0

satis�es the axioms

f(x

s;1

(f; g); : : : ; x

s;n

(f; g)) = g(x

s;1

(f; g); : : : ; x

s;n

(f; g)) � f = g

Since A is extensional, for all s = s

1

� : : :� s

n

! s

n+1

and all �; 2 s

A

either

� = or there exist a

i

2 s

A

i

for i = 1 : : : n s.t. �(a

1

; : : : ; a

n

) 6= (a

1

; : : : ; a

n

); in the

�rst case let x

A

0

s;i

(�;) be unde�ned for i = 1 : : : n, in the second one let x

A

0

s;i

(�;)

be such an a

i

for i = 1 : : : n. Then it is easy to check that A

0

2 dom(�

E

)

�

.

In order to get an equationally complete inference system for the partial higher-

order case by the application of the general pullback construction for the logical

simulation �

E

, an equationally complete system for the partial strongly condi-

tional case has to be exhibit �rst.

Since the intuition behind the system and the completeness proof are non-

trivial, the next section is devoted to the introduction of the conditional system

CL

v

(sp), that is obtained by adding just one new rule to the system US (sp) of

the Chapter 2, Sect. 2.4.2.

166 CHAPTER 4. TRANSLATING TOOLS

The CL

v

(sp) system

In order to get some intuition about the needed generalization of the system

US (sp), consider the following speci�cation sp having free models for all families

of variables but s.t. Fr(US (sp); ;) is not a model of sp.

spec sp

9

=

sorts s

1

; s

2

opns

a; b:! s

1

e:! s

2

axioms

�

1

D(a) � D(e)

�

2

a=b � D(e)

�

3

D(b) � D(e)

In the models of sp

9

, D(a) or D(b) or a=b holds, by de�nition of strong

equality; so that because of �

1

, �

2

and �

3

also D(e) has to hold in the models of

sp

9

, while US (sp

9

) 6̀ D(e). Moreover for all familiesX of variables the free object

(Fr(X);m) for X in PMod(sp

9

) is de�ned by:

Algebra Fr(X) =

s

1

Fr(X)

= X

s

1

s

2

Fr(X)

= X

s

2

[f�g

a

Fr(X)

; b

Fr(X)

are unde�ned

e

Fr(X)

= �

m(x) = x

The speci�cation sp

9

suggests that, to make US (sp) complete, a rule ? is

needed, having basically the form

?

(�

1

[fD(t)g) � �; (�

2

[fD(t

0

)g) � �; (�

3

[ft=t

0

g) � �

(�

1

[�

2

[�

3

) � �

where t and t

0

are ground terms. If t and t

0

are not ground, the above rule has

obviously to be generalized by keeping track of the variables in t and t

0

in the way

introduced in Sect. 2.4.2.

However, since the logic considered here is in�nitary, the above rule ? has to

be generalized also to eliminate an in�nite number of premises in one step.

Just in order to capture some intuition about the required generalization,

�rst consider a �nitary case where there are more than one strong equalities to

eliminate (even though every �nitary case can be handled by a �nite number of

applications of ?; see Sect. 4.4.1 below).

4.4. BUILDING LOGICS 167

spec sp

10

=

sorts s

1

; s

2

opns

a; b; c; d:! s

1

e:! s

2

axioms

�

1

D(a) ^D(c) � D(e)

�

2

a=b ^D(c) � D(e)

�

3

D(b)^D(c) � D(e)

�

4

D(a) ^D(d) � D(e)

�

5

a=b ^D(d) � D(e)

�

6

D(b)^D(d) � D(e)

�

7

D(a) ^ c=d � D(e)

�

8

a=b ^ c=d � D(e)

�

9

D(b)^ c=d � D(e)

In all models of sp

10

at least one among D(a) or D(b) or a=b holds, by de�ni-

tion of strong equality, and analogously at least one among D(c) or D(d) or c=d

holds. Therefore in all models of sp

10

the premises of at least one among �

1

: : : �

9

hold and hence D(e) holds in the models of sp

10

.

Note that in all models of sp

10

the premises of at least one axiom hold since

fprem(�

i

) j i = 1 : : : 9g is the set fD(a);D(b); a=bg � fD(c);D(d); c=dg and one

among fD(a);D(b); a=bg and one among fD(c);D(d); c=dg has to hold. Then

for a generic �nitary case from a family f�

j

j j = 1 : : : ng of conditional formulas

an elementary formula � is deduced i�:

� cons(�

j

) = � for all j = 1 : : : n;

� fprem(�

j

) j j = 1 : : : ng is the set

fD(t

1

);D(t

0

1

); t

1

=t

0

1

g � : : :� fD(t

m

);D(t

0

m

); t

m

=t

0

m

g

for some t

i

; t

0

i

and i = 1 : : :m.

Indeed in all models A one among D(t

i

);D(t

0

i

); t

i

=t

0

i

holds for all i = 1 : : : m

and hence there exists j 2 f1 : : : ng s.t. A j= � for all � 2 prem(�

j

).

The point is that there is a set f�

j

j j = 1 : : : ng of conditional formulas with

the same consequence and s.t. the premises of the �

j

cannot be simultaneously

falsi�ed, because any choice of one element in every prem(�

j

) is always true,

containing the set fD(t);D(t

0

); t=t

0

g.

The above discussion is summarized in a formal statement.

168 CHAPTER 4. TRANSLATING TOOLS

Def. 4.4.8 Let � = f�

j

j j 2 Jg be a possibly non-countable set of sub-sets of

EForm(�;Var).

� Sec(�) denotes the set of all sections of �, where a section of � is a subset

of EForm(�;Var) of the form f

j

j j 2 Jg for some

j

2 �

j

for all j 2 J ;

� � is inin
uent i� for all 	 2 Sec(�) there exist t; t

0

2 T

�

(Var) s.t.

D(t);D(t

0

); t = t

0

2 	.

For sp = (�; Ax), the inference system CL

v

(sp) (where the index v stands for

\variables") consists of the axioms and inference rules of US (sp) and of the follow-

ing inference rule, where �

j

, �

j

are arbitrary countable subsets of EForm(�;Var),

� 2 EForm(�;Var):

Elimination

f�

j

[�

j

� � j j 2 Jg

D([

j2J

V ar(�

j

)) [([

j2J

�

j

) � �

f�

j

j j 2 Jg is inin
uent.

The intuition that � = f�

j

j j 2 Jg is inin
uent i� � is, in some sense,

fD(t

1

);D(t

0

1

); t

1

=t

0

1

g � : : : � fD(t

m

);D(t

0

m

); t

m

=t

0

m

g � : : : is formalized by the

following proposition, that states that � is inin
uent i� its sections are subsets of

the sections of a family of sets of the form fD(t);D(t

0

); t=t

0

g.

Prop. 4.4.9 Let � = f�

j

j j 2 Jg be any family of sets of elementary formulas.

Then � is inin
uent i� there exist a set I, either f1 : : : kg or IN, and terms t

i

,

t

0

i

for i 2 I s.t. for every section � of R = fR(t

i

; t

0

i

) j i 2 Ig, where R(t; t

0

) =

fD(t);D(t

0

); t = t

0

g, there exists j 2 J s.t. �

j

� �.

Moreover if J and �

j

for all j 2 J are �nite, then I is �nite too.

Proof.

) Consider the set C of all possible couples of terms appearing in �; then

C is denumerable at the most; �x an enumeration for C, so that C =

f(t

i

; t

0

i

) j i 2 Ig, where I is f1 : : : kg if C is �nite (in particular if J and �

j

for all j 2 J are �nite), otherwise I = IN.

Assume by contradiction that a section � of R = fR(t

i

; t

0

i

) j i 2 Ig exists

s.t. �

j

� � does not hold for every j 2 J , i.e. there exists

j

2 �

j

s.t.

j

=2 �

for every j 2 J . Thus, by de�nition, 	 = f

j

j j 2 Jg is a section for

� and 	 \ � = ;. Because of the inin
uence of �, there exists n 2 I s.t.

R(t

n

; t

0

n

) � 	, so that 	 \ � 6= ;, as � is a section of R, contrary to the

construction of 	.

4.4. BUILDING LOGICS 169

(If �

j

= ; for some j 2 J , then � is obviously inin
uent; otherwise let 	 be a

section of � and assume by contradiction that there do not exist terms t; t

0

s.t. R(t; t

0

) � 	. So in particular for every i 2 I there exists �

i

2 R(t

i

; t

0

i

)

s.t. �

i

=2 	 and hence 	\� = ;, where � is the section f�

i

j i 2 Ig of R. By

hypothesis there exists j 2 J s.t. ; 6= �

j

� � and hence, 	 being a section

of �, 	 \ � 6= ;, contrary to the construction of �.

Prop. 4.4.10 The inference system CL

v

(sp) is a system for sp.

Proof. Since Prop. 2.4.10 proves that US (sp) is a system for sp, it is su�cient

to show that the elimination rule is sound.

Let A belong to PMod(sp) and A j=

V

� for some valuation V for

V ar(D(V ar([

j2J

�

j

)) [([

j2J

�

j

) � �)

and all � 2 (D(V ar([

j2J

�

j

)) [([

j2J

�

j

)), and show that A j=

V

�. To this end

it is su�cient to prove that there exists j 2 J s.t. A j=

V

� for all � 2 �

j

[�

j

,

because A j= (�

j

[�

j

) � � for all j 2 J by inductive hypothesis, and V is also a

valuation for V ar(�

j

[�

j

� �) in A.

Since A j=

V

� for all � 2 [

j2J

�

j

, it is su�cient to show that there exists j 2 J

s.t. A j=

V

 for all
 2 �

j

.

By contradiction assume that for every j 2 J , there exists

j

2 �

j

s.t.

A 6j=

PAR

V

j

. Let 	 be the section f

j

j j 2 Jg; then, by de�nition of

	, A 6j=

PAR

V

 for all 2 	, which contradicts the assumption that for all

	 2 Sec(f�

j

j j 2 Jg) there exist t; t

0

2 T

�

(Var)

js

s.t. D(t);D(t

0

); t=t

0

2 	,

because if A 6j=

PAR

V

D(t) and A 6j=

PAR

V

D(t

0

), then A j=

V

t=t

0

.

Remark. Note that, because of rules 2b and 5 of CL

v

(sp), for all terms t; t

0

,

all sets � of elementary formulas and all elementary formulas �

CL

v

(sp) ` ft=t

0

g [� � � () CL

v

(sp) ` ft

0

=tg [� � �

and analogously

CL

v

(sp) ` � � t=t

0

() CL

v

(sp) ` � � t

0

=t

i.e. t=t

0

and t

0

=t are interchangeable and hence in the sequel \: : : t=t

0

: : :" is

regarded as an abbreviation for \ : : :both t=t

0

and t

0

=t: : : " , or for \ : : : t=t

0

or

t

0

=t: : :" and of similar phrases.

Note that the elimination rule is clearly a generalization of rule ? given above.

Now an example of use of elimination rule in an in�nitary case is shown.

170 CHAPTER 4. TRANSLATING TOOLS

spec sp

9

=

sorts s

1

; s

2

; s

3

opns

a

1

:! s

1

a

2

:! s

2

a

3

:! s

3

f

1

; g

1

: s

1

! s

1

f

2

; g

2

: s

2

! s

2

axioms

�

1

ff

1

n

(a

1

) = g

1

n

(a

1

) j n 2 INg � D(a

3

)

�

2

ff

2

m

(a

2

) = g

2

m

(a

2

) jm 2 INg � D(a

3

)

�

3

D

s

1

(x

1

) ^D

s

2

(x

2

) � D(a

3

)

From �

3

, by the instantiation rule, for all i; j 2 IN the following sentences

follow:

�

1

i;j

= (D(f

1

i

(a

1

)) ^D(f

2

j

(a

2

)) � D(a

3

))

�

2

i;j

= (D(f

1

i

(a

1

)) ^D(g

2

j

(a

2

)) � D(a

3

))

�

3

i;j

= (D(g

1

i

(a

1

)) ^D(f

2

j

(a

2

)) � D(a

3

))

�

4

i;j

= (D(g

1

i

(a

1

)) ^D(g

2

j

(a

2

)) � D(a

3

))

� = fprem(�

1

)g[fprem(�

2

)g[fprem(�

k

i;j

) j k = 1 : : : 4; i; j 2 INg is inin
uent

and hence from �

1

, �

2

and fprem(�

k

i;j

) j k = 1 : : : 4; i; j 2 INg, by the elimination

rule, D(a

3

) is deduced. Indeed let 	 be a section of �; by de�nition, in 	 there

are an element of prem(�

1

), say f

1

m

(a

1

) = g

1

m

(a

1

), an element of prem(�

2

), say

f

2

n

(a

2

) = g

2

n

(a

2

), and an element of prem(�

k

n;m

) for every k = 1 : : : 4 and hence

fD(f

1

m

(a

1

));D(g

1

m

(a

1

))g � 	 or fD(f

2

n

(a

2

));D(g

2

n

(a

2

))g � 	, by de�nition

of prem(�

k

n;m

). Therefore fD(f

1

m

(a

1

));D(g

1

m

(a

1

)); f

1

m

(a1) = g

1

m

(a

1

)g � 	 or

fD(f

2

n

(a

2

));D(g

2

n

(a

2

)); f

2

n

(a

2

) = g

2

n

(a

2

)g � 	.

The CL

g

(sp) System

In order to show the seq-completeness of CL

v

(sp), the simpler deduction system

CL

g

(sp) is introduced �rst, where the elimination rule has been restricted to work

only on ground formulas, and it is shown that the seq-completeness of CL

g

(sp)

for sp and the empty family of variables implies the seq-completeness of CL

v

(sp)

for sp and every family of variables; to do this in particular in a preliminar lemma

deduction in CL

v

(sp) is proved to reduce to ground deduction in CL

g

(sp). Then

CL

g

(sp) is proved to be seq-complete for sp and the empty family of variables and

hence CL

v

(sp) is seq-complete.

4.4. BUILDING LOGICS 171

Def. 4.4.11 Let sp be (�; Ax); the inference system CL

g

(sp) (where the index g

stands for \ground") consists of the axioms and inference rules of US (sp) and

of the elimination rule restricted to work on sentences without variables, i.e.

of the following inference rule, where �

j

, �

j

are arbitrary countable subsets of

EForm(�; ;), � 2 EForm(�; ;):

Ground Elimination

f�

j

[�

j

� � j j 2 Jg

([

j2J

�

j

) � �

f�

j

j j 2 Jg is inin
uent

The seq-completeness of CL

g

(sp) w.r.t. the empty family of variables and sp will

be called gseq-completeness, and analogously eeq-completeness of CL

g

(sp) w.r.t.

the empty family of variables and sp will be called geeq-completeness.

For the proof of both the gseq-completeness theorem and some of the inter-

mediate results it is crucial to show that CL

g

(sp) satis�es the deduction theorem,

which is well known and fundamental in classical logic, w.r.t. elementary ground

formulas, i.e. for all sets of elementary ground formulas �

CL

g

(�; Ax [�) ` � � � () CL

g

(sp) ` �

0

[� � � for some �

0

� �

Prop. 4.4.12 [Deduction Theorem] Let sp be the conditional speci�cation

(�; Ax) and � be a set of elementary ground formulas over �.

Then CL

g

(�; Ax [�) ` � � � i� CL

g

(sp) ` �

0

[� � �, for some �

0

� �.

Proof. Let sp

0

be the conditional speci�cation (�; Ax [�).

(Assume that CL

g

(sp) ` �

0

[� � �. Then, by de�nition of sp and sp

0

,

CL

g

(sp

0

) ` �

0

[� � �, too. Moreover CL

g

(sp

0

) `
 for all
 2 �

0

, since

�

0

� �, and hence CL

g

(sp

0

) ` � � � follows too, by Modus Ponens rule,

since �

0

is a set of ground formulas.

) The proof is by induction over the de�nition of CL

g

(sp

0

).

Proper axioms

{ If (� � �) 2 Ax, then CL

g

(sp) ` � � � and hence the thesis

follows for �

0

= ;;

{ If (� � �) 2 �, then � = ;; now it is shown that

CL

g

(sp) ` � � � for every ground elementary formula �, and hence

the thesis follows for �

0

= f�g.

� Let � be the formula D(t), with t 2 T

�

js

. Then

CL

g

(sp) ` D(t) ^ t=t � D(t) by rule 4 and CL

g

(sp) ` t=t

by rule 2a; so from rule 5 CL

g

(sp) ` D(t) � D(t) follows too.

172 CHAPTER 4. TRANSLATING TOOLS

� Let � be the formula t=t

0

, with t; t

0

2 T

�

js

. Then

CL

g

(sp) ` t=t

0

� t

0

=t and CL

g

(sp) ` t

0

=t � t=t

0

by rule 2b ;

so, by rule 5, CL

g

(sp) ` t=t

0

� t=t

0

follows too.

Axioms 2: : :4 obvious, for �

0

= ;.

Modus Ponens Assume that CL

g

(sp

0

) ` � [� � � and

CL

g

(sp

0

) ` �

�

� � for all � 2 � so that CL

g

(sp

0

) deduces

D(V ar(�)� V ar(� [[

�2�

�

�

� �)) [� [[

�2�

�

�

� �:

By inductive hypothesis, CL

g

(sp) ` � [� [�

00

� � and

CL

g

(sp) ` �

�

[�

0

�

� � for all � 2 � and some �

00

, �

0

�

� �. Thus

because of rule 5

CL

g

(sp) ` D(Y) [� [�

00

[([

�2�

�

�

) [([

�2�

�

0

�

) � �

where Y = V ar(�) � V ar(� [�

00

[([

�2�

�

�

) [([

�2�

�

0

�

) � �) i.e.

Y = V ar(�) � V ar(� [([

�2�

�

�

) � �), because both �

00

and �

0

�

are

sets of ground formulas,; thus the thesis follows for �

0

= �

00

[[

�2�

�

0

�

.

Instantiation/Abstraction Assume that CL

g

(sp

0

) ` � � � and denote

by

�

the formula
[t

x

=x j x 2 X

s

; s 2 S]; so that

CL

g

(sp

0

) ` fD(t

x

)jx 2 X

s

; s 2 Sg [f�

�

j� 2 �g � �

�

:

By inductive hypothesis CL

g

(sp) ` �

00

[� � �, with �

00

� �. Thus, by

rule 6,

CL

g

(sp) ` fD(t

x

) j x 2 X

s

; s 2 Sg [f�

�

j � 2 �g [f

�

j
 2 �

00

g � �

�

i.e. , since every
 2 �

00

is a ground formula,

CL

g

(sp) ` fD(t

x

) j x 2 X

s

; s 2 Sg [�

00

[f�

�

j � 2 �g � �

�

and hence the thesis follows for �

0

= �

00

.

Elimination Assume that (i) CL

g

(sp

0

) ` �

j

[�

j

� � for all j 2 J and that

(ii) there exist t; t

0

2 T

�

s.t. D(t);D(t

0

) and t=t

0

belong to 	 for all

	 2 Sec(f�

j

j j 2 Jg), so that CL

g

(sp) ` ([

j2J

�

j

) � �. Because of (i)

and of the inductive hypothesis

CL

g

(sp) ` �

0

j

[�

j

[�

j

� �;

with �

0

j

� � for all j 2 J . Thus, by (ii) and elimination rule,

CL

g

(sp) ` ([

j2J

�

0

j

) [([

j2J

�

j

) � �, i.e. the thesis follows for �

0

=

[

j2J

�

0

j

.

4.4. BUILDING LOGICS 173

Remark. Note that it is immaterial which variables are used in deduction

both by CL

g

(sp) and CL

v

(sp), because the �-rule of the �-calculus can be derived

by rules 5, 6 and 1. Therefore in the following the variables used during the proof

of any theorem by CL

g

(sp) are assumed w.l.o.g. not to be in X.

Lemma 4.4.13 Let � = (S;F) be a signature, sp = (�; Ax) be a conditional

speci�cation and X be an S-sorted family of variables.

Let sp

X

denote the conditional speci�cation (�

X

; Ax

X

), where �

X

= (S;F [

fop

x

:! s j x 2 X

s

g

s2S

) and Ax

X

= Ax [fD(op

x

) j x 2 Xg, and �

�

denote

�[op

x

=x j x 2 X] for all conditional formulas �.

For all conditional formulas � � �, CL

g

(sp

X

) ` �

�

� �

�

implies CL

v

(sp) `

D(X) [� � �.

Proof. Since rule 6 allows to arbitrary increase the de�nedness assertions in the

premises of any deduced formula, it is su�cient to prove that CL

g

(sp

X

) ` �

�

� �

�

impliesCL

v

(sp) ` D(X

0

)[� � � for someX

0

� X. The proof is done by induction

on the de�nition of CL

g

(sp

X

).

Proper axioms

� If (� � �) 2 Ax, then CL

v

(sp) ` � � �, by de�nition.

� Otherwise (� � �) = D(op

x

) and the thesis follows by rule 1.

Axioms 2: : :4 obvious.

Modus Ponens Assume that CL

g

(sp

X

) ` �

�

[�

�

� �

�

and

CL

g

(sp

X

) ` �

�

�

�

for all
 2 �; then

CL

g

(sp

X

) ` D(Z) [�

�

[[

2�

�

�

� �

�

where

Z = V ar(�

�

)� V ar(�

�

[([

2�

�

�

) � �

�

):

Since Z \X = ; by de�nition of Z, it is su�cient to show that

CL

v

(sp) ` D(X) [D(Z) [� [([

2�

�

) � �:

By inductive hypothesis, CL

v

(sp) ` D(X) [� [� � � and

CL

v

(sp) ` D(X) [�

�
 for all
 2 �. Thus

CL

v

(sp) ` D(X) [D(Y) [� [([

2�

�

) � �;

174 CHAPTER 4. TRANSLATING TOOLS

because of rule 5 of CL

v

(sp), where Y is the set

V ar(�) � V ar(� [([

2�

�

) � �):

Moreover Y [X = Z [X by de�nition of Y and Z and hence the thesis

follows.

Instantiation/Abstraction Assume that CL

g

(sp

X

) ` �

�

� �

�

.

Then for all families Z of variables (for CL

g

(sp)) and all

�

Def

= fD(t

z

) j z 2 Zg, CL

g

(sp

X

) ` �, where � is

�

Def

[f�[t

z

=z j z 2 Z] j � 2 �

�

g � �

�

[t

z

=z j z 2 Z]:

For all t

z

there exists one term t

0

z

s.t. t

0

z

�

=t

z

. Thus (�

�

[t

z

=z j z 2 Z])

�

=

(�[t

0

z

=z j z 2 Z])

�

for all elementary formulas � and hence � is also

(�

0

Def

)

�

[(f�[t

0

z

=z j z 2 Z] j � 2 �g)

�

� (�[t

0

z

=z j z 2 Z])

�

;

where �

0

Def

is fD(t

0

z

) j z 2 Zg. By inductive hypothesis,

CL

v

(sp) ` D(X) [� � �; thus, because of rule 6 of CL

v

(sp), CL

v

(sp) ` �

0

,

where �

0

is

�

0

Def

[f�[t

0

z

=z j z 2 Z] j � 2 � [D(X)g � �[t

0

z

=z j z 2 Z]:

Finally, since X \ Z = ;, because of the assumption that all variables in X

do not appear in any proof of CL

g

(sp), D(x)[t

z

=z j z 2 Z] = D(x) for all

x 2 X, and hence

f�[t

z

=z j z 2 Z] j � 2 � [D(X)g = D(X) [f�[t

z

=z j z 2 Z] j � 2 �g

so that �

0

is

D(X) [�

0

Def

[f�[t

0

z

=z j z 2 Z] j � 2 �g � �[t

0

z

=z j z 2 Z]

and hence the thesis follows.

Elimination Assume that CL

g

(sp

X

) ` �

�

j

[�

�

j

� �

�

for all j 2 J and that for

all 	 2 Sec(f�

�

j

j j 2 Jg) there exist t; t

0

2 T

�

(X) s.t. D(t);D(t

0

) and t=t

0

belong to 	. Then, by inductive hypothesis, CL

v

(sp) ` D(X) [�

j

[�

j

� �

for all j 2 J and, by de�nition of �

�

j

, for all 	 2 Sec(f�

j

j j 2 Jg) there exist

t; t

0

2 T

�

(X) s.t.D(t);D(t

0

) and t=t

0

belong to 	. Thus, by elimination rule

of CL

v

(sp), CL

v

(sp) ` D(X) [([

j2J

�

j

) � � follows, too.

4.4. BUILDING LOGICS 175

Prop. 4.4.14 If CL

g

(sp) is gseq-complete for all conditional speci�cations sp,

then CL

v

(sp

0

) is seq-complete for all families of variables and all conditional spec-

i�cations sp

0

.

Proof. Let � = (S;F) be a signature, sp = (�; Ax) be a conditional speci�ca-

tion andX be an S-sorted family of variables. Using the notation of Lemma 4.4.13,

it is shown that the gseq-completeness of CL

g

(sp

X

) implies the seq-completeness

of CL

v

(sp) for X and sp.

Assume that CL

g

(sp

X

) is gseq-complete, � is an elementary formula over � =

(S;F) and X s.t. CL

v

(sp) 6̀ D(X

0

) � � for everyX

0

� X and show that there exists

a model A s.t. A 6j=

PAR

D(X) � �, i.e. that there exists a valuation V :X ! A

s.t. A 6j=

PAR

V

�.

To this end it is su�cient to prove that there exists a model B of sp

X

s.t.

B 6j=

PAR

�

�

; indeed the thesis follows for A de�ned by s

A

= s

B

for all s 2 S,

op

A

= op

B

for all op 2 F (i.e. A is the �-reduct of B) and V de�ned by V (x) =

op

x

B

, which is well de�ned because of the axioms D(op

x

). In order to prove

that there exists such a model B, CL

g

(sp

X

) being gseq-complete, it is su�cient

to show that CL

g

(sp

X

) 6̀ �

�

. Because of Lemma 4.4.13, if CL

g

(sp

X

) ` �

�

, then

CL

v

(sp) ` D(X) � � and hence CL

g

(sp

X

) 6̀ �

�

, because CL

v

(sp) 6̀ D(X) � �.

Notation. Since in this section the focus is mostly on ground formulas and

the system CL

g

(sp), some short notations is introduced �rst : in the sequel

EEq(CL

g

(sp); ;) will be denoted by EEq(sp), NF(CL

g

(sp); ;) by NF(CL

g

(sp))

and Fr(CL

g

(sp); ;) by I(sp).

In the literature, in the case both of partial positive conditional and of total

conditional speci�cations, any system L(sp) for sp is shown to be geeq-complete

by proving that I = T

�

= �

L

(sp) is a model, since I j= � i� L(sp) ` � for all

� 2 EEq(sp; ;). Unfortunately the same proof technique cannot be adopted in

the case of (possibly) non-positive conditional speci�cations, since in general they

do not have an initial model and if I 2 PMod(sp), then it is initial in PMod(sp)

(see e.g. Theorem 2.4.17). In other words it cannot be given a model which does

not satisfy all undeducible ground equalities, but for each undeducible ground

equality � a model which does not satisfy � has to be exhibited. To do this,

�rst only those � 2 EEq(sp) s.t. CL

g

(sp) 6̀ � are considered and a model A

�

of sp is built s.t. A

�

6j=

PAR

�; in particular an enrichment sp

�

of sp is exhibited

s.t. CL

g

(sp

�

) 6̀ � and I(sp

�

) is a model of sp

�

, so that A

�

= I(sp

�

) 6j=

PAR

� and

obviously A

�

2 PMod(sp), because sp

�

is an enrichment of sp.

Then for every � =2 EEq(sp) s.t. CL

g

(sp) 6̀ � an enrichment sp

�

of sp s.t.

� 2 EEq(sp

�

) and CL

g

(sp

�

) 6̀ � is exhibited, so that the problem reduces to the

above case.

176 CHAPTER 4. TRANSLATING TOOLS

Consider now the �rst problem, the building of such a sp

�

. As shown in

Sect. 2.4, I(sp) is not a model i� a naughty formula exists, i.e. a conditional

sentence that is an instantiation of an axiom of sp by de�ned terms (snf

1

) and

s.t. its premises hold in I(sp) (snf

2

) while its consequence does not (snf

3

). Thus

the intuitive idea is to try to clear out the set NF(CL

g

(sp)) of naughty formulas,

by adding as axioms of the enrichment suitable elementary formulas making false

snf

2

or snf

3

in the enriched speci�cation for all formulas in NF(CL

g

(sp)) (the set

of these formulas is called a \resolving choice"). Obviously it is possible that in

the enriched speci�cation a conditional formula is naughty, which in sp was not,

because it was not an instantiation of an axiom by de�ned terms, or because one

of its premises was not deducible; so that also the enriched speci�cation has not

an initial model. Therefore a wider class of formulas has to be considered, the

\possibly naughty" formulas.

Def. 4.4.15

� For a given conditional speci�cation sp, the set PNF(sp) (for Possibly

Naughty Formulas) consists of all ground conditional formulas � s.t.

{ CL

g

(sp) ` �;

{ CL

g

(sp) 6̀ cons(�).

� An r-choice (for resolving choice) C is a set of ground elementary formulas

s.t. for all � 2 PNF(sp)

(prem(�) \ EEq(sp)) � C implies that if cons(�) =2 C, then (t=t

0

) 2

prem(�)� EEq(sp) exists s.t. both conditions:

{ (t=t

0

); (t

0

=t) =2 C and

{ one between D(t) or D(t

0

) belongs to C

hold.

� The set of all r-choices is denoted by R-Choice.

The �rst intermediate result states that the resolving choices are really resolv-

ing, i.e. that the enriched speci�cations have initial model.

Lemma 4.4.16 For all conditional speci�cations sp = (�; Ax) and all r-choices

C, NF(�;Ax [C) = ;.

Proof. Let C be an r-choice for sp and sp

0

be the conditional speci�cation

(�; Ax[C); in order to show that NF(sp

0

) is empty assume that the conditions nf

1

4.4. BUILDING LOGICS 177

and nf

2

hold for a conditional formula � and the system CL

g

(sp

0

) and show that

the condition nf

3

does not hold. In particular it is shown that CL

g

(sp) ` cons(�)

or cons(�) belongs to C.

From nf

1

, because of rules 5 and 6, CL

g

(sp

0

) ` � and hence, by the deduction

theorem, there exists a subset � of C s.t. CL

g

(sp) ` � [prem(�) � cons(�).

Moreover, because of nf

2

, I(sp

0

) j= � for all � 2 prem(�) and hence, by def-

inition of I(sp

0

), CL

g

(sp

0

) ` � for all � 2 prem(�) \ EEq(sp

0

). Thus, by the

deduction theorem, for all � 2 prem(�) \ EEq(sp

0

) a subset �

�

of C exists s.t.

CL

g

(sp) ` �

�

� �.

Thus, because of rule 5, CL

g

(sp) ` �

0

, where �

0

is the conditional formula

(� [[

�2prem(�)\EEq(sp

0

)

�

�

) [(prem(�)� EEq(sp

0

)) � cons(�):

Therefore either CL

g

(sp) ` cons(�) or �

0

2 PNF(sp). Assume that �

0

2

PNF(sp) and show that cons(�) 2 C. By de�nition of sp and sp

0

, EEq(sp) �

EEq(sp

0

) and hence prem(�

0

) \ EEq(sp) � prem(�

0

) \ EEq(sp

0

); moreover, by

de�nition of �

0

,

prem(�

0

) \ EEq(sp

0

) � (� [[

�2prem(�)\EEq(sp

0

)

�

�

) � C;

so that prem(�

0

)\EEq(sp) � C. Thus, by de�nition of r-choice, either cons(�

0

) 2

C, or there exists (t=t

0

) 2 prem(�

0

)� EEq(sp) s.t. (t=t

0

); (t

0

=t) =2 C and D(t) or

D(t

0

) belongs to C.

Finally, by de�nition of �

0

, for every (t=t

0

) 2 (prem(�

0

) � EEq(sp)) ei-

ther (t=t

0

) 2 (� [[

�2prem(�)\EEq(sp

0

)

�

�

) and hence (t=t

0

) 2 C, or (t=t

0

) 2

(prem(�) � EEq(sp

0

)) and hence, by de�nition of EEq(sp

0

), neither D(t) 2 C

nor D(t

0

) 2 C. Therefore, by de�nition of choice, cons(�

0

) 2 C.

Thus for all r-choices C, the enriched speci�cation has an initial model; now

it is shown that for every � 2 EEq(sp) s.t. CL

g

(sp) 6̀ � there exists at least one

r-choice s.t. also in the enriched speci�cation � does not hold.

Lemma 4.4.17 If sp = (�; Ax) is a conditional speci�cation and � is an ele-

mentary ground formula s.t. CL

g

(sp) 6̀ �, then there exists an r-choice C s.t.

CL

g

(�; Ax [C) 6̀ �.

Proof. Assume by contradiction that CL

g

(�; Ax[C) ` � for all r-choices C and

show that there exists a set � of conditional formulas s.t.

1. cons(�) = � for all � 2 �;

2. CL

g

(sp) ` � for all � 2 �;

178 CHAPTER 4. TRANSLATING TOOLS

3. for every 	 2 Sec(fprem(�) j � 2 �g) there exist t; t

0

2 T

�

js

s.t. D(t), D(t

0

)

and t=t

0

belong to 	;

thus, because of the elimination rule, CL

g

(sp) ` �, contrary to the hypothesis.

Because of the assumption that CL

g

(�; Ax[C) ` � for all r-choices C and of the

deduction theorem, for each r-choice C there exists �

C

� C s.t. CL

g

(sp) ` �

C

� �;

let � be the set [

C2R�Choice

R(�

C

� �), where R(�

C

� �) consists of the formulas

�

1

[[

2�

2

�

� � s.t.:

� �

1

[�

2

= �

C

;

� �

1

\ �

2

= ;

� (�

�
) 2 PNF(sp) for all
 2 �

2

.

Since CL

g

(sp) ` for all 2 PNF(sp) and CL

g

(sp) ` �

C

� � for all r-choices C,

then, by rule 5, CL

g

(sp) ` � for all � 2 �; thus � satis�es conditions 1 and 2 and

hence it is su�cient to show that � satis�es also condition 3.

Again the proof is by contradiction: assume that condition 3 does not hold,

i.e. that there exists 	 2 Sec(fprem(�) j � 2 �g) s.t. for all t; t

0

2 T

�

js

at least one

amongD(t),D(t

0

) and t=t

0

does not belong to 	, and show that there exists � 2 �

s.t. prem(�)\	 = ;, contrary to the assumption that 	 2 Sec(fprem(�) j � 2 �g).

In order to prove that there exists such a � an r-choice C is built s.t. for all

 2 C either
 =2 	, or there exists (�

�
) 2 PNF(sp) s.t. �

\ 	 = ;; thus

�

0

= [(�

C

�) [[

2�

C

\	

�

] � � belongs to R(�

C

� �) and hence to �, while

prem(�

0

) \	 = ;.

Let C be C

C

[C

P

, for C

C

= f
 j (� �
) 2 PNF(sp);� \ 	 = ;g and

C

P

= fD(t) j t 2 T

�

;D(t) =2 	g.

Thus for all
 2 C either
 =2 	, or there exists (�

�
) 2 PNF(sp) s.t.

�

\	 = ; and hence it is su�cient to show that C is a choice. Let � belong to

PNF(sp) s.t. prem(�)\EEq(sp) � C; then, by de�nition of choice, it is su�cient

to show that cons(�) 2 C, or ? [there exists (t=t

0

) 2 prem(�) � EEq(sp) s.t.

(t=t

0

) =2 C and D(t) or D(t

0

) belongs to C]. Thus assume that ? does not hold,

i.e. that for all (t=t

0

) 2 prem(�)�EEq(sp) (t=t

0

) 2 C, or both D(t) and D(t

0

) do

not belong to C, and show that there exists �

0

2 PNF(sp) s.t. prem(�

0

) \ 	 = ;

and cons(�

0

) = cons(�), so that cons(�

0

) 2 C

C

and hence cons(�) 2 C. Since

CL

g

(sp) ` for all 2 PNF(sp), R() � PNF(sp) for all 2 PNF(sp); so that

in order to built such a �

0

it is su�cient to show that for all � 2 prem(�) \ 	

there exists (�

�

� �) 2 PNF(sp) s.t. �

�

\ 	 = ; and the thesis follows for

�

0

= [(prem(�)�) [([

�2(prem(�)\)

�

�

)] � cons(�).

4.4. BUILDING LOGICS 179

Let � 2 prem(�)\	; show that � 2 C and hence � 2 C \	 = C

C

so that, by

de�nition of C, there exists (�

�

� �) 2 PNF(sp) s.t. �

�

\	 = ; If � 2 EEq(sp),

then, because of the assumption prem(�) \ EEq(sp) � C, � 2 C. Otherwise

� 2 prem(�)� EEq(sp) has the form t=t

0

and, because of the absurd hypothesis

on 	 and t=t

0

2 	, D(t) or D(t

0

) does not belong to 	, so that, because of

de�nition of C

P

, D(t) or D(t

0

) belongs to C; thus, since (t=t

0

) 2 C, or both D(t)

and D(t

0

) do not belong to C, � = (t=t

0

) 2 C.

Finally it is possible to show the gseq-completeness of CL

g

(sp).

Theorem 4.4.18 The system CL

g

(sp) is gseq-complete w.r.t. sp.

Proof. Let � be an elementary ground formula, assume that CL

g

(sp) 6̀ � and

show that there exists a model A of sp = (�; Ax) s.t. A 6j=

PAR

�. The proof is

divided in two cases.

1. Let � belong to EEq(sp).

� If NF(CL

g

(sp)) is empty, then A = T

�

= �

CL

g

(sp)

is a model, because of

the Theorem 2.4.17, and, by construction of �

CL

g

(sp)

, A 6j=

PAR

�.

� Otherwise an r-choiceC exists s.t. CL

g

(�; Ax[C) 6̀ �, by Lemma 4.4.17.

Moreover NF (CL

g

(sp

0

)) is empty, where sp

0

= (�; Ax [C), because

of Lemma 4.4.16; thus A = T

�

= �

CL

g

(sp

0

)

is a model of sp

0

, because of

Theorem 2.4.17. Finally A belongs to PMod(sp), since PMod(sp

0

) �

PMod(sp) by de�nition of sp

0

, and moreover A 6j=

PAR

�, by de�nition

of A.

2. Let � have the form t=t

0

, CL

g

(sp) 6̀ D(t), and CL

g

(sp) 6̀ D(t

0

); if there exists

a conditional speci�cation sp

0

s.t.

(a) PMod(sp

0

) � PMod(sp);

(b) � 2 EEq(CL

g

(sp

0

));

(c) CL

g

(sp

0

) 6̀ �;

then, because of 1 and of conditions 2b and 2c, there exists a model A of sp

0

s.t A 6j=

PAR

� and hence, because of 2a, A is also a model of sp which does

not satisfy �. Therefore it is su�cient to show that there exists such a sp

0

.

Let sp

1

be the speci�cation (�; Ax [fD(t)g) and sp

2

be the speci�cation

(�; Ax [fD(t

0

)g); it is shown that CL

g

(sp

1

) 6̀ t=t

0

or CL

g

(sp

2

) 6̀ t=t

0

. By

contradiction assume that CL

g

(sp

1

) ` t=t

0

and CL

g

(sp

2

) ` t=t

0

and prove

that CL

g

(sp) ` t=t

0

.

180 CHAPTER 4. TRANSLATING TOOLS

Because of the absurd hypothesis and of the deduction theorem, both

CL

g

(sp) ` D(t) � t=t

0

and CL

g

(sp) ` D(t

0

) � t=t

0

; moreover, by rule 2.2b,

CL

g

(sp) ` t=t

0

� t

0

=t and CL

g

(sp) ` t

0

=t � t=t

0

and hence, by rule 5,

CL

g

(sp) ` t=t

0

� t=t

0

. Thus, applying the elimination rule to the set

fD(t) � t=t

0

;D(t

0

) � t=t

0

; t=t

0

� t=t

0

g, CL

g

(sp) ` t=t

0

. Therefore

CL

g

(sp

1

) 6̀ t=t

0

, and in this case let sp

0

be sp

1

, or CL

g

(sp

2

) 6̀ t=t

0

, and

in this case let sp

0

be sp

2

. In any case sp

0

satis�es conditions 2a, 2b, 2c by

de�nition.

Theorem 4.4.19 Let sp be the conditional speci�cation (�; Ax) and X be a

family of variables; the conditional system CL

v

(sp) is seq-complete for X and sp.

Proof. From Prop. 4.4.14, CL

g

(sp

0

) being gseq-complete for all conditional spec-

i�cations sp

0

, because of Theorem 4.4.18.

Finitary Deduction

If all the axioms of a conditional speci�cation sp have a �nite set of premises, then

the system CL

v

(sp) can be specialized to obtain an seq-complete system whose

rules have a �nitary number of premises and only deal with �nitary formulas.

This is in particular the case for every �nitary higher-order speci�cation, because

the axioms introduced by the skolemization procedure are �nitary.

Def. 4.4.20 Let sp = (�; Ax) be a conditional speci�cation s.t. � is �nite for all

� � � in Ax. Let CL

f

(sp) be the inference system consisting of the axioms in Ax,

of the axioms 1: : : 4 of CL

v

(sp) (de�nedness of variables, congruence, strictness,

de�nedness and equality) and of the following inference rules; where any formula

is assumed to be �nitary:

5

f

Modus Ponens

� [f
g � �;�

�

D(V ar(
)� V ar(� [�

� �)) [(� [�

) � �

6

f

Instantiation/Abstraction

� � �

fD(t)g [f�[t=x] j � 2 �g � �[t=x]

where t 2 T

�

(Var)

js

; x 2 X

s

.

4.4. BUILDING LOGICS 181

7

f

Elimination

(�

1

[fD(t)g) � �; (�

2

[fD(t

0

)g) � �; (�

3

[ft=t

0

g) � �

D(V ar(t=t

0

)) [(�

1

[�

2

[�

3

) � �

The seq-completeness of CL

f

(sp) follows from the one of CL

v

(sp), because

CL

v

(sp) ` � � � implies that there exists a �nite � � � s.t. CL

f

(sp) ` � � �.

To prove this claim two intermediate results are needed. The �rst lemma is

stated in a merely combinatorial form and guarantees that every application of

the elimination rule to a possibly in�nite set of �nitary premises may be replaced

by an application of the elimination rule to a �nite set of �nitary premises. The

second lemma states that an application of the elimination rule to a �nite set of

�nitary premises can be replaced by a �nite sequence of application of the rule of

�nitary elimination 9

f

.

Notation. Let Val be a denumerable set of values, R � }

Fin

(Val) be a relation

over Val and � be a (possibly more than denumerable) collection of subsets of

Val. It is denoted by Sec(�) the collection of all possible sections of �, i.e. of all

subsets � of Val s.t. � = fv

j
 2 �g for some v

2
 for each
 2 �, and say that

� is R-inin
uent i� for every section � of � there exists R 2 R s.t. R � �.

Lemma 4.4.21 Let Val be a denumerable set of values, R � }

Fin

(Val) be a

relation over Val and � be a (possibly more than denumerable) collection of subsets

of Val. If � is an R-inin
uent collection of subsets of Val s.t.
 is �nite for all

 2 �, then there exists an R-inin
uent �nite subset of �.

Proof. If � is �nite, then the thesis is trivial; thus assume that � is in�nite. Since

Val is denumerable and � is a collection of �nite subsets of Val, � is denumerable,

too. Fix an enumeration for � and denote � = f�

i

j i 2 INg. Now a tree is built

whose �nite paths are all and only the sections of f�

i

j i � ng for all n 2 IN which

do not contain any element of R and this tree is shown to be �nite. The tree is

inductively de�ned as follows.

T

0

is just the root, labeled by the empty set.

T

n+1

is the tree obtained from T

n

by the following rule:

for every leaf l of T

n

let path(l) denote the set of the labels of the nodes

from the root to l; then to each leaf l of T

n

at depth n a son labeled f
g is

added for all
 2 �

n

s.t. path(l) [f
g does not contain elements of R

(Note that in this way if at step k a son has not be added to some leaf, then

at any further step, say n, this leaf is at depth k < n and hence no sons are

added any more).

182 CHAPTER 4. TRANSLATING TOOLS

Assume by contradiction that there does not exist n 2 IN s.t. T

n

= T

n+1

. Then

by construction an in�nite tree is obtained, which is �nitely branching, because

every �

n

is �nite; hence, by the K�onig lemma, there exists an in�nite path. But

an in�nite path, by construction, should be a section for � which does not contain

any element of R, contrary to the assumption that � is R-inin
uent. Therefore

there exists �n 2 IN s.t. T

�n

= T

�n+1

. Finally �

0

= f�

0

: : :�

�n+1

g is R- inin
uent.

Indeed let f

0

: : :

�n+1

g be a section for �

0

; then either there exists R 2 R s.t.

R � f

0

: : :

�n

g or f

0

: : :

�n

g is path(l) for some leaf l of T

�n

and hence for each

 2 �

�n+1

there exists R 2 R s.t. R � f

0

: : :

�n

;
g, because T

�n

= T

�n+1

, so that in

particular f

0

: : :

�n+1

g contains an element of R. Thus in both cases there exists

R 2 R s.t. R � f

0

: : :

�n+1

g and hence �

0

is R-inin
uent.

Just to get the intuition of the construction of such trees T

n

, consider the

following simple example.

� Val = fa; b; c; d; e; : : :g;

� R = ffa; bg; fa; c; dg; fb; dgg;

� �

0

= fa; bg; �

1

= fb; cg; �

2

= fa; d; eg;: : :

T

0

fg

T

1

fg

	�

�

�

�

�

� @

@

@

@

@

@R

fag fbg

T

2

fg

	�

�

�

�

�

� @

@

@

@

@

@R

fag fbg

	�

�

�

�

�

�

	�

�

�

�

�

� @

@

@

@

@

@R

fcg fbg fcg

4.4. BUILDING LOGICS 183

T

3

fg

fg

	�

�

�

�

�

� @

@

@

@

@

@R

fag fbg

	�

�

�

�

�

�

	�

�

�

�

�

� @

@

@

@

@

@R

fcg fbg fcg

?

@

@

@

@

@

@R

@

@

@

@

@

@R

?

fcg feg feg feg

In order to show that an application of the elimination rule to a �nite set of

�nitary premises can be replaced by a �nite sequence of applications of the rule

of �nitary elimination 7

f

, a preliminary result is needed �rst.

Lemma 4.4.22 Let �

j

[�

j

� � be conditional formulas for j = 1 : : : k; if the

following conditions are satis�ed, then CL

f

(sp) ` D(Y) [� � � holds for some

�nite � � [

j=1:::k

�

j

and Y � V ar([

j=1:::k

�

j

).

1. CL

f

(sp) ` �

j

[�

j

� � for j = 1 : : : k;

2. there exist terms t

i

, t

0

i

for i = 1 : : : n s.t. for each section � of R =

fR(t

i

; t

0

i

) j i = 1 : : : ng, where R(t; t

0

) = fD(t);D(t

0

); t = t

0

g, there exists

j 2 J s.t. �

j

� �.

Proof. The proof is done by induction over n.

� Let n be 1; then from condition 2 there exists j 2 f1 : : : kg s.t. �

j

= ;,

and in this case CL

f

(sp) ` �

j

� �, because of condition 1, so the thesis

follows for � = �

j

and Y = ;, or there are j

1

; j

2

; j

3

s.t. �

j

1

= fD(t

1

)g,

�

j

2

= fD(t

0

1

)g, �

j

3

= ft

1

=t

0

1

g and in this case, because of rule 7

f

,

CL

f

(sp) ` D(V ar(t

1

=t

0

1

)) [(�

j

1

[�

j

2

[�

j

3

) � �, so the thesis follows

for Y = V ar(t

1

=t

0

1

) and � = �

j

1

[�

j

2

[�

j

3

.

184 CHAPTER 4. TRANSLATING TOOLS

� Assume that for all conditional formulas �

0

j

[�

0

j

� �

0

for j = 1 : : : k

0

sat-

isfying conditions 1 and 2 (for i = 1 : : : n) there exist �

0

� [

j=1:::k

0

�

0

j

and Y

0

� V ar([

j=1:::k

0

�

0

j

) s.t. CL

f

(sp) ` D(Y

0

) [�

0

� �

0

and that

f�

j

[�

j

� � j j = 1 : : : kg satis�es conditions 1 and 2 for n+ 1.

Then for every section � of R = fR(t

i

; t

0

i

) j i = 1 : : : ng the sets �

�

and 	

�

are de�ned as follows. Let �

1

be � [fD(t

n+1

)g, �

2

be � [fD(t

0

n+1

)g and �

3

be � [ft

n+1

=t

0

n+1

g; because of condition 2, there exist j

1

; j

2

; j

3

2 f1 : : : kg

s.t. �

j

i

� �

i

for i = 1; 2; 3. If there exists i 2 f1; 2; 3g s.t. �

j

i

� �, then

de�ne 	

�

= �

j

i

and �

�

= �

j

i

, so that CL

f

(sp) ` �

�

[

�

� � from

condition 1 and �

�

� � by construction. Otherwise �

j

1

= �

0

j

1

[fD(t

n+1

)g,

�

j

2

= �

0

j

2

[fD(t

0

n+1

)g and �

j

3

= �

0

j

3

[ft

n+1

=t

0

n+1

g; in this case de�ne

	

�

= �

j

1

[�

j

2

[�

j

3

[D(V ar(t

n+1

= t

0

n+1

)) and �

�

= �

0

j

1

[�

0

j

2

[�

0

j

3

; also

in this case CL

f

(sp) ` �

�

[

�

� �, because of rule 7

f

and condition 1, and

�

�

� � by construction.

Thus the conditional formulas �

�

[

�

� � for all sections � of R satisfy

the condition 1 and condition 2 for R = fR(t

i

; t

0

i

) j i = 1 : : : ng. Therefore,

because of the inductive hypothesis, there exist �nite �

0

� [

�2Sec(R)

	

�

and

Y

0

� V ar([

�2Sec(R)

�

�

) s.t. CL

f

(sp) ` D(Y

0

) [�

0

� �.

Since both V ar([

�2Sec(R)

�

�

) � V ar([

j=1:::k

�

j

) and [

�2Sec(R)

	

�

�

[

j=1:::k

�

j

[V ar(t

n+1

=t

0

n+1

), CL

f

(sp) ` D(Y) [� � �, where � =

�

0

�D(V ar(t

n+1

= t

0

n+1

)) and Y = Y

0

[(�

0

��).

Lemma 4.4.23 If CL

f

(sp) ` �

j

[�

j

� � for all j 2 J , � = f�

j

j j 2 Jg is

inin
uent and J is �nite, then CL

f

(sp) ` D(Y) [� � � holds for some �nite

� � [

j2J

�

j

and Y � V ar([

j2J

�

j

).

Proof. By Prop. 4.4.9, I = f1 : : : kg and terms t

i

, t

0

i

for i 2 I exist s.t. for every

section � of R = fR(t

i

; t

0

i

) j i 2 Ig, where R(t; t

0

) = fD(t);D(t

0

); t = t

0

g, there

exists j 2 J s.t. �

j

� �. Thus Lemma 4.4.22 applies.

Theorem 4.4.24 Let sp = (�; Ax) be a conditional speci�cation s.t. � is �nite

for all � � � in Ax and X be a family of variables. The system CL

f

(sp) is

seq-complete for sp and X.

Proof. The proof relies over the seq-completeness of CL

v

(sp). Indeed it is shown

by induction over the rules of CL

v

(sp), that CL

v

(sp) ` � � � implies that a �nite

� � � exists s.t. CL

f

(sp) ` � � �. Thus for every elementary formula � if A j=

D(X) � � for all A 2 PMod(sp), then CL

v

(sp) ` D(X

0

) � � for some X

0

� X,

because of the seq-completeness of CL

v

(sp), and hence CL

f

(sp) ` D(Y) � � for a

�nite Y � X

0

� X. Consider the inductive proof.

4.4. BUILDING LOGICS 185

The proper axioms and the axioms 1: : : 4 are common to both the systems and

have �nitary premises, so that the thesis trivially follows.

Assume that the premises of rule 5 have been deduced, i.e. that

CL

v

(sp) ` � [� � � and CL

v

(sp) ` �

�
 for every
 2 �, and show that

CL

f

(sp) ` �

00

� � for a �nite

�

00

� (� [[

2�

�

) [D(V ar(�)� V ar((� [[

2�

�

) � �):

Because of the inductive hypothesis, CL

f

(sp) ` �

0

[�

0

� �, for some �nite �

0

� �

and �

0

� �, and CL

f

(sp) ` �

0

�
 for every
 2 � and some �nite �

0

� �

.

Let �

0

be f

1

: : :

n

g; it is easy to check that applying n times the rule 5

f

the

i

can be replaced one at a time by �

0

i

and then, always by rule 5

f

, the super
uous

variables (i.e. variables of

i

already occurring in �

j

) can be removed so that

CL

f

(sp) ` (�

0

[[

i=1:::n

�

0

i

) [D(V ar(�

0

)� V ar((�

0

[[

i=1:::n

�

0

i

) � �) � �

and hence the thesis follows for

�

00

= (�

0

[[

i=1:::n

�

0

i

) [D(V ar(�

0

)� V ar((�

0

[[

i=1:::n

�

0

i

):

Assume that the premise of rule 6 has been deduced, i.e. that CL

v

(sp) ` � � �,

and show that there exists a �nite

� � fD(t

x

) j x 2 X

s

; s 2 Sg [f�[t

x

=x j x 2 X

s

; s 2 S] j � 2 �g

s.t. CL

f

(sp) ` � � �. Because of the inductive hypothesis, CL

f

(sp) ` �

0

� � for

some �nite �

0

� �. It is easy to check that applying n times the rule 5

f

, starting

from �

0

� � , the system CL

f

(sp) deduces

fD(t

x

1

) : : :D(t

x

n

)g [f
[t

x

1

=x

1

; : : : ; t

x

n

=x

n

] j
 2 �

0

g � �[t

x

1

=x

1

: : : t

x

n

=x

n

];

for fx

1

: : : x

n

g the variables of X appearing in �

0

� �.

Thus

CL

f

(sp) ` fD(t

x

1

) : : :D(t

x

n

)g [f
[t

x

=x j x 2 X] j
 2 �

0

g � �[t

x

=x j x 2 X]

and � = fD(t

x

1

) : : :D(t

x

n

)g [f
[t

x

=x j x 2 X] j
 2 �

0

g is a �nite subset

of fD(t

x

) j x 2 X

s

; s 2 Sg [f�[t

x

=x j x 2 X

s

; s 2 S] j � 2 �g, because

fx

1

: : : x

n

g � X, and �

0

� � is �nite.

Thus the only non-trivial step is the elimination rule.

Assume that CL

v

(sp) ` �

j

[�

j

� � for all j 2 J , that � = f�

j

j j 2 Jg is

inin
uent and show that CL

f

(sp) ` D(Y) [� � � for some � � [

j2J

�

j

and

186 CHAPTER 4. TRANSLATING TOOLS

Y � V ar([

j2J

�

j

). Because of the inductive hypothesis, CL

f

(sp) ` �

0

j

[�

0

j

� �

follows from CL

v

(sp) ` �

j

[�

j

� �, where both �

0

j

� �

j

and �

0

j

� �

j

are �nite,

for all j 2 J .

Moreover �

0

= f�

0

j

j j 2 Jg is inin
uent, because �

0

j

� �

j

implies

Sec(�

0

) � Sec(�). Thus, because of Lemma 4.4.21 for Val = EForm(�;X) and

R = ffD(t);D(t

0

); t=t

0

g j t; t

0

2 T

�

(Var)g, a �nite I � J exists s.t. f�

0

i

j i 2 Ig

is inin
uent and hence, because of Lemma 4.4.23, CL

f

(sp) ` D(Y) [� � � for

some � � [

i2I

�

0

i

and Y � V ar([

i2I

�

0

i

). As I and both �

0

i

and �

0

i

for every i 2 I

are �nite, also � and Y are �nite; moreover � � [

i2I

�

0

i

� [

j2J

�

0

j

� [

j2J

�

j

and

Y � V ar([

i2I

�

0

i

) � V ar([

j2J

�

j

) so that the thesis follows.

Functional Deduction

Since the skolemization axioms are �nitary, the translation along �

E

of the in-

ference system CL

f

(sp) yields a sound and complete system for every �nitary

higher-order speci�cation.

For the more general case of in�nitary higher-order speci�cations, a sound and

complete system can be obtained by translating along �

E

the system CL

v

(sp).

Def. 4.4.25 Let L

PAR

be the logic (Sign

PAR

;Sen

PAR

;Mod

PAR

; j=

PAR

;`

CL

),

where �`

CL

�

� i� CL

v

((�;�)) ` �, and L

PAR

Fin

be the logic

(Sign

PAR

;Sen

PAR

Fin

;Mod

PAR

; j=

PAR

;`

CLF

), where �`

CLF

�

� i� CL

f

((�;�)) `

�.

It is immediate to check that `

CL

and `

CLF

are entailment systems.

Prop. 4.4.26 The logicL

FPHO

= (Sign

PHO

;Sen

FPHO

;Mod

PHO

; j=

PAR

;`

CLF

�

E

)

is �nitary equationally complete, i.e. for every either strong or existential equality

� on variables X and every set � of �nitary conditional sentences if Aj=

PAR

 for

all
 2 � implies Aj=

PAR

D(X) � �, then �`

CLF

�

E

D(X

0

) � � for a �nite X

0

� X.

The logic L

PHO

= (Sign

PHO

;Sen

PHO

;Mod

PHO

; j=

PAR

;`

CL

�

E

) is equationally

complete, i.e. for every either strong or existential equality � on variables X and

every set � of �nitary conditional sentences if Aj=

PAR

 for all
 2 � implies

Aj=

PAR

D(X) � �, then �`

CL

�

E

D(X) � �.

Proof. Because of Prop. 4.4.4, that applies because �

E

is logical simulation, i.e.

a surjective map of institution.

4.5. BUILDING PROOF CALCULI 187

4.5 Building Proof Calculi

By applying the general result to the adjunction between entailment systems and

proof calculi, an informative proof system is attached to any entailment system

E, provided a proof calculus P and a translation of E into the entailment system

underlying P are given.

Prop. 4.5.1 Let PCalc denote the category of proof calculi with maps of proof

calculi as arrows and Ent denote the category of entailment systems with maps

of entailment systems as arrows.

Then the functor ()

]

:Ent ! PCalc, de�ned by

� (E)

]

= (Sign;Sen ;`; thm; Id

Set

; j), where thm is the functor sending each

theory to the set of its theorems, described in Section 2.2 of [63], and j is

the natural subfunctor inclusion thm � Sen and

� (�; �)

]

= (�; �; �

jthm

), where �

jthm

is the restriction of � to the theorem of

the domain, for every map (�; �),

is the right adjoint of the forgetful functor ent :PCalc ! Ent , de�ned by ent (P) =

(Sign;Sen;`) for every proof calculus

P = (Sign;Sen ;`; P;Pr; �) and ent (�; �;
) = (�; �) for every map (�; �;
).

Moreover the unity of the adjunction for a proof calculus

P = (Sign;Sen ;`; P;Pr; �) is the map (Id

Sign

; Id

Sen

; �), where � is now viewed

as a natural transformation �: proofs) thm.

Proof. Proposition 34 of [63].

Lemma 4.5.2 Let E = (Sign;Sen;`) be an entailment system, P

0

=

(Sign

0

;Sen

0

;`

0

; P

0

; P r

0

; �

0

) be a proof calculus and (�; �): E ! ent (P

0

) be a map

of entailment systems. Then the following diagram is a pullback

(E)

]

(�; �; �

jthm

)

-

(ent (P

0

))

]

6 6

(Id

Sign

; Id

Sen

; �) (Id

Sign

0

; Id

Sen

0

; �

0

)

P

(�; �;
)

-

P

0

where P = (Sign;Sen ;`; P;Pr; �), for P = proofs and Pr = Id

Set

, and �,
,

proofs are de�ned by the following pullback square.

188 CHAPTER 4. TRANSLATING TOOLS

thm

�

jthm

-

thm

0

� �

6 6

� �

0

�

proofs

-

proofs

0

� �

Proof. Since limits in functor categories are obtained by pointwise evaluation

(see e.g. [48], theorem 25.6) and Set has pullbacks, the pullback of the second

square exists and is de�ned pointwise. Therefore, since every �

0

�

(�;�)

is surjective,

each �

(�;�)

is also surjective.

5

Thus P is a proof calculus.

Moreover by de�nition (�; �;
) is a map from P into P

0

, because �

jthm

� � =

�

0

�

�
, and (Id

Sign

; Id

Sen

; �) is a map from P into (E)

]

, because Id

Sen

� � =

j

Id

Sign

��. And obviously the �rst diagram commutes; thus it is su�cient to show

that any other pair of natural transformations that makes the diagram commute

factorizes in a unique way through P.

Assume that (�; �; �

jthm

)�(; �;
) = (Id

Sign

0

; Id

Sen

0

; �

0

)�(

0

; �

0

;

0

), for some

P

00

and (; �;
):P

00

! (E)

]

, (

0

; �

0

;

0

):P

00

! P

0

.

Since pullbacks in functor categories are computed pointwise, the following

diagram is a pullback, because it is the translation of the diagram de�ning proofs,

, � along 	 (recalling that � �	 = 	

0

):

thm �	

�

jthm

	

-

thm

0

�	

0

6 6

�

	

�

0

	

0

proofs �	

	

-

proofs

0

�	

0

and hence, since �

jthm

	

�
 = �

0

	

0

�

0

there exists a unique

e

: proofs

00

) proofs � 	 s.t. both �

	

�

e

 =
 and

	

�

e

 =

0

. Thus it is suf-

�cient to show that (; �;

e

) is a map, i.e. that �

	

�

e

 = � � �

00

.

Since (; �;
) is a map, j

	

�
 = � � �

00

, i.e., j being the identity on thm,

 = � � �

00

; moreover, by de�nition of

e

,
 = �

	

�

e

, so that �

	

�

e

 = � � �

00

.

5

The property that the pullback of a surjective map in Set is also surjective is easy to check

directly, and follows also (by the axiom of choice) from the general fact that in any category

pullbacks of retracts are retracts, see e.g. [48], prop. 21.13

4.5. BUILDING PROOF CALCULI 189

Prop. 4.5.3 The category Ent admits generalization under the functors ()

+

and

ent .

Proof. By Theorem 4.2.1, that applies because of Prop. 4.5.1 and Lemma 4.5.2.

Remark. Note that, since maps of proof calculi do not take in account the

internal structure of the proofs, any two proof calculi having the same underlying

entailment system and the same functor proofs and natural transformation � are

isomorphic. Therefore the factorization of proofs by P = proofs and Pr = Id

Set

is arbitrary. In particular this factorization forgets the proof structure and hence

is not always the best possible choice, but it is the only canonical choice that can

be made in the general case.

Example 4.5.4 Consider again the example of the translation of many-sorted

into one-sorted logic from Example 4.4.5.

First the one-sorted entailment system ent(L

L

) is endowed with a proof struc-

ture to get a proof calculus PC

L

and then, using the map of entailment system

(�; �): ent (L

L

) ! ent (L

MS

), sketched in Example 4.4.5, a many sorted proof

calculus PC

MS

is built, by applying the above theorem.

Since the de�nition of the Birkho�'s entailment system is done by induction,

there is at hand a natural structure for proofs in the one-sorted framework. Con-

sider, indeed, as proof structures just the proofs trees. Thus Struct

L

is the cate-

gory of algebras on a tree signature (i.e. an algebraic signature including the sort

trees and operations to de�ne and deal with trees) and P

L

:Th

0

L

! Struct

L

associate with every theory (�;�) the free algebra of trees whose nodes are

labeled on Sen

L

(�) and s.t. each leaf is in � or is an equality axiom, i.e. is

one among t = t, t = t

0

� t

0

= t, t = t

0

^ t

0

= t

00

� t = t

00

, and

t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� f(t

1

; : : : ; t

n

) = f(t

0

1

; : : : ; t

0

n

), and for each node there

exists an inference rule among weakening, instantiation and modus ponens s.t.

the (label of the) node is the consequence and (the labels of) its sons are the

premises of this rule. It is easy to check that, by the freeness of P

L

(�;�), ev-

ery theories homomorphism in Th

0

L

induces a homomorphic translation of proof

trees, so that P

L

is a functor.

Moreover Pr

L

:Struct

L

! Set associates every algebra with its tree carrier

and �

L

: proofs

L

) Sen

L

sends every proof tree into its root. By de�nition of `

B

,

PC

L

= (Sign

L

;Sen

L

;`

B

; P

L

; P r

L

; �

L

) is a proof calculus.

Thus by the above theorem, PC

MS

= (Sign

MS

;Sen

MS

;`; P

MS

; P r

MS

; �

MS

),

where P

MS

sends every many-sorted theory T to the set of pairs consisting of a

theorem � of T and a proof tree t for �(T) s.t. the root of t is �(�), Pr

MS

is the

identity and �

MS

is the �rst projection.

190 CHAPTER 4. TRANSLATING TOOLS

Note that the proof trees in P

MS

(T) may be (and in general are) labeled on

one sorted sentences which are not the image of any many-sorted sentences.

4.6 Building Logical Systems

Putting together the constructions for proof calculi and for logics, a logical system

can be built on top of any institution, endowing the models of a logic with an

entire proof calculus inherited from another logic.

Prop. 4.6.1 Denote by LogSys the category of logical systems with maps of log-

ical systems as arrows and by Inst the category of institutions with maps of

institutions as arrows. Then the functor ()

[

: Inst ! LogSys, de�ned by

� (I)

[

= (Sign;Sen ;Mod;`

j=

; thm; Id

Set

; j), where �`

j=

� i� A j= � for ev-

ery model A s.t. A j=
 8
 2 �, thm is the functor sending each the-

ory to its theorems (validity closure), described in Section 2.2 of [63],

and j is the natural subfunctor inclusion thm � Sen for every institution

I = (Sign;Sen ;Mod; j=) and

� (�; �; �)

[

= (�; �; �; �

jthm

), where �

jthm

is the restriction of � to the theorem

of the domain, for every map (�; �; �),

is the right adjoint of the forgetful functor inst :LogSys ! Inst , de�ned by

inst(S) = (Sign;Sen ;Mod; j=) for every logical system

S = (Sign;Sen ;Mod;`; j=; P;Pr; �) and inst (�; �; �;
) = (�; �; �) for every map

(�; �; �;
).

Moreover the unity of the adjunction for a logical system

S = (Sign;Sen ;Mod;`; j=; P;Pr; �) is the map (Id

Sign

; Id

Sen

; Id

Mod

; �), where

� is now viewed as a natural transformation �: proofs) thm.

Proof. Propositions 37 and 31 of [63].

Lemma 4.6.2 Let I = (Sign;Sen ;Mod; j=) be an institution,

S

0

= (Sign

0

;Sen

0

;Mod

0

;`

0

; j=

0

; P

0

; P r

0

; �

0

) be a logical system and

(�; �; �):I ! inst(S

0

) be a map of institutions. Then the following diagram

is a pullback

4.6. BUILDING LOGICAL SYSTEMS 191

(I)

[

(�; �; �; �

jthm

)

-

(ent (S

0

))

[

6 6

(Id

Sign

; Id

Sen

; Id

Mod

; �) (Id

Sign

0

; Id

Sen

0

; Id

Mod

0

; �

0

)

S

(�; �; �;
)

-

S

0

where S = (Sign;Sen ;Mod;`; j=; P;Pr; �), for ` de�ned by � `

�

� i� both

�

�

(�) `

0

�(�;;)

�

�

(�) and � j=

�

�, P = proofs and Pr = Id

Set

, and �,
, proofs

are de�ned by the following pullback square.

thm

�

jthm

-

thm

0

� �

6 6

� �

0

�

proofs

-

proofs

0

� �

Proof. Because of Lemmas 4.5.2 and 4.4.2.

Theorem 4.6.3 The category Inst admits generalization under the functors ()

[

and inst.

Proof. By Theorem 4.2.1, that applies because of Prop. 4.6.1 and Lemma 4.6.2.

192 CHAPTER 4. TRANSLATING TOOLS

Chapter 5

Structured Speci�cation

Algebraic speci�cations are a tool to support the development of programs from

the informal de�nition of the main points of the program input/output behaviour

to a concrete description of a possible realization of this behaviour, through dif-

ferent levels of abstraction.

At each level two mechanisms are largely recognized to be essential: the ca-

pability of structuring speci�cations, because plain collections of data type and

function names together with large sets of axioms on them becomes quickly un-

readable and unmanageable as well as unstructured programs are, and the notion

of implementation of a speci�cation by another, that supports the reuse of speci-

�cation modules. In this context the word \implementation" suggests the use of

general functions to tailor already existing speci�cations to a new aim (like re-

naming or introduction of symbols, discarding of super
uous semantic elements or

quotient of carriers, as in the paradigmatic cases of the implementation of stacks

by arrays with pointer or of sets by lists) more than �xing decisional details and

specializing the speci�cation. In the practice the general operations used to re-

late speci�cations with their implementations are part of the language used to

structure speci�cations, so that the two aspects are strictly related. Whereas the

notion of implementation between two levels of abstraction mostly corresponds to

the intuitive idea of tuning the behaviour of the program to be speci�ed, for ex-

ample by introducing error messages, or modifying the structure of a sub-module,

for instance by requiring the submodule itself is obtained as a structured speci-

�cation; in this sense implementation becomes re�nement and, disregarding the

language di�erences due to the di�erent levels, can be simply represented as a

model inclusion; indeed �xing more details decreases the number of satisfactory

models.

Since the ultimate goal of any algebraic speci�cation is to produce an abstract

193

194 CHAPTER 5. STRUCTURED SPECIFICATION

description of the programs that correctly solve a problem (hopefully in such

a way that it is trivial to derive from the description one of those programs),

the semantics of a speci�cation is a class of models, but in order to be able to

reason and work on speci�cations, a (possibly �nite) syntactic description should

be adopted and the reasonable candidate is the language of the expressions on

the (names of the) structuring operations. In many structuring languages the

operations on (the model classes of) theories yield (a speci�cation that is denoted

also by) a theory, too; this leads to consider theories as semantics of the language

(with the
avor of a term algebra) and has originated a debate about what a

speci�cation is. Here it seems preferable to use the word \speci�cation" to denote

the semantics, following for example [95, 85], and \language expression" to denote

the syntactic counterpart.

Due to the proliferation of algebraic formalisms, the structuring languages

needs to be generalized and potentiated to deal with speci�cations expressed in

several frameworks. A �rst step in this direction was made by Sannella and

Tarlecki (see e.g. [84]) with the de�nition of institution independent languages to

structure speci�cations, this concept is crucial in proving properties of composed

speci�cations based on the structure of the speci�cations and disregarding the

actual formalism chosen to realize the arguments. But with the goal of reusing

the speci�cations, or also better having a library of speci�cations on the shelf ready

to be used, a stronger notion has to be introduced, that allows to put together

speci�cations de�ned in several institutions by means of the structuring operators.

Simulations provide a tool to translate speci�cations and hence make in some

sense immaterial the original framework, but to make precise the irrelevance of

these translations, the structuring language (or more precisely its interpretation)

has to behave uniformly on the di�erent institutions so that the simulations are

homomorphisms of this algebraic structure imposed on institutions.

In practice the di�erent levels of abstraction a program speci�cation goes

through are, or could be better, represented by di�erent algebraic formalisms and

it seems quite a technical restriction to have a notion of implementation restrained

to one institution. Simulations allow to generalize it to relate speci�cations de�ned

in di�erent institutions.

5.1 Simulations and modularity

The modularity principle requires the ability of \putting together" speci�cations,

by means of structuring operations; moreover, following the loose approach to

support stepwise re�nement, any speci�cation is a collection of its possible real-

5.1. SIMULATIONS AND MODULARITY 195

izations. Thus the simulations, which deal only with the basic objects of a frame

(i.e. signatures, sentences and models) have to be generalized to work on speci�-

cations, i.e. classes of models, and the compatibility with structuring operations

has to be investigated.

5.1.1 Basic Speci�cations

Informally a speci�cation is the collection of the admissible models of a data type;

formally it is completely determined by a class of algebras over a signature.

Def. 5.1.1 Let I = (Sign;Sen ;Mod; j=) be an institution. The speci�cation

functor, Spec

I

:Sign! Cat

Op

is the composition of Mod with the power functor,

i.e.

� Spec

I

(�) is the partially ordered category w.r.t. the class inclusion having

as objects }(jMod(�)j), for all � 2 jSignj;

� Spec

I

(�)(sp) = fMod(�)(A) j A 2 spg for all � 2 Sign(�

1

;�

2

) and all

sp 2 Spec

I

(�

2

).

It is worth noting that the above construction is a particular case of building

a new kind of objects starting from the ones explicitly given in the de�nition of

institution, like models, signatures and so on. In the next subsection the problem

will be faced from a more general point of view.

Having built a new kind of objects, a new component of the simulation dealing

with them has to be de�ned and is called from now on �

Spec

, possibly decorated.

As the construction of speci�cations relies on algebras, the modularity principle

requires that �

Spec

is analogously based on �

Mod

.

Def. 5.1.2 Let �:I ! I

0

be a simulation. The speci�cation simulation associated

with �, is the partially natural transformation

�

Spec

:Spec

I

0

� � ! Spec

I

de�ned by: if sp

0

= �

Mod

�

�1

� �

Mod

�

(sp

0

), then

�

Spec

�

(sp

0

) = �

Mod

�

(sp

0

), else �

Spec

�

(sp

0

) is unde�ned. If no ambiguity arises

�

Spec

�

will be denoted by �

Spec

or, simply, by �.

Remark.

� The condition sp

0

= �

Mod

�

�1

� �

Mod

�

(sp

0

) can be rephrased as

{ sp

0

� dom(�)

�

, that guarantees sp

0

� �

Mod

�

�1

� �

Mod

�

(sp

0

), and

196 CHAPTER 5. STRUCTURED SPECIFICATION

{ A

0

2 sp

0

and �

Mod

�

(A

0

) = �

Mod

�

(B

0

) imply B

0

2 sp

0

, that guarantees

sp

0

� �

Mod

�

�1

� �

Mod

�

(sp

0

).

� Since � is surjective on models, there exists exactly one sp

0

2 Spec

I

0

(�(�))

for each sp 2 Spec

I

(�) s.t. �

Spec

�

(sp

0

) = sp. Such an sp

0

consists of

fA

0

j �(A

0

) 2 spg. This formalizes the intuitive idea that an institution is

simulated by another if each of its speci�cations corresponds to one and only

one speci�cation of the other institution. It is also worth noting that the

partial-naturality of �

Spec

guarantees the naturality of its inverse (i.e. the

family of the inverse of any �

Spec

�

).

� The condition sp

0

= �

Mod

�

�1

� �

Mod

�

(sp

0

) required for the de�nedness of

�

Spec

�

(sp

0

) is su�cient to preserve the validity relation extended to speci�-

cations. Indeed, de�ning sp j= � i� A j= � for all A 2 sp, if sp

0

j=

0

�(�),

then �(sp

0

) j= �, because A

0

j=

0

�(�) implies �(A

0

) j= � for any A

0

s.t.

�(A

0

) is de�ned, by de�nition of simulation. But in general �

Mod

�

(sp

0

) j= �

does not imply sp

0

j=

0

�(�), because A

0

may exist s.t. A

0

6j=

0

�(�) and �(A

0

)

is not de�ned, so that the condition of validity preservation of simulations

does not apply. Of course the totality of �

Mod

�

over sp

0

, guaranteed by

sp

0

= �

Mod

�

�1

� �

Mod

�

(sp

0

), is not necessary in the general case, but in

many signi�cant cases is needed.

The composition of the speci�cation components associated with two compos-

able simulations is the speci�cation component associated with their composition.

Prop. 5.1.3 Let I = (Sign;Sen;Mod; j=), I

0

= (Sign

0

;Sen

0

;Mod

0

; j=

0

) and

I

00

= (Sign

00

;Sen

00

;Mod

00

; j=

00

) be institutions and �:I ! I

0

and �:I

0

! I

00

be simulations; then (� � �)

Spec

�

= �

Spec

�

� �

Spec

�

Sign

(�)

for every signature

� 2 jSignj.

Proof. It is trivial to see that if the domains of (� � �)

Spec

�

and of �

Spec

�

�

�

Spec

�

Sign

(�)

coincide, then (� � �)

Spec

�

= �

Spec

�

��

Spec

�

Sign

(�)

. Thus it is su�cient

to show that the two functions are de�ned on the same speci�cations.

Let sp

00

be an I

00

-speci�cation s.t. (� � �)

Spec

�

(sp

00

) is de�ned; then by

de�nition, � � �

Mod

�

�1

(� � �

Mod

�

(sp

00

)) = sp

00

, i.e. for every A

00

2 sp

00

both �

Mod

�

(�

Mod

�

Sign

(�)

(A

00

)) is de�ned and if �

Mod

�

(�

Mod

�

Sign

(�)

(A

00

)) =

�

Mod

�

(�

Mod

�

Sign

(�)

(B

00

)), then B

00

2 sp

00

. Then a fortiori for every A

00

2 sp

00

both

�

Mod

�

Sign

(�)

(A

00

) is de�ned and if �

Mod

�

Sign

(�)

(A

00

) = �

Mod

�

Sign

(�)

(B

00

), then B

00

2

sp

00

and hence �

Spec

�

Sign

(�)

is de�ned on sp

00

. Let sp

0

denote �

Spec

�

Sign

(�)

(sp

00

) =

fA

0

j A

0

= �

Mod

�

Sign

(�)

(A

00

); A

00

2 sp

00

g; since �

Mod

�

(�

Mod

�

Sign

(�)

(A

00

)) is de-

�ned for every A

00

2 sp

00

, �

Mod

�

(A

0

) is de�ned for every A

0

2 sp

0

and if

5.1. SIMULATIONS AND MODULARITY 197

�

Mod

�

(A

0

) = �

Mod

�

(B

0

) for A

0

= (�

Mod

�

Sign

(�)

(A

00

)) 2 sp

0

and some B

0

, then,

since �

Mod

�

Sign

(�)

is surjective, B

00

exists s.t. B

0

= �

Mod

�

Sign

(�)

(B

00

), so that

�

Mod

�

(�

Mod

�

Sign

(�)

(A

00

)) = �

Mod

�

(�

Mod

�

Sign

(�)

(B

00

)) and hence B

00

2 sp

00

, that

guarantees B

0

= �

Mod

�

Sign

(�)

(B

00

) 2 sp

0

. Therefore �

Spec

�

is de�ned on sp

0

.

Vice versa let �

Spec

�

Sign

(�)

be de�ned on sp

00

and �

Spec

�

be de�ned on

sp

0

= �

Spec

�

Sign

(�)

(sp

00

); then for every A

00

2 sp

00

, �

Mod

�

Sign

(�)

(A

00

) is de-

�ned and belongs to sp

0

so that �

Mod

�

(�

Mod

�

Sign

(�)

(A

00

)) is de�ned too. More-

over if �

Mod

�

(�

Mod

�

Sign

(�)

(A

00

)) = �

Mod

�

(�

Mod

�

Sign

(�)

(B

00

)) for A

00

2 sp

00

, then

�

Mod

�

Sign

(�)

(B

00

) 2 sp

0

, because �

Spec

�

is de�ned on sp

0

, and hence B

00

2 sp

00

,

because sp

0

= �

Spec

�

Sign

(�)

(sp

00

).

5.1.2 Structured Speci�cations

In order to de�ne operations on speci�cations in a way consistent with a frame

that allows the development of the di�erent modules (inputs of the operations)

in di�erent institutions, an institution independent metalanguage is needed (see

e.g. [84]).

The ST-institution independent metalanguage

The following metalanguage was introduced by Sannella and Tarlecki in [84] and

is a core of basic speci�cation building functions, carefully chosen to be able to

express the more common operations of speci�cation metalanguages, more than

a friendly syntax designed to be used by profanes.

The provided operations are the following:

<�; Ax> takes in input a signature � and a set of �-sentences Ax and yields the

class of �-models that satisfy the sentences in Ax. This is the basic kind of

speci�cation in any speci�cation building language and corresponds to the

capability of axiomatize at least the elementary data types.

[

i2I

sp

i

takes in input an I-indexed family of speci�cations sp

i

on the same signa-

ture � and yields the class of �-models that belong to each sp

i

, i.e. its model

class is the intersection of the model classes of the sp

i

. By this operation

the speci�cation of a collection of symbols can be developed independently

and then the wanted models are obtained as the intersection of the classes of

structures where one symbol is correctly speci�ed and the others are freely

realized.

derive from sp by � takes in input a speci�cation sp on a signature � and a

signature morphism �: �

0

! � and yields the class of �

0

-models that are the

198 CHAPTER 5. STRUCTURED SPECIFICATION

translation along � of some model of sp; working on standard signatures with

sorts and operation symbols, this operation allows to hide and/or rename

some sorts or operation symbols.

translate sp by � takes in input a speci�cation sp on a signature � and a sig-

nature morphism �: �! �

0

and yields the class of �

0

-models whose transla-

tions along � belong to sp. This operation corresponds to freely expanding

the models of a speci�cations by any possible interpretation of the extra

symbols in �

0

� � and is very powerful in combination with the sum op-

eration, because it allows to develop independently submodules, translate

them on the union of their signature and then, using the sum, keeping only

the models that restricted on any basic signature are good models of that

feature.

iso close sp takes in input a speci�cation sp on a signature � and yields the

class of �-models that are isomorphic to any of the models of sp. Note

that not only for a generic institution the validity is not required to be

isomorphism independent and hence basic speci�cations could be non closed

under isomorphism, but also the derive operation may cause the lack of

closure under isomorphism.

minimal sp w:r:t: � takes in input a speci�cation sp on a signature � and a

signature morphism �: �

0

! � and yields the class of �-models which are

minimal extensions of their �-reducts, i.e. of allM s.t. for any submodelN of

M (i.e. any domain N of a monomorphism with codomainM) ifMod(�)(N)

and Mod(�)(M) are isomorphic, then M and N are isomorphic too. In the

many sorted institution, for the particular case of �

0

the empty signature,

the above condition corresponds to the restriction of models to the ones

that do not have proper subalgebras, i.e. to the term-generated models. Un-

fortunately in both the partial and the non-strict framework this operation

does not capture the common notion of term-generated, because the no-

tion of subalgebra in those frames correspond to the categorical de�nition

of regular subobject instead of (plain) subobject.

abstract sp w:r:t: � via � takes in input a speci�cation sp on a signature �, a

signature morphism �: � ! �

0

and a set � of �

0

-sentences and yields the

class of �-models which are �-equivalent to any model of sp, where A and

B are �-equivalent, denoted by A �

�

B, i� for every � 2 �, every A

0

s.t.

Mod(�)(A

0

) = A and every B

0

s.t. Mod(�)(B

0

) = B:

A

0

j=

�

0

� () B

0

j=

�

0

�:

5.1. SIMULATIONS AND MODULARITY 199

The intuition behind the abstract operation is to enlarge the model class,

by regarding as models all the structures that behave as models w.r.t. a set

of sentences. The sentences are expressed on a larger signature, so that the

extra-symbols can be used as variables; in the particular case of standard

signature for �

0

the enrichment of � by some constant symbols, A

0

j=

�

0

�

for every A

0

s.t. Mod(�)(A

0

) = A corresponds to the classical notion of sat-

isfaction A j=

�

0

;V

� for every valuation V : �

0

��! A, but in non-standard

cases this operation allows to express strange and powerful requirements.

Abstracting from the example of the institution independent language of San-

nella and Tarlecki, it is not di�cult to intuit what is in general an institution

independent metalanguage. The sorts of this metalanguage may be both basic,

i.e. implicitly de�ned by the concept of institution, like the sort of signatures, of

models and so on, and derived, i.e. built from the basic ones using categorical and

set-theoretic concepts, like the speci�cations coming from the algebras applying

the power functor. Analogously the operations of this metalanguage are de�ned

only involving the usual categorical and set-theoretic language, so that the in-

terpretation of sorts and operations in any institution is standard. While it is

clear what a metalanguage based on categorical and set-theoretical language is,

the only way to de�ne it completely formally seems to be explicitly enumerating

which sorts and operations are allowed, that clearly is unnecessary restrictive;

thus the treatment here is limited to a semi-formal level and a scheme of con-

struction of a generic metalanguage is proposed, using as paradigmatic examples

the operations of [84].

A building scheme for an institution independent language

Let X be a set of variables

1

, which will be evaluated in jSignj for all institutions

I = (Sign;Sen ;Mod; j=).

� Starting from the elements of X a set MS of metasorts is built, only using

categorical and set-theoretical concepts; for example for any �

1

;�

2

2 X

consider the metasort Sign(�

1

;�

2

) of signature morphisms from �

1

into �

1

.

� A set MF of metaoperations of arity in MS is built, only using categorical

and set-theoretical concepts; for example for any � 2 X consider the meta-

operation mod:Sen(�) ! Spec(�), associating with any set of sentences

the class of its models.

1

Since in any known signi�cant example, the language is based only on metavariables of sort

signatures, here the variables are just a plain set for sake of simplicity; but there are no problems

using a family of variables sets indexed on the basic elements of institutions.

200 CHAPTER 5. STRUCTURED SPECIFICATION

� Given an institution I = (Sign;Sen;Mod; j=) and a valuation

V :X ! jSignj, with each symbol of MS and each operation symbol in

MF the corresponding standard interpretation is associated; for example

(Sign(�

1

;�

2

))

I;V

= Sign(V (�

1

); V (�

2

)) and

(mod)

I;V

:Sen(�)! Spec

I

(�) on Ax yields fA j A j= �; for all � 2 Axg.

For each new sort its translation along a generic simulation � has to be de�ned,

as in the case of speci�cations, where �

Spec

had been de�ned to translate them.

Analogously to the de�nition of the metalanguage, in order to de�ne the new

components of simulations, symbols to denote the simulation components dealing

with signatures, sentences and models, are introduced, that will be evaluated to

the components of the actual simulation, and used to formally de�ne the new

components of a generic simulation by means of the categorical and set-theoretic

metalanguage.

Simulation Independent Metalanguages

With the help of a metalanguage, institutions are provided of algebraic struc-

ture; thus conditions have to be investigated to guarantee that the simulations

are behaving like homomorphisms of this new structure. The formulation of the

condition of homomorphism is a bit complicated by the possible partiality and

the countervariance of the components (like for models and speci�cations).

In the sequel both the symbol for the component of metasort s of a simulation

and its evaluation on a concrete simulation will be denoted by �

s

.

Def. 5.1.4 Let �:I ! I

0

be a simulation and L = (MS;MF) be an institution

independent metalanguage on variables X.

Then � is an L-homomorphism i� for all valuations V :X ! jSignj and all

op 2 MF

s

1

:::s

n

;s

if a

i

is related by � to a

0

i

for i = 1 : : : n, then op

I;V

(a

1

; : : : ; a

n

)

is related by � to op

I

0

;��V

(a

0

1

; : : : ; a

0

n

), where two elements a and a

0

of the same

metasort s are related by � i� one of them is the image of the other one along �

s

.

Let L be an institution independent metalanguage and M be a class of sim-

ulations. Then L is M -independent i� � is an L-homomorphism for each � 2 M

and it is simulation independent i� � is an L-homomorphism for every simulation

�.

It is easy to check that L-homomorphisms are well behaving w.r.t. the com-

position of simulations, the union and the operational closure of languages, i.e.

that if both �:I ! I

0

and �:I

0

! I

00

are L-homomorphisms, then � � � is an

L-homomorphism, too, and if �:I ! I

0

is both an L

1

-homomorphism and an

5.1. SIMULATIONS AND MODULARITY 201

L

2

-homomorphism, then it is also an L

0

-homomorphism for both L

0

= L

1

[L

2

and L

0

the operational closure of L

i

. In particular, due to the preservation of

simulation independence by operational closure, by adding parameterization in

�-calculus style to a simulation independent language, a simulation independent

language is obtained, too.

Of course the notion of simulation independent metalanguage is the main

concept, because such a metalanguage guarantees a level of abstraction useful

for de�ning in hierarchical way speci�cations, without losing the possibility of

changing institution. Moreover most (all except minimal) of the institution inde-

pendent operations presented in [84] are, or can be generalized to become, really

simulation independent. However some quite usual operations are not simulation

independent, but are M -independent for a wide class of simulations satisfying

some extra-conditions.

The three institution independent operations sum, basic and minimal from

[84], are paradigmatic examples of operations which respectively are, can be gen-

eralized to become and intrinsically are not simulation independent.

The sum operation, is institution independent; indeed

[

i2I

�(sp

i

)

I;V

is the following class

sp = fA j for every i 2 I there is A

0

i

2 sp

i

s.t.A = �(A

0

i

)g;

Since only speci�cations closed w.r.t. the simulation are mapped and �(A

0

i

) =

A = �(A

0

j

) for every i; j 2 I, A

0

i

2 sp

j

for every i; j 2 I and hence A

0

i

2 [

i2I

sp

i

.

Therefore

sp = fA j 9A

0

2 [

i2I

sp

i

; s:t: A = �(A

0

)g

i.e.

[

i2I

�(sp

i

)

I;V

= �([

i2I

sp

i

I

0

;V ��

):

Also the translate is simulation independent, as it is easy (as well as boring)

to check directly.

On the other hand there are operations which are not simulation independent

only because their de�nition, as it stands, is not su�ciently powerful, but which

can be rephrased in a more general way; consider for example the basic operation;

then it is not simulation independent. Indeed the basic speci�cation <�; ;>

without axioms is the translation of the domain of the simulation, which is not,

in general, the model class of <�(�); �(;)>.

202 CHAPTER 5. STRUCTURED SPECIFICATION

More generally <�; Ax> is translation of the intersection of dom(�)

�

and

<�(�); �(Ax)>. To make the basic operation simulation independent there are

at least two possibilities (the di�erence between them is quite a matter of taste):

� using an extra variable of sort Spec(�), playing the role of the domain of

the simulation:

Models() in :Sen(�)� Spec(�)! Spec(�) is de�ned by

Models(Ax) insp = fA j A 2 sp; A j= � for all � 2 Axg;

� using an extra variable of sort Funct

P

[Mod(�) ! C], the partial functor

from Mod(�) into a generic category C, playing the role of the simulation

itself:

Models() in dom():Sen(�)� Funct

P

[Mod(�)! C]! Spec(�) is de�ned

by

Models(Ax) in dom(F) = fA j F (A) de�ned ; A j= � for all � 2 Axg:

In both cases < �; Ax > can be de�ned using the new operator:

< �; Ax >=Models(Ax) in Mod(�)

and

< �; Ax >= Models(Ax) in dom(Id

Mod(�)

):

Note that both generalizations are simulation independent. Indeed let � be a

simulation from I into I

0

; then it is easy to check that

Models(Ax) in �(sp)

is the class

�(fA j A 2 sp; A j=

0

�(�) for all � 2 Axg):

To show that also the second possibility is simulation independent, the component

of simulation for the new sort s = Funct

P

[Mod(�) ! C] has to be de�ned �rst.

By de�nition s

I;V

= [Mod(V (�)) ! C]

P

and s

I

0

;��V

= [Mod

0

(� � V (�)) ! C]

P

;

thus partial functors with domain Mod(V (�)) have to be translated into partial

functors with domain Mod

0

(� � V (�)).

Since �:Mod

0

(� � V (�)) ! Mod(V (�)) is a partial functor, too, the com-

position with � does the job and hence the new component �

s

is � �. From

5.1. SIMULATIONS AND MODULARITY 203

the de�nition of �

s

, the simulation independence of the second version of basic

speci�cations follows; indeed it is easy to check that

Models(Ax) in dom(F)

is the class

�(Models(�(Ax)) in dom(F � �)):

Note that in both cases the auxiliary elements used to de�ne the speci�cation

< �; Ax > in terms of the simulation independent operations Models() in and

Models() in dom(), i.e. Mod(�) and Id

Mod(�)

, are not expressions of the meta-

language and indeed neither is simulation independent.

It is worth noting that the basic operation as de�ned in [84], isM -independent,

forM the class of logical simulations, i.e. of surjective maps of institutions, chang-

ing, as it seems natural for such a class, the de�nition of the simulation component

dealing with theories. Indeed logical maps translate any I-theory th into a I

0

-

theory th

0

containing not only the translation of the axioms of th but also the

axioms describing the domain of the simulation; using this translation is immedi-

ate to check the homomorphism condition.

The same techniques described to make the basic operation simulation inde-

pendent can be applied to the abstract, derive and isoclose operations.

Finally the operations whose de�nition largely involves categorical properties

of their arguments are not, nor can be made, simulation independent, because a

generic simulation does not preserve categorical properties. Thus these operations

can be at most M -independent for a suitable class M of simulations preserving

the needed properties and hence have to be dropped when building a simulation

independent language. Consider, for example, as a generalization of the reachable

operation of ASL, the minimal operation of [84]. It takes in input a speci�cation

sp

1

on a signature �

1

together with a signature morphism � from � into �

1

and

yields in output the subclass of sp

1

of �-minimal models, where a model A is

�-minimal i� it contains (to within isomorphism) no proper submodels from sp

1

with an isomorphic �-reduct, i.e. i� any monomorphism m:B ! A, s.t. its �-

reduct Mod(�)(m):Mod(�)(B) ! Mod(�)(A) is an isomorphism in Mod(�), is

an isomorphism in Mod(�

1

), too. Then to have that minimal is preserved by

a simulation, both monomorphisms and isomorphisms have to be preserved and

re
ected, which is not true in the general case. Therefore minimal is not (nor can

be made) simulation independent.

204 CHAPTER 5. STRUCTURED SPECIFICATION

5.2 Implementation

In the literature a concept of implementation is largely used in di�erent contexts,

which is based on the idea of re�nement. So a speci�cation sp

2

implements a spec-

i�cations sp

1

, denoted by sp

1

; sp

2

, i� in sp

2

more details have been �xed and

hence sp

2

has less models than sp

1

, i.e. sp

2

� sp

1

(see e.g. [86, 95]); this concept

may also be extended to functions on speci�cations and hence to parameterized

speci�cations. For an introductive exposition of the subject see e.g. section 8.1

of [95].

Def. 5.2.1

� A speci�cation sp

2

implements a speci�cations sp

1

, denoted by sp

1

; sp

2

,

i� both sp

1

and sp

2

are on the same signature and sp

2

� sp

1

.

� Let f; g:Spec

I

! Spec

I

be functions on speci�cations; then f implements

g, denoted by g ; f i� g(sp); f(sp) for all speci�cations sp.

� Let p

1

= �X : �

Par

:sp

1

() and p

2

= �X : �

Par

:sp

2

() be terms of the same

sort on some (institution independent) metalanguage; then p

2

implements

p

1

, denoted by p

1

; p

2

, i� sp

1

[sp]; sp

2

[sp] for all speci�cations sp.

Prop. 5.2.2 Let sp, sp

1

and sp

2

be speci�cations and p

1

, p

2

be parameterized

speci�cations in a metalanguage whose speci�cation-building operations are mono-

tonic w.r.t. the set-inclusion.

1. If sp ; sp

1

and sp

1

; sp

2

, then sp ; sp

2

;

2. If sp ; sp

1

, p

1

; p

2

and sp is an actual parameter of p

1

(i.e. p

1

(sp) is

de�ned), then p

1

(sp); p

2

(sp

1

).

Proof. See fact. 8.1.1 of [95].

5.2.1 Simulations and the third dimension of implemen-

tation

Since �

Spec

is monotonic w.r.t. the set inclusion for all simulations �, the imple-

mentation relation is translated by simulation from the old to the new frame.

Moreover it is also preserved in the opposite direction, because the de�nedness of

�

Spec

(sp

0

) implies sp

0

= �

Spec

�1

� �

Spec

(sp

0

). Thus the restriction of the old imple-

mentation relation to the domain of �

Spec

coincides with the new implementation

relation.

5.2. IMPLEMENTATION 205

Prop. 5.2.3 Let �:I ! I

0

be a simulation, sp

0

1

and sp

0

2

belong to

Spec

I

0

(�(�)) s.t. both �(sp

0

1

) and �(sp

0

2

) are de�ned; then sp

0

1

; sp

0

2

i�

�

Spec

(sp

0

1

); �

Spec

(sp

0

2

).

Proof. If sp

0

1

; sp

0

2

, then sp

0

2

� sp

0

1

and hence

�

Spec

(sp

0

2

) = �

Mod

(sp

0

2

) � �

Mod

(sp

0

1

) = �

Spec

(sp

0

1

)

i.e. �

Spec

(sp

0

1

); �

Spec

(sp

0

2

).

Vice versa if �

Spec

(sp

0

1

) ; �

Spec

(sp

0

2

), then �

Mod

�1

(�

Spec

(sp

0

2

)) �

�

Mod

�1

(�

Spec

(sp

0

1

)), i.e., by the condition of de�nedness of �

Spec

,

sp

0

2

= �

Mod

�1

(�

Spec

(sp

0

2

)) � �

Mod

�1

(�

Spec

(sp

0

1

)) = sp

0

1

and hence sp

0

1

; sp

0

2

.

Using simulations the concept of implementation is generalized, involving mod-

els in two institutions.

Def. 5.2.4 Let �:I ! I

0

be a simulation, sp 2 Spec

I

(�) and sp

0

2 Spec

I

0

(�(�));

then sp is �-implemented by sp

0

, denoted by sp

�

;sp

0

, i� sp

0

� dom(�) and

�

Mod

(sp

0

) � sp.

Let f :Spec

I

(�

1

) ! Spec

I

(�

2

) and f

0

:Spec

I

0

(�(�

1

)) ! Spec

I

0

(�(�

2

))

be functions; then f is �-implemented by f

0

, denoted by f

�

;f

0

, i�

f(sp)

�

;f

0

(�

Mod

�1

(sp)) for all sp 2 Spec

I

(�).

Let p

1

= �X : �

Par

:sp

1

() and p

2

= �X : �

Par

:sp

2

() be terms of the same

sort on some institution independent metalanguage; then p

1

is �-implemented by

p

2

, denoted by p

1

�

;p

2

, i� p

1

I;V

�

;p

2

I

0

;��V

for all valuations V for the free variables

of p

1

and p

2

in I.

Note that in the particular case that I = I

0

and � is the identity,

�

; coincides

with ; and hence every result for

�

; applies also to ;.

The vertical and horizontal composability for the usual implementation rela-

tion can be generalized to deal with simulations as follows.

Prop. 5.2.5 Let I, I

0

and I

00

be institutions, �:I ! I

0

and �:I

0

! I

00

be

simulations. The following conditions hold:

1. sp

�

;sp

0

and sp

0

�

;sp

00

implies sp

���

;sp

00

for all sp 2 Spec

I

(�), all sp

0

2

Spec

I

0

(�(�)) and all sp

00

2 Spec

I

00

(�(�(�))).

2. sp

�

;sp

0

and f

�

;f

0

implies f(sp)

�

;f

0

(sp

0

) for all sp 2 Spec

I

(�

1

), all

sp

0

2 Spec

I

0

(�(�

1

)) all monotonic f :Spec

I

(�

1

) ! Spec

I

(�

2

) and

f

0

:Spec

I

0

(�(�

1

))! Spec

I

0

(�(�

2

)).

206 CHAPTER 5. STRUCTURED SPECIFICATION

Proof.

1. Since sp

0

� dom(�) and �

Mod

(sp

00

) � sp

0

, sp

00

� dom(� � �). Moreover if

sp

0

�

;sp

00

, then �

Mod

�

Sign

(�)

(sp

00

) � sp

0

, and if sp

�

;sp

0

, then �

Mod

�

(sp

0

) � sp,

so that �

Mod

�

(�

Mod

�

Sign

(�)

(sp

00

)) � sp, i.e. sp

���

;sp

00

.

2. By de�nition of

�

;, it is su�cient to show that �

Mod

�

(f

0

(sp

0

)) � f(sp).

By de�nition of

�

;, f

�

;f

0

implies that f

0

(�

Mod

�

�1

(sp

1

))

�

;f(sp

1

), so that

�

Mod

�

(f

0

(�

Mod

�

�1

(sp

1

)) � f(sp

1

) for all sp

1

2 Spec

I

(�

1

); thus, for

sp

1

= �

Mod

�

(sp

0

), �

Mod

�

(f

0

(�

Mod

�

�1

(�

Mod

�

(sp

0

))) � f(�

Mod

�

(sp

0

)). Since

sp

�

;sp

0

, sp

0

� dom(�) and hence sp

0

� �

Mod

�

�1

(�

Mod

�

(sp

0

)), so that

f

0

(sp

0

) � f

0

(�

Mod

�

�1

(�

Mod

�

(sp

0

))), because f

0

is monotonic. Finally from

sp

�

;sp

0

, i.e. �

Mod

�

(sp

0

) � sp, and from the monotony of f , the thesis fol-

lows.

Thus a more suggestive diagram than the usual one can be proposed, where

every path is an implementation (possibly via simulation) arrow and three dimen-

sions are present: horizontally and vertically moving within an institution, while

along the third dimension di�erent institutions are connected.

sp

0

2

p

0

2

p

0

2

(sp

0

2

)

� � �

sp

2

p

2

p

2

(sp

2

)

sp

0

1

p

0

1

p

0

1

(sp

0

1

)

� � �

sp

1

p

1

p

1

(sp

1

)

It is worth noting the di�erence between this approach and the one in [16].

Indeed here implementation is de�ned as a relation between speci�cations in di�er-

ent institutions, while in [16] an institution is proposed whose sentences represent

the implementation inside a basic institution.

Chapter 6

Conclusions and Future Work

In this thesis two main streams are coexisting: on one side, the problem of the

translation of tools and results from one formalism into another one is approached,

together with the analysis of the nature of relationships between formalisms; on

the other side some results and tools in concrete algebraic frameworks are pre-

sented, in particular some classical logical and categorical notions for partial con-

ditional (higher-order) speci�cations and for non-strict don't care algebras.

This duality of levels corresponds to a �rm believe that all studies should be

developed at a level as abstract as possible and that, from this point of view,

the theory of institutions (general logic) is a powerful instrument to investigate

the common ground behind algebraic speci�cation formalisms and to relate and

compare speci�cations de�ned in di�erent frameworks. However details have to

be �xed in order to produce concrete results, like de�ning inference systems or

characterizing necessary and su�cient conditions for an initial object to exist.

Accordingly with that principle, also future work continuating this thesis can be

split in \at institution level" and \at ground algebraic level".

As institution morphisms capture the idea of building richer and more com-

plex institutions assembling simpler one by means of categorical constructions,

it would be interesting to analyze whether these constructions are compatible

with the notion of implementation represented by simulations. In other words, if

an institution I is obtained by applying an operation to some basic institutions

I

1

: : :I

n

, that are simulated by some others I

0

1

: : :I

0

n

, then does the result of the

same operation on I

0

1

: : :I

0

n

simulates I? This problem is the paraphrase of the

vertical and horizontal composition for speci�cation languages, where institutions

correspond to speci�cations and simulations to implementation. If conditions can

be found in order to have a positive answer, then a �rst step is taken in the

direction of having a modular approach to the de�nition of complex institutions.

207

208 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Much in the same direction, an analysis of the abstract operations needed to

build institutions and possibly a collection of such operations on the shelf to-

gether with the properties that are preserved by them, would be useful and would

clarify the expressive power of the institution formalism. In [30], starting from

some concrete examples in concurrency, a preliminary attempt in this direction is

proposed. But another interesting case could be, for example, the construction of

the observational institution, where satisfaction is substituted with observational

validity w.r.t. a set of experiments.

Until now simulations have been used to compare and translate results from

the classical algebraic speci�cations �eld; it should be investigated whether sim-

ulations are also able to deal with more exotic problems, like the preservation

of properties of concurrent systems. In order to explore this possibility the �rst

problem is the correct de�nition of the involved institutions in a way that the con-

current paradigms under investigation can be naturally seen as such institutions

and that the interesting properties play the role of sentences. Since in concurrency

theory it is not uncommon to prove that a property is satis�ed, or to add a feature

to a system by some kind of translation (consider just as an example [65]), the

concrete example to start from are at hand.

Another non-classical argument to test the power of simulation is the problem

of the implementation of concrete data types, i.e. of individual algebras. Roughly

speaking the idea is to realize a data type A on a signature � using an (already

de�ned) algebra A

0

on some signature �

0

, by representing each operation of � by

a derived (term) operation on �

0

and by an abstraction function from A

0

into A.

The abstraction function is surjective and partial, because elements of A

0

may

exist that are not representing any object of A, and behaves like some sort of

homomorphism (w.r.t. the higher-level signature �) on its domain. Depending

on the rigorous de�nition of the informal idea of \homomorphism-like", di�erent

notion of implementation are captured. In the third chapter a correspondence

between this notion of implementation and simulation is informally sketched (for

the variant where the abstraction function is, in partial algebra terminology, a

strong homomorphism), but it would be worth to investigate whether other vari-

ations of the concept of abstraction can be rephrased in institution language and

to enrich the treatment using the sentence components (that in the third chapter

are empty) of the institutions representing the lower-level and the higher-level

algebra to preserve semantic properties, in order to re�ne the idea of \correct

representation" of a concrete data type by another one.

An easier task is the study of the class of simulations preserving some inter-

esting categorical properties, like the existence of terminal objects, (co)limits and

209

such, as has been done for initiality developing the notion of categorical simula-

tion. Analogously the analysis of the category of institutions with simulations as

arrows should be developed.

On a more concrete side, the relationships between the partial paradigm and

the treatment of errors and exception handling should be investigated and possibly

lead to the de�nition of an integrated algebraic framework where non-termination,

incompletely de�ned functions, error recovery and \true" non-strictness are avail-

able at a time, keeping distinct the logically di�erent kinds of partiality/non-

strictness.

210 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] E. Astesiano and M. Cerioli. On the existence of initial models for partial

(higher-order) conditional speci�cations. In Proceedings of TAPSOFT'89,

number 351 in Lecture Notes in Computer Science, pages 74{88, Berlin, 1989.

Springer Verlag.

[2] E. Astesiano and M. Cerioli. Commuting between institutions via simulation.

Technical Report FMG 2, Department of Mathematics, University of Genoa,

1990.

[3] E. Astesiano and M. Cerioli. Partial higher-order speci�cations. In A. Tar-

lecki, editor, Proceedings of Mathematical Foundation of Computer Science

'91, number 520 in Lecture Notes in Computer Science, pages 74{84, Berlin,

1991. Springer Verlag.

[4] E. Astesiano and M. Cerioli. Non-strict don't care algebras and speci�cations.

In S. Abramsky and T.S.E. Maibaum, editors, Proceedings of TAPSOFT'91,

number 493 in Lecture Notes in Computer Science, pages 121{142, Berlin,

1992. Springer Verlag.

[5] E. Astesiano and M. Cerioli. Non-strict don't care algebras and speci�cations.

1992. Submitted.

[6] E. Astesiano and M. Cerioli. Partial higher-order speci�cations. Fundamenta

informaticae, 16(2):101{126, 1992.

[7] E. Astesiano and M. Cerioli. Free objects and equational deduction for partial

conditional speci�cations. Theoretical Computer Science, 1993. To appear.

[8] E. Astesiano and M. Cerioli. Relationships between logical frames. In Recent

Trends in Data Type Speci�cation, number 655 in Lecture Notes in Computer

Science, pages 126{143, Berlin, 1993. Springer Verlag.

211

212 BIBLIOGRAPHY

[9] E. Astesiano, A. Giovini, G. Reggio, and E. Zucca. An integrated alge-

braic approach to the speci�cation of data types, processes and objects. In

M. Wirsing and J.A. Bergstra, editors, Algebraic Methods: Theory, Tool and

Applications, number 394 in Lecture Notes in Computer Science, pages 91{

116, Berlin, 1989. Springer Verlag.

[10] E. Astesiano, G.F. Mascari, G. Reggio, and M. Wirsing. On the parame-

terized algebraic speci�cation of concurrent systems. In H. Ehrig, C. Floyd,

M. Nivat, and J. Thatcher, editors, Proc. TAPSOFT'85, Vol. 1, number 185

in Lecture Notes in Computer Science, pages 342{358, Berlin, 1985. Springer

Verlag.

[11] E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini, P. Inver-

ardi, E. Karlsen, F. Mazzanti, J. Storbank Pedersen, G. Reggio, and E. Zucca.

The draft formal de�nition of Ada. Technical report, CEC MAP project: The

Draft Formal De�nition of ANSI/STD 1815A Ada, 1986.

[12] E. Astesiano and G. Reggio. An outline of the SMoLCS approach. In M. Ven-

turini Zilli, editor, Mathematical Models for the Semantics of Parallelism,

Proc. Advanced School on Mathematical Models of Parallelism, number 280

in Lecture Notes in Computer Science, pages 81{113, Berlin, 1987. Springer

Verlag.

[13] E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In H. Ehrig,

R. Kowalski, G. Levi, and U. Montanari, editors, Proc. TAPSOFT'87, Vol.

1, number 249 in Lecture Notes in Computer Science, pages 169{201, Berlin,

1987. Springer Verlag.

[14] E. Astesiano and G. Reggio. A structural approach to the formal modelization

and speci�cation of concurrent systems. Technical Report 1, Dipartimento di

Informatica e Scienze dell'Informazione, Universit�a di Genova, Genova, Italy,

1992.

[15] J. Barwise. Axioms for abstract model theory. Annals of Mathematical Logic,

7:221{165, 1974.

[16] C. Beierle and A. Voss. Viewing implementations as an institution. In D.H.

Pitt, A. Poign�e, and D.E. Rydeheard, editors, Proceedings of Category Theory

and Computer Science, number 283 in Lecture Notes in Computer Science,

pages 196{218, Berlin, 1987. Springer Verlag.

BIBLIOGRAPHY 213

[17] J.A. Bergstra and J.V. Tucker. The inescapable stack: an exercize in algebraic

speci�cation with total functions. Technical Report P8804, University of

Amsterdam; Programming Research Group, 1988.

[18] G. Bernot, M. Bidoit, and C. Choppy. Abstract data types with exception

handling: an initial approach based on the distinction between exceptions

and errors. Theoretical Computer Science, 46(1):13{45, 1986.

[19] G. Birkho�. On the structure of abstract algebras. In Proceedings of Cam-

bridge Philosophiae Society, volume 31, pages 433{154, 1935.

[20] E. B�orger. Computability, Complexity, Logic. Number 128 in Studies in Logic

and the Foundations of Mathematics. North Holland, Amsterdam, 1989.

[21] M. Broy, C. Pair, and M. Wirsing. A systematic study of models of abstract

data types. Theoretical Computer Science, 33:137{174, 1984.

[22] M. Broy and M. Wirsing. Partial abstract types. Acta Informatica, 18, 1982.

[23] M. Broy and M. Wirsing. On the algebraic speci�cations of �nitary in�nite

communicating sequential processes. In Proceedings of IFIP TC2 Working

Conference on Formal Description of Programming Concepts II, Amsterdam,

1983. North Holland.

[24] M. Broy and M. Wirsing. Generalized heterogeneous algebras and partial

interpretations. In Proceedings of CAAP'83, number 159 in Lecture Notes in

Computer Science, pages 1{34, Berlin, 1984. Springer Verlag.

[25] M. Broy and M. Wirsing. Ultra-loose algebraic speci�cations. Bulletin

EATCS, 35:117{128, 1988.

[26] P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.

Akademie Verlag, Berlin, 1986.

[27] R.M. Burstall and J. A. Goguen. Putting theories together to make speci�ca-

tions. In Proceedings of the 5th International Joint Conference on Arti�cial

Intelligence, pages 1045{1058, Cambridge, 1977.

[28] R.M. Burstall and J. A. Goguen. The semantics of clear, a speci�cation

language. In D. Bj�rner, editor, Proceedings of the 1979 Copenhagen Winter

School on Abstract Software Speci�cation, number 86 in Lecture Notes in

Computer Science, pages 292{332, Berlin, 1980. Springer Verlag.

214 BIBLIOGRAPHY

[29] M. Cerioli. A sound and equationally-complete deduction system for partial

conditional (higher order) types. In Proceedings of the 3rd Italian Conference

of Theoretical Computer Science. World Scienti�c, 1989.

[30] M. Cerioli and G. Reggio. Institutions for very abstract speci�cations. Draft,

presented at the 9th ADT Workshop, 1992.

[31] G. Costa and G. Reggio. Abstract dynamic data types: a temporal logic

approach. In A. Tarlecki, editor, Proceedings of Mathematical Foundation of

Computer Science '91, number 520 in Lecture Notes in Computer Science,

pages 103{112, Berlin, 1991. Springer Verlag.

[32] R. Diaconescu, J.A. Goguen, and P. Stefaneas. Logical support for modular-

ization. Draft, 1991.

[33] H. Erigh, M. Baldamus, and F. Cornelius. Theory of algebraic module spec-

i�cation including behavioural semantics, constraints and aspects of general-

ized morphisms. In Proceedings of 2nd International Conference on Algebraic

Methodology and Software Technology, pages 101{125, Iowa City, Iowa, USA,

1991.

[34] H. Erigh and B. Mahr. Fundamentals of Algebraic Speci�cations 1: Equa-

tions and Initial semantics, volume 6 of EATCS Monographs on Theoretical

Computer Science. Springer Verlag, New-York, 1985.

[35] S. Feferman. A new approach to abstract data types, i informal development.

Mathematical Structures in Computer Science, 2:193{229, 1992.

[36] J. Fiadeiro and A. Sernadas. Structuring theories on consequence. In D. San-

nella and A. Tarlecki, editors, Recent Trends in Data Type Speci�cation, num-

ber 332 in Lecture Notes in Computer Science, pages 44{72, Berlin, 1987.

Springer Verlag.

[37] M. Gogolla. Partially ordered sorts in algebraic speci�cations. In Proceedings

CAAP'83, number 159 in Lecture Notes in Computer Science, pages 139{153,

Berlin, 1984. Springer Verlag.

[38] M. Gogolla. On parametric algebraic speci�cations with clean error handling.

In Proceedings TAPSOFT'87, number 249 in Lecture Notes in Computer

Science, pages 81{95, Berlin, 1987. Springer Verlag.

BIBLIOGRAPHY 215

[39] J. Goguen and J. Meseguer. Order-sorted algebra i: Equational deduction for

multiple inheritance, overloading, exceptions and partial operations. Techni-

cal Report SRI-CSL-89-10, Computer Science Lab., SRI International, 1989.

[40] J. Goguen and J. Meseguer. Order-sorted algebra i: Equational deduction

for multiple inheritance, overloading, exceptions and partial operations. The-

oretical Computer Science, 1992. To appear.

[41] J. Goguen, J. Thatcher, and Wagner. An initial algebra approach to the

speci�cation, correctness, and implementation of abstract data types. In

R. Yeh, editor, Current Trends in Programming Methodology, pages 80{149.

Prentice-Hall, 1976.

[42] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Abstract data types as

an initial algebra and correctness of data representation. In Proceedings of

Conference on Computer Graphics, Pattern Recognition and Data Structure,

pages 89{93, 1976.

[43] J.A. Goguen. Abstract errors for abstract data types. In J. Dennis, editor,

Proceedings of Conference on Formal Description of Programming Concepts,

Amsterdam, 1977. North Holland.

[44] J.A. Goguen and R.M. Burstall. Introducing institutions. In E. Clarke and

D. Kozen, editors, Logics of Programs Workshop, number 164 in Lecture

Notes in Computer Science, pages 221{256, Berlin, 1984. Springer Verlag.

[45] J.A. Goguen and R.M. Burstall. A study in the foundations of program-

ming methodology: Speci�cations, institutions, charter and parchments. In

D. Pitt, S. Abramsky, A. Poign�e, and D. Rydehard, editors, Proceedings of

Summer Workshop on Category Theory and Computer Programming, num-

ber 240 in Lecture Notes in Computer Science, pages 313{333, Berlin, 1986.

Springer Verlag.

[46] J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for

speci�cation and programming. Journal of the Association for Computing

Machinery, 39(1):95{146, 1992.

[47] J.A. Goguen and R. Diaconescu. A survey of order sorted algebra. Draft,

1992.

[48] H. Herrlich and G.E. Strecker. Category Theory, an Introduction. Helder-

mann Verlag, Berlin, 1979.

216 BIBLIOGRAPHY

[49] C.A.R. Hoare. Proof of correctness of data representation. Acta Informatica,

1:271{281, 1972.

[50] G. Huet and D. Oppen. Equations and rewrite rules: a survey. In Formal

Language Theory: Perspectives and Open Problems. New York, 1980.

[51] H.J. Keisler. Model Theory for In�nitary Logic. North Holland, New-York,

1971.

[52] F.W. Lawvere. Adjointness in foundations. Dialectica, 23:281{296, 1969.

[53] F.W. Lawvere. Equality in hyperdoctrine and comprehension schema as an

adjoint functor. In Proceedings of American Mathematical Society, pages

1{14, 1970.

[54] S. MacLane. Categories for the Working Mathematician. Springer Verlag,

1971.

[55] B. Mahr and J.A. Makowsky. An axiomatic approach to semantics of spec-

i�cation languages. In Proceedings of the 6th GI-Conference on Theoretical

Computer Science, number 145 in Lecture Notes in Computer Science, Berlin,

1984. Springer Verlag.

[56] B. Mahr and J.A. Makowsky. Characterizing speci�cation languages which

admit initial semantics. In Proceedings CAAP'83, number 159 in Lecture

Notes in Computer Science, pages 300{316, Berlin, 1984. Springer Verlag.

[57] B. Mahr and J.A. Makowsky. Characterizing speci�cation languages which

admit initial semantics. Theoretical Computer Science, 31:49{59, 1984.

[58] V. Manca and A. Salibra. Soundness and completeness of the birkho� equa-

tional calculus for many-sorted algebras with possibly empty carriers. Theo-

retical Computer Science, 94(1):101{124, 1992.

[59] V. Manca, A. Salibra, and G. Scollo. Equational type logic. Theoretical

Computer Science, 77:131{159, 1990. Special Issue dedicated to AMAST'89.

[60] V. Manca, A. Salibra, and G. Scollo. On the expressiveness of equational type

logic. In C.M.I. Rattray and R.G. Clark, editors, The Uni�ed Computation

Laboratory. Oxford University Press, 1992.

[61] B. Mayoh. Galleries and institutions. Technical Report DAIMI PB - 191,

AArhus University, 1985.

BIBLIOGRAPHY 217

[62] K. Meinke. Universal algebra in higher types. Theoretical Computer Science,

100(2):385{417, 1992.

[63] J. Meseguer. General logics. In Logic Colloquium '87, pages 275{329, Ams-

terdam, 1989. North Holland.

[64] J. Meseguer and J. Goguen. Initiality, induction and computability. In M. Ni-

vat and J. Reynolds, editors, Algebraic Methods in Semantics, pages 459{540.

Cambridge, 1985.

[65] R. Milner. Interpreting one concurrent calculus in another. Theoretical Com-

puter Science, 75:3{13, 1990.

[66] B. M�oller. Algebraic speci�cation with higher-order operations. In Pro-

ceedings of IFIP TC 2 Working Conference on Program Speci�cation and

Transformation, Amsterdam, 1987. North Holland.

[67] B. M�oller, A. Tarlecki, and M. Wirsing. Algebraic speci�cation with built-in

domain constructions. In M. Dauchet and M. Nivat, editors, Proceedings of

CAAP'88, number 299 in Lecture Notes in Computer Science, pages 132{148,

Berlin, 1988. Springer Verlag.

[68] P. Mosses. Uni�ed algebras and institutions. In Proceedings of 4th Annual

IEEE Symposium on Logic in Computer Science, pages 304{312, 1989.

[69] P.D Mosses. Uni�ed algebras and modules. Technical Report DAIMI PB-266,

CS Dept., Aarhus University, 1988.

[70] M. Navarro, P. Nivela, F. Orejas, and A. Sanchez. On translating partial to

total speci�cations with applications to theorem proving for partial speci�-

cations. Technical Report LSI-89-21, Universitat Politecnica de Catalunya,

1990.

[71] P. Padawitz and M. Wirsing. Completeness of many-sorted equational logic

revisited. Bulletin EATCS, 24, 1984.

[72] D.L. Parnas. A technique for software module speci�cation. Communications

of A.C.M., 15, 1972.

[73] A. Poign�e. Another look at parametrization using algebraic speci�cations

with subsort. In M.P. Chytil and V. Koubek, editors, Proceeding of Mathe-

matical Foundations of Computer Science'84, number 176 in Lecture Notes

in Computer Science, pages 471{479, Berlin, 1984. Springer Verlag.

218 BIBLIOGRAPHY

[74] A. Poign�e. Partial algebras, subsorting, and dependent types: Prerequisites

of error handling in algebraic speci�cations. In Recent Trends in Data Type

Speci�cation, number 332 in Lecture Notes in Computer Science, pages 208{

234, Berlin, 1987. Springer Verlag.

[75] A. Poign�e. Foundations are rich institutions, but institutions are poor foun-

dations. 1988.

[76] A. Poign�e. Foundations are rich institutions, but institutions are poor foun-

dations. In H. Ehrig, H. Herrlich, Kreowski H. J., and G. Preu�, editors,

Categorical Methods in Computer Science, number 393 in Lecture Notes in

Computer Science, pages 82{101, Berlin, 1989. Springer Verlag.

[77] Z. Qian. Higher-order order-sorted algebras. In G. Goos and J. Hartmanis,

editors, Proceedings 2nd International Conference on Algebraic and Logic

Programming, number 463 in Lecture Notes in Computer Science, pages 86{

100, Berlin, 1990. Springer Verlag.

[78] G. Reggio. Entities: an istitution for dynamic systems. In H. Ehrig, K.P.

Jantke, F. Orejas, and H. Reichel, editors, Recent Trends in Data Type Spec-

i�cation, number 534 in Lecture Notes in Computer Science, pages 246{265,

Berlin, 1991. Springer Verlag.

[79] G. Reggio. Event logic for specifying abstract dynamic data types. In Recent

Trends in Data Type Speci�cation, number 655 in Lecture Notes in Computer

Science, Berlin, 1992. Springer Verlag.

[80] H. Reichel. Initial Computability, Algebraic Speci�cations, and Partial Alge-

bras. Akademie Verlag, 1986.

[81] A. Salibra and G. Scollo. A soft stairway to institutions. In Recent Trends in

Data Type Speci�cation, number 655 in Lecture Notes in Computer Science,

pages 310{329, Berlin, 1992. Springer Verlag.

[82] D. Sannella, S. Sokolowski, and A. Tarlecki. Toward formal development

of programs from algebraic speci�cations: Parameterization revisited. Acta

Informatica, 1992. To appear.

[83] D. Sannella and A. Tarlecki. On observational equivalence and algebraic

speci�cations. Journal of Comp. and Sys. Sciences, 34:150{178, 1987.

[84] D. Sannella and A. Tarlecki. Speci�cations in an arbitrary institution. In-

formation and Computation, 76:165{210, 1988.

BIBLIOGRAPHY 219

[85] D. Sannella and A. Tarlecki. Toward formal development of programs from

algebraic speci�cations: Model-theoretic foundations. In W. Kuich, editor,

Proceedings of 19th International Colloquium on Automata, Languages and

Programming, number 623 in Lecture Notes in Computer Science, pages 656{

671, Berlin, 1992. Springer Verlag.

[86] D. Sannella and M. Wirsing. A kernel language for algebraic speci�cation and

implementation. In M. Karpinski, editor, International Conference on Foun-

dations of Computation, number 158 in Lecture Notes in Computer Science,

pages 413{427, Berlin, 1983. Springer Verlag.

[87] R.A.G. Seely. Hyperdoctrines, natural deduction, and the Beck condition.

Zeitschrift f�ur Math. Logic und Grundlagen der Math., 1984.

[88] G. Smolka. Order-sorted horn logic: Semantics and deduction. Technical

Report SEKI SR-86-17, Fachbereich Informatik, Univerisit�at Kaiserslautern,

1986.

[89] A. Tarlecki. Free construction in algebraic institutions. In M.P. Chytil and

V. Koubek, editors, Proceedings of Mathematical Foundation of Computer

Science '84, number 176 in Lecture Notes in Computer Science, pages 526{

534, Berlin, 1984. Springer Verlag.

[90] A. Tarlecki. On the existence of free models in abstract algebraic institutions.

Theoretical Computer Science, 37(3):269{304, 1985.

[91] A. Tarlecki. Bits and pieces of the theory of institutions. In D. Pitt, S. Abram-

sky, A. Poign�e, and D. Rydehard, editors, Proceedings of Summer Workshop

on Category Theory and Computer Programming, number 240 in Lecture

Notes in Computer Science, pages 334{360, Berlin, 1986. Springer Verlag.

[92] A. Tarlecki. Quasi-varieties in abstract algebraic institutions. Journal of

Computer and System Science, 33, 1986.

[93] A. Tarlecki. Institution representation. draft note, November 1987.

[94] A. Tarski. Fundamentale begri�e der methodologie der deduktiven wis-

senschaften. Logique, S�emantique, M�etamath�ematique, 1:67{116, 1972.

French translation.

[95] M. Wirsing. Algebraic speci�cation. In Handbook of Theoretical Computer

Science. North Holland, 1990.

