
Implementation of Derived Programs

(Almost) for Free

?

Maura Cerioli and Elena Zucca

DISI{Dipartimento di Informatica e Scienze dell'Informazione,

Universit�a di Genova, Via Dodecaneso, 35, 16146 Genova, Italy,

e-mail: fcerioli,zuccag@disi.unige.it

Introduction

In the process of top-down software development, an implementation step can

consist of two di�erent kinds of re�nement:

{ \local", i.e. replacing a module A by a more speci�c module B which simu-

lates the behavior of A;

{ \global", i.e. passing from a more abstract speci�cation or programming

language, say I, to a less abstract, say I

0

.

A property that usually holds in practice is that these two kinds of re�nement

can be composed, i.e., if a module A is correctly implemented by B, then all

the programs in I using A can be correctly transformed in programs in I

0

using

B, provided that we are able to translate linguistic constructs from I to I

0

(in

other words, we get \for free" the implementation of derived programs).

Our aim is to give a model for this situation independent from the particular

formalisms I and I

0

which are involved, in the spirit of the theory of institu-

tions [3]. Indeed, commonly used notions of re�nement of formalisms (see [7]

for further references, too) do not support this intuition, since the translation

of expressions from I to I

0

is not given once and for all, but depends on (is

parameterized by) the speci�c signature.

The framework we propose is partly similar to that of parchments, that are

syntactic representations of institutions where expressions over a signature �

are terms over an algebraic signature Lang(�) (see e.g. [2]); but we take the

stronger uniformity requirement that this algebraic signature is independent

from the speci�c signature �, which only impacts on the choice of variables.

Moreover, since our aim is to have a notion of formalism including both spec-

i�cation and programming languages, the expression we consider are not just

boolean sentences, but are classi�ed by their types. Putting the two things to-

gether, we get a notion of typed uniform parchment (Section 1), which on one

side seems general enough for capturing most common institutions, on the other

side allows to express notions closer to programming languages, in particular the

factorization of an implementation step in a global and a local part mentioned

above (Section 2).

?

Partially supported by Murst 40% - Modelli della computazione e dei linguaggi di

programmazione and CNR - Formalismi per la speci�ca e la descrizione di sistemi

ad oggetti.



Finally, the notion of implementation presented here allows to relate individ-

ual values within the carriers of the involved models, generalizing the original

approach by Hoare [4]. Since this concrete data-type implementation maps in-

dividual elements, it is possible to verify the correctness of an implementation

w.r.t. a singled out function of the signature, while the available notions of im-

plementation require to take into account whole models (or even speci�cations)

at one time. This is, at our knowledge, the �rst attempt at rephrasing concrete

data-type implementation in an institutional framework.

1 Typed Uniform Parchments

The institution theory has been originally developed in order to provide a 
exible

formalism to represent speci�cation languages focusing on the validity relation

between boolean sentences and models.

In order to represent not only axiomatic frameworks, but also a broader

range of applications, like database query systems, knowledge representation

systems and programming languages, institutions can be generalized (see e.g. [2])

replacing boolean sentences by \expressions" (we will adopt this term from now

on) to be evaluated in some generic category of values.

De�nition1 [2]. A generalized institution is a tuple (Sign;Exp;Mod; [[ ]]), where:

{ Sign is a a category,

{ Exp:Sign! Set is a functor giving the expressions over a signature,

{ Mod:Sign

op

! Cat is a functor giving the models over a signature,

{ [[ ]]: jModj � Exp�!

��

V is an extra-natural transformation, giving the evalua-

tion of an expression in a model, with V the universe of admissible values;

the application of [[ ]]

�

to arguments ex 2 Exp(�) and M 2 jMod(�)j will

be denoted by [[ex ]]

M

�

.

The extra-naturality of evaluation means that for each signature morphism

�:� ! �

0

, each �-expression ex and each �

0

-model M

0

[[Exp(�)(ex )]]

M

0

�

0

= [[ex ]]

Mod(�)(M)

�

:

In order to give a natural description of programming languages, we endow gen-

eralized institutions with a notion of typing. A similar notion is that of concrete

institutions (see e.g. [1]), i.e. standard institutions with boolean sentences, where

signatures have an underlying set of sorts or types and models over a signature

� with types S have an underlying carrier which is an S-sorted set.

De�nition2. A typed institution T GI consists of a generalized institution GI =

(Sign;Exp;Mod; [[ ]]) and a typing system for GI, i.e.:

{ a functor Types:Sign! Set, giving the types of a signature;

{ a natural transformation � :Exp�!

�

Types, typing the expressions;

{ an extra-natural transformation [ ]: jModj � Types�!

��

T , with T � }(V) the

universe of admissible type values, giving the carrier of a type in a model;

the application of [ ]

�

to arguments t 2 Types(�) and M 2 jMod(�)j will

be denoted by [t]

M

�

;



satisfying, for each � 2 jSignj, M 2 jMod(�)j and ex 2 Exp(�), the following

type preservation condition:

[[ex ]]

M

�

2 [�

�

(ex )]

M

�

:

Parchments have been introduced in [2] as syntactical presentations of institu-

tions, allowing not only to avoid the (often tedious and/or di�cult) check that

the satisfaction condition holds, but also to combine institutions, presented by

parchments, in a more convenient way (see e.g. [5]).

The intuition behind parchments is to de�ne the set of the sentences over a

signature � by initiality, i.e. as the set of the terms of a distinguished sort in an

algebraic signature Lang (�), where Lang is a functor intuitively associating a

language with any signature. Moreover, a model over � can be de�ned by giving

a morphism M :� ! � where � is a distinguished signature, intuitively the

\universal language". The validity of sentences in a model is then derived from

the evaluation of the term algebra W

Lang(� )

into a �xed algebra G

V

, intuitively

the \semantical universe".

The typed uniform parchments (shorty tu parchments from now on) we

present in this section di�er from parchments in two respects. First of all, as

they describe typed institutions, tu parchments have two levels of language: the

type language, describing for each signature the set of acceptable types, and the

value language, describing the (typed) expressions denoting values. The two lev-

els also apply to the semantic part; so we have two universal languages and two

algebras giving the semantical universes.

Second, we require a much stronger uniformity in the way of associating a

language with a given signature. Indeed, in most commonly used institutions

and in programming languages too, there is a unique language �xed once and

for all, and a speci�c signature only contributes in providing a family of symbols

which play the role of variables. This is patent in programming languages, where

correct programs (expressions) using a module are usually determined by a �xed

grammar (the language description) and a set of identi�ers, depending on the

individual module. But this also applies to speci�cation frameworks. Let us con-

sider, for instance, the ground terms over an algebraic signature � = hS;Oi.

They can be seen as the terms over another signature AV �(S), with sorts

fterm(s) j s 2 Sg [ fop(s

1

: : : s

k

! s) j s

1

; : : : ; s

k

; s 2 Sg and an opera-

tion ( ; : : : ; ): op(s

1

: : : s

k

! s)� term(s

1

)� : : :� term(s

k

)! term(s) for any

s

1

; : : : ; s

k

; s 2 S. Each operation f 2 O

s

1

:::s

k

;s

is seen as a variable of sort

op(s

1

: : : s

k

! s). Moreover, the sorts of the signature AV �(S) are, in turn,

terms over a signature AT�, with operations term( ) and op( : : : ! ), over

the set S of type variables. Hence the speci�c signature � only determines the

sets S and O of variables to be used respectively to build the type and the value

expressions. Thus, in tu parchments the language components of both levels fac-

torize into a functor, providing for each signature its names, and an algebraic

signature, describing how these names are used to build the (type and value)

expressions.

Notation 1: Indexed Sets. Let us denote by SSet:Set

op

! Cat the indexed set

functor, associating with each set S the category of S-sorted families of sets (and S-

sorted families of functions as arrows) and with each function renaming the indexes the



reduct. Moreover, SSet denotes the 
attening of SSet, that is the category of sorted

sets, where an object is a pair hS;Xi with S a set and X an S-family of sets, and

an arrow from hS;Xi into hS

0

;X

0

i is a pair hf :S ! S

0

; fh

s

:X

s

! X

0

f(s)

g

s2S

i. Finally,

Sorts:SSet! Set denotes the functor giving the sorts of a sorted set.

Here, we chose to use (many-sorted) algebraic signatures to describe the language

components, for simplicity. However, the results we present are only based on the

existence of the free algebra construction, and the commutativity of the reduct

functor w.r.t. the carrier functor.

Notation 2: Algebraic Signatures. We denote by AlgSign the category of al-

gebraic many-sorted signatures and by Sorts:AlgSign! Set the functor giving the

sorts of an algebraic signature; when clear from the context, we will use � for Sorts(�).

The functor ALG:AlgSign

op

! Cat associates with each � 2 jAlgSignj the

category of the many-sorted total algebras over �.

For each � 2 jAlgSignj letW

�

: SSet(Sorts(�)) ! ALG(�) denote the left adjoint

of the carrier functor j j:ALG(�) ! SSet(Sorts(�)); with unit �

�

and counit �

�

.

Moreover, for each A 2 jALG(�)j and f :X ! jAj, we denote by eval

A;f

�

:W

�

(X) ! A

the unique free extension of f , that is eval

A;f

�

= �

�

A

�W

�

(f). Finally, if A = W

�

0
(Y )

j�

for some morphism �:� ! �

0

in AlgSign, then eval

A;f

�

will be denoted by W

�

(f).

Let us collect a few properties of W

�

(f), that will be used in the next section.

Lemma3. For each �:� ! �

0

, �

0

:�

0

! �

00

in AlgSign, f :X ! jW

�

0

(Y )
j�
j,

f

0

:Y ! jW

�

00

(Z)

j�

0

j and f

00

:X ! Y
j�

in Set:

1. W

�

0

��

(jW

�

0

(f

0

)
j�
j � f) = W

�

0

(f

0

)
j�
�W

�

(f)

2. jW

�

0

(f

0

)
j�
j � (�

�

0

Y

)
j�
= f

0

j�

3. W

�

0

��

(f

0

j�

� f

00

) = W

�

0

(f

0

)
j�
�W

�

((�

�

0

Y

)
j�
� f

00

)

In the following a type language will be a signature T� with �xed sorts n, e of

the name and expression types, respectively. Intuitively, the T�-terms of sort e

represent the types of expressions, while those of sort n represent auxiliary types,

whose elements will be used for constructing the expressions. In most common

cases, the auxiliary types collect function and procedures, like in the following

example of many-sorted signatures

Example 1.

AT� = sorts n; e

opns fop( : : : ! ): e

k

� e ! n j k � 0g

Each type language implicitly de�nes a category of sets with substitutions as

arrows, where type names are allowed to be expanded into type expressions. This

is technically described in terms of the Kleisli category for the monad induced

by the adjunction between the carrier functor and the free algebra construction.

Notation 3: Type Languages. We denote by AlgSign

�

, the sub-category of

AlgSign with �xed sorts n; e of the name and expression types, respectively, and

signature morphisms preserving such �xed sorts. Signatures in AlgSign

�

will be called

type languages.

The following notations are introduced for a given type language T�.



Adjunction Let us denote by F

T�

= W

T�

( : e) the left adjoint to G

T�

= j j

e

with

�

T�

e

= (�

T�

:e

)

e

as unit and �

T�

e

= �

T�

� W

T�

(E

j j

) as counit of the adjunction,

obtained by composing the usual adjunction between indexed sets and algebras

with the following adjunction h : e;

e

; id ; Ei between sets and indexed sets:

{ : e:Set! SSet(Sorts(�)) associates any X with the family of sets that are

all empty but for the index e, for which X is yielded; analogously for functions;

{

e

:SSet(Sorts(�)) ! Set is the projection over the index e;

{ E is, for each family of sets X, the embedding into X of the family having all

components empty but for the index e, for which X

e

is yielded.

Substitution category Let us denote by Set

T�

the Kleisli's category over the monad

induced by the adjunction between F

T�

and G

T�

, having sets as objects, the

functions from X into jW

T�

(Y : e)j

e

as arrows from X to Y , �

T�

e

as identity, and

composition de�ned by g

T�

� f = G

T�

(�

T�

e

F

T�

(Z)

� F

T�

(g)) � f for each f :X ! Y

and g: Y ! Z.

Moreover, for each f :X ! Y in Set we will denote by f

T�

= �

T�

e

Y

� f :X ! Y its

corresponding arrow in Set

T�

.

Name and Expression Functors The functors jW

T�

( : e)j

n

:Set

T�

! Set and

jW

T�

( : e)j

e

:Set

T�

! Set, give the sets of name and expression types and their

homomorphical translations, that are the composition of the projections over the

n and e components of the carrier with the generalization

2

of F

T�

. We will also

denote by jW

T�

( : e)j

n]e

:Set

T�

! Set the coproduct of such functors, yielding on

each set the disjoint union of the nameable and expression types, with silent injec-

tions.

The intuition behind the choice of symbols in the following de�nition is that a

T is used to decorate the parts regarding the type level, an N for the auxiliary

names and their valuations and a V for the elements of the value level that are

directly involved in building and evaluating value expression.

De�nition4. A typed uniform parchment, from now on tu parchment, is a tuple

P = (Sign;TN; T�; T N ; G

T

; �

T

;N; V �;N ; G

V

; �

N

) where

Signatures Sign is a category of signatures,

Type level

{ TN:Sign! Set is a functor giving the type names of a signature,

{ T� 2 jAlgSign

�

j is the type language,

{ T N is a set giving the universe of types;

{ G

T

is a model of T� term-generated by the valuation �

T

: T N ! jG

T

j

e

,

s.t. jG

T

j

n

; jG

T

j

e

� jSetj;

Value level

{ N:Sign! SSet is a functor giving the (value) names of a signature s.t.

Sorts �N = jW

T�

(TN( ) : e)j

n

;

{ V �:Set

T�

! AlgSign is a functor giving the (value) languages, s.t.

Sorts � V � = jW

T�

( : e)j

n]e

(well-typedness)

{ N is a sorted set giving the universe of values, s.t. Sorts(N ) = jW

T�

(T N : e)j

n

;

2

If hF;G; �; �i:X! A is an adjunction, then F may be generalized to a functor

F

+

:X

GF

! A by F

+

(f :X ! Y ) = �

F (Y )

� F (f).



{ G

V

is a model of V �(T N ) term-generated by the valuation �

N

:N ! jG

V

j

s.t. for any s 2 jW

T�

(T N : e)j

n]e

, jG

V

j

s

= eval

G

T

;�

T

T�

(s).

Since the sort component of the indexed set morphism given by the application

of N or V � to arrows is �xed, in the following we will omit it, provided that no

ambiguity arises.

Note that the value languages are indexed on sets instead of signatures. This,

together with the well-typedness condition, guarantees a strong uniformity. In

particular, if jSetj is the power-set of some universe U , intuitively representing

all possible type names, then it is possible to prove that V �(U) and the family of

the V �(f) for f an endomorphism of U describe V � up to isomorphism, so that

V � can be equivalently presented by one signature and a bunch of morphisms.

Let us illustrate the de�nition on the example of a simple algebraic language.

Since standard many-sorted algebras have a very poor language, with only func-

tion application, we have enriched them by a few simple constructs, in order

to better show the features of tu parchments. The languages de�ned by AT�

and AV � do not take into account static constraints (i.e. also non well-formed

expressions are obtained by the �-abstraction construct applied to terms on a

larger set of variables, which are semantically evaluated to a special ? value).

Static constraints could be easily enforced adding axioms, that is using a cate-

gory of speci�cations instead of AlgSign

�

. Here we take this approach for sake

of simplicity.

Example 2. Let us describe the components of the parchment ALG. Let us �x a

universe X of variables to be used in value expressions.

Signatures ASign = AlgSign,

Type Level

{ ATN = Sorts,

{ AT� is described in Example 1;

{ AT N is some universe of sets; let V denote the universe of all the ele-

ments of sets inAT N andVal = fV j V :Dom(V )! VgwithDom(V ) �

X denote the set of environments;

{ A�

T

(A) =

�

Val ! A

?

�

, where A

?

= A [ f?g, for each A 2 AT N

op

AG

T

(

�

Val ! A

?

1

�

: : :

�

Val ! A

?

n

�

!

�

Val ! A

?

�

)

=

�

A

1

� : : :�A

n

! A

?

�

Value Level

{ the functor AN on a signature hS;Oi yields the indexed set having as

component of index op(s

1

: : : s

n

! s) the set O

s

1

:::s

n

;s

and is analogously

de�ned on morphisms;

{ For each S 2 jSetj,

AV �(S) =

sorts jW

AT�

(S : e)j

n]e

opns f ( ; : : : ; ): op(s

1

: : : s

k

! s)� s

1

� : : :� s

k

! s j

k � 0; s; s

1

; : : : ; s

k

2 Sg

[fx: ! s j x 2 X ; s 2 Sg

[f�x

1

: : : x

k

: : s! op(s

1

: : : s

k

! s) j k � 0; s; s

1

; : : : ; s

k

2 Sg



The translation along some f :S ! jW

AT�

(S

0

: e)j

e

is jW

AT�

(f : e)j

n]e

on sorts

and the family of identities on operations.

{ AN

op(A

1

:::A

n

!A)

= ff :A

1

� : : :�A

n

! A

?

g, for each A;A

1

; : : : ; A

n

2

AT N

{ A�

N

(f) = f , for each f 2 AN

for each ( ; : : : ; ): op(A

1

: : :A

n

! A) �A

1

� : : :� A

n

! A,

f(t

1

; : : : ; t

n

)

AG

V

= �V:f

?

(t

1

(V ); : : : ; t

n

(V ))

where f :A

?

1

� : : :� A

?

n

! A

?

is de�ned by f

?

(a

1

; : : : ; a

n

) = f(a

1

; : : : ; a

n

)

if a

i

2 A

i

for i = 1 : : :n, ? otherwise

x

AG

V

= �V:V

?

(x), for V

?

(x) = x if x 2 Dom(V ), ? otherwise, 8x 2 X

for each �x

1

: : : x

k

: :A! op(A

1

: : :A

k

! A),

(�x

1

: : :x

k

:t)

AG

V

= �v

1

: : : v

k

:t(V )

with Dom(V ) = fx

1

; : : : ; x

k

g and V (x

i

) = v

i

, i = 1 : : : k.

Each tu parchment presents a typed institution, where the types of each signa-

ture � are uniformly built as terms over the signature T�, using the type names

S of � as variables. Analogously, the expressions over � are uniformly built as

terms over the signature V �(S), using the names of � as variables.

Proposition5. Each tu parchment

P = (Sign;TN; T�; T N ; G

T

; �

T

;N; V �;N ; G

V

; �

N

)

de�nes a typed institution (Sign;Exp;Mod; [[ ]]; jW

T�

(TN( ) : e)j

e

; �; [ ]) as follows.

{ Exp:Sign! Set is de�ned by:

On objects: for each � 2 jSignj with TN(�) = S, N(�) = N ,

Exp(�) = fhex ; si j ex 2 jW

V�(S)

(N ) j

s

and s 2 jW

T�

(S : e)j

e

g

On arrows: for each arrow �:� ! �

0

in Sign, with TN(�) = f :S ! S

0

,

N(�) = h:N ! N

0

jV �(f)

,

Exp(�)(ex ; s) = hW

V �(f

T�

)

(�

V �(S

0

)

N

0

jV�(f

T�

)
� h)(ex ); jW

T�

(f : e)j

e

(s)i;

{ Mod:Sign

op

! Cat is de�ned by

On objects: for each � 2 jSignj with TN(�) = S, N(�) = N , Mod(�)

is the discrete category whose objects are

fhm

T

;m

N

i j m

T

:S ! jW

T�

(T N : e)j

e

;m

N

:N ! jW

V�(T N )

(N )

jV �(m

T

)

jg

On arrows: for each arrow �:� ! �

0

in Sign, with TN(�) = f :S ! S

0

,

N(�) = h:N ! N

0

jV �(f)

, and each hm

0T

;m

0N

i 2 jMod(�

0

)j

Mod(�)(hm

0T

;m

0N

i) = hm

0T

� f;m

0N

jV �(f)

� hi:



{ [[ ]]: jModj � Exp�!

��

V , with V =

S

s2jW

T�

(T N :e)j

e

jG

V

j

s

, is the extranatural

transformation whose components are de�ned as follows:

for each � 2 jSignj, with TN(�) = S, N(�) = N , each model hm

T

;m

N

i

over � and each s 2 jW

T�

(S : e)j

e

[[h ; si]]

hm

T

;m

N

i

�

= eval

G

V

;�

N

V �(T N )

j jW

T�

(m

T

:e)j

e

(s)

� jW

V�(m

T

)

(m

N

) j

s

:

{ � :Exp�!

�

jW

T�

(TN( ) : e)j

e

is the natural transformation whose components

are the projections on the second component;

{ [ ]: jModj � jW

T�

(TN( ) : e)j

e

�!

��

T , with T = jG

T

j

e

is the extranatural trans-

formation de�ned, for each signature � and �-model hm

T

;m

N

i, by:

[ ]

hm

T

;m

N

i

�

= eval

G

T

;�

T

T�

� m

T

T�

:

In the following we will use models of a tu parchment over a signature � for the

models over � in the typed institution presented by the tu parchment.

Example 3. Let us sketch another example of tu parchment, FUN , presenting a

toy functional programming language FUN, whose modules have the form

tid

1

= te

1

; : : : ; tid

n

= te

n

f

1

(x

1

1

: te

1

1

; : : : ;x

1

n

1

: te

1

n

1

) : te

0

1

= exp

1

. . .

f

m

(x

m

1

: te

m

1

; : : : ;x

m

n

m

: te

m

n

m

) : te

0

m

= exp

m

where tid (possibly decorated, as for other metavariables) ranges over type iden-

ti�ers, f over function identi�ers, te over type expressions de�ned by:

te ::= tid j int j hl

1

: te

1

; : : : ; l

n

: te

n

i j array [0::N ] of te,

(with N any positive integer constant and l

i

�eld identi�ers), x over variables,

exp over expressions de�ned by the grammar

exp ::= x j zero j succ(exp) j pred(exp) j hl

1

: exp

1

; : : : ; l

n

: exp

n

i j [ ] j

exp

1

[exp

2

=exp

3

] j exp:l j exp

1

[exp

2

] j f(exp

1

; : : : ; exp

n

) j

if exp

1

= exp

2

then exp

3

else exp

4

:

Then, signatures in FSign are interfaces of FUN modules, i.e. pairs of the form

ht

1

: : : t

n

; f

1

(te

1

1

; : : : ; te

1

n

1

) : te

0

1

; : : : ; f

m

(te

m

1

; : : : ; te

m

n

m

) : te

0

m

i; FTN and FN gives

the sets of elements in the �rst and second component, respectively.

The type language FT� has sorts n; e and one operation of sort e for each

constructor of type expressions but for the �rst production, corresponding to the

type names provided by the module. Thus,

int: ! e

hl

1

: ; : : : ; l

k

: i: e

k

! e

farray [0::N ] of : e ! e j N � 0g

moreover, there is a family of operations of sort n (one for each k � 0)

fun( : : : ; ): e

k

� e ! n .



For each S 2 jSetj, the signature FV �(S) has sorts jW

FT�

(S : e)j

n]e

and a

family of overloaded operations (one for each possible choice of types) for each

constructor of expressions, for instance, denoting jW

FT�

(S : e)j

e

by TE :

fx: ! te j te 2 TEg

fzero: ! intg

fhl

1

: ; : : : ; l

n

: i: te

1

� : : :� te

n

! hl

1

: te

1

; : : : ; l

n

: te

n

i j te

1

; : : : ; te

n

2 TEg

f ( ; : : : ; ): fun(te

1

: : : te

n

; te)� te

1

� : : :� te

n

! te j te

1

; : : : ; te

n

2 TEg

and a family of overloaded operations corresponding to function de�nitions

ffun(x

1

: te

1

; : : : ;x

n

: te

n

) : te = : te ! fun(te

1

: : : te

n

; te) j te; te

1

; : : : ; te

n

2 TEg

The universes FT N and FN are empty, i.e. the universal languages of the two

levels consist of the ground terms over FT� and FV �(;) and, accordingly, the

valuations F�

T

and F�

N

are the empty maps. Indeed, in this case a model

is a programming module; hence it associates with the (type or value) names

speci�ed in the interface some (type or value) expressions. The algebras FG

T

and FG

V

correspond to the (straightforward) denotational semantics of the

language; we omit them for sake of brevity.

2 Implementation and Derivation in TU Parchments

In this section, we express in the framework of tu parchments two relations

between speci�cation or programming modules playing an important role in the

practice: derivation (a module m is de�ned using the primitives provided by

another module m in the same formalism) and implementation (a module m

is replaced by a \less abstract" module m

0

, possibly changing the formalism).

Moreover, we prove that implementation can be propagated \for free" to derived

models, i.e. if m

0

implements m, and m is derived from m, then it is possible to

construct an implementation m

0

for m, provided that we are able to translate

the linguistic constructs of the two formalisms.

Notation 4: Abbreviations. Let us �x for the rest of the section tu parchments

P = (Sign;TN; T�; T N ;G

T

; �

T

;N; V �;N ;G

V

; �

N

)

P

0

= (Sign';TN

0

; T�

0

;T N

0

;G

0T

; V

0T

;N

0

; V �

0

;N

0

;G

0V

; V

0N

);

signatures � and � in P and �

0

in P

0

, with TN(�) = S, TN(�) = S, TN

0

(�

0

) =

S

0

, N(�) = N , N(�) = N and N

0

(�

0

) = N

0

. Moreover, let m = hm

T

;m

N

i, m =

hm

T

;m

N

i, and m

0

= hm

0T

;m

0N

i be models over �, � and �

0

, respectively. Finally,

the composition of f and g in Set

T�

(Set

T�

0
) will be denoted by f � g (f ? g) and

the unit �

T�

e

and counit �

T�

e

(�

T�

0

e

, �

T�

0

e

) by � and � (�

0

, �

0

).

2.1 Derived Models

The derivation relation concerns modules within the same formalism, say m and

m, and holds whenever all the (type and value) names of m are de�ned, via a

pair of maps � = h�

T

; �

N

i, by expressions built over the (type and value) names



of m. In this case, it is clear that the semantics of (the model corresponding to)

m can be obtained by evaluating such expressions through m.

Our notion of derivation roughly corresponds to what is called implementa-

tion by constructors in the literature (see e.g. [7]), characterized by the fact that

sorts and operations in a speci�cation SP are de�ned in terms of sorts and opera-

tions of another speci�cation SP by means of an enrichment SP+ of SP together

with a signature morphism from SP to SP+. Anyway, in our approach it is not

necessary to have a signature morphism, and the two steps are incorporated at

a more concrete level by the mapping � from names to expressions.

This situation happens in programming languages whenever the module m

uses m; anyway it makes sense also in common institutions. For instance, consid-

ering many-sorted algebras, given mappings �

T

:S ! S and �

N

:O! O which

associate with each operation in O an open term over �, we can derive from

an algebra A over � = hS;Oi a new algebra A over � = hS;Oi in such a way

that sort renaming �

T

is preserved. Note that in this case (as in most algebraic

examples), since the type language is trivial, derivation at the level of types is

just sort renaming; on the contrary, in programming languages, type names in

m can be mapped in type expressions constructed over type names of m.

De�nition6. The model m is derived from m via

� =

8

<

:

�

T

:S ! jW

T�

(S : e)j

e

�

N

:N ! jW

V�(S)

(N )

jV �(�

T

)

j

i�

m

T

= m

T

� �

T

m

N

= jW

V�(m

T

)

(m

N

)

jV�(�

T

)

j � �

N

Example 4. Let us consider the parchment ALG introduced in Example 2 and

see a simple example of a derivation. We �rst de�ne a model for the standard

speci�cation of the stack data-type, m

S

.

Stacks of natural numbers (of maximal length K) are represented by a model

m

S

= hm

T

S

;m

N

S

i over �

S

(having sorts stack and elem and the usual oper-

ations empty ; push; pop; top); m

T

S

associates IN [ ferrelemg with elem, IN

K

[

ferrstackg with stack ; m

N

S

associates with operations their standard interpre-

tations (errstack is used as result of pop on an empty stack and push on a full

stack and errelem as result of top on an empty stack).

Then, we can derive from it a model for the richer signature �

S

, that is the

enrichment of �

S

by swap: stack ! stack , swapping the topmost two elements,

if any, via the renaming � that is the identity on all symbols of �

S

but for swap

on which it yields �s:push(top(pop(s)); push (top(s); pop(pop(s)))).

2.2 Implementation

Having a uniform way of building types and typed expressions allows to distin-

guish within an implementation step two parts: a global part, translating the

type and value languages of the source framework into the corresponding com-

ponents of the target, and a local part, dealing with the details of the particular

models and names. This is very important, because in that way the global part

can be reused. In order to be able to de�ne the global part, we need a functor

relating the corresponding substitution categories.



Lemma7. Each arrow �

T

:T� ! T�

0

in AlgSign

�

induces a functor

F

�

T
:Set

T�

! Set

T�

0

, de�ned by:

{ F

�

T
(X) = X for all X 2 jSet

T�

j = jSetj = jSet

T�

0

j;

{ F

�

T (f) = G

T�

(�

F

T�

0

(Y )

j�

T

�F

T�

(�

0

Y

)) � f for all f 2 Set

T�

(X;Y ).

Moreover, if f = �

T�

e

Y

�f

0

for some f :X ! Y in Set, then F

�

T (f) = �

T�

0

e

Y

�f

0

.

De�nition8. A translator � = h�

T

; �

N

i of P into P

0

consists of an arrow

�

T

:T� ! T�

0

inAlgSign

�

, and a natural transformation �

N

:V ��!

�

V �

0

� F

�

T

s.t. Sorts(�

N

S

) = jW

�

T

((�

T�

0

e

)

S

: e)j

n]e

.

For each translator � = h�

T

; �

N

i and each arrow f :S ! S

0

let us denote by

�

f

the morphism V �

0

(f

T�

0

) � �

N

S

translating the higher level signature V �(S)

into the lower level signature V �

0

(S

0

).

Example 5. We de�ne a translator

~

� of ALG into FUN as

h

~

�

T

:AT� ! FT�;

~

�

N

:AV ��!

�

FV � � F

~

�

T

i;

where

~

�

T

gives the translation from the high-level to the low-level type language,

and is the identity on sorts, whose translation is �xed, and maps

op( : : : ! ): e

k

� e ! n to fun( : : : ; ): e

k

� e ! n

Moreover, for each set S,

~

�

N

S

gives the translation from the high-level to the

low-level language of (value) expressions with types constructed starting from

the type names S, and is analogously de�ned.

De�nition9. The model m

0

is an implementation of m w.r.t. the translator

� = h�

T

; �

N

i of P into P

0

, via  and abs , with

{  =

�

 

T

:S ! S

0

 

N

:N ! N

0

j�

 

(where �

 

is a short notation for �

 

T )

{ abs = fabs

s

g

s2jW

T�

(S:e)j

e

where each abs

s

:D

s

! jW

V �(T N )

(N )

jV �(m

T

)

j

s

, for some

D

s

� jW

V�

0

(T N

0

)

(N

0

)

jV�

0

(m

0T

)��

 

j

s

with embedding �

s

, satisfying the following

semantic coherency property:

for all t

1

; t

2

2 jW

V�

0

(T N

0

)

(N

0

)

jV�

0

(m

0T

)��

 

j

s

if eval

G

0V

;V

0N

V �

0

(T N

0

)

(t

1

) = eval

G

0V

;V

0N

V�

0

(T N

0

)

(t

2

),

then both (t

1

2 D

s

i� t

2

2 D

s

) and if t

1

; t

2

2 D

s

, then abs

s

(t

1

) = abs

s

(t

2

);

i� the diagram in Fig. 1 commutes, where

U

is the coproduct in SSet(jW

T�

(S : e)j

e

).

Example 6. We show how to express a standard implementation example, i.e.

stacks (formalized by the model m

S

in Example 4) by pairs array and length

(formalized by a model m

R

in FUN). Note that in our framework the high-level

(implemented) and the low-level (implementing) data-types are allowed to stay

\in two di�erent worlds"; indeed, the �rst is expressed by a many-sorted algebra

and the second by a functional program.

The model m

R

corresponds to the following module



�

�

jW

V �(m

T

)

(abs

U

m

N

)j

�

�

��

jW

V�(S)

(D

U

N)j

-

jW

V �

0

(m

0T

)��

 

(�

U

(m

0N

j�

 

�  

N

))j

j(W

V �

0

(TN

0

)

(N

0

) )

jV�

0

(m

0T

)��

 

j

@

@

abs

@

@

@I

jW

V �(T N)

(N )

jV�(m

T

)

j

(eval

G

V

;�

N

V �(TN )

)

jV�(m

T

)

6

jG

V

jV�(m

T

)

j

Fig. 1. Implementation Diagram

myStack = helems : array [0::K] of int; length : inti; myElem= int

myEmpty : myStack = helems : [ ]; length : zeroi

myPush(s : myStack; n : myElem) : myStack = if s:length = pred(zero) then s else

if s:length = K then helems : [ ]; length : pred(zero)i else

helems : s:elems[n=s:length]; length : succ(s:length)i

myPop(s : myStack) : myStack = if s:length = pred(zero) then s else

if s:length = zero then helems : [ ]; length : pred(zero)i else

helems : s:elems; length : pred(s:length)i

myTop(s : myStack) : myElem = if s:length = pred(zero) then pred(zero) else

if s:length = zero then pred(zero) else

s:elems[pred(s:length)]

We de�ne now

~

 and

g

abs s.t. m

R

is an implementation of m

S

(from Example 4)

w.r.t. the translator

~

� (from Example 5) via

~

 and

g

abs .

The component

~

 = h

~

 

T

;

~

 

N

i gives the correspondence from names in the

high-level model to names in the low-level model. In this case

~

 

T

maps the

sorts stack ; elem into the type identi�ers myStack; myElem, respectively, and the

operations in �

S

into the corresponding function identi�ers in the module.

The component

g

abs is the so-called abstraction map. It is a family of func-

tions indexed over all the expression types which one can build starting from the

type names stack ; elem. In this case jW

T�

(fstack ; elemg : e)j

e

= fstack ; elemg;

hence

g

abs has only the following two components (denoting by s

0

the type

helems : array [0::K] of int; length : inti):

g

abs

elem

:

e

D

elem

� jW

FV �(;)

j

int

! jW

AV�(ATN )

(AN ) j

IN

g

abs

stack

:

e

D

stack

� jW

FV �(;)

j

s

0

! jW

AV�(ATN )

(AN ) j

(IN

k

[ferrstackg)



which are de�ned as follows

{ for each exp 2 jW

FV �(;)

j

int

, exp 2

e

D

elem

i� eval

FG

V

FV �(;)

(exp) = ��:z for

some z 2 IN; in this case,

g

abs

elem

(exp) = z

{ for each exp 2 jW

FV �(;)

j

s

0

, exp 2

e

D

stack

i� eval

FG

V

FV �(;)

(exp) =

��:helems : a; length : li and l 2 f�1 : : :Kg; in this case,

g

abs

stack

(exp) =

errstack if l = �1, a(l � 1) � : : : � a(0) otherwise.

Note that the semantic coherency property is guaranteed by the de�nition, that

is based on the low-level semantics.

The intuitive interpretation of the implementation diagram in this particular

case is the following. Take (left-bottom corner) a term in the high-level language

constructed using as variables the names in the high-level model m

S

and the el-

ements of

e

D (i.e. the terms in the low-level universal language which are used for

the implementation). An example of such a term is w =

push(helems : [ ]; length : zeroi; zero). Then, we obtain terms in the high-level

universal language having the same semantics in the following two ways:

{ �rst mapping the names in m

S

to the corresponding names in m

R

via

~

 ; for

instance on w we get myPush(helems : [ ]; length : zeroi; zero). Then, map-

ping these names to their associated representation in the low-level universal

language, corresponding to an expansion of each function call to its body,

getting, for instance, on our example

myPush(s : myStack; n : myElem) : myStack =

if s:length = pred(zero) then s else

if s:length = K then helems : [ ]; length : pred(zero)i else

helems : s:elems[n=s:length]; length : succ(s:length)i

(helems : [ ]; length : zeroi; zero)

and �nally abstracting the result;

{ using the abstraction map to translate the low-level terms and m

S

to inter-

pret high-level names into the high-level universal language.

2.3 Deriving Implementations

We prove now that, given an implementation m

0

of m w.r.t. � via  and abs , it

is possible to construct an implementationm

0

for any model m derived from m.

Referring to our working example, that means that, having implemented stacks

(m

S

) by records (m

R

) w.r.t.

~

� via

~

 and

g

abs , we get \for free" an implementation

also for any derived operation we can express in terms of the stack primitives,

e.g. swap mentioned in Example 4.

This is possible under the assumption that, given a signature � in the high-

level formalism (e.g. in ALG), a signature �

0

in the low-level formalism (e.g.

in FUN ) can be found with the same names of �, up to isomorphism: in the

example, a module interface in FUN where type and function identi�ers are

exactly (module some coding) sorts and operations of �. Note that if the trans-

lation of the linguistic constructs building the types is not injective, then it is

possible that several high-level terms t

1

; : : : ; t

k

of sort n are translated into one



low-level term t of sort n; in that case the names provided by �

0

of type t have

to represent the names provided by � of each type t

i

. Thus, the names provided

by �

0

of type t are the disjoint union of the names provided by � of all the t

i

's.

Theorem10. Let us assume that

{ m is derived from m via � = h�

T

; �

N

i

{ m

0

is an implementation of m w.r.t. the translator � = h�

T

; �

N

i of P into

P

0

, via  = h 

T

;  

N

i and abs.

If there exists a signature �

0

in P

0

, with TN

0

(�

0

) = S

0

and N

0

(�

0

) = N

0

s.t.

1. there exists an isomorphism 
:S ! S

0

in Set

2. there exists an isomorphism �:]N ! N

0

, where, for each sort s

0

2 jW

T�

0

(S

0

: e)j

n

,

the set (]N)

s

0

is the coproduct of fN

s

j �




(s) = s

0

g; in the following we will

denote by ]f the family of functions with each s

0

component de�ned as the

pairing of (that is the unique arrow whose compositions with the injections

yield) ff

s

j �




(s) = s

0

g for each family of functions f

s

:N

s

! X

s

0

then the following properties hold

1. m

0

= hm

0T

;m

0N

i is a model of �

0

in P

0

where m

0T

= m

0T

? �

0T

, m

0N

=

jW

V�

0

(m

0T

)

(m

0N

)

jV �

0

(�

0T

)

j � �

0N

and

�

0

=

(

�

0T

=  

T

T�

0

? F

�

T (�

T

) ? 


�1

T�

0

�

0N

= ](jW

�

 

( 

N

)

jV �(�

T

)

j � �

N

) � �

�1

2. m

0

is derived from m

0

via �

0

3. m

0

is an implementation of m w.r.t. �

T

and �

N

, via  and abs = abs

jV�(�

T

)

,

with de�nition domain D = D

jV �(�

T

)

and embedding � = �

jV�(�

T

)

, where

 =

(

 

T

= 


 

N

= �
j�




� inj

and inj is an indexed set morphism, whose sort component is Sorts(�




) and

each inj

s

:N

s

! (]N )

�




(s)

is the injection (in the coproduct).

Conclusions and FurtherWork We have proposed a new metaframework for

representing and relating formalisms, in the spirit of the theory of institutions.

The overall aim is to provide a framework general enough for including common

speci�cation formalisms, but at a more concrete level, in such a way that also

non-axiomatic languages are covered. In particular, within our framework it is

possible to express two notions closer to programming languages, i.e. deriva-

tion and implementation and to show that implementation can be canonically

extended to derived modules.

Moreover, the notion of implementation presented here is a generalization

of the concrete data-type implementation introduced by Hoare [4] and allows



to relate individual values. Having such relationship, it should be possible to

formalize external calls, corresponding to models where the implementation of

some name is not given, but it is imported from another model in a di�erent

language, and program annotations, corresponding to using the high-level logic

to state properties on the elements of models in the low-level framework, whose

semantics is given through the abstraction map.

Other promising applications of tu parchments are the development of frag-

ments of typed equational �rst-order logic, based on the notion of typed expres-

sion evaluation providing an obvious semantics for equality, and the combinations

of typed institutions through their syntactic representations, much in the spirit

of [6].

Finally we plan to generalize the present approach in a forthcoming extended

version allowing languages to be represented by axiomatic speci�cations instead

of plain signatures, in order to capture static semantics constraints. Since the

results presented here are based only on the existence of free objects, any choice

of speci�cations preserving such property will carry on the results.

A somehow extended version of this paper, including proofs, is reachable

from the web pages of the authors

3

.

Acknowledgments. We warmly thank the anonymous referee for his/her careful

reading and helpful suggestions.

References

1. M. Bidoit and A. Tarlecki. Behavioural satisfaction and equivalence in concrete

model categories. In H. Kirchner, editor, CAAP '96 - 20th Coll. on Trees in Alge-

bra and Computing, number 1059 in LNCS, pages 241{256, Berlin, 1996. Springer

Verlag.

2. J. A. Goguen and R. M. Burstall. A study in the foundations of programming

methodology: Speci�cations, institutions, charters and parchments. In D. Pitt et al.,

editor, Category Theory and Computer Programming, number 240 in LNCS, pages

313{333, Berlin, 1985. Springer Verlag.

3. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for computer

science. Journ. ACM, 39:95{146, 1992.

4. C.A.R. Hoare. Proofs of correctness of data representations. Acta Informatica,

1:271{281, 1972.

5. T. Mossakowski. Using limits of parchments to systematically construct institutions

of partial algebras. In M. Haveraaen, O. Owe, and O.-J. Dahl, editors, 11th WADT,

number 1130 in LNCS, pages 379{393, Berlin, 1996. Springer Verlag.

6. T. Mossakowski, A. Tarlecki, and W. Paw lowski. Combining and representing logi-

cal systems. In Category Theory and Computer Science '97, number 1290 in LNCS,

pages 177{196, Berlin, 1997. Springer Verlag.

7. F. Orejas, M. Navarro, and A. S�anchez. Implementation and behavioural equiva-

lence: A survey. In M. Bidoit and C. Choppy, editors, 8th WADT, number 655 in

LNCS, pages 93{125. Springer Verlag, Berlin, 1993.

This article was processed using the L

A

T

E

X macro package with LLNCS style

3

http://www.disi.unige.it/person/fCerioliM,ZuccaEg/


