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Non-strict don't care functions, whose foremost representative is the ubiquitous

if then else, play an essential role in computer science. As far as the semantics is

concerned, they can be modelled by their totalizations with the appropriate use of

elements representing unde�nedness, as D. Scott has shown in his denotational

approach. The situation is not so straightforward when we consider non-strict functions

in the context of an algebraic framework; this point is discussed in the last section,

where we explore the relationship between non-strict don't care and total algebras. The

central part of this paper, after presenting the basic properties of the category of

non-strict algebras, is an investigation of conditional algebraic speci�cations. It is shown

that non-strict conditional speci�cations are equivalent to disjunctive speci�cations, and

necessary and su�cient conditions for the existence of initial models are given. Since

non-strict don't care speci�cations generalize both the total and the partial case, it is

shown how the results for initiality can be obtained as specializations.

1. Introduction

Functions like the well known if then else are called non-strict since they can be de�ned

even over tuples where some argument is unde�ned. For example if true then a else b =

a is de�ned no matter what b is. Note the di�erence with partial functions, which satisfy

the strictness condition D(f(x

1

; : : : ; x

n

)) � D(x

i

) for i = 1; : : : ; n. What is important

to stress in the case of the if then else operation is the don't care feature; if the �rst

argument is true, the third argument can be whatever and even missing (corresponding

for example to a non-terminating computation). Non-strict don't care functions are a

common feature of programming languages; indeed a user-de�ned function built over

non-strict prede�ned functions like if then else may be non-strict, and, moreover, non-

strict built-in functions abound in many languages, notably Ada.

We can model this situation de�ning partial tuples and an ordering over them. For

example the tuple (true; a; ?), where the symbol ? denotes a missing argument, is less

y
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than or equal to (true; a; b) for any b. Thus a don't care function f can be characterized

by a monotonicity condition (denoting tuples by an underline)

d

1

� d

2

and f(d

1

) de�ned � f(d

1

) = f(d

2

):

All this is well known in denotational semantics where unde�nedness is denoted by ?,

domains are cpo's with least element ? and functions are monotonic.

Since it is a widespread misbelief that the above totalization by ? settles the question

of the relationship between the non-strict and the total frame, it may be fruitful to tackle

�rst this point, which is one of the motivations of our work: this issue is discussed in

the �nal section of this paper, after presenting the theory of non-strict algebras and

speci�cations, which is an essential tool for this discussion.

If we consider algebras with non-strict (don't care) functions, we cannot just identify

them with a subclass of total algebras, if we want algebraic properties to be preserved.

Indeed we can think of associating with a non-strict algebra A its totalization A

?

; how-

ever, this association does not de�ne a functor from non-strict into total algebras. It is

shown that the correct relationship is provided by a free construction, similar to that

indicated by Poign�e (Poign�e 1987) in the case of a partial to total translation.

A deeper characterization of that correspondence is then given in terms of the recently

introduced concepts of the simulation of an institution (Astesiano and Cerioli 1990; Ce-

rioli 1993) and of the map of institutions (Meseguer 1989). The existence of a simulation

from one institution into another means that signatures and sentences are translated

from the �rst into the second institution in such a way that each model in the �rst insti-

tution is represented by a (generally more than one) model in the second institution that

satis�es exactly (the translation of) the same sentences. Thus each model in the �rst in-

stitution may be seen as an abstraction of its implementations in the second institution.

This generalizes to classes of models, but in general not to types (i.e., theories), that is,

in general, for a given theory (speci�cation) in the �rst institution there does not exist

a theory in the second institution whose models are exactly all the implementations of

its models. This becomes true whenever the class of all models of the second institution

representing some model of the �rst one are the model class of some theory, and, in

particular, whenever the simulation is also a map of institutions; in this case the logical

aspect is preserved also.

On the basis of the above concepts, the correspondence between non-strict and total

algebras is completely characterized on the semantic level by giving two simulations:

| non-strict algebras (without sentences) by total algebras, via trivial totalization;

| non-strict algebras (without sentences) by total �rst-order structures, using typing

predicates.

Then the logical side is addressed and it is shown that the trivial totalization cannot

deal with the logics, in the sense that equalities in the non-strict frames become sets of

atoms and negated atoms, while the second simulation is extended to deal with both

conditional and disjunctive sentences. Thus two more simulations are de�ned:

| non-strict algebras with conditional formulas by �rst-order structures with conditional

formulas;
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| non-strict algebras with disjuntive formulas by �rst-order structures with disjunctive

formulas.

Only the third of these simulations is a correspondence between logical theories, and

indeed it is also a map of institutions.

We can now go back to the central part of the paper, which is an investigation of

non-strict algebras and of algebraic speci�cations with non-strict functions (henceforth

non-strict speci�cations).

In Section 2 the category of non-strict algebras and its basic properties are presented,

with particular attention paid to the concepts of subalgebra, product and term-generated

algebras, which are basic for the investigation of initiality.

Having settled the model theoretical aspects, in Section 3 we turn our attention to non-

strict speci�cations. Many problems arise: �rst, even simple equational speci�cations

are not always consistent (i.e., admit models), the usual conditional speci�cations do

not always admit initial models and, moreover, no simple equational deduction system,

generalizing those for the partial and the total case, seems to hand.

We try to clarify the matter as follows. It is shown that the monotonicity condition

necessarily introduces hidden disjunctions. Hence we pass on to consider disjunctive spec-

i�cations, giving necessary and su�cient conditions for the existence of initial models,

from which, by specialization, necessary and su�cient conditions for the non-strict condi-

tional case are obtained. Since the non-strict paradigm encompasses both the partial and

the total one, we can show that the known results about initiality for those cases, includ-

ing some recent results on non-positive partial conditional speci�cations, are obtained by

rather simple specializations.

Note that in our framework we are not dealing with error handling. It seems to us that

error handling is in a sense an orthogonal problem.We think that it should be interesting

and possible to include in an overall non-strict framework the treatment of error handling

presented by Poign�e (Poign�e 1987).

Problems connected with non-strictness have been addressed by Broy and Wirsing

(Broy and Wirsing 1984) in the context of generalized algebras, where total algebras

are enriched by de�nedness predicates and special morphisms. However, since the aim of

that paper is much broader, as its title indicates, the treatment there of non-strictness

is rather indirect, and the issues of initiality and of the relationship with total algebras

are not addressed either. Some stimulating considerations about non-strictness, but in a

context with di�erent aims, can also be found in Broy (1986).

2. Non-strict algebras

2.1. The category of non-strict algebras

In the following we will deal with partial objects, that is, with meta-terms not necessarily

denoting concrete elements. Thus, as is usual in partial frames, two kinds of equalities may

be de�ned between them: the existential equality, which holds i� both sides are de�ned

and equal, and the strong equality, which holds i� either both sides are unde�ned or both
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sides are de�ned and equal. We will denote the existential equality by =

e

and the strong

equality by =.

The basic idea we start from is the one of partial product. Usually, the product A

1

�

: : :� A

n

is the set of all (total) functions g from f1 : : :ng into A

1

[ : : : [ A

n

such that

g(i) 2 A

i

. We generalize this concept by allowing partial functions.

In order to keep the notation as similar as possible to the usual one, we use the symbol

? to denote the `unde�ned' elements.

De�nition 2.1. Let A

1

,: : : , A

n

be sets. The partial product of A

1

; : : : ; A

n

, denoted by

�

p

fA

1

; : : : ; A

n

g, consists of all partial functions from f1; : : : ; ng into A

1

[ : : :[A

n

such

that if g(i) is de�ned, then g(i) 2 A

i

. If n � 2, instead of �

p

fA

1

; : : : ; A

n

g, we also use

the in�x notation A

1

�

p

: : :�

p

A

n

.

A partial order � over �

p

fA

1

; : : : ; A

n

g is naturally de�ned by a � b i� a(i) 2 A

i

implies

b(i)=

e

a(i) for all i = 1 : : :n.

A partial function g from �

p

fA

1

; : : : ; A

n

g into a set A is called strict i� g(a) 2 A

implies a(i) 2 A

i

for all i = 1; : : : ; n, and is called monotonic if a � b and g(a) 2 A

implies g(a)=

e

g(b).

Later in this paper, we often denote an element a 2 �

p

fA

1

; : : : ; A

n

g by a

1

; : : : ; a

n

, where

a

i

= a(i) if a(i) 2 A

i

and a

i

=? otherwise.

Two remarks are in order here. First note that A and �

p

fAg are not in general isomor-

phic; for example, if A has �nite cardinality k, then in �

p

fAg there is one more element,

the totally unde�ned tuple, so that �

p

fAg has cardinality k + 1.

Moreover, while the usual product coincides with the categorical product in the cat-

egory of sets with total functions as arrows, the partial product is not the categorical

product in the category of sets with partial functions as arrows, because the uniqueness

of the factorization through the partial product fails. Indeed let us consider a singleton

set X and its binary partial product Y = X �

p

X, with projections �

i

(x) = x(i); since

the projections are partial functions, the factorization throughout Y of the couple of

functions h =< ?;? >, where ? is the totally unde�ned function on X, is not unique,

because �

i

�f = ? = �

i

�g for both f; g:X ! Y , respectively de�ned by f(�) is unde�ned

and g(�) is the partial function x, where both x(1) and x(2) are unde�ned.

Let us recall the de�nition of signature, just in order to �x the notation, and then

de�ne the non-strict algebras, where function symbols of functionality (s

1

: : : s

n

; s) are

interpreted by partial monotonic functions from s

A

1

�

p

: : :�

p

s

A

n

into s

A

.

De�nition 2.2. A signature consists of a set S of sorts and a familyF = fF

w;s

g

w2S

�

;s2S

of sets of function symbols. We will denote a generic signature by �, and use f 2 F or

f :w! s instead of f 2 F

w;s

if no ambiguity arises.

Let � = (S; F ) be a signature; a non-strict �-algebra consists of a family fs

A

g

s2S

of

sets (the carriers), and of a family ff

A

g

f2F

w;s

;w2S

�

;s2S

of partial functions (the inter-

pretations of operation symbols), such that if f 2 F

�;s

, then either f

A

is unde�ned or

f

A

2 s

A

, otherwise f 2 F

s

1

:::s

n

;s

with n � 1 and f

A

: s

A

1

�

p

: : :�

p

s

A

n

! s

A

is a monotonic

function.

We will often denote the non-strict algebra A by the couple (fs

A

g; ff

A

g), omitting the

quanti�cations for s and f that are associated with the signature.
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An algebra A is called strict if f

A

is strict for each f 2 F . Moreover, a strict algebra is

called total if a(i) 2 s

A

i

for all i = 1 : : : n implies f

A

(a) 2 s

A

for all f 2 F

s

1

:::s

n

;s

. The

class of all non-strict �-algebras will be denoted by NSAlg(�).

Then, by de�nition, strict algebras are exactly the partial algebras, and total algebras

are the usual ones.

Note that in non-strict algebras there are no extra-elements in the carriers to de�ne

non-strict functions. For example, we can de�ne the boolean algebras with non-strict

functions ^ and _ as follows.

Example 2.3.

sig �

bool

=

sorts bool

opns

T; F :! bool

:: bool ! bool

^;_:bool � bool ! bool

Algebra B =

bool

B

= ft; fg

T

B

= t

F

B

= f

:

B

is the strict function de�ned by :

B

(t) = f;:

B

(f) = t

^

B

is de�ned by

if b(1) = t then ^

B

(b) = b(2); if b(2) = t then ^

B

(b) = b(1)

if b(1) = f or b(2) = f then ^

B

(b) = f

otherwise ^

B

(b) is unde�ned

_

B

is de�ned by

if b(1) = f then _

B

(b) = b(2); if b(2) = f then _

B

(b) = b(1)

if b(1) = t or b(2) = t then _

B

(b) = t

otherwise _

B

(b) is unde�ned

Depending on the partiality of the functions, there are several possibilities to de�ne

homomorphisms, each one being useful for a di�erent purpose (see, for example, Broy and

Wirsing (1982), Burmeister (1986) and Reichel (1986)). Our choice follows the tradition

of partial algebras (see, for example, Astesiano and Cerioli (1989), Burmeister (1986),

Broy and Wirsing (1982) and Tarlecki (1986)), where they are used in order to get a

no-junk&no-confusion initial object (Meseguer and Goguen 1985).

De�nition 2.4. Let � = (S; F ) be a signature, and A and B be non-strict algebras over

�. Then a homomorphism h:A! B is a family fh

s

: s

A

! s

B

g

s2S

of total functions such

that f

A

(a) 2 s

A

implies h

s

(f

A

(a))=

e

f

B

(h �a), where h �a is de�ned by h �a(i) = h

s

i

(a(i))

for i = 1 : : :n, for all f 2 F

s

1

:::s

n

;s

and all a 2 s

A

1

�

p

: : :�

p

s

A

n

.

The category NSAlg(�) is de�ned by

| the objects of NSAlg(�) are NSAlg(�),

| the arrows in NSAlg(�) are all the homomorphisms,

| composition is done componentwise,

| the identity on A is fId

s

Ag

s2S

.
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Note that each homomorphism between strict algebras is a total homomorphism of

partial algebras and each homomorphism between total algebras is the usual total ho-

momorphism; thus the categories of both total algebras and partial algebras with total

homomorphisms are full sub-categories of NSAlg(�). Therefore, each result in the non-

strict frame applies to the usual ones too.

Remark. Any non-strict algebra may be represented by its trivial totalization, where

a special symbol ? is added to each carrier to denote the unde�ned elements, because

each partial function f : s

A

1

�

p

: : : �

p

s

A

n

! s

A

may be thought of as the usual total

function f

?

: s

A

1

[ f?

1

g � : : : � s

A

n

[ f?

n

g ! s

A

[ f?g. But this totalization causes

many existential equalities to hold that do not hold in the original algebra. Thus no non-

strict homomorphism h:A! B may be translated into the (usual total) homomorphism

between the trivial totalization of A and B. Consider the following example.

sig � =

sorts s

opns

a; b:! s

Algebra A =

s

A

= f1g a

A

; b

A

unde�ned

Algebra B =

s

B

= s

A

a

B

= 1; b

B

unde�ned

Algebra A

?

=

s

A

?

= f1;?g a

A

?

= ?; b

A

?

= ?

Algebra B

?

=

s

B

?

= s

A

?

a

B

?

= 1; b

B

?

= ? .

Now, h:A ! B, de�ned by h(1) = 1, is obviously a homomorphism; but there is no

(total) homomorphism from A

?

into B

?

, because a

A

?

= b

A

?

while a

B

?

= 1 6= ? = b

B

?

.

Thus, although the class of non-strict algebras is in some sense equivalent to a subclass

of total algebras, the category NSAlg(�) cannot be reduced (at least in a trivial way)

to a subcategory of total algebras. For a complete discussion of this issue see Section 4.

2.2. Term algebras

Let us introduce the term algebras and state some basic results that will be used in the

following sections.

Term algebras are de�ned as in the total frame, so that the concept of substitution as

total homomorphism on T

�

(X) is well de�ned.

De�nition 2.5. Let � = (S; F ) be a signature and X = fX

s

g

s2S

be a family of S-sorted

variables. The term sets T

�

(X)

s

on � and X are inductively de�ned by

| X

s

� T

�

(X)

s

for all s 2 S,

| F

�;s

� T

�

(X)

s

for all s 2 S,

| f 2 F

s

1

:::s

n

;s

and t

i

2 T

�

(X)

s

i

for i = 1 : : :n imply f(t

1

; : : : ; t

n

) 2 T

�

(X)

s

.

If X is the empty set, T

�

(X) is denoted by T

�

and its elements are called closed or

ground terms.
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For all f 2 F

s

1

:::s

n

;s

, the function f

T

�

(X)

:T

�

(X)

s

1

� : : : � T

�

(X)

s

n

! T

�

(X)

s

is the

strict total function de�ned by f

T

�

(X)

(t

1

; : : : ; t

n

) = f(t

1

; : : : ; t

n

) for all t

i

2 T

�

(X)

s

i

.

The term algebra T

�

(X) consists of (fT

�

(X)

s

g

s2S

; ff

T

�

(X)

jf 2 F

w;s

g

(w;s)2S

�

�S

).

Let Y be an S-sorted family of variables. Then a homomorphism U :T

�

(X) ! T

�

(Y )

from T

�

(X) into T

�

(Y ) is called a substitution.

It is well known that when overloading is allowed some conditions on the signatures

are needed in order to have the unique decomposition of terms in the functional notation

de�ned above. We simply assume that in case of ambiguity another notation for terms

has been chosen that makes the decomposition unique.

The evaluation is de�ned as in the partial strict frame, but also partial valuations for

variables have to be allowed. Valuations being partial functions, it is possible to de�ne

in a canonical way an order on them, which has a minimal element: the empty valuation.

De�nition 2.6. Let � = (S; F ) be a signature and X = fX

s

g

s2S

be a family of S-sorted

variables. For all algebras A 2 NSAlg(�) and all valuations V = fV :X

s

! s

A

g

s2S

for X

in A, where V

s

are partial functions, the evaluation eval

A;V

:T

�

(X) ! A is inductively

de�ned by

| eval

A;V

(x) = V (x) for all x 2 X,

| eval

A;V

(f) = f

A

for all f 2 F

�;s

,

| eval

A;V

(f(t

1

; : : : ; t

n

)) = f

A

(a), where a(i) = eval

A;V

(t

i

) with i = 1 : : :n for all

f 2 F

s

1

:::s

n

;s

and t

i

2 T

�

(X)

s

i

for i = 1 : : :n.

For all valuations V; V

0

:X ! A, we say that V � V

0

i� V (x) 2 s

A

implies V

0

(x)=

e

V (x)

for all x 2 X. The valuation V

?

for X in A is the empty map, that is, V

?

(x) is unde�ned

for all x 2 X

s

and all s 2 S .

In the following, we will denote eval

A;V

(t) by t

A;V

. Moreover, if X is the empty set (so

that there exists a unique valuation V

?

for X in A), we will denote eval

A;V

simply by

eval

A

and eval

A;V

(t) by t

A

. Finally, we denote a, de�ned by a(i) = t

A;V

i

for i = 1; : : :n,

by (t

A;V

1

; : : : ; t

A;V

n

).

It is worth noting that the order of the valuations is preserved by the evaluation, that

is, V � V

0

implies eval

A;V

� eval

A;V

0

.

Proposition 2.7. Let � = (S; F ) be a signature, A a non-strict algebra over �, X an

S-sorted family of variables, and V and V

0

valuations for X in A such that V � V

0

. For

all terms t 2 T

�

(X)

s

if t

A;V

2 s

A

, then t

A;V

0

=

e

t

A;V

.

Proof. By induction over the de�nition of terms.

In the total frame, the term-algebras are the free objects in the class of all total

algebras, because of the uniqueness of the evaluation with respect to a valuation. Here,

as in the partial case, term-algebras are not free, because the evaluations, being partial

functions, are not homomorphisms. However, a derived property holds also in this case,

although it is relaxed a bit. Indeed, in the total frame the freedom of the term algebra

implies that if the upper triangle of Diagram 1 commutes, the triangle below commutes

also. Analogously, in our frame if h � V � V

0

, then h � eval

A;V

� eval

A

0

;V

0

, so that we

have Diagram 2.
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X

�

�

�

�	

V

=

=

@

@

@

@R

V

0

A
A

0
-

h

T

�

(X)

Diagram 1

@

@

@

@I

eval

A;V

�

�

�

��

eval

A;V

0

X

�

�

�

�	

V

�

�

@

@

@

@R

V

0

A

� A

0

-

h

T

�

(X)

Diagram 2

@

@

@

@I

eval

A;V

�

�

�

��

eval

A;V

0

This result also holds in the partial frame and is crucial in order to get that the initial

object in a class, if any, satis�es the no-junk and no-confusion properties (Meseguer and

Goguen 1985). Indeed, if we consider Diagram 2 where A is the initial object and h the

unique homomorphism from the initial object into A

0

, we have that each term de�ned in

A has to be de�ned in A

0

(no-junk), and that two terms existentially equal in A have to

be existentially equal in A

0

(no-confusion).

Proposition 2.8. Let � = (S; F ) be a signature and X = fX

s

g

s2S

be a family of

S-sorted variables. For all non-strict algebras A;A

0

2 NSAlg(�), all valuations V for X

in A and V

0

for X in A

0

, and all homomorphisms h:A ! A

0

such that h � V � V

0

, we

have that

1 t

A;V

2 s

A

implies h(t

A;V

)=

e

t

A

0

;V

0

for all t 2 T

�

(X),

2 t

A;V

=

e

t

0A;V

0

implies t

A

0

;V

0

=

e

t

0A

0

;V

0

for all t; t

0

2 T

�

(X).

Proof. By induction over the de�nition of terms.

Let us state an ad hoc de�nition of congruence and of quotient on term algebras, whose

use is limited to the study of the existence of the initial model. From now on let X denote

a family X = fX

s

g

s2S

of variables such that jX

s

j � 1.

De�nition 2.9. Let � = (S; F ) be a signature. A congruence � is a family�= f�

s

g

s2S

such that:

1 �

s

� T

�

(X)

s

� T

�

(X)

s

for all s 2 S; if (a; b) 2�

s

, we write a �

s

b;

2 �

s

is symmetric and transitive, that is, t �

s

t

0

implies t

0

�

s

t and t �

s

t

0

, t

0

�

s

t

00

imply t �

s

t

00

for all t; t

0

; t

00

2 T

�

(X). Let us denote by Dom(�

s

) the set ft j t �

s

tg

and de�ne t �

D

s

t

0

i� either t �

s

t

0

or t; t

0

=2 Dom(�

s

);

3 t

i

�

D

s

i

t

0

i

for i = 1 : : :n and f 2 F

s

1

:::s

n

;s

imply f(t

1

; : : : ; t

n

) �

D

s

f(t

0

1

; : : : ; t

0

n

);

4 f(t

1

; : : : ; t

n

) 2 Dom(�), t

i

=2 Dom(�

s

i

) imply

f(t

1

; : : : ; t

n

) �

s

f(t

1

; : : : ; t

i�1

; t; t

i+1

; : : : ; t

n

)

for all t 2 T

�

(X)

s

;

5 x =2 Dom(�

s

) for all x 2 X

s

.

The quotient T

�

=� is the non-strict algebra de�ned by

| s

T

�

=�

is T

�

=�

s

for all s 2 S (in the following we denote the class of t in s

T

�

=�

by

[t]),
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| f

T

�

=�

(t) = [f(t

1

; : : : ; t

n

)], where if t(i) 2 s

T

�

=�

, then t

i

2 t(i), otherwise t

i

2 X

s

i

for

all f 2 F

s

1

:::s

n

;s

.

For each non-strict algebra A let �

A

be the congruence de�ned by t �

A

t

0

i� t

A;V

?

=

e

t

0A;V

?

and i

A

:T

�

=�

A

! <A> be the isomorphism de�ned by i

A

([t]) = t

A;V

?

, where <A> is

the inductive subalgebra of A (see De�nition 2.16).

Note that f

T

�

=�

is well de�ned. Indeed, let t

i

; t

0

i

belong to t(i) for all i such that

t(i) 2 s

T

�

=�

, otherwise t

i

; t

0

i

belong to X

s

i

and hence t

i

; t

0

i

=2 Dom(�

s

i

) because of (5);

then t

i

�

D

t

0

i

for i = 1 : : :n and hence, because of (3), f(t

1

; : : : ; t

n

) �

D

f(t

0

1

; : : : ; t

0

n

), so

[f(t

1

; : : : ; t

n

)] = [f(t

0

1

; : : : ; t

0

n

)].

As in more familiar frames, the evaluation of a term in a quotient algebra in this case is

the equivalence class of the term where variables have been replaced by (a representative

of) their valuation.

Proposition 2.10. Let � = (S; F ) be a signature, � be a congruence, Y be an S-

sorted family of variables, V be a valuation for Y in T

�

=�, and U be a substitution for

T

�

(Y ) in T

�

(X) such that V (y) = [U (y)] for all y 2 Y . Then for each term t we have

t

T

�

=�;V

= [U (t)].

Proof. By induction over the structure of t.

2.3. Subalgebras and products

We investigate the categorical structure of non-strict algebras, with a particular interest

into two classical algebraic issues, the notions of subalgebra and product, which will be

used later.

De�nition 2.11. Let A be the non-strict algebra (fs

A

g

s2S

; ff

A

g

f2F

). The algebra B

is a weak subalgebra of A i�

| s

B

� s

A

for all s 2 S,

| f

B

(b) � f

A

(b) for all f 2 F

s

1

:::s

n

;s

and all b 2 s

B

1

�

p

: : :�

p

s

B

n

.

A weak subalgebra B of A is a subalgebra i� f

B

(b) = f

A

(b) for all f 2 F

s

1

:::s

n

;s

and all

b 2 s

B

1

�

p

: : :�

p

s

B

n

.

In other words, a subalgebra is a weak subalgebra whose carriers are closed with respect

to the operations of the algebra.

It is easy to check, by induction on the structure of terms, that ifB is a weak subalgebra

ofA and V :X ! B is a valuation, then t

B;V

� t

A;e�V

for each t 2 T

�

(X), where e:B ! A

is the embedding, and, analogously, that if B is a subalgebra of A, then t

B;V

?

= t

A;e�V

.

Weak subalgebras are categorical subobjects, i.e., are (up to isomorphism) the domains

of monomorphisms, and subalgebras are regular subobjects, i.e., are (up to isomorphism)

the domains of equalizers, as the following propositions state.

Proposition 2.12. Let h:A

1

! A

2

be a homomorphism. Then h is a monomorphism

i� h

s

is injective for all s 2 S i� A

1

is isomorphic to a weak subalgebra of A

2

.

Proof. Let us assume that m is a monomorphism and show that m

s

is injective for

all s 2 S. Assume by contradiction that there exists �s 2 S such that m

�s

is not injective,
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that is, that there exist a; b 2 �s

A

1

such that m

�s

(a) = m

�s

(b) but a 6= b, and show that

there exist two homomorphisms g; h:C ! A

1

such that m � g = m � h, but g 6= h.

Let C be the algebra de�ned by s

C

= ; for all s 6= �s, �s

C

= fxg and f

C

totally unde�ned

for all f 2 F .

Since f

C

is totally unde�ned for all f 2 F , every function from C into A

1

is a homomor-

phism. Let g be de�ned by g(x) = a and h by h(x) = b. Then m � g = m � h, but g 6= h,

in contradiction with the assumption that m is a monomorphism.

It is immediate to check that if m:A

1

! A

2

is injective, then m is a monomorphism and

A

1

is isomorphic to the weak subalgebra B of A

2

, de�ned by

Algebra B =

s

B

= fm(a) j a 2 s

A

1

g for all s 2 S

f

B

(m � a) = m(f

A

1

(a)) for all f 2 F

where f

B

is well de�ned, because m is a total injective function, and f

B

� f

A

2

, because

m is a homomorphism.

Finally, if A

1

is (isomorphic to) a weak subalgebra of A

2

, then it is the domain of the

embedding, which is a monomorphism, because it is injective.

Proposition 2.13. Any two parallel homomorphisms g; h:A

1

! A

2

have an equalizer

e:E(g; h)! A

1

, the embedding of E = E(g; h) into A

1

, where E is de�ned by

Algebra E =

s

E

= fa j a 2 s

A

1

; g(a) = h(a)g for all s 2 S

f

E

(a) = f

A

1

(a) for all f 2 F and all a 2 s

E

1

�

p

: : :�

p

s

E

n

.

Moreover, a homomorphism e:E ! A is an equalizer i� E is (isomorphic to) a subalgebra

of A.

Proof. Let us show that such an E(g; h) is the equalizer of g and h. First note that,

by de�nition of homomorphism, g(a) = h(a) and f

A

1

(a) 2 s

A

1

imply g(f

A

1

(a)) =

h(f

A

1

(a)), so f

E

is well de�ned. Moreover, the embedding e of E into A

1

obviously

equalizes g and h. Thus we only have to show that each m:C ! A

1

such that g �m = h�m

factorizes in a unique way throughout e . Since g �m = h �m, m(C) � E(f; g), and hence

m:C ! E(g; h) is the unique factorization of m throughout e.

Therefore, if e:E ! A

1

is the equalizer of g and h, then, equalizers being unique up to

isomorphism, E is isomorphic to the subalgebra E(g; h) of A

1

.

Let us show, conversely, that each subalgebra is the domain of an equalizer. Let B be a

subalgebra of A and de�ne C as follows:

| s

C

= f(0; a); (1; a) j a 2 s

A

g= �, where (i; a) � (i

0

; a

0

) i� a = a

0

and (i = i

0

or

a 2 s

B

);

| if for each k either c(k) is unde�ned or there exists (i; a

k

) 2 c(k), then f

C

(c) =

[(i; f

A

(a))], where a(k) = a

k

for each k such that c(k) = [(i; a

k

)] is de�ned, otherwise

a(k) is unde�ned, and otherwise f

C

(c) is unde�ned, for all f 2 F .

It is immediate to check that � is an equivalence relation. Thus in order to have that C

is an algebra, we only have to show that f

C

is well de�ned.

Let c be such that for each k either c(k) is unde�ned or there exist (i; a

k

); (i

0

; a

0

k

) 2 c(k).

Since (i; a

k

) � (i

0

; a

0

k

), a

k

= a

0

k

and i = i

0

, so (i; f

A

(a)) = (i

0

; f

A

(a)), or a

k

2 s

B

for

each k such that a(k) is de�ned, so, B being a subalgebra, f

A

(a) either is unde�ned
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or belongs to s

B

and hence in both cases (i; f

A

(a)) � (i

0

; f

A

(a)). Therefore f

C

is well

de�ned. Moreover, it is immediate to check that it is monotonic and hence C is an algebra.

Let us de�ne g; h:A! C as follows and show that B = E(g; h).

g(a) = [(0; a)] and h(a) = [(1; a)] for all a 2 s

A

:

Let us show that g is a homomorphism. Assume that f

A

(a) is de�ned. Then g(f

A

(a)) =

[(0; f

A

(a))] = f

C

(c) for c is de�ned by c(k) = [(0; a(k))], that is, for c = g � a. Thus

g(f

A

(a)) = f

C

(g � a). It is analogously easy to check that h is a homomorphism also.

Finally, g(a) = h(a) i� [(0; a)] = [(1; a)], that is, i� a 2 s

B

, and, therefore, B = E(g; h).

The product of non-strict algebras is de�ned in the usual way.

De�nition 2.14. Let � = (S; F ) be a signature and D be a non-empty set of non-strict

algebras over �. The product

Q

A2D

A is the non-strict algebra P over � de�ned by:

| for all s 2 S, let s

P

be

Q

A2D

s

A

= fg:D ! [

A2D

s

A

j g(A) 2 s

A

for all A 2 Dg;

| for all f 2 F

s

1

:::s

n

;s

, let f

P

be the function de�ned by: for each p 2 s

P

1

�

p

: : :�

p

s

P

n

f

P

(p) is de�ned i� f

A

(a) is de�ned for all A 2 D , where a is de�ned by a(i) = p(i)(A)

for i = 1 : : :n, and in this case f

P

(p) is de�ned by f

P

(p)(A) = f

A

(a) for all A 2 D .

The projection of

Q

A2D

A into A, denoted by �

A

, is the homomorphism de�ned by

�

A

(g) = g(A) for all g 2 s

Q

A2D

A

and all s 2 S:

In the following, if D is the �nite set fA

1

; : : : ; A

n

g, we denote

Q

A2D

A by A

1

� : : :�A

n

also.

Proposition 2.15. Non-strict weak subalgebras coincide with categorical subobjects

(i.e., the domain of monomorphisms), non-strict subalgebras coincide with categorical

regular objects (i.e., the domain of equalizers), and the product de�ned in De�nition 2.14

coincides with the categorical product.

Proof. Because of Propositions 2.12 and 2.13, B is a weak subalgebra i� it is the

domain of a monomorphism, and it is a subalgebra i� it is the domain of an equalizer.

Moreover, it is trivial to check that the product de�ned in De�nition 2.14 satis�es the

universal property of the categorical product.

2.4. Inductive and initial algebras

We �rst introduce the concept of an inductive algebra (that is, an algebra satisfying the

no-junk condition), and relate it to the idea of term-generated. Then we show that in

every class of algebras closed with respect to inductive subalgebras, the initial object, if

any, is characterized by the no-junk and no-confusion properties.
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De�nition 2.16. Let A be a non-strict algebra. Its inductive part <A> is a family

fs

<A>

g

s2S

of its carrier sub-sets inductively de�ned by

for all f 2 F

�;s

f

A

2 s

<A>

f

A

2 s

A

;

for all f 2 F

s

1

:::s

n

;s

a 2 s

<A>

1

�

p

: : :�

p

s

<A>

n

f

A

(a) 2 s

<A>

f

A

(a) 2 s

A

:

The inductive subalgebra B of A consists of

| s

B

= s

<A>

for all s 2 S,

| f

B

(b) = f

A

(b) for all f 2 F

s

1

:::s

n

;s

and all b 2 �

p

fs

<A>

1

; : : : ; s

<A>

n

g.

In the following we will denote by <A> the inductive subalgebra of an algebra A. The

embedding of <A> into A is the homomorphism e = fe

s

g

s2S

de�ned by e

s

(a)=

e

a for all

a 2 s

<A>

.

A non-strict algebra A is inductive i� A = <A>. Let C be a class of non-strict algebras

on a signature �; the subclass Ind(C ) of C consists of fA j A 2 C ; A is inductiveg.

Note that the de�nition of s

<A>

guarantees both the well de�nedness of f

<A>

and

that the embedding is a homomorphism.

The usual equivalence between inductive and term-generated algebras has to be a little

relaxed, because functions over terms are total, while in inductive algebras they may also

be non-strict. Thus some syntactic elements are needed to play the role of the `unde�ned'

elements that cooperate to build the carriers; we use a family of variables X with the

totally unde�ned valuation V

?

over them.

Proposition 2.17. Let � = (S; F ) be a signature, X be any family fX

s

g

s2S

of variables

such that X

s

6= ; for all s 2 S and A be a non-strict algebra. The following conditions

are equivalent:

1 A is inductive;

2 eval

A;V

?

:T

�

(X) ! A is surjective;

3 for each algebra B there exists at most one homomorphism k:A! B;

4 A has no proper subalgebras.

Proof.

1) 2 Since A is inductive, s

A

= s

<A>

, and hence we show by induction that for all

a 2 s

<A>

there exists t 2 T

�

(X) such that t

A;V

?

= a.

If a = f

A

for some f 2 F

�;s

, then f 2 T

�

(X)

s

by de�nition of term algebra and

a = f

A;V

?

. Otherwise, a = f

A

(a) for some f 2 F

s

1

:::s

n

;s

and a 2 s

<A>

1

�

p

: : :�

p

s

<A>

n

;

because of the induction hypothesis, for each i such that a(i) 2 s

<A>

i

, there exists

t

i

2 T

�

(X)

s

i

such that a(i) = t

A;V

?

i

. For all i such that a(i) =2 s

<A>

i

, let t

i

be any

element of X

s

i

, which exists because X

s

is non-empty for all s 2 S. Then a(i) = t

A;V

?

i

for all i = 1 : : :n, by de�nition of t

i

and of V

?

, and hence f(t

1

; : : : ; t

n

)

A;V

?

= f

A

(a),

that is, f(t

1

; : : : ; t

n

)

A;V

?

= a.
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2) 3 Let h; k:A! B be homomorphisms. By hypothesis, for each a 2 s

A

there exists

t 2 T

�

(X) such that t

A;V

?

=

e

a. Also, t

A;V

?

2 s

A

implies h(t

A;V

?

)=

e

t

B;V

?

=

e

k(t

A;V

?

),

because of Proposition 2.8. Therefore h(a)=

e

k(a) for all a 2 s

A

, and hence h = k.

3) 4 Let us assume that E is a subalgebra of A. Then there exist g; h:A ! B such

that E is their equalizer, because of Proposition 2.13. By hypothesis, g = h and hence,

by construction of the equalizer, E = A. Thus A has no proper subalgebras.

4) 1 Since A has no proper subalgebras and <A> is a subalgebra of A, A = <A>.

De�nition 2.18. Let � be a signature and C be a class of non-strict algebras over �. An

algebra I 2 C is initial in C i� for each A 2 C there exists exactly one homomorphism

from I into A.

Proposition 2.19. Let � = (S; F ) be a signature, X any family fX

s

g

s2S

of variables

such that X

s

is non-empty for all s 2 S and C be a class of non-strict algebras over �

closed with respect to inductive subalgebras, that is, such that A 2 C implies <A> 2 C .

A non-strict algebra I 2 C is initial in C i� it satis�es the following two conditions:

1 I is inductive (no-junk);

2 t

I;V

?

=

e

t

0I;V

?

implies t

A;V

?

=

e

t

0A;V

?

for all A 2 C and all t; t

0

2 T

�

(X) (no-confusion).

Moreover, I is initial in C i� it is initial in Ind(C ).

Proof. Let us show that I is initial in C i� it satis�es Conditions (1) and (2).

) Let I be initial in C . Then I 2 C and hence, C being closed with respect to inductive

subalgebras, <I> 2 C , too. Thus, I being initial, there exists one morphism h: I !

<I>. Let e denote the embedding of <I> into I. Because e is a homomorphism,

e � h is a homomorphism also, and hence is the identity, because there is exactly one

homomorphism from I into itself, I being initial. Therefore, by de�nition of e, h is

the identity also, and hence I = <I>, that is, I satis�es (1).

Let us assume that t

I;V

?

=

e

t

0I;V

?

for certain t; t

0

2 T

�

(X). Then for each A 2 C ,

because of Proposition 2.8 for h the unique homomorphism from I into A and V =

V

?

= V

0

, t

A;V

?

=

e

t

0A;V

?

.

( Let I satisfy Conditions (1) and (2) and h

A

: I ! A be de�ned by h

A

(t

I;V

?

) = t

A;V

?

for all t 2 T

�

(X) and all A 2 C . Then h

A

is a well-de�ned total function from

eval

I;V

?

(T

�

(X)) into A, because of Condition (2). Thus, eval

I;V

?

being surjective

because of Proposition 2.17 and Condition (1), h

A

is a well-de�ned total function

from I into A. Finally, h

A

is a homomorphism by de�nition and it is unique, because

of Proposition 2.17 and Condition (1).

Let us show that I is initial in C i� it is initial in Ind(C ).

) Let us assume that I is initial in C . Then I satis�es Condition (1), and hence I 2

Ind(C ). Since I is initial in C , for all A 2 Ind(C ) � C there exists exactly one

homomorphism from I into A. Thus I is initial in Ind(C ).

( Let us assume that I is initial in Ind(C ) and A belong to C . Then <A> 2 C , and

hence <A> 2 Ind(C ). Therefore, I being initial in Ind(C ), there exists one morphism

h: I ! <A>. Thus the composition e �h of h with the embedding e of <A> into A is

a homomorphism, and it is unique, because of Proposition 2.17 and I being inductive.
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Therefore for all A 2 C there exists exactly one homomorphism from I into A. Thus

I is initial in C .

To check the existence of an initial model in a class closed with respect to inductive

subalgebras, because of the above Proposition 2.19, it is su�cient to work on the subclass

of inductive models. This is a real simpli�cation, because the (isomorphism classes of)

algebras form a proper class, while the subclass of the (isomorphism classes of) inductive

algebras is a set. Thus the syntactical characterization of the initial model suggested by

Proposition 2.19, as a quotient of a term algebra with respect to the intersection of the

kernels of the natural evaluation of terms in all models, does not introduce foundational

problems, because it is possible to work on the set of (canonical representatives for the

isomorphism classes of) inductive models.

De�nition 2.20. Let C be a non-empty class of non-strict algebras over �, and D be

the set of non-strict algebras de�ned by D = fT

�

=�

A

j A 2 Cg. Then I(C ) denotes the

inductive sub-algebra of the product

Q

B2D

B.

Theorem 2.21. Let � = (S; F ) be a signature and C be a class of non-strict algebras

over � closed under isomorphisms and inductive subalgebras. The following conditions

are equivalent:

1 there exists an initial object in C ;

2 there exists an initial object in Ind(C );

3 I(C ) belongs to C ;

4 I(C ) is initial in C .

Proof.

1, 2 This follows because of Proposition 2.19.

2) 3 Let us assume that I is initial in Ind(C ) and show that it is isomorphic to I(C ),

and thus, C being closed under isomorphism, we will have the thesis.

Since I is initial in Ind(C ) and C is closed under inductive subobjects, for each A 2 C

there exists (a unique) h

A

: I ! <A>. Thus, using the notation of De�nition 2.9, the

composition i

A

�1

�h

A

: I ! T

�

=�

A

is a homomorphism for each A 2 C . Therefore, by

de�nition of product in a categorical setting, there exists a morphismh: I !

Q

B2D

B,

where D is the set fT

�

=�

A

j A 2 Cg.

By Proposition 2.17, I being inductive, such h is unique and h: I !<

Q

B2D

B >,

that is, h: I ! I(C ). Since both I and I(C ) are inductive, to show that h is an

isomorphism, it is su�cient to show that there exists a homomorphism k: I(C )! I.

Indeed, h � k should be the unique homomorphism from I(C ) into itself, that is, the

identity, and analogously for k � h.

Let us consider the composition of the following homomorphisms:

| the embedding e: I(C )!

Q

B2D

B;

| the projection �

I

:

Q

B2D

B ! T

�

=�

I

;

| the isomorphism i

I

:T

�

=�

I

! <I>;

| the embedding e

I

:<I> ! I;

and get the thesis for k = e

I

� i

I

� �

I

� e.
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3) 4 Let us assume that I(C ) 2 C and show that for each A 2 C there exists exactly

one homomorphism from I(C ) into A.

Let A be any element of C . Since I(C ) is inductive, there exists at the most one

homomorphism from I(C ) into A, because of Proposition 2.17, so we just have to

prove that there exists a homomorphism h

A

from I(C ) into A.

To de�ne such a homomorphism, we consider the composition of the following homo-

morphisms:

| the embedding e: I(C )!

Q

B2D

B;

| the projection �

A

:

Q

B2D

B ! T

�

=�

A

;

| the isomorphism i

A

:T

�

=�

A

! <A>;

| the embedding e

A

:<A>! A.

We then get the thesis for h

A

= e

A

� i

A

� �

A

� e.

4) 1 This is trivial.

3. Non-strict speci�cations

It is usual in both the total and the partial frame, to consider logical formulas (equations

and positive Horn clauses) such that their model classes are closed with respect to non-

empty products and sub-objects, so that the model classes satisfy a fortiori the closure

with respect to I(C ), which is necessary and su�cient for the existence of an initial

model, by Theorem 2.21, for classes closed under subobjects and isomorphisms. The

same approach cannot be followed in the non-strict frame, because there are �nite sets of

equations whose model classes are closed neither with respect to I(C ), nor with respect

to non-empty products. Let us show this claim informally by a simple example.

spec Sp

2

=

sorts s

opns

k; k

0

:! s

f : s! s

axioms

f(k)=

e

k

0

The following two algebras are obviously models of Sp

2

:

Algebra A =

s

A

= f�g

k

A

= k

0A

= �

f

A

is the total strict function de�ned by f

A

(�) = �

Algebra B =

s

B

= f�g

k

0B

= �; k

B

is unde�ned

f

B

(b) = � for all b 2 �

p

s

B

Let C be the model class of Sp

2

. By de�nition of product, both k

A�B

and k

I(C )

are

unde�ned, because k

B

is unde�ned, and, analogously, both f

A�B

(g) and f

I(C )

(g), where

g is the totally unde�ned function, are unde�ned too, because f

A

is strict. Therefore both



E. Astesiano and M. Cerioli 16

f(k)

A�B

and f(k)

I(C )

are unde�ned, and hence neither A � B nor I(C ) are models of

Sp

2

.

In the example above the problem arises because of the monotonicity of the inter-

pretation of the function symbols; indeed from f(a)=

e

b we have that a=

e

a or f(x)=

e

b

holds in each model A. Thus equations implicitly introduce disjunctions. Moreover, it is

possible to code each disjunction using conditional axioms, and hence in the non-strict

frame we can equivalently deal with equations or with disjunctions. Let us support this

claim by an informal proof.

Let �

1

_: : :_�

n

_:�

1

_: : :_:�

m

, where �

1

; : : : ; �

n

; �

1

; : : : ; �

m

are all existential equalities.

Then �

1

_ : : :_ �

n

_ :�

1

_ : : :_ :�

m

may be coded by the set

�

i

D(f

i

(x)) ^ �

1

^ : : :^ �

m

� �

i

for i = 1 : : :n and

� D(f

n

(f

n�1

(: : : (x) : : :);

where f

1

; : : : ; f

n

are auxiliary unary functions and D(t) stands for t=

e

t. Indeed, each

algebra A satisfying � also satis�es at least one D(f

i

(x)), and hence if A also satis�es

�

i

, there exists an �

j

such that A does not satisfy �

j

or A satis�es �

i

, so that A satis�es

�

1

_ : : :_ �

n

_ :�

1

_ : : :_ :�

m

. Conversely, if A satis�es �

1

_ : : :_ �

n

_ :�

1

_ : : :_ :�

m

,

then A may generalize to a model of �

1

; : : : ; �

n

; �, suitably de�ning the interpretation

of f

1

; : : : ; f

n

.

Therefore, in the following we will focus our attention on disjunctive speci�cations.

3.1. Formulas, validity and speci�cations

In the following we use formulas within an in�nitary logic (for reference see, for example,

Keisler (1971)), with in�nitary conjunctions and disjunctions and families of denumerable

sets of variables.

De�nition 3.1. Let � = (S; F ) be a signature and X be a family of S-sorted variables.

| The set Eq(�; X) of equalities on � and X consists of t=

e

t

0

for all t; t

0

2 T

�

(X)

s

,

s 2 S, and the set At(�; X) of atomic formulas on � and X is

Eq(�; X) [ f:�] j � 2 Eq(�; X)g:

| The set Form(�; X) of all well-formed formulas is inductively de�ned by

{ Eq(�; X) � Form(�; X),

{ � [ f�; �

0

g � Form(�; X) implies ^�;_�;:�; � � �

0

2 Form(�; X).

For each well-formed formula � we denote by V ar(�) the set of variables that appear

in �.

| The set Cond (�; X) of conditional formulas on � and X is the set

f^� � � j �[ f�g � Eq(�; X)g:

If � is the empty set, ^� � � is an equivalent notation for �, and hence Eq(�; X) �

Cond (�; X). For each conditional formula � = (^� � �) we denote � by prem(�)

and � by cons(�).
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| The set DForm(�; X) of disjunctive formulas on � and X is the set

f_� j � � At(�; X)g:

If � consists of one atomic formula �, then _� is an equivalent notation for �, and

hence At(�; X) � DForm(�; X).

In the following, a generic equality will be denoted by � or �, a generic atomic formula

by 
 or �, and a generic formula by �, � or  . Moreover, we will denote the empty

conjunction ^; by True and the empty disjunction _; by False.

De�nition 3.2. Let � = (S; F ) be a signature, X be a family of S-sorted variables, and

A be a non-strict �-algebra.

If � is a formula and V is a valuation for V ar(�) in A, we say that � holds for V in

A (equivalently, is satis�ed for V by A), and write Aj=

V

� according to the following

de�nitions:

| Aj=

V

t=

e

t

0

i� t

A;V

; t

0A;V

2 s

A

and t

A;V

= t

0A;V

;

| Aj=

V

^ � i� Aj=

V

� for all � 2 �;

| Aj=

V

_ � i� there exists � 2 � such that Aj=

V

�;

| Aj=

V

:� i� A6j=

V

�;

| Aj=

V

� � �

0

i� Aj=

V

�

0

or A6j=

V

�.

We write Aj=� for a formula � and say that � holds in (equivalently, is satis�ed by or is

valid in) A i� Aj=

V

� for all valuations V for V ar(�) in A. Let us, for short, denote by

D(t) the equality t=

e

t, where both sides are the same term, because t=

e

t simply states

the de�nedness of t.

The de�nition of validity justi�es the notation introduced for the empty conjunction

and disjunction: indeed Aj=

V

^; for all non-strict algebras A and all valuations V because

it is obvious that Aj=

V

� for all � 2 ;, so ^; plays the role of the constant True; and

A6j=

V

_; for all non-strict algebras A and all valuations V because it is obvious that there

does not exist � 2 ; such that Aj=

V

�, so _; plays the role of the constant False.

Remark. Since valuations are total functions in both the total and the partial frame,

the relation � on T

�

(X), de�ned by t � t

0

i� A j= t=

e

t

0

, is not necessarily an equivalence

relation if empty carriers are allowed, since it is not necessarily transitive. Indeed, consider

the following example, which is a simpli�ed version of a well-known example presented

in Meseguer and Goguen (1985).

sig � =

sorts s

1

; s

2

opns

a; b:! s

2

f : s

1

! s

2

In this case T

�

, as a total algebra, satis�es both a = f(x) and f(x) = b, because T

�

s

2

= ;,

and hence there does not exist a (total) valuation for fxg in T

�

, but T

�

does not satisfy

a = b, so � is not transitive.

This fact has consequences in the case of inference systems, which have to deal very

carefully with the elimination of the variables.
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However, these problems do not arise in the non-strict frame, because valuations are

partial functions, so that there exists at least the totally unde�ned valuation for all

families of variables and all non-strict algebras. For instance, in the above example

T

�

6j=

V

?

a = f(x), and hence � is transitive. Moreover, the following Proposition 3.3 shows

that � coincides with the relation �

?

, de�ned by t �

?

t

0

i� Aj=

V

?

t=

e

t

0

, and hence is an

equivalence relation for each non-strict �-algebra A.

Manca and Salibra (Manca and Salibra 1990) introduced the partial valuations to

solve the empty-carriers problem and keep the original Birkho� equational calculus by

changing the concept of validity. However, note that in our frame the introduction of

partial valuations has a completely di�erent motivation: it is not arbitrary and a mere

technical device, as in Manca and Salibra (1990), but arises naturally from the setting,

since functions are non-strict and variables have to represent all the possible arguments.

Proposition 3.3. Let � = (S; F ) be a signature, X be a family of S-sorted variables,

and � be a set of equalities over � and X.

Then Aj=t=

e

t

0

i� Aj=

V

?

t=

e

t

0

for all terms t and t

0

for each non-strict �-algebra A, and,

moreover, the following conditions are equivalent:

1 Aj= _�;

2 Aj=

V

?

_�;

3 there exists � 2 � such that Aj=�.

Proof. Let us show �rst that Aj=t=

e

t

0

i� Aj=

V

?

t=

e

t

0

.

) If Aj=t=

e

t

0

, then, by de�nition of validity, Aj=

V

t=

e

t

0

for all valuations V , so, in

particular, Aj=

V

?

t=

e

t

0

.

( Since Aj=

V

?

t=

e

t

0

, t

A;V

?

; t

0A;V

?

2 s

A

and V

?

� V for all valuations V by de�ni-

tion of V

?

. Thus, by Proposition 2.7, t

A;V

=

e

t

A;V

?

and t

0A;V

=

e

t

0A;V

?

. Therefore, from

t

A;V

?

=

e

t

0A;V

?

, we conclude that t

A;V

=

e

t

0A;V

, and hence Aj=t=

e

t

0

.

Let us now show that the above conditions are equivalent.

1) 2 If Aj= _�, then, by de�nition of validity, Aj=

V

_ � for all valuations V , so, in

particular, Aj=

V

?

_�.

2) 3 Let us assume that Aj=

V

?

_�. Then, by de�nition of validity, there exists t=

e

t

0

2 �

such that Aj=

V

?

t=

e

t

0

. Thus, since we have already shown that Aj=t=

e

t

0

i� Aj=

V

?

t=

e

t

0

,

we get Aj=t=

e

t

0

.

3) 1 This is trivial.

Note that if � is a set of atoms (that is, a set of equalities and negated equalities),

then Aj=

V

?

_� does not imply Aj= _�. For example, if � is f:D(x)g, it is satis�ed for

the totally unde�ned valuation, while each non-empty algebra does not satisfy _�.

De�nition 3.4. A speci�cation Sp consists of a signature � and a set of well-formed

formulas over �, called axioms of Sp.

A speci�cation is called disjunctive, conditional or equational, if all the axioms are dis-

junctions, conditional formulas or equalities, respectively.

Let Sp = (�;Ax) be a speci�cation. The class Mod(Sp) of models of Sp is the set

fA j A 2 NSAlg(�); Aj=� for all � 2 Axg:
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A model of Sp is initial for Sp i� it is initial in Mod(Sp).

Remark. Note that disjunctive speci�cations are su�cient to de�ne any class of mod-

els de�nable using well-formed formulas. Indeed each well-formed formula over the usual

logical connectives may be expressed in conjunctive normal form, as it is possible to prove

directly in the non-strict frame following the same pattern of the proof as in �rst-order

logic. Since a conjunction of formulas is logically equivalent to the set of the formulas

in the conjunction, each well-formed formula (in conjunctive normal form) is logically

equivalent to a set of disjunctive formulas.

The expressive power of equalities in a non-strict frame is quite di�erent from the

usual one { for instance, Mod(Sp) may be empty even for the special case of equational

speci�cations. For example, ifD(x) is an axiom of the speci�cation, no algebra can satisfy

this axiom with respect to the valuation completely unde�ned, so the speci�cation has

no models.

De�nition 3.5. A speci�cation Sp is consistent i� Mod(Sp) is not empty.

3.2. Disjunctive speci�cations and initiality

Although the class of models of a disjunctive speci�cation is not a variety, because it is

not closed under products nor quotients, it is at least closed under (inductive) subalgebras

and isomorphisms, and these closures are su�cient to instantiate Proposition 2.19 and

Theorem 2.21.

Proposition 3.6. The class of models of a disjunctive speci�cation is closed with respect

to subalgebras and isomorphisms.

Proof. Let Sp = (�;Ax ) be a disjunctive speci�cations and let C denote Mod(Sp).

By de�nition of validity, if A and B are isomorphic non-strict algebras, Aj=� i� Bj=�

for all disjunctive formulas �, and thus C is closed with respect to isomorphisms.

Let us assume that B is a subalgebra of A for some A 2 C , and show that B 2 C . Let �

belong to Ax and V be a valuation for the variables of � in B. Then it is also a valuation

for the variables of � in A, and hence Aj=

V

�, because A 2 Mod(Sp). By de�nition of

validity,Aj=

V

� i� Bj=

V

� for all equalities �. Thus, � being a disjunctive formula, Aj=

V

�

implies Bj=

V

�.

Note that model classes of disjunctive speci�cations may be non-closed with respect to

weak subalgebras. Indeed, consider, for example, the axiomD(a), which simply states the

de�nedness of a constant a. In any model A of D(a) the constant a denotes an element

a

A

of the carrier of A, but a weak subalgebra B of A may exist such that a

B

is unde�ned,

so B is not a model of D(a).

Theorem 3.7. Let � = (S; F ) be a signature and Sp = (�;Ax) be a disjunctive speci-

�cation. The following conditions are equivalent:

1 there exists an initial model in Mod(Sp);

2 there exists an initial model in Ind(Mod(Sp));

3 I(Mod(Sp)) 2Mod(Sp);

4 I(Mod(Sp)) is initial in Mod(Sp).
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Moreover, a non-strict algebra I 2 Mod(Sp) is initial in Mod(Sp) i� it is initial in

Ind(Mod(Sp)) i� it is isomorphic to I(Mod(Sp)) i� it satis�es the following two conditions

(a) I is inductive;

(b) Ij=t=

e

t

0

implies Aj=t=

e

t

0

for all A 2 Mod(Sp) and all t; t

0

2 T

�

(X), where X is an

S-sorted family of variables such that X

s

is non-empty for all s 2 S.

Proof. Because of Proposition 3.6, Mod(Sp) is closed with respect to inductive subal-

gebras and isomorphisms, so Theorem 2.21 and Proposition 2.19 apply.

In general, the initial model may not even exist in the special case of consistent equa-

tional speci�cations. Consider the following example.

spec Sp

4

=.

sorts s

opns

f; g: s! s

axioms

D(g(f(x)))

Sp

4

is a consistent equational speci�cation, because the non-strict algebra A, de�ned as

follows, is a model of Sp

4

.

Algebra A =

s

A

= f�g

f

A

(a) = g

A

(a) = � for all a 2 �

p

fs

A

g

Now we show that there are two models A and B of Sp

4

such that, respectively, f

A

(?) =2

s

A

and g

B

(?) =2 s

B

, and hence for any algebra I satisfying Condition (b) of Theorem 3.7

g

I

(f

I

(?)) =2 s

I

, so it is not a model of Sp

4

, and thus Sp

4

has no initial model, because of

Theorem 3.7.

Algebra =

s

A

= f�g

f

A

(�) and f

A

(?) unde�ned

g

A

(?) = g

A

(�) = �

Algebra B =

s

B

= f�g

f

B

(?) = f

B

(�) = �

g

B

(�) = � and g

B

(?) unde�ned

To give necessary and su�cient conditions for the existence of the initial model, we

need some preliminary results.

As we have already noted, variables play the role of the `unde�ned' objects and hence,

because of monotonicity, they may be replaced by any other term in any formula without

a�ecting its validity. Moreover, this replacement may also be `asymmetric', changing

di�erent occurrences of the same variable in a formula by di�erent terms. For example,

from Aj=f(x) = f

0

(x), for the valuation V

?

, we have f

A

(?) = f

0A

(?), and hence, by

monotonicity, f

A

(a) = f

0A

(b) for all a; b 2 A. Thus Aj=f(x) = f

0

(y). We formalize this

idea in the following lemma.
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Lemma 3.8. Let A be an algebra over a signature � = (S; F ); then Aj=D(f(t

1

; : : : ; t

n

))

implies, for each i = 1 : : :n, that

Aj=f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) _D(t

i

):

Proof. Assume that Aj=D(f(t

1

; : : : ; t

n

)). Then, in particular, Aj=

V

?

D(f(t

1

; : : : ; t

n

))

so that either Aj=

V

?

D(t

i

) or t

A;V

?

i

= x

A;V

?

, and in this case

Aj=

V

?

f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

):

Therefore Aj=

V

?

D(t

i

) _ f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

), and hence, because

of Proposition 3.3, Aj=D(t

i

) _ f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

).

The initial model of a disjunctive speci�cation exists i� each disjunction of non-negated

atoms that is valid in all models has a privileged element that holds in all models. Thus

disjunctions, which potentially cause troubles, may be solved and replaced by atoms.

Moreover, it is su�cient to check the property for just two kinds of disjunctions:

1 the disjunctions implicitly introduced because of monotonicity (see Lemma 3.8);

2 the disjunctions coming from instantiations of proper axioms.

Theorem 3.9. Let Sp = (�;Ax ) be a consistent disjunctive speci�cation. The following

conditions are equivalent:

1 There exists I initial in Mod(Sp).

2 There exists I initial in Ind(Mod(Sp)).

3 I(Mod(Sp)) 2Mod(Sp).

4 I(Mod(Sp)) is initial in Mod(Sp).

5 For all sets � of equalities if Aj= _� for all A 2 Mod(Sp), then there exists � 2 �

such that Aj=� for all A 2Mod(Sp).

6 (a) For all f 2 F

s

1

:::s

n

;s

if Aj=D(f(t

1

; : : : ; t

n

)) for all A 2 Mod(Sp), then one of the

following conditions holds:

| Aj=D(t

i

) for all A 2Mod(Sp) or

| Aj=f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for all A 2 Mod(Sp).

(b) For all _� 2 Ax and all substitutions U :T

�

(V ar(_�)) ! T

�

(X) if Aj=t=

e

t

0

for

all A 2 Mod(Sp) and all :t=

e

t

0

2 U (�), then there exists � 2 U (�) \ Eq(�; X)

such that Aj=� for all A 2 Mod(Sp).

7 The relation � over T

�

(X), de�ned by t � t

0

i� Aj=t=

e

t

0

for all A 2 Mod(Sp), is a

congruence and T

�

=� is the initial model.

Proof.

1, 2 This follows from Theorem 3.7.

2, 3 This follows from Theorem 3.7.

3, 4 This follows from Theorem 3.7.

4) 5 Let I = I(Mod(Sp)) be the initial model and � be a set of equalities. Thus

Aj=_� for allA 2 Mod(Sp) implies, in particular, Ij=_�. Because of Proposition 3.3,

Ij= _� implies that there exists t=

e

t

0

2 � such that Ij=t=

e

t

0

, and then, because of

Theorem 3.7, Aj=t=

e

t

0

for all A 2Mod(Sp).
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5) 6 Assume that Aj=D(f(t

1

; : : : ; t

n

)) for all A 2 Mod(Sp).

Then Aj=D(t

i

) _ f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for all A 2 Mod(Sp),

by Lemma 3.8, and hence Aj=f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for all A 2

Mod(Sp) or Aj=D(t

i

) for all A 2 Mod(Sp), because of Condition (5), and thus (6a)

holds.

Let us assume that there exists _� 2 Ax and U :T

�

(V ar(_�)) ! T

�

(X) such that

Aj=t=

e

t

0

for all A 2Mod(Sp) and all :t=

e

t

0

2 U (�). Then, since both Aj=t=

e

t

0

for

all :t=

e

t

0

2 U (�) and Aj=_U (�), A being a model of Sp, Aj=_U (�)\Eq(�; X) so,

because of (5), there exists � 2 U (�)\Eq(�; X) such that Aj=� for all A 2 Mod(Sp),

and hence (6) holds.

6) 7 It is easy to show that under hypothesis (6a) � is a congruence; we just show

that T

�

=� is the initial model.

Let I denote T

�

=�, � = _� be an axiom of Sp, and V be a valuation for V ar(�) in I;

if there exists :t=

e

t

0

2 � such that I 6j=

V

t=

e

t

0

, then Ij=

V

:t=

e

t

0

and hence Ij=

V

_�.

Thus, let us assume that Ij=

V

t=

e

t

0

for all :(t=

e

t

0

) 2 �, and let U be a substitution

for T

�

(V ar(�)) in T

�

(X) such that V (y) = [U (y)] for all y 2 V ar(�) and let U (�)

denote �[U (y)=y j y 2 V ar(�)] for all formulas �.

Because of Proposition 2.10, Ij=

V

t=

e

t

0

implies U (t) � U (t

0

), and hence, by de�nition

of �, Aj=U (t=

e

t

0

) for all A 2 Mod(Sp) and all :t=

e

t

0

2 �.

Therefore, from (6b), there exists t=

e

t

0

2 � \ Eq(�; V ar(�)) such that Aj=U (t=

e

t

0

)

for all A 2Mod(Sp), and hence U (t) � U (t

0

), so Ij=

V

t=

e

t

0

.

Therefore Ij=

V

�, and hence I is a model. Moreover, I satis�es Conditions (1) and (2)

of Theorem 3.7 by de�nition and hence it is initial in Mod(Sp).

7) 1 This is obvious.

The results of the above theorem apply to a wide range of speci�cations, because of

the great generality of non-strict disjunctive speci�cations.

In particular, in the following sections we will show that if all the proper axioms are

conditional, Condition (6b) is always satis�ed, while if axioms are imposed so that all

models are strict, Condition (6a) is satis�ed. Thus for total and partial conditional spec-

i�cations both (6a) and (6b) hold, so that we get the known results about the existence

of an initial model in those cases as a specialization of Theorem 3.9.

3.3. Non-strict conditional speci�cations

The conditional speci�cations are a particular case of disjunctive speci�cations. Indeed,

the conditional formula ^� � � is logically equivalent to _(f:� j � 2 �g [ f�g), or,

in other words, conditional formulas are disjunctions in which exactly one non-negated

equality appears, that is, they are positive Horn clauses. In this case the necessary and

su�cient conditions for the existence of an initial object are partially simpli�ed.

Theorem 3.10. Let Sp = (�;Ax) be a consistent conditional speci�cation. The following

conditions are equivalent:

1 There exists I initial in Mod(Sp).
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2 There exists I initial in Ind(Mod(Sp)).

3 I(Mod(Sp)) 2Mod(Sp).

4 I(Mod(Sp)) is initial in Mod(Sp).

5 For all sets � of equalities, if Aj= _� for all A 2 Mod(Sp), then there exists � 2 �

such that Aj=� for all A 2Mod(Sp).

6 For all f 2 F

s

1

:::s

n

;s

, if Aj=D(f(t

1

; : : : ; t

n

)) for all A 2 Mod(Sp), then one of the

following conditions holds:

| Aj=D(t

i

) for all A 2 Mod(Sp) or

| Aj=f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for all A 2Mod(Sp).

7 The relation � over T

�

(X), de�ned by t � t

0

i� Aj=t=

e

t

0

for all A 2 Mod(Sp), is a

congruence and T

�

=� is the initial model.

Proof. Let us �rst show that each conditional speci�cation is equivalent to a dis-

junctive one for which Condition (6b) of Theorem 3.9 is always satis�ed. Let Sp be the

consistent conditional speci�cation (�;Ax ) and de�ne Ax

0

= fdisj (�) j � 2 Axg, where

disj (^� � �) = _f:� j � 2 �g [ f�g, and Sp

0

= (�; Ax

0

). Since, by de�nition of

validity, each algebra A satis�es � i� satis�es disj (�) for all conditional formulas �,

Mod(Sp) = Mod(Sp

0

).

Thus, because of Theorem (3.9), we only have to show that for such an Sp

0

, Condition (6)

of Theorem 3.10 is equivalent to Conditions (6a) and (6b) of Theorem 3.9, that is, that

Condition (6b) of Theorem 3.9 is satis�ed also. Let ^� � � be an axiom of Sp and

U :V ar(^� � �) ! X be a substitution and assume that Aj=t=

e

t

0

for all :t=

e

t

0

2

U (disj (^� � �)), that is, for all t=

e

t

0

2 U (�), for all A 2 Mod(Sp). Then, for all

A 2 Mod(Sp), since Aj=U (^� � �) and Aj=t=

e

t

0

for all t=

e

t

0

2 U (�), Aj=U (�), so

Condition (6b) of Theorem 3.9 is satis�ed.

3.4. Total and partial speci�cations

Since the usual partial (total) algebras coincide with strict (total) algebras in our formal-

ism, Theorem 3.9 applies to those cases too and, since Condition (6a) is always satis�ed,

we can propose simpli�ed necessary and su�cient conditions for the existence of partial

or total initial models.

Moreover, by reducing total conditional and partial positive conditional to non-strict

conditional speci�cations, the well-known results about the existence of an initial object

in those cases may be obtained as corollaries of Theorem 3.10. Finally, we show that

partial non-positive conditional speci�cations, i.e., partial speci�cations whose axioms

are in conditional form but involve both strong and existential equalities, reduce to non-

strict disjunctive speci�cations, and that the necessary and su�cient conditions for the

existence of an initial model, given in Astesiano and Cerioli (1989; 1995) can be deduced

from Theorem 3.9.

Lemma 3.11. Let � = (S; F ) be a signature and Sp = (�;Ax) be a disjunctive speci�-

cation, and let us denote by Ax

Str

the set

fD(f(y

1

; : : : ; y

n

)) � D(y

i

) j f 2 F

s

1

:::s

n

;s

; i = 1 : : :ng:
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If (a set of axioms �rst-order equivalent to) Ax

Str

� Ax , then Condition (6a) of Theo-

rem 3.9 is satis�ed.

Proof. Let us assume that Aj=D(f(t

1

; : : : ; t

n

)) for all A 2Mod(Sp).

Since D(f(y

1

; : : : ; y

n

)) � D(y

i

) 2 Ax , we have Aj=D(f(y

1

; : : : ; y

n

)) � D(y

i

), and

hence both Aj=D(f(t

1

; : : : ; t

n

)) and Aj=D(f(t

1

; : : : ; t

n

)) � D(t

i

), so Aj=D(t

i

) for all

A 2Mod(Sp).

Let us recall the de�nition of validity in both total and partial algebras, just in order

to �x the notation.

De�nition 3.12. Let � = (S; F ) be a signature, A be a strict algebra over � and � be

a well-formed formula over � and an S-sorted familyX of variables. Aj=

t

� i� Aj=

V

� for

all total valuations V for the variables of � in A.

Let Sp = (�;Ax ) be a speci�cation. PMod (Sp) is the class of partial models of Sp, that

is,

PMod (Sp) = fA j A 2 NSAlg(�); A strict; Aj=

t

� for all � 2 Axg

and TMod(Sp) is the class of total models of Sp, that is,

TMod(Sp) = fA j A 2 NSAlg(�); A total; Aj=

t

� for all � 2 Axg:

Since partial algebras coincide with strict algebras, PMod (Sp) is the class of partial

models of Sp in the usual sense and, analogously, TMod(Sp) is the class of total models

of Sp in the usual sense also.

Let us show that the validity of a formula with respect to total valuations of its

variables is equivalent to the validity with respect to possibly partial valuations of the

formula where the de�nedness of variables has been explicitly required, by adding D(x)

in the premises. Thus partial or total validity reduces to validity in non-strict framework

under a translation of sentences.

Lemma 3.13. Let � = (S; F ) be a signature, A be a non-strict algebra over � and

� = (^� � �) be a well-formed formula over � and X.

Denoting by tot(�) the formula ^(� [ fD(y) j y 2 V ar(^� � �)g) � �,

Aj=

t

� () Aj=tot(�):

Proof.

) Let us assume that Aj=

t

� for some non-strict algebra A and show that Aj=tot(�).

Let V be a partial valuation for V ar(tot(�)) in A such that Aj=

V

� for all � in the

premises of tot(�). Then, in particular, Aj=

V

D(y) for all y 2 V ar(�), that is, V is

total, and hence Aj=

V

�, because of the assumption Aj=

t

�. Thus Aj=

V

� and, since

Aj=

V

� for all � in the premises of tot(�), Aj=

V

� for all � 2 �. Therefore Aj=

V

�, so

Aj=

V

tot(�).

( Let us assume that Aj=tot(�) for some non-strict algebra A and show that Aj=

t

�.

Let V be a total valuation for V ar(�) in A such that Aj=

V

� for all � 2 �. Then V

is also a valuation for the variables of tot(�) in A, and hence Aj=

V

tot(�). Moreover,

Aj=

V

D(y) for all y 2 V ar(�), V being a total valuation, and Aj=

V

� for all � 2 �,

that is, Aj=

V

tot(�) and Aj=

V

� for all � 2 prem(tot(�)). Therefore Aj=

V

�, so Aj=

V

�.
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Using the above results, any total (partial) speci�cation can be translated into a non-

strict speci�cation having the same models.

Proposition 3.14. Let � = (S; F ) be a signature and Sp = (�;Ax ) be a conditional

speci�cation, and use the notation of Lemma 3.13.

1 Let Par (Sp) be the conditional speci�cation (�;Ax

Str

[ tot(Ax )), where

tot(Ax ) = ftot(�) j � 2 Axg:

The partial model class of Sp coincides with the class of all non-strict models of

Par(Sp), that is, PMod (Sp) = Mod(Par (Sp)).

2 Let Tot(Sp) be the conditional speci�cation (�;Ax

Tot

[ tot(Ax )), where Ax

Tot

con-

sists of all the axioms of Ax

Str

and of ^fD(y

i

) j i = 1 : : :ng � D(f(y

1

; : : : ; y

n

)) for

all f 2 F

s

1

:::s

n

;s

.

The total model class of Sp coincides with the class of all non-strict models of Tot(Sp),

that is, TMod(Sp) = Mod(Tot(Sp)).

Proof. It is immediate to check that A is a partial/total algebra i� A is a non-strict

algebra satisfying Ax

Str

/ Ax

Tot

. Moreover, because of Lemma 3.13, Aj=

t

� i� Aj=tot(�)

for each strict algebra A and each conditional formula �. Therefore a partial/total algebra

satis�es Ax i� it is a non-strict algebra satisfying Ax

Str

[ tot(Ax ) / Ax

Tot

[ tot(Ax ).

Now we can get the well-known results of existence of an initial model for partial

positive conditional (see, for example, Broy and Wirsing (1982) and Burmeister (1986))

and for total conditional (see, for example, Goguen and Meseguer (1985)) speci�cations

just as a corollary of Theorem 3.10.

Theorem 3.15. Let � = (S; F ) be a signature and Sp = (�;Ax) be a conditional

speci�cation. Using the notation of Proposition 3.14, both TMod(Sp) and PMod (Sp)

have an initial model.

Proof. Because of Proposition 3.14, PMod (Sp) = Mod(Par (Sp)). Since Par (Sp) is a

conditional speci�cation, the theorem follows for Par(Sp) by Theorem 3.10 (5) 1) and

Lemma 3.11. We can then argue analogously for Tot(Sp).

Let us �nally consider the partial conditional case, i.e., partial models of axioms of

the form ^� � �, where � [ f�g is a set of possibly strong equalities. Let us recall that

t = t

0

holds i� (:D(t)^:D(t

0

))_ t=

e

t

0

holds, so strong equality is only a short notation

for a particular kind of disjunction.

De�nition 3.16. Let � = (S; F ) be a signature andX be an S-sorted family of variables.

The set of non-positive conditional formulas over � and X consists of

f^� � � j � [ f�g � Eq(�; X) [ SEq(�; X)g;

where SEq(�; X) = f(t = t

0

) j t; t

0

2 T

�

(X)g.

Let A be a non-strict algebra over �. If � is a non-positive conditional formula and V

is a valuation for V ar(�) in A, we say that � holds for V in A (equivalently, is satis�ed

for V by A) and we write Aj=

V

� according to the following de�nition:
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Aj=

V

t = t

0

i� Aj=

V

(:D(t) ^ :D(t

0

)) _ t=

e

t

0

and Aj=

V

^� � � i� Aj=

V

� or there exists

� 2 � such that A6j=

V

�.

We write Aj=� for a non-positive conditional formula � and say that � holds in (equiv-

alently, is satis�ed by or is valid in ) A i� Aj=

V

� for all partial valuations V for V ar(�)

in A. Moreover, we write Aj=

t

� i� Aj=

V

� for all total valuations V for V ar(�) in A.

Remark. Let us consider a non-positive conditional formula ^� � �. If � is the strong

equality t = t

0

, then ^� � � is logically equivalent to the pair of axioms ^�[ fD(t)g �

t=

e

t

0

and ^�[ fD(t

0

)g � t=

e

t

0

. Thus from now on we assume that the consequences of

the non-positive conditional formulas are always existential equalities.

A non-positive conditional axiom is logically equivalent to an implication involving

only existential equalities, but with negated existential equalities in its premises, so that

it is not a conditional axiom.

Let us consider the simplest example: a conditional axiom having just one strong equal-

ity in its premises. Let � be t = t

0

� �. Then � is logically equivalent to

(:D(t) ^ :D(t

0

)) _ t=

e

t

0

� � and hence to the set consisting of :D(t) ^ :D(t

0

) � �

and of t=

e

t

0

� �. If more than one strong equality appears in the premises, a little more

machinery is needed. Indeed, let us consider a set �

S

of strong equality and �x a valuation

for its variables in an algebra. Since each strong equality is satis�ed i� either the existen-

tial equality is satis�ed or both sides are unde�ned, the conjunction ^�

S

is satis�ed i�

it is possible to partition �

S

into two subsets �

1

and �

2

such that each equality in �

1

is satis�ed in the existential form and for each equality in �

2

both sides are unde�ned.

Thus ^�

S

is for any valuation equivalent to the disjunction of all formulas of the form

^(ft=

e

t

0

j t = t

0

2 �

1

g [ f:D(t);:D(t

0

) j t = t

0

2 �

2

g) for some �

1

[�

2

= �

S

and

�

1

\�

2

= ;.

For example, let us consider the formula ^�

S

, for �

S

= ft

1

= t

0

1

; t

2

= t

0

2

g. Then ^�

S

is equivalent to the disjunction of the following four formulas:

(:D(t

1

) ^ :D(t

0

1

)) ^ (:D(t

2

) ^ :D(t

0

2

))

t

1

=

e

t

0

1

^ (:D(t

2

) ^ :D(t

0

2

))

(:D(t

1

) ^ :D(t

0

1

)) ^ t

2

=

e

t

0

2

t

1

=

e

t

0

1

^ t

2

=

e

t

0

2

:

Note that if t = t

0

2 �

1

\�

2

,

^(ft=

e

t

0

j t = t

0

2 �

1

g [ f:D(t);:D(t

0

) j t = t

0

2 �

2

g)

is always false, because t=

e

t

0

^ :D(t) ^ :D(t

0

) cannot be satis�ed. Thus the condition

�

1

\�

2

= ; can be dropped without a�ecting the validity of the disjunction.

Let us apply the above discussion to non-positive conditional formulas.

Proposition 3.17. Let � be a signature, � [ f�g a set of (strong and existential) open

equalities over �, A a non-strict algebra over �, and V a valuation for the variables of

� [ f�g in A.

Then Aj=

V

^ � � � i� for all �

1

, �

2

such that �

1

[�

2

= �� Eq(�; X)

Aj=

V

^ [(� \ Eq(�; X)) [ (ft=

e

t

0

j t = t

0

2 �

1

g [ f:D(t);:D(t

0

) j t = t

0

2 �

2

g)] � �:
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Proof. Let us denote by �

E

= � \ Eq(�; X) the set of existential equalities in �, and

by �

S

= �� Eq(�; X) the set of strong equalities in �.

( Assume that for all �

1

, �

2

such that �

1

[�

2

= �

S

we have

(�) Aj=

V

^ (�

E

[ ft=

e

t

0

j t = t

0

2 �

1

g [ f:D(t);:D(t

0

) j t = t

0

2 �

2

g) � �:

If there exists 
 2 � such that A6j=

V


, then Aj=

V

^� � �, by de�nition of validity. Let

us assume, then, that Aj=

V


 for all 
 2 �. Then, in particular, Aj=

V

t = t

0

for each

t = t

0

2 �, that is, either Aj=

V

t=

e

t

0

, or both A6j=

V

D(t) and A6j=

V

D(t

0

), by de�nition

of strong equality.

Then

�

�

1

[

�

�

2

= �

S

, for

�

�

1

= ft = t

0

j t = t

0

2 �; Aj=

V

t=

e

t

0

g;

�

�

2

= ft = t

0

j t = t

0

2 �; A6j=

V

D(t); A6j=

V

D(t

0

)g:

By de�nition of

�

�

1

and

�

�

2

,

Aj=

V

^ (ft=

e

t

0

j t = t

0

2

�

�

1

g [ f:D(t);:D(t

0

) j t = t

0

2

�

�

2

g)

and Aj=

V


 for all 
 2 �

E

, because �

E

� � and Aj=

V


 for all 
 2 �.

Thus Aj=

V

^ (�

E

[ ft=

e

t

0

j t = t

0

2

�

�

1

g [ f:D(t);:D(t

0

) j t = t

0

2

�

�

2

g), and hence

Aj=

V

�, by (*). Thus Aj=

V

^ � � �.

) Assume that Aj=

V

^ � � � and let �

1

, �

2

be such that �

1

[�

2

= �

S

.

Assuming that Aj=

V

^ (�

E

[ ft=

e

t

0

j t = t

0

2 �

1

g [ f:D(t);:D(t

0

) j t = t

0

2 �

2

g),

we �rst show that Aj=

V

t = t

0

for each t = t

0

2 �

S

. Indeed, for each t = t

0

2 �

S

=

�

1

[ �

2

, if t = t

0

2 �

1

, then Aj=

V

t=

e

t

0

, because Aj=

V

^ ft=

e

t

0

j t = t

0

2 �

1

g,

otherwise t = t

0

2 �

2

, and hence, because Aj=

V

^f:D(t);:D(t

0

) j t = t

0

2 �

2

g, both

Aj=

V

:D(t) and Aj=

V

:D(t

0

). Thus Aj=

V

t = t

0

for each t = t

0

2 �

S

, by de�nition of

strong equality. Since we have assumed that Aj=

V

^ �

E

, and shown that Aj=

V

^ �

S

,

we have that Aj=

V

^�, so Aj=

V

�, because of the assumption Aj=

V

^� � �, and hence

Aj=

V

^ [(�\Eq(�; X))[ (ft=

e

t

0

j t = t

0

2 �

1

g[ f:D(t);:D(t

0

) j t = t

0

2 �

2

g)] � �:

Then, using the notation of Proposition 3.17, each non-positive conditional axiom

^� � � is logically equivalent to the set of all formulas of the form

^[(�\ Eq(�; X)) [ (ft=

e

t

0

j t = t

0

2 �

1

g [ f:D(t);:D(t

0

) j t = t

0

2 �

2

g)] � �

for �

1

[�

2

= �� Eq(�; X) and hence, putting the above formulas in disjunctive form,

to the set of all formulas of the form

_(f�g [ fD(t); D(t

0

) j t = t

0

2 �

2

g [ f:t=

e

t

0

j t = t

0

2 �

1

g [ f:
 j 
 2 � \ Eq(�; X)g)

for �

1

[�

2

= �� Eq(�; X).

Proposition 3.18. Let � = (S; F ) be a signature, � = ^� � � be an open non-positive

conditional formula and Y denote the set of the variables of �.

Let us denote by tot(�) the set of all disjunctive formulas of the form

_ (f�g [ fD(t); D(t

0

) j t = t

0

2 �

2

g [ f:t=

e

t

0

j t = t

0

2 �

1

g

[f:
 j 
 2 � \ Eq(�; Y )g [ f:D(y) j y 2 Y g)
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for all �

1

and �

2

such that �

1

[�

2

= �� Eq(�; Y ).

Then for each algebra A we have that Aj=

t

� i� Aj=� for all � 2 tot(�).

Proof. Because of Proposition 3.17, and putting all � 2 tot(�) in conditional form, we

get [Aj=� for all � 2 tot(�)] i� Aj= ^ � [ fD(y) j y 2 Y g � �. Because of Lemma 3.13,

Aj= ^ � [ fD(y) j y 2 Y g � � i� Aj=

t

^ � � �.

The above propositions give su�cient tools to show that each non-positive partial

conditional speci�cation may be reduced to a disjunctive non-strict speci�cation.

Proposition 3.19. Let � = (S; F ) be a signature and Sp = (�;Ax ) be a non-positive

partial speci�cation. Using the notation of Proposition 3.18, let Sp

0

be the conditional

speci�cation (�;Ax

Str

[[

�2Ax

tot(�)), where Ax

Str

consists ofD(f(y

1

; : : : ; y

n

)) � D(y

i

)

for all f 2 F

s

1

:::s

n

;s

. The partial model class of Sp coincides with the class of all non-strict

models of Sp

0

, that is, PMod (Sp) = Mod(Sp

0

).

Proof. It is immediate to check that a non-strict algebra over � is also a partial algebra

over � i� it satis�es all axioms in Ax

Str

. Because of Proposition 3.18, for each algebra

A, Aj=

t

� i� Aj=� for all � 2 tot(�), and hence A 2 Mod(Sp

0

) i� A is a partial algebra

and Aj=

t

� for all � 2 Ax . Therefore Mod(Sp

0

) = PMod (Sp).

Let us show now that the necessary and su�cient conditions for the existence of an

initial model in the case of (non-positive) partial conditional speci�cations, given in

Astesiano and Cerioli (1989; 1995), can be deduced by Condition (5) of Theorem 3.9.

Theorem 3.20. Let Sp be a non-positive conditional speci�cation. There exists an initial

model in PMod (Sp) i� for each instantiation � = �[t

y

=y j y 2 Y ] of an axiom� by de�ned

closed terms t

y

, that is, Aj=D(t

y

) for all A 2 PMod (Sp) and all y 2 V ar(�), at least one

of the following conditions holds:

1 Aj=cons(�) for all A 2 PMod (Sp);

2 there exists t=

e

t

0

2 prem(�) such that A6j=t=

e

t

0

for some A 2 PMod (Sp);

3 there exists t = t

0

2 prem(�) such that B 6j=t=

e

t

0

for some B 2 PMod (Sp), and

Aj=D(t) for all A 2 PMod (Sp), or Aj=D(t

0

) for all A 2 PMod (Sp).

Proof. Using the notation of Proposition 3.19, PMod (Sp) = Mod(Sp

0

), where Sp

0

=

(�;Ax

0

), Ax

0

= Ax

Str

[ [

�2Ax

tot(�). Hence there exists an initial model in PMod (Sp)

i� there exists an initial model in Mod(Sp

0

). Thus, because of Theorem 3.9, there exists

an initial model in PMod (Sp) i� the following conditions are satis�ed.

6(a) for all f 2 F

s

1

:::s

n

;s

, if Aj=D(f(t

1

; : : : ; t

n

)) for all A 2 Mod(Sp

0

), then one of the

following conditions hold:

| Aj=D(t

i

) for all A 2 Mod(Sp

0

) or

| Aj=f(t

1

; : : : ; t

n

)=

e

f(t

1

; : : : ; t

i�1

; x; t

i+1

; : : : ; t

n

) for all A 2Mod(Sp

0

).

6(b) for all _� 2 Ax and all substitutions U :T

�

(V ar(_�)) ! T

�

(X), if Aj=t=

e

t

0

for

all A 2 Mod(Sp

0

) and all :t=

e

t

0

2 U (�), then there exists � 2 U (�) \ Eq(�; X)

such that Aj=� for all A 2Mod(Sp

0

).

Condition 6(a) follows from Lemma 3.11. Now we show that Condition 6(b) is equivalent

to Conditions (1), (2) and (3).

Let us assume that Condition 6(b) holds and show that Conditions (1), (2) and (3) hold
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also. To do this let us assume that there exist � = (^� � �) 2 Ax and U :T

�

(V ar(�))!

T

�

such that Aj=D(U (y)) for all A 2 PMod (Sp) and all y 2 V ar(�), and U (�) does not

satisfy Condition (1), or (2), that is, that

i there exists B 2 PMod (Sp) such that B 6j=

U

(�),

ii for all t=

e

t

0

2 U (�) and all A 2 PMod (Sp), Aj=t=

e

t

0

,

and show that it satis�es Condition (3).

Let Y be the family of variables of � and consider the formula _�, where � is the union

of the following 5 sets:

| f�g

| fD(t); D(t

0

) j t = t

0

2 �

2

g

| f:t=

e

t

0

j t = t

0

2 �

1

g

| f:
 j 
 2 � \ Eq(�; Y )g

| f:D(y) j y 2 Y g)

for �

1

= ft = t

0

j t = t

0

2 �; Aj=U (t=

e

t

0

) for all A 2 PMod (Sp)g and �

2

=

[prem(�)� Eq(�; X)]��

1

.

Then _� 2 tot(�), and hence, by de�nition of Sp

0

, _� 2 Ax

0

. Since for all A 2

PMod (Sp), Aj=D(U (y)), by the assumption over U , Aj=U (
) for all 
 2 � \ Eq(�; Y ),

because of Condition (ii), and Aj=U (t=

e

t

0

) for all t=

e

t

0

2 �

1

, by de�nition of �

1

, so we

have that Aj=U (t=

e

t

0

) for all :t=

e

t

0

2 �. Thus, because of Condition 6(b), there exists

� 2 � \ Eq(�; Y ) such that Aj=U (�) for all A 2 PMod (Sp). Since B 6j=U (�) for some

B 2 PMod (Sp), because of Condition (i), there exists t = t

0

2 �

2

, so B 6j=U (t=

e

t

0

) for

some B 2 PMod (Sp), such that Aj=U (D(t)) for all A 2 PMod (Sp), or Aj=U (D(t

0

)) for

all A 2 PMod (Sp), that is, Condition (3) holds for U (�).

Conversely, let us assume that Conditions (1), (2) and (3) hold for each instantiation � =

�[t

y

=y j y 2 Y ] of an axiom � by de�ned closed terms t

y

, and show that Condition 6(b)

holds too.

Let us assume that for some _� 2 Ax

0

and substitution U :T

�

(V ar(_�)) ! T

�

(X),

Aj=t=

e

t

0

for all A 2 Mod(Sp

0

) and all :t=

e

t

0

2 U (�), and show that there exists

� 2 U (�) \ Eq(�; X) such that Aj=� for all A 2Mod(Sp

0

).

If _� 2 Ax

Str

, then the cardinality of U (�) \ Eq(�; X) is 1, because all the axioms

in Ax

Str

are positive Horn clauses, and hence Condition 6(b) holds. Thus let us assume

that _� belongs to tot(�) for some � 2 Ax . Then � is of the form

_ (f�g [ fD(t); D(t

0

) j t = t

0

2 �

2

g [ f:t=

e

t

0

j t = t

0

2 �

1

g

[f:
 j 
 2 � \ Eq(�; Y )g [ f:D(y) j y 2 Y g)

for some �

1

, �

2

such that �

1

[�

2

= ��Eq(�; Y ), (^� � �) 2 Ax and Y = V ar(^� � �).

Then, in particular, from Aj=t=

e

t

0

for all A 2 Mod(Sp

0

) and all :t=

e

t

0

2 U (�), we get

Aj=D(U (y)) for all A 2 Mod(Sp

0

), and hence, since strictness implies that all subterms

of U (y) are de�ned for all valuations so that none of them is a variable, U (y) are closed

terms such that Aj=D(U (y)) for allA 2Mod(Sp

0

). Thus Conditions (1), (2) and (3) apply

to U (^� � �). Moreover, from Aj=t=

e

t

0

for all A 2 Mod(Sp

0

) and all :t=

e

t

0

2 U (�), we

get Aj=U (t=

e

t

0

) for all t=

e

t

0

2 �, that is, Condition (2) does not hold, and hence

1 Aj=U (�) for all A 2 PMod (Sp), or
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3 there exists t = t

0

2 � such that B 6j=U (t=

e

t

0

) for someB 2 PMod (Sp) andAj=U (D(t))

for all A 2 PMod (Sp), or Aj=U (D(t

0

)) for all A 2 PMod (Sp).

If Condition (1) holds, then Condition 6(b) holds also. Thus assume that (3) holds and

show that 6(b) holds also. Since we have assumed that Aj=U (t=

e

t

0

) for all :t=

e

t

0

2 �

1

and B 6j=U (t=

e

t

0

) for some B 2 PMod (Sp), t = t

0

2 �

2

, and hence Condition (3) implies

that there exists t = t

0

2 �

2

such that for all A 2 PMod (Sp) Aj=U (D(t)), or for all

A 2 PMod (Sp) Aj=U (D(t

0

)), that is, Condition 6(b) holds.

Remark. Although the results on the characterization and existence of initial mod-

els for partial and total conditional speci�cations can be deduced by the more general

results for non-strict speci�cations, the theory of inference systems for non-strict spec-

i�cations is still unexplored, and hence the results on logical deduction in both partial

and total frames (see, for example, Astesiano and Cerioli (1989; 1995), Meseguer and

Goguen (1985) and Cerioli (1989), where conditional systems for these frames are dis-

cussed) are not encompassed. Moreover, as we will see in the next section, non-strict

disjunctive speci�cations inherit, via simulation, the inference systems from the (_;:)-

fragment of �rst-order logic and, since non-strict conditional speci�cations have the full

power of this fragment, it is impossible to found simpler systems tailored to the condi-

tional fragment, as in the usual (total and partial) cases.

4. Relating total and non-strict algebras

Let us now relate the non-strict frame to the more usual total one. To formalize the

concept of frame, we adopt the de�nition of an institution (see, for example, Goguen and

Burstall (1984)).

De�nition 4.1. (Goguen and Burstall 1984, De�nition 14) An institution I con-

sists of

| a category Sign of signatures;

| a functor Sen :Sign! Set giving the set of sentences over a given signature;

| a functor Mod :Sign! Cat

op

giving the category (sometimes called the variety) of

models of a given signature (the arrows in Mod (�) are called the model morphisms);

| a satisfaction relation

y

j=� jMod(�)j � Sen(�)

for each � in Sign, sometimes denoted j=

�

, such that for each morphism �: �

1

! �

2

in Sign, the Satisfaction Condition

M

0

j= Sen(�)(�) () Mod (�)(M

0

) j= �

holds for each M

0

in jMod (�

2

)j and each � in Sen(�

1

).

To relate two frames, the concept of a simulation (see, for example, Astesiano and

Cerioli (1990; 1994) and Cerioli (1993)) is used. The intuition behind simulations is to

code signatures and sentences from a `new' institution into equivalent ones of an `old'

y

for each categoryC the class of the objects of C is denoted by jCj.
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institution in such a way that each `new' model is represented by at least one `old' model

that satis�es exactly (the translation of) the same sentences. Thus models are partially

translated from the old into the new institution by a surjective map.

To de�ne simulations, the concept of a partially natural transformation is needed.

Informally the basic idea is that a partially natural transformation �:F ! G for some

F ;G :C ! Cat

op

is a (usual) natural transformation from a subfunctor of F into G ,

where a subfunctor F

0

ofF is a functor such that F

0

(c) is a (possibly non-full) subcategory

of F (c) for each object c of C, and F

0

(h) is the restriction of F (h) to F

0

(c) for each arrow

h 2 C(c; c

0

).

De�nition 4.2. (Astesiano and Cerioli 1993, De�nition 2.3) Given institutions

I = (Sign; Sen;Mod ; j=) and I

0

= (Sign

0

; Sen

0

;Mod

0

; j=

0

), a simulation �: I ! I

0

con-

sists of

| a functor �

Sign

:Sign! Sign

0

,

| a natural transformation �

Sen

: Sen ! Sen

0

� �

Sign

, that is, a natural family of func-

tions �

Sen

�

: Sen(�)! Sen

0

(�

Sign

(�)), and

| a surjective partially-natural transformation �

Mod

:Mod

0

� �

Sign

! Mod , that is, a

family of functors �

Mod

�

: dom(�)

�

! Mod (�), where dom(�)

�

is a (not necessarily

full) subcategory of Mod

0

(�

Sign

(�)) such that

{ �

Mod

�

is surjective on jMod(�)j,

{ the family is partially-natural, i.e., for each signature morphism � 2 Sign(�

1

;�

2

)

Mod (�) � �

Mod

�

2

= [�

Mod

�

1

�Mod

0

(�

Sign

(�))]

jdom(�)

�

2

;

such that the following satisfaction condition holds:

Aj=�

Sen

�

(�) () �

Mod

�

(A)j=�

for all � 2 jSignj, all A 2 jdom(�)

�

j and all � 2 Sen(�).

Whenever it is possible, we will drop the decorations of the simulations, provided that

no ambiguity arises.

4.1. Relationship between models

Let us �rst deal with the semantic side of the problem, i.e., the relationship between

non-strict and total algebras, disregarding the logics that are used to work on the two

frames. Formally this corresponds to considering institutions where the sentence functor

and the satisfaction relation are empty.

De�nition 4.3. The institution of non-strict algebras without sentences is the quadruple

NS = (Sign

NS

; ;;Mod

NS

; ;), where:

| Sign

NS

is the category whose objects are non-strict signatures de�ned in De�ni-

tion 2.2 and whose arrows Sign

NS

(�

1

;�

2

) are pairs (�; �), where �: �

1

! �

2

is a

sort renaming and � is a function symbol renaming consistent with the sort renaming.

| Mod

NS

:Sign

NS

! Cat

op

is the functor that yields for each signature � the cat-

egory NSAlg(�) of non-strict algebras and for each signature morphism (�; �) 2
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Sign

NS

(�

1

;�

2

) the reduct functor Mod

NS

(�; �):NSAlg(�

2

) ! NSAlg(�

1

), de-

�ned by Mod

NS

(�; �)(A

2

) = (f�(s)

A

2

g

s2S

; f�(f)

A

2

g

f2F

) and Mod

NS

(�; �)(h

2

) =

fh

2

�(s)g

s2S

.

The institution of total algebras without sentences is the quadruple MS =

(Sign

NS

; ;;Mod

MS

; ;), where Mod

MS

:Sign

NS

! Cat

op

yields for each signature �

the category of total many-sorted algebras and for each signature morphism (�; �) 2

Sign

NS

(�;�

0

) the reduct functor Mod

MS

(�; �):Mod

MS

(�

0

)! Mod

MS

(�), de�ned by

Mod

MS

(�; �)(A) = (f�(s)

A

g

s2S

; f�(f)

A

g

f2F

) and Mod

MS

(�; �)(h) = fh

�(s)

g

s2S

.

Following the intuition that a simulation codes a new into an old frame, we want to

de�ne a simulation of non-strict by total algebras.

Since the partial product of s

A

1

; : : : ; s

A

n

is isomorphic, from a set-theoretical point of

view, to the (usual) product of s

A

1

[ f?

s

1

g; : : : ; s

A

n

[f?

s

n

g, where the symbol [ denotes

the disjoint union, each non-strict algebra A is in some sense equivalent to the total

algebra A

?

, de�ned by

Algebra A

?

=

s

A

?

= s

A

[ f?

s

g

for each a

i

2 s

A

?

i

for i = 1 : : : n, let a be de�ned by a(i) = a

i

if a

i

2 s

A

i

and

a(i) is unde�ned if a

i

= ?

s

i

f

A

?

(a

1

; : : : ; a

n

) = f

A

(a) if f

A

(a) is de�ned, otherwise f

A

?

(a

1

; : : : ; a

n

) = ?

s

for all f :s

1

� : : :� s

n

! s.

However, this equivalence disregards the homomorphisms. Indeed, some homomor-

phism h between the trivial totalizations cannot be translated into the non-strict frame,

because h maps `de�ned' into `unde�ned' elements, that is, h(a) = ?

s

for some a 6= ?

s

,

while the non-strict homomorphisms are total functions. Moreover, some non-strict ho-

momorphisms have no total correspondent, because the introduction of one element to

represent all the unde�ned terms may cause a lack of existence of homomorphisms, as is

shown by the following example.

Example 4.4. Let � be the one-sorted signature consisting of just three constant symbols

a; b; c, and A, B be the non-strict algebras over �, de�ned by

Algebra A =

s

A

= f1g a

A

= 1; b

A

; c

A

are unde�ned

Algebra B =

s

B

= f1g a

B

= 1 = b

B

; c

B

is unde�ned.

Then there is a non-strict homomorphism h:A! B, de�ned by h(1) = 1. Now consider

the trivial totalizations of A and B.

Algebra A

?

=

s

A

?

= f1;?g a

A

?

= 1; b

A

?

= ? = c

A

?

Algebra B

?

=

s

B

?

= f1;?g a

B

?

= 1 = b

B

?

; c

B

?

= ?.

Then there does not exist any total homomorphism fromA

?

intoB

?

, because b

A

?

= c

A

?

,

while b

B

?

6= c

B

?

.

Summarizing the above discussion, we de�ne a simulation of non-strict by total alge-

bras, which is a rigorous formalization of the usual totalization by ?.
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De�nition 4.5. The simulation �

?

0

:NS !MS is de�ned by:

| �

?

0

(S; F ) = (S; F [f?

s

g

s2S

) and �

?

0

(�; �) = (�; �

0

), where �

0

(f) = �(f) for all f 2 F

and �

0

(?

s

) = ?

�(s)

.

| dom(�

?

0

) is the category whose objects are the total algebras A

0

where the interpre-

tation of function symbols are regular function, that is,

f

A

0

(a

1

; : : : ; a

i�1

;?

s

i

; a

i+1

; : : : ; a

n

) 6= ?

A

0

s

implies

f

A

0

(a

1

; : : : ; a

i�1

;?

s

i

; a

i+1

; : : : ; a

n

) = f

A

0

(a

1

; : : : ; a

i�1

; a

i

; a

i+1

; : : : ; a

n

)

for each a

i

, and whose morphisms h preserve de�nedness, that is, a 6= ?

A

0

s

implies

h(a) 6= ?

B

0

s

.

| For each A

0

in the objects of dom(�

?

0

) the translation A = �

?

0

(A

0

) is the non-strict

algebra that consists of s

A

= s

A

0

� f?

A

0

s

g for each s 2 S, and for each f 2 F

s

1

:::s

n

;s

the function f

A

is de�ned by:

if f

A

0

(a

1

; : : : ; a

n

) 6= ?

s

i

, then f

A

(a) = f

A

0

(a

1

; : : : ; a

n

), otherwise f

A

(a) is unde�ned,

where

for each a 2 s

A

1

�

p

: : :�

p

s

A

n

let a

i

be a(i), if a(i) is de�ned, ?

s

i

otherwise.

For each arrow h

0

in dom(�

?

0

) the translation h = �

?

0

(h

0

) is the restriction of h

0

to

�

?

0

(A

0

).

It is easy to check that the components of �

?

0

with respect to the models are partially

natural and hence that �

?

0

is a simulation.

Since �

?

0

does not take into account the categorical structure, the initiality in the total

and in the non-strict frames are unrelated. Indeed the trivial totalization of an initial

model satis�es a lot of equalities between `unde�ned' terms, which are not satis�ed by

other models in the class, so the no-confusion condition in the total frame is not satis�ed

and hence the trivial totalization of an initial model is in general not initial. Conversely,

if the trivial totalization of a non-strict algebra is initial, the algebra is maximally de�ned

and hence it is not initial in the non-strict frame.

In order to have a representation of the category of non-strict algebras, we need a

de�nition of (total) homomorphism that does not involve the `unde�ned' part. To do this

it is useful, not to say necessary, to have a tool to individuate the `unde�ned' elements,

for example a family of unary predicates, one for each sort, dividing the carriers into

`de�ned' and `unde�ned'. Following a similar idea, both Broy and Wirsing (1984) and

Poign�e (1987) de�ne homomorphisms that are partial functions, having as domain the

`de�ned' part. This approach can be generalized to include non-strictness. To �x the

notation, let us introduce the total algebras with predicates, or �rst-order structures.

De�nition 4.6. The institution of �rst-order structures without sentences is the quadru-

ple T L = (Sign

T L

; ;;Mod

T L

; ;), where:

| Sign

T L

is the category whose objects are signatures with predicates, that is, triples

(S; F; P ), where S is a set of sorts, F is an S

�

� S-sorted family of function symbols

and P is a S

+

-sorted family of predicate symbols, and whose arrows Sign

T L

(�

1

;�

2

)
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are triples (�; �; �), where �, � and � are consistent renamings of, respectively, sorts,

function and predicate symbols.

| Mod

MS

:Sign

T L

! Cat

op

is the functor that yields for each signature with predicates

� = (S; F; P ) the category of algebras with predicates, or �rst-order structures, whose

objects are triples (fs

A

g

s2S

; ff

A

g

f2F

; fp

A

g

p2P

), where s

A

are arbitrary sets, f

A

are

total functions and p

A

� s

A

1

� : : :�s

A

n

are the truth sets, and whose arrows h:A! B

are families h = fh

s

: s

A

! s

B

g

s2S

of total functions such that h

s

(f

A

(a

1

; : : : ; a

n

)) =

f

B

(h

s

1

(a

1

); : : : ; h

s

n

(a

n

)) and (a

1

; : : : ; a

n

) 2 p

A

implies (h

s

1

(a

1

); : : : ; h

s

n

(a

n

)) 2 p

B

.

For each signature morphism (�; �; �) 2 Sign

T L

(�

1

;�

2

), the reduct functor

Mod

T L

(�; �; �):Mod

T L

(�

2

)! Mod

T L

(�

1

) is de�ned by

{ Mod

T L

(�; �; �)(A

2

) = (f�(s)

A

2

g

s2S

; f�(f)

A

2

g

f2F

; f�(p)

A

2

g

p2P

),

{ Mod

T L

(�; �)(h

2

) = fh

2

�(s)

g

s2S

.

The basic idea of the following simulation of non-strict by �rst-order structures is to

split the carriers of a �rst-order structure into de�ned and unde�ned elements, provided

that at least one unde�ned element, denoted by ?, exists, by means of unary de�nedness

predicates. Thus the simulation is de�ned on each �rst-order structure satisfying the

monotonicity condition and where ? is unde�ned; it yields the non-strict algebra where

the unde�ned part of the carriers has been dropped. Since the homomorphisms in the

�rst-order frame preserve the truth of predicates, each homomorphism between two such

�rst-order structures can also be translated into a non-strict homomorphism. Thus the

domain of this simulation is a full subcategory.

De�nition 4.7. The simulation �

P

0

:NS ! T L is de�ned by:

| �

P

0

(S; F ) = (S; F [ f?

s

g

s2S

; fD

s

: s; eq

s

: s� sg

s2S

) and �

P

0

(�; �) = (�; �

0

; �), where

�

0

(f) = �(f) for all f 2 F , �

0

(?

s

) = ?

�(s)

, �(D

s

) = D

�(s)

and �(eq

s

) = eq

�(s)

.

| dom(�

P

0

) is the full sub-category whose objects are the �rst-order structures A

0

such

that

1 D

A

0

s

(f

A

0

(a

1

; : : : ; a

n

)) implies D

A

0

s

i

(a

i

) or f

A

0

(a

1

; : : : ; a

i�1

; a; a

i+1

; : : : ; a

n

) =

f

A

0

(a

1

; : : : ; a

n

), for all a,

2 eq

A

0

s

(a; a

0

) i� D

A

0

s

(a), D

A

0

s

(a

0

) and a = a

0

,

3 :D

A

0

s

(?

A

0

s

).

For each A

0

in the objects of dom(�

P

0

) the translation A = �

P

0

(A

0

) is the non-strict

algebra, which consists of s

A

= D

A

0

s

for each s 2 S and for each f 2 F the function

f

A

is de�ned by:

if D

A

0

s

(f

A

0

(a

1

; : : : ; a

n

)), then f

A

(a) = f

A

0

(a

1

; : : : ; a

n

), else f

A

(a) is unde�ned,

where

for each a 2 s

A

1

�

p

: : :�

p

s

A

n

let a

i

be a(i), if a(i) is de�ned, ?

s

i

otherwise.

For each arrow h

0

in dom(�

P

0

) the translation h = �

P

0

(h

0

) is the restriction of h

0

to

�

P

0

(A

0

).

By applying some results from Astesiano and Cerioli (1993), we get that the initial

model is preserved by �

P

0

.

De�nition 4.8. Let �: I ! I

0

be a simulation. Then � is called categorical i�
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1 dom(�)

�

is a full subcategory of Mod

0

(�(�)) for each � 2 jSignj;

2 � preserves inductive objects, i.e., for each I

0

2 jdom(�)j if Mod

0

(�(�))(I

0

; A

0

) has

cardinality at most 1 for each A

0

2 jMod

0

(�(�))j, then Mod (�)(�(I

0

); A) has cardi-

nality at most 1 for each A 2 jMod (�)j.

Lemma 4.9. If I

0

has equalizers (that is,Mod

0

(�

0

) has equalizers for each �

0

) and C

0

�

dom(�) is closed with respect to regular subobjects, then each categorical simulation �

preserves initial models, that is, I

0

initial in C

0

implies �(I

0

) initial in �(C

0

).

Proof. See Proposition 2.9 of Astesiano and Cerioli (1993).

Proposition 4.10. The simulation�

P

0

:NS ! T L de�ned in De�nition 4.7 is categorical.

Moreover, for each class C

0

� dom(�

P

0

) of �rst-order structures closed with respect to

subalgebras, if I

0

is initial in C

0

, then �

P

0

(I

0

) is initial in �

P

0

(C

0

).

Proof. By de�nition, dom(�

P

0

) is a full subcategory. Moreover, in both frames induc-

tive objects coincide with term-generated algebras and it is easy to check that term-

generated �rst-order structures are translated via �

P

0

into term-generated non-strict al-

gebras. Therefore �

P

0

is categorical, and hence Lemma 3.1.7 applies, because the category

of �rst-order structures has equalizers, which coincide with subalgebras.

The relationship between non-strict algebras and �rst-order structures described by

the categorical simulation �

P

0

is strengthened by the existence of left adjoints of the

model components of �

P

0

(from now on denoted by Tot), corresponding, as usual, to free

constructions. Indeed, Tot preserves initiality, because left adjoints do, and, moreover,

because of Proposition 4.10, �

P

0

preserves initiality, too, and hence the existence of the

initial model in the non-strict and in the total frame are completely equivalent.

To build such Tot, we need some preliminary technical results.

Lemma 4.11. Let � = (S; F ) be a non-strict signature, A be a non-strict algebra over

�, X

A

be fX

s

g

s2S

, with X

s

= s

A

[f?g for all s 2 S, and V

A

:X

A

! A be the valuation

de�ned by V

A

(a) = a if a 2 s

A

, V

A

(?) unde�ned. Let �

A

denote the total congruence

over T

�

(X

A

) generated by f(t; t

0

) j t 2 T

�

(X

A

); Aj=

V

A

t=

e

t

0

g and Tot(A) denote the

algebra (T

�

(X

A

)= �

A

; f?

Tot(A)

s

g

s2S

; fD

Tot(A)

s

; eq

Tot(A)

s

g

s2S

), where ?

Tot(A)

s

= [?]

�

A,

D

Tot(A)

s

([t]

�

A
) i� Aj=

V

A

D(t) and eq

Tot(A)

s

([t]

�

A
; [t

0

]

�

A
) i� Aj=

V

A

t=

e

t

0

.

The following facts hold:

1 t �

A

t

0

and Aj=

V

A

D(t) or Aj=

V

A

D(t

0

) imply Aj=

V

A

t=

e

t

0

;

2 Tot(A) belongs to dom(�

P

0

);

3 �

A

:A! �

P

0

(Tot(A)), de�ned by �

A

(a) = [a]

�

A, is an isomorphism.

Proof.

1 By induction over the de�nition of �

A

.

The only non-trivial step is for the functional closure. Let us assume that t

i

�

A

t

0

i

and

that the property holds for each pair t

i

; t

0

i

, and show that the property also holds for

f(t

1

; : : : ; t

n

); f(t

0

1

; : : : ; t

0

n

). Since Aj=

V

A

D(t

i

) or Aj=

V

A

D(t

0

i

) imply Aj=

V

A

t

i

=

e

t

0

i

for i =

1 : : :n, t

A;V

A

i

= t

0

A;V

A

i

for i = 1 : : :n, and hence f(t

1

; : : : ; t

n

)

A;V

A

= f(t

0

1

; : : : ; t

0

n

)

A;V

A

.

Thus we have the thesis.

2 Because of (1) and of the de�nition of both D

Tot(A)

s

and eq

Tot(A)

s

, Conditions (2) and

(3) of De�nition 4.7 are satis�ed. Let us assume that [f(t

1

; : : : ; t

n

)]

�

A 2 D

Tot(A)

s

and
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[t

i

]

�

A =2 D

Tot(A)

s

i

. Then, because of (1), f(t

1

; : : : ; t

n

)

A;V

A

2 s

A

and t

A;V

A

i

=2 s

A

i

, that is,

f

A

(t

A;V

A

1

; : : : ; t

A;V

A

i�1

; ?; t

A;V

A

i+1

; : : : ; t

A;V

A

n

) 2 s

A

and hence, by the monotonicity of f

A

,

f

A

(t

A;V

A

1

; : : : ; t

A;V

A

i�1

; ?; t

A;V

A

i+1

; : : : ; t

A;V

A

n

)=

e

f

A

(t

A;V

A

1

; : : : ; t

A;V

A

i�1

; t

A;V

A

; t

A;V

A

i+1

; : : : ; t

A;V

A

n

)

for all t 2 T

�

P

0

(�)

(X

A

), so f(t

1

; : : : ; t

n

) �

A

f(t

1

; : : : ; t

i�1

; t; t

i+1

; : : : ; t

n

), and hence

Condition (1) is satis�ed also.

3 This is obvious.

Let us consider a non-strict homomorphism h:A ! B. In order to de�ne its image

along Tot , we use h as a valuation from X

A

into X

B

and then show that t �

A

t

0

implies

h(t) �

B

h(t

0

), so that Tot(h)([t]

�

A) = [h(t)]

�

B is well de�ned.

A

X

A

-

T

�

(X

A

)= �

A

h

?

h

?

Tot(h)

?

B

X

B

-

T

�

(X

B

)= �

B

Lemma 4.12. Let A and B be non-strict algebras over �, and h:A! B be a non-strict

homomorphism. Using the notation of Lemma 4.11:

1 For each t 2 T

�

(X

A

) let h(t) denote the term t[h(a)=a j a 2 s

A

] 2 T

�

(X

B

). Then for

all t; t

0

2 T

�

(X

A

) t �

A

t

0

implies h(t) �

B

h(t

0

).

2 Tot(h):Tot(A) ! Tot(B), de�ned by Tot(h)([t]

�

A) = [h(t)]

�

B , is a homomorphism

of �rst-order structures.

Proof.

1 It is easy to check that, by de�nition of congruence, f(h(t); h(t

0

)) j t �

A

t

0

g ��, where

� is the congruence generated by f(h(t); h(t

0

)) j Aj=

V

A

t=

e

t

0

g, because �

A

is generated

by f(t; t

0

) j Aj=

V

A

t=

e

t

0

g. Thus it is su�cient to show that ���

B

. To do this let us

assume that Aj=

V

A

t=

e

t

0

for some t; t

0

2 T

�

(X

A

) and show that Bj=

V

B

h(t)=

e

h(t

0

).

Because of Corollary 2.9, Bj=

h�V

A

t=

e

t

0

, and hence, Bj=

V

B

h(t)=

e

h(t

0

), since t

B;h�V

A

=

h(t)

B;V

B

by de�nition of V

A

and V

B

.

2 Because of (1), Tot(h) is a well-de�ned �-homomorphism. Thus we only have to show

that it preserves the operations ?

s

and the truth of the predicates. By de�nition,

Tot(h)([?]

�

A) = [h(?)]

�

B = [?]

�

B.

Because of Lemma 4.11, [t]

�

A 2 D

Tot(A)

s

implies Aj=

V

A

D(t), and hence, because of

Corollary 2.9, Bj=

h�V

A

D(t), that is, Bj=

V

B

D(h(t)), so Tot(h)([t]

�

A) = [h(t)]

�

B 2

D

Tot(B)

s

.

Analogously, ([t]

�

A; [t

0

]

�

A)=

e

Tot(A)

implies Aj=

V

A

t=

e

t

0

, so Bj=

V

B

h(t)=

e

h(t

0

), and

hence ([h(t)]

�

B ; [h(t

0

)]

�

B)=

e

Tot(B)

. Therefore, Tot(h) is a homomorphism of �rst-

order structures.

And, �nally, we can put Lemma 4.12 and Proposition 4.13 together to de�ne the

functor Tot.
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Theorem 4.13. Let � = (S; F ) be a non-strict signature. Now, using the notation of

Lemma 4.11 and Lemma 4.12, Tot is a functor and is the left adjoint and left inverse

of �

P

0

. Moreover, if I is initial in a class C of non-strict algebras closed with respect to

isomorphisms, then Tot(I) is initial in �

P

0

�1

(C ).

Proof. It is just a trivial check to prove that Tot is a functor.

Let us show that Tot is the left adjoint of �

P

0

and that the family of the isomor-

phisms �

A

, de�ned in Lemma 4.11, is the counit of the adjunction. Let A be a non-

strict algebra, B

0

a �rst-order structure belonging to dom(�

P

0

) and h:A ! �

P

0

(B

0

) a

non-strict homomorphism. We denote by k

B

0

:Tot(�

P

0

(B

0

)) ! B

0

the homomorphism

de�ned by k

B

0

([t]

�

B

0

) = t

V;B

0

for V :�

P

0

(B

0

) ! B

0

the identical valuation, and show

that h

]

= k

B

0

�Tot(h) is the unique homomorphism from Tot(A) into B

0

such that the

following diagram commutes.

A

-

�

A

�

P

0

(Tot(A))

Tot(A)

h

H

H

H

H

H

H

H

H

H

H

H

Hj

�

P

0

(h

]

)

?

h

]

?

�

P

0

(B

0

)

B

0

By de�nition of �

A

and h

]

,

�

P

0

(h

]

) � �

A

(a) = �

P

0

(h

]

)([a]

�

A) = �

P

0

(k

B

0

�Tot(h))([a]

�

A)

and

�

P

0

(k

B

0

�Tot(h))([a]

�

A) = k

B

0

�Tot(h)([a]

�

A) = k

B

0

([h(a)]

�

B

0

);

since �

P

0

is the restriction. Finally, k

B

0

([h(a)]

�

B

0

) = h(a), by de�nition of k

B

0

, so the

diagram commutes.

Moreover, h

]

is the unique arrow that makes the diagram commute. Indeed let k be such

that �

P

0

(k) � �

A

= h. Then, by de�nition of �

P

0

and �

A

, �

P

0

(k) � �

A

= k([a]

�

A) = h(a) for

each a 2 s

A

, and hence k and h

]

coincide on the (equivalence classes of) variables, and

hence, by induction, on Tot(A).

Finally, since left adjoints preserve initiality and Tot is the left adjoint of �

P

0

, if I is

initial in C , then Tot(I) is initial in any class C

0

such that both Tot:C ! C

0

and

�

P

0

:C

0

! C . In particular, if C is closed with respect to isomorphisms, �

P

0

�1

(C ) is

closed with respect to isomorphisms also, and hence, A being isomorphic to �

P

0

(Tot(A))

by Lemma 4.11, Tot:C ! �

P

0

�1

(C ), and, obviously, �

P

0

:�

P

0

�1

(C ) ! C , so �

P

0

(I) is

initial in �

P

0

�1

(C ).

4.2. Preserving logics

Let us now investigate the logical aspects of the relationships between non-strict and

total algebras. To this aim we consider the institutions CNS and DNS of non-strict



E. Astesiano and M. Cerioli 38

algebras with, respectively, conditional and disjunctive axioms as sentences, and the

institutions T L and DT L of �rst-order structures with, respectively, conditional and

disjunctive axioms built on atomic formulas of the form p(t

1

; : : : ; t

k

) as sentences. The

validity in the total frame is de�ned analogously to the non-strict frame case, starting

from Aj=

V

p(t

1

; : : : ; t

k

) i� (t

A;V

1

; : : : ; t

A;V

k

) 2 p

A

, but now the valuations of variables are

total functions (see the validity j=

t

).

We consider �rst the trivial totalization �

?

0

. Let A

0

belong to dom(�

?

0

) and consider a

ground existential equality t=

e

t

0

. Then A = �

?

0

(A

0

) satis�es t=

e

t

0

i� both t and t

0

denote

the same element of s

A

= s

A

0

� f?

A

0

s

g, that is, i� t

A

0

= t

0A

0

6= ?

A

0

s

. Thus, to extend �

?

0

to a simulation working on equations of the non-strict frame, inequalities are needed in

the total frame. This is another inadequacy of the trivial totalization, which has already

been proved incapable of dealing with the categorical structure of the non-strict frame.

Let us consider now the simulation �

P

0

, de�ned in De�nition 4.7. It is easy to ex-

tend �

P

0

to work on conditional (disjunctive) formulas, i.e., to de�ne two simulations

�

C

: CNS ! T L and �

D

:DNS ! DT L coinciding with �

P

0

on signatures and models.

Indeed, any conditional (disjunctive) formula can be naturally translated from the non-

strict into the �rst-order frame, by just replacing the existential equalities by the eq

s

predicates, which were indeed introduced to represent existential equality.

De�nition 4.14. The simulation �

C

: CNS ! T L is the extension of �

P

0

:NS ! T L,

that on ^ft

i

=

e

t

0

i

j i 2 Ig � t=

e

t

0

yields ^feq

s

i

(t

i

; t

0

i

) j i 2 Ig � eq

s

(t; t

0

).

Similarly, the simulation �

D

:DNS ! DT L is the extension of �

P

0

:NS ! T L yielding

_feq

s

i

(t

i

; t

0

i

) j i 2 Ig _ f:eq

s

j

(t

j

; t

0

j

) j j 2 Jg on _ft

i

=

e

t

0

i

j i 2 Ig _ f:t

j

=

e

t

0

j

j j 2 Jg .

Since the domain of �

D

is the model class of the set Ax

DC

consisting of the following

disjunctive axioms:

| :D

s

(f(x

1

; : : : ; x

n

)) _D

s

i

(x

i

)_ eq

s

(f(x

1

; : : : ; x

i�1

; y; x

i+1

; : : : ; x

n

); f(x

1

; : : : ; x

n

));

| eq

s

(x; x

0

) _:D

s

(x) _ :D

s

(x

0

) _ :x = x

0

;

| :eq

s

(x; x

0

) _D

s

(x);

| :eq

s

(x; x

0

) _D

s

(x

0

);

| :eq

s

(x; x

0

) _ x = x

0

;

| :D

s

(?

s

);

the non-strict model class of a set Ax of disjunctive formulas is simulated by the total

model class of the set �

D

(Ax ) [ Ax

DC

of disjunctive formulas in the �rst-order frame.

Therefore �

D

induces a correspondence between the speci�cations in the two formalisms,

and hence both frames have the same expressive power.

Instead, the simulation �

C

does not relate conditional to conditional speci�cations,

because proper disjunctive speci�cations are required to describe the domain of the sim-

ulation; indeed there does not exist a total conditional speci�cation whose model class is

dom(�

P

0

), because the trivial total algebra Tr over �

P

0

(�), having singleton sets as carri-

ers, the unique obvious interpretation of function symbols and the totally true predicates

(that is,D

Tr

s

= s

Tr

and eq

Tr

s

= s

Tr

�s

Tr

) is a model of each conditional speci�cation but

does not belong to the domain. Therefore, in general it is impossible to translate a con-

ditional (equational) non-strict speci�cation into a conditional �rst-order one, because it

is impossible, at least, for the speci�cation without axioms (�; ;).
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Since the �rst-order structures representing the models of a non-strict disjunctive spec-

i�cations are the models of a (total) disjunctive speci�cation, and initiality is both pre-

served, because �

P

0

is categorical, and re
ected, because of the existence of the left adjoint

Tot, by �

P

0

, the existence of an initial model for a non-strict disjunctive speci�cation is

equivalent to the existence of an initial model for the �rst-order disjunctive speci�cation

that is simulating it.

Corollary 4.15. Let Sp = (�;Ax ) be a non-strict disjunctive speci�cation and �

P

0

(Sp)

denote the �rst-order disjunctive speci�cation (�

P

0

(�); �

P

0

(Ax )[Ax

DC

). Then I is initial

for Sp i� Tot(I) is initial for �

P

0

(Sp).

Proof. Since the model classes of disjunctive speci�cations in both frames are closed

with respect to isomorphisms and regular subobjects, Proposition 4.10 and Theorem 4.13

apply.

If I is initial for Sp, then Tot(I) is initial for �

P

0

(Sp), because of Theorem 4.13, and if

Tot(I) is initial for �

P

0

(Sp), then I � �

P

0

(Tot(I)) is initial for Sp, because of Proposi-

tion 4.10.

Since the domain of the simulation�

D

is the model class of a set of axioms, by applying

a result from Astesiano and Cerioli (1993), it is possible to translate inference systems

from the total disjunctive frame (which is a fragment of �rst-order logic) into the non-

strict frame in such a way that soundness and completeness are preserved.

Proposition 4.16. Let ` be an inference system for the disjunctive sentences built

on (possibly negated) atoms in the total frame. Then `

�

D

is the inference system for

disjunctive non-strict speci�cations de�ned by Ax `

�

D

� i� �

P

0

(Ax ) [Ax

DC

` �

P

0

(�).

If ` is sound (complete), then `

�

D

is sound (complete) also.

Proof. See Corollary 3.5 of Astesiano and Cerioli (1993).

Let us now summarize our previous investigation of the relationships between total and

non-strict algebras. Each non-strict algebra may be represented by a total algebra, where

a special element ? has been added to the carriers to denote the `unde�ned' elements, but

this trivial totalization cannot be lifted to a categorical correspondence, since it cannot

be expressed by a functor.

For a satisfactory categorical translation of non-strict into total algebras we need some

more algebraic tools (in particular, de�nedness predicates), and get that each non-strict

algebra may be represented by many di�erent �rst-order structures, which we can think

of as its implementations, satisfying the same formulas. However, the class of �rst-order

structures representing the models of a non-strict equational speci�cation cannot be

described by conditional axioms, so there is no correspondence between (equational)

conditional non-strict speci�cations and conditional �rst-order speci�cations.

There exists a disjunctive speci�cation having as models the �rst-order structures rep-

resenting non-strict algebras. Thus each disjunctive non-strict speci�cation is represented

by a disjunctive �rst-order speci�cation.

5. Conclusion

This paper has presented two main results, clarifying, we believe, two basic issues.
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The central result is a theory of initial models of non-strict disjunctive speci�cations,

which encompasses not only the well-known initial theories of total conditional speci�ca-

tions and partial positive-conditional speci�cations, but also the recently explored partial

non-positive conditional speci�cations.

Moreover, the relationship between non-strict and totalized algebras is analyzed, em-

phasizing that the relationship has been dealt with at three di�erent levels: models,

categories and speci�cations. Only at the �rst level, which is the only one considered in

basic denotational semantics, the correspondence is trivial.

We see a main direction for further research to be allowing don't care conditions and

error-handling in the same paradigm: a promising approach seems to be to merge the

present theory with the development of error-handling in Poign�e (1987).
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