
A Lazy Approach to Partial Algebras

?

M. Cerioli

DISI{Dipartimento di Informatica e Scienze dell'Informazione, Universit�a di Genova

Viale Benedetto XV, 3 { 16132 Genova { Italy

e-mail: cerioli@disi.unige.it

Abstract. Starting from the analysis of which features are required by

an algebraic formalism to describe at least the more common data types

used in imperative and functional programming, a framework is pro-

posed, collecting many techniques and ideas from the algebraic commu-

nity, with the capability for an immediate representation of partiality

and error-recovery. This formalism, of so called lazy algebras, inherits

mainly from two parents: partial and label algebras; from the former es-

pecially on a technical side and from the later from a philosophical point

of view. But, as all children, it has its own individuality and in partic-

ular an original mechanism to represent lazy evaluation in an algebraic

framework has been introduced.

Introduction

This paper aims at the de�nition of an algebraic formalism providing tools for

the immediate representation of the most common data types used in imperative

and functional programming. In order to decide which features are needed by

such an algebraic framework, the starting point is the analysis of the steps a

user of a speci�cation language goes through, toward the formal description

of the required data type. First of all names for the types and operations are

decided; moreover for every operation the number (and usually the type) of the

arguments are �xed. Then among the strings on that alphabet a subset is chosen,

of the \well-formed" terms, that are usually (a subset of) the many-sorted terms

on those functions; this corresponds to the static check and should get rid of

the real junk, i.e. of all those sequences of symbols that are meaningless and

whose nonsense can be decided. Notice that if the data type under construction

has only total functions, then static check su�ces to eliminate all meaningless

terms. Otherwise among the well-formed terms there are still strings that are not

intended to represent correct values, but that could be needed as error messages

or in order to apply some kind of error-recovery strategy. Thus the following

design step is the division of well-formed terms into \ok" and \possibly errors"

and then equivalences onto the two classes are de�ned to describe the semantics.

Therefore a \user-friendly" formalism should provide tools to concisely describe

?

This work has been partially supported by ESPRIT BRA WG n. 6112 COM-

PASS, HCM-Medicis and MURST 40% Modelli della computazione e dei linguaggi

di programmazione

well-formed terms, i.e. some kind of signature, to partition terms into \ok" and

errors, to give semantics to the \ok" ones and to deal with errors in a twofold

way: on one side error terms should disappear, in the sense that they have no

place in the carriers of the models, but on the other side they are needed for

error-recovery.

Trying to collect bits of known formalisms to build a powerful framework, it is

easy to �nd tools for the syntactical analysis; indeed it is immediate to check that

standard many-sorted features are easy to use and allow to eliminate most of the

junk. It is worth noting that pure order-sorted approaches are, from this point

of view too restrictive, as the \errors" are (or should be in principle) avoided,

narrowing the domain of \partial" functions, and hence errors are prevented at

a syntactical level. On the other side using one-sorted formalisms is too weak, as

even trivially uncorrect strings are considered correct terms and must be taken in

account; for example search space for inference systems dramatically increases.

Using partiality it is also easy to manage error terms that do not appear in the

carriers, but this seems contradictory w.r.t. error recovery; indeed if an error does

not exist how can it be recovered? The innovative idea of the framework proposed

here is exactly a way to conciliate the partiality of function interpretation in the

models with an error-recovery purely syntactic, with the
avor of lazy valuation.

The main results of the paper, besides the introduction of the lazy partial

algebra framework (Section 1), are the existence of initial and free objects (Sec-

tion 2) and an alternative characterizations of such objects through a sound and

complete inference system (Section 4). In Section 3 a few examples, showing the

great usage facility of the proposed formalisms, are given. Proofs are omitted,

but a large use of lemmas should suggest the structure of the more relevant

theorems.

1 The Lazy framework

1.1 Motivations

Analyzing the most common data types present in computer science, (at least)

three features appear to be mandatory for a speci�cation language and hence

for an algebraic formalism designed to give semantics to the language.

Typing. After a long time of many-sorted frameworks, recently homogeneous

approaches have been presented (see e.g. [13, 11, 12]), where the freedom given

by the lack of typing is used to enlarge the expressive power of the language. In

most of these approaches sorts and elements
oat together in the carrier of any

model, so that, for example, functions apply to sorts too and hence dependent

types are available and operations between sorts, like intersection or sum, can

be de�ned; moreover an operation on elements can result in a sort, or better a

subsort, so that non-determinism and (if the sort is empty) non-termination are

immediately at hand. But this power has a price: �rst of all static check, i.e. well

formedness of terms, is limited to the number of arguments and this means a

smaller help for the language users in \debugging" their speci�cations; moreover

the carrier of any model has to be very large. This can be thought irrelevant,

as most users could be interested only on the logical side, especially if a tool

for prototyping would be available; but the proliferation of elements, all denoted

by terms, makes the search space unmanageable and hence prevents a concrete

use of such tools. Therefore we prefer to have a typing system, forfeiting the

extra-power.

On the other side a too strict typing mechanism can be as dangerous as

its absence. Indeed think for example of a pure order sorted approach to the

speci�cation of natural numbers with a predecessor operation; as the predecessor

of 0 is unde�ned, a subsort of non-zero natural numbers is introduced, built by

the successor applied to any natural argument. Then terms with two predecessors

in a row are not well-formed, as the result of a predecessor is a (possibly zero)

natural number and hence has not the correct type for another predecessor

to be applied. Moreover if possibly incorrect terms are prevented, then error-

recovery is impossible, as there is nothing to be recovered. Note that, using the

retract mechanism (see [10]), an implicit and unavoidable error-recovery strategy

is imposed and the only improvement w.r.t. standard many-sorted approaches is

the uniformity of the error-detection, as a term represent an error i� it cannot

be reduced to a form without retracts.

On the base of this analysis (for a longer and deeper discussion on the use of

sorts to classify elements and restrain errors see [14]), in the sequel a standard

many-sorted typing is adopted.

Partiality. As the data types used in programming languages are inherently par-

tial, partiality must be taken in account. Note that the partiality introduced to

allow a top-down development, where reasonably many details are not decided

at the top level, but left free for the designer of lower modules to �x, is a feature

of the language that does not need, in principle, to have a corresponding feature

at the semantic level; indeed it is a tool for helping the design of the project,

whose use disappears at the last stage, where the system is built bottom-up and

every detail has been �xed. But the partiality due to the need for representing a

semicomputable (and non computable) function persists to the last moment and

cannot be eliminated, although in many cases (but not in all interesting ones)

can be dealt with in an indirect way. As the theory of partial algebras is nowa-

days well established ([16, 7, 19]), using an indirect representation of partiality

seems unreasonable.

Although, having partial functions, semidecidable boolean relations can be

easily simulated (at least if their falsity is never tested), by representing every

relation as a \boolean" function, with a special boolean sort, (see [8] and [9]

for a similar approach in a total framework), predicates have been considered

necessary, because of their recently increasing use in speci�cations, for example

to represent transitions in concurrency, or the typing relation. In particular the

use of predicates allows speci�cations of many simple data types, where boolean

functions are the unique partial functions, whose truth can be decided, while the

falsity cannot, to be described as total speci�cation, avoiding the proliferation

of errors.

Non strictness. Roughly speaking there are two kinds of non-strict functions

widely used in programming languages: the \don't care", like the famous if then

else or boolean and, or with lazy valuation, and the \error handling". \Don't

care" is characterized by resulting in the same value whatever it is substituted

for the missing value, while \error handling" corresponds to recover a value,

after an erroneous computation, mainly by means of projections, as for example

by instantiating the equations x � 0 = 0 or pop(push(x; s)) = s for \erroneous"

values of x.

Analyzing the examples of both kind of non-strictness it is easy to note that

a non-strict function is needed only to represent some kind of lazy valuation

(call by need, call by name . . .) or simpli�cation and hence its standard rep-

resentation using totality plus a labeling of values to describe that some states

(or computations or values) are erroneous is unsatisfactory, because it makes

the models full of junk and does not meet the intuition. If just the \don't care"

kind of non-strictness is needed, then there are approaches that avoid to intro-

duce values to represent the missing arguments of the non-strict function (see

e.g. [1]), although the implicit monotonicity condition raises some troubles. But

if \error recovery" is needed, then apparently there is no way to avoid the \er-

roneous" values; indeed, for example, if positive integers are considered, then to

have that the evaluation of t = pred(zero)�zero is 0, the evaluation of pred(zero)

should be a value a such that the interpretation of the � operation on a and 0

yields 0, as the interpretation in a model A of t is pred

A

(zero

A

) �

A

zero

A

, by

compositionality.

But this approach does not meet the intuition that a simpli�cation of t to

zero, by the rule x � zero = zero, as been performed on terms, so that the

evaluation of t reduces to the evaluation of zero. To stay close to this notion,

algebras are endowed with a congruence on terms, representing the preprocessing

(or compilation, or simpli�cation) that transforms a term into a simpler one, so

that the evaluation of a term becomes the easier evaluation of its simpli�cation.

1.2 Lazy Signatures and Structures

Lazy signatures are usual many sorted signatures with predicates.

De�nition1. A signature � consists of a set S of sorts, an S

�

� S-indexed

family F of operation symbols and an S

+

-indexed family P of predicate symbols.

If f 2 F

(s

1

...s

n

;s)

, then we write f : s

1

� . . .� s

n

! s and say that s

1

� . . .� s

n

is the arity of f and s is the type of f ; analogously if p 2 P

s

1

...s

n

, then we write

p: s

1

� . . .� s

n

and say that s

1

� . . .� s

n

is the arity of p.

Given a signature � = (S; F; P), a family X of variables for � in an S-

sorted family of disjoint sets X

s

of new symbols, i.e. s.t. X

s

\ ([

w2S

�

;s

0

2S

F

w;s

0

[

[

w2S

�

P

w

) = ; for all s 2 S.

As in the sequel we will use the de�nition of congruence both in the total and in

the partial frameworks, let us recall these notions in order to �x the notation.

De�nition2. Given a signature � = (S; F; P) and a total algebraA over (S; F),

a partial congruence �

A

on A is an S-indexed family of symmetric and transitive

relations f�

A

s

� s

A

� s

A

g

s2S

s.t. if f 2 F

(s

1

...s

n

;s)

and t

i

�

A

s

i

u

i

for i = 1; . . . ; n,

then either f(t

1

; . . . ; t

n

)�

A

s

f(u

1

; . . . ; u

n

) or both f(t

1

; . . . ; t

n

) and f(u

1

; . . . ; u

n

)

do not belong to the domain of �

A

, where, given a partial congruence �

A

, its

domain, denoted by Dom(�

A

), consists of all elements � s.t. ��

A

� .

Moreover a partial congruence �

A

on A is called a total congruence i� its

domain is A, i.e. if every �

A

s

is re
exive.

Let us introduce the model theoretic ingredients of the lazy framework.

De�nition3. Given a signature � = (S; F; P), a lazy algebra A on � consists

of:

{ a partial algebra A on the signature �, i.e. A = (fs

A

g

s2S

; ff

A

g

f2F

), where

s

A

is a set for every s 2 S, said the carrier of sort s inA and f

A

: s

1

A

� . . .� s

n

A

!

s

A

is a partial function for every f 2 F

(s

1

...s

n

;s)

; in particular if n = 0, i.e. if

f 2 F

(�;s)

, then f

A

is either unde�ned or an element of s

A

.

{ a total congruence �

A

on T

�

(A), the algebra of� terms built on the variable

family fs

A

g

s2S

, compatible with the interpretation of function symbols in A,

i.e. s.t. if t

A

; u

A

2 s

A

, then t�

A

u i� t

A

= u

A

, where for a term � 2 T

�

(A)

we denote by �

A

the standard evaluation of the term � in the partial algebra

A w.r.t. the identity evaluation of variables in A.

{ an interpretation P

A

, associating every predicate symbol p 2 P

s

1

...s

n

with

its truth-set P

A

(p) � s

1

T

�

(A)

� . . .� s

n

T

�

(A)

; moreover the interpretation

P

A

is required to be sound w.r.t. �

A

, i.e. if t

i

�

A

s

i

u

i

for i = 1 . . .n then

(t

1

; . . . ; t

n

) 2 P

A

(p) i� (u

1

; . . . ; u

n

) 2 P

A

(p), for every p 2 P

s

1

...s

n

.

Given lazy algebras A = (A;�

A

;P

A

) and B = (B;�

B

;P

B

) on �, a lazy homo-

morphism h:A ! B is a homomorphism h:A ! B between partial algebras,

i.e. an S-indexed family of total functions h

s

: s

A

! s

B

s.t. if f

A

(a

1

; . . . ; a

n

) =

a 2 s

A

, then f

B

(h

s

1

(a

1

); . . . ; h

s

n

(a

n

)) = h

s

(a), preserving simpli�cation and

predicates, i.e. s.t. t�

A

u implies h(t)�

B

h(u) and (t

1

; . . . ; t

n

) 2 P

A

(p) implies

(h

s

1

(t

1

); . . . ; h

s

n

(t

n

)) 2 P

B

(p), where h is extended by freeness on terms in

T

�

(A).

Note that predicates are interpreted as their truth-set, but apply to terms in-

stead of values; this is a slight generalization of the ideas behind label algebras

(see e.g. [6]), where only unary predicates, called label indeed, where allowed.

A relevant di�erence w.r.t. label algebra approach is that term evaluating to

the same value are indistinguishable by predicates, while labeling disregards the

equalities between terms. Thus predicates here are a bit more general than in

standard approaches, because properties of unde�ned terms can be stated too,

but less
exible than labeling; this restriction has been introduced in order to

avoid (pathological) examples as the following.

Example 1. Let us consider the following label speci�cation, with just one label

b.

spec Sp =

sorts s; s

0

opns a:! s

f : s� s� s! s

0

axioms x = a

f(x;x; y) : b

f(x;y; x) : b

f(y; x; x) : b

Although labeling disregards equalities between values, and hence should in some

sense be una�ected by the requirement x = a, in all models f(x; y; z) : b holds

for lack of values to instantiate x, y and z. Indeed, because of the �rst axiom,

all models have a one-point carrier of sort s, so, recalling that evaluations are

made on terms built from the elements of the algebra as variables, there are two

elements to evaluate x, y and z on, that are the element of the carrier (seen as a

variable) and the constant a; hence for every valuation for x, y and z (at least)

one among the last three axioms applies so that f(x; y; z) : b holds. But note

that if another constant of sort s is introduced, whose interpretation must be the

same value as that of a by the �rst axiom, then three terms of sort s exist and

hence none of the axioms applies, so that f(x; y; z) : b does not hold anymore,

even if the models have the same carriers and function interpretation as before.

In other words adding syntax, even if in every model such new terms reduce to

values already denoted by old terms, can change the validity of labeling.

Since the de�nition of lazy homomorphism is obviously satis�ed by the identity

and by the composition of lazy homomorphisms, we can de�ne the category of

lazy algebras and inherit the notion of initial (free) object in a class.

De�nition4. Given a signature �, the category CAlg(�) has lazy algebras as

objects and lazy homomorphisms as arrows; identities are the families of identity

maps fI

s

j s 2 Sg and composition is de�ned componentwise.

Let C be a subclass of CAlg(�) objects and X be an S-sorted family of

variables; then a pair (F ; E) is free for X in C i� F = (F;�

F

;P

F

) 2 C, with

E:X ! F , and for every A = (A;�

A

;P

A

) in C and every V :X ! A there exists

a unique homomorphism h

V

:F ! A s.t. h

V

�E = V .

If X is empty (i.e. X

s

= ; for every s 2 S), then a free pair is called initial .

Note that, since the de�nition of free (initial) coincides with the standard one in

category theory, the properties of free (initial) objects applies to our framework

too; in particular any two free (initial) objects are isomorphic.

Notation. In the sequel for every lazy algebra A = (A;�

A

;P

A

) and every

� 2 T

�

(A) the evaluation �

A

is inductively de�ned by a

A

= a for all a 2 A and

f(t

1

; . . . ; t

n

)

A

= f

A

(t

A

1

; . . . ; t

A

n

), i.e. is the standard evaluation for the identical

valuation of variables in A as elements of A.

Moreover if (�:X ! T

�

(Y)) �:T

�

(X)! T

�

(Y) and t is a term on X, then

�(t) denotes the image of t along (the free extension of) �.

Finally for every valuation V :X ! T

�

(A) and every term t 2 T

�

(X), we

will denote by t

A;V

the evaluation V (t)

A

, that is the standard evaluation for the

valuation id

A

� V .

Note that t

A;V

is a value (or is unde�ned), while V (t) is a term (and it is always

de�ned).

As in more standard algebraic frameworks, an initial (free) object in a class, if

any, is minimally de�ned and satis�es as few identities between de�ned terms as

possible; moreover the interpretation of predicates and the simpli�cation relation

(i.e. the error-recovery) are minimal too.

Theorem5. Given a signature �, a subclass of CAlg(�) objects C and an

S-sorted family of variables X, if (F ; E) is free for X in C, then for every

A = (A;�

A

;P

A

) 2 C, every valuation V :X ! T

�

(A) and every t; t

0

; t

1

; . . . ; t

n

2

T

�

(X) the following conditions hold:

minimal de�nedness if t

F;E

is de�ned, then t

A;V

is de�ned too;

no-confusion if t

F;E

= t

0F;E

= a 2 F , then t

A;V

= t

0A;V

;

minimal simpli�cation if E(t)�

F

E(t

0

), then V (t)�

A

V (t

0

);

minimal truth if (E(t

1

); . . . ; E(t

n

)) 2 P

F

(p), then (V (t

1

); . . . ; V (t

n

)) 2 P

A

(p).

2 A logic of simpli�cations

The main interest is on the de�nition of basic speci�cations taking advantage

of the tools introduced so far. As usual in algebraic speci�cation, we consider

Horn-Clauses, built starting from three di�erent kinds of atoms: (existential)

equality between values, equivalence between terms and predicate application.

As in our framework the result of an operation depends not only on the values of

its arguments, but also on the history of such values, the valuations for variables

have to be made not in the carriers of the models, but on terms; in other words

we substitute computations, instead of values, for variables.

2.1 Formulas and Speci�cations

De�nition6. Let � = (S; F; P) be a signature and X be a family of variables

for �. Then the set Atoms(�;X) of atoms over � and X consists of

Existential equalities: t=

e

t

0

, where t; t

0

are terms on X of the same sort;

Simpli�cations: t � t

0

, where t; t

0

are terms on X of the same sort;

Predicates: p(t

1

; . . . ; t

n

), where t

i

are terms of sort s

i

on X and p 2 P

s

1

...s

n

.

Moreover the set HC (�;X) of positive conditional formulas over � and X

consists of all formulas of the form � � �, where � � Atoms(�;X) and

� 2 Atoms(�;X), too. If � = ;, then � � � is simply written as �, so that

Atoms(�;X) � HC (�;X).

In the sequel for every formula � = � � � we will denote by Var(�) the set

of variables that appear in �, by Prem(�) the set � of the premises of � and

by Cons(�) the atom �, called the consequence of �. Moreover the existential

equalities of the form t=

e

t, where both sides are the same term, are denoted by

D(t).

Let A = (A;�

A

;P

A

) be a lazy algebra, � be a positive conditional formula

over � and X and V :Y ! T

�

(A) be a valuation, with Var(�) � Y ; then A

satis�es � w.r.t. V , denoted by A j=

V

�, according with the following conditions:

{ A j=

V

t=

e

t

0

i� t

A;V

and t

0A;V

are the same value in A;

{ A j=

V

t � t

0

i� V (t)�

A

V (t

0

);

{ A j=

V

p(t

1

; . . . ; t

n

) i� (V (t

1

); . . . ; V (t

n

)) 2 P

A

(p);

{ A j=

V

� � � i� A j=

V

� or A 6j=

V

� for some � 2 �.

Then A satis�es �, denoted by A j= �, i� A j=

V

� for all V :Var(�)! T

�

(A).

Remark. Lazy signature, algebras and formulas do not form an institution. In-

deed, since variable valuations range on terms and not on values, the satisfaction

condition does not hold, not even for signature inclusions, as the forgotten syntax

can increase the number of possible instantiations; the problems are the same

as for label algebras. However the lazy framework forms an rps preinstitution

(see e.g. [17]) and this property su�ces to guarantee that the models of a larger

speci�cation, hierarchically built on a smaller one, can be restricted to models

of the smaller, so that modular constructions are meaningful. Thus, although

the theory of institution independent speci�cation languages ([18, 3, 4]) does

not apply directly to the lazy framework, the most relevant part of such theory

can be rephrased for rps preinstitutions and hence, in particular, for the lazy

formalism.

Lemma7. Let � = (S; F; P) be a signature and X be a family of variables for

�; for every lazy algebra A = (A;�

A

;P

A

) on �, every positive conditional for-

mula � over � and X and all valuations V :X ! T

�

(A), �:Y ! T

�

(X) we

have that A j=

V ��

� i� A j=

V

�(�).

De�nition8. A speci�cation Sp consists of a signature � and a set of positive

conditional formulas over � and any familyX of variables, called the axioms of

Sp .

Given a speci�cation Sp = (�;Ax), the model class of Sp, denoted by

Mod(Sp), consists of all lazy algebras over � satisfying all formulas in Ax.

2.2 Initial and free models

As more standard frameworks, lazy speci�cations admit initial and free models,

characterized by properties like \no-junk" and \no-confusion" (see e.g. Theo-

rem 5). Moreover the proof follows a classical pattern: the quotient of the term

algebra w.r.t. the minimal congruence is shown to be free.

De�nition9. Let � = (S; F; P) be a signature and X be a family of variables

for �; then a lazy congruence over T

�

(X) consists of

{ a partial congruence � on T

�

(X) containing X �X.

{ a total congruence

�

=

on T

�

(X) s.t. ��

�

=

and if t

�

=

u with t and u belonging

to the domain of �, then t � u.

{ for every p 2 P

s

1

...s

n

a set �p � T

�

(X)

s

1

� . . .� T

�

(X)

s

n

s.t. if t

i

�

=

s

i

u

i

for

i = 1 . . .n and (t

1

; . . . ; t

n

) 2 �p, then (u

1

; . . . ; u

n

) 2 �p.

Given a lazy congruence < = (�;

�

=

; f�pg) over T

�

(X), the quotient lazy algebra

A = T

�

(X)=< consists of:

{ for every s 2 S, denoting by [t] the equivalence class of t in �, s

A

= f[t] j

t 2 Dom(�)g;

{ for every f 2 F

s

1

...s

n

;s

, and every t

i

in the domain of �, f

A

([t

1

]; . . . ; [t

n

])

is [f(t

1

; . . . ; t

n

)], if f(t

1

; . . . ; t

n

) belongs to the domain of �, is unde�ned

otherwise.

{ t�

A

t

0

i� � 2 �(t) and �

0

2 �(t

0

) exist s.t. �

�

=

�

0

, where � is de�ned below.

{ for every p 2 P

s

1

...s

n

, (t

1

; . . . ; t

n

) 2 P

A

(p) i� �

i

2 �(t

i

), for i = 1 . . .n, exist

s.t. (�

1

; . . . ; �

n

) 2 �p, where � is de�ned below.

For every term t 2 T

�

(A) let �(t) denote the set of terms on T

�

(X) obtained by

removing brackets in t, i.e. �(t) is inductively de�ned by �([t]) = ft

0

j t

0

2 [t]g if

t 2 A and �(f(t

1

; . . . t

n

)) = ff(t

0

1

; . . .t

0

n

) j t

0

1

2 �(t

1

) . . . t

0

n

2 �(t

n

)g;

Moreover in the sequel V :X ! T

�

(A) will denote the evaluation de�ned by

V (x) = [x] for all x 2 X.

The evaluation of terms in a quotient is strongly related to the evaluation within

the term algebra.

Lemma10. Let < = (�;

�

=

; f�pg) be a lazy congruence over T

�

(X), A be the

lazy algebra T

�

(X)=< and V :Var(�) ! T

�

(A) be a valuation. Then for every

valuation U :Var(�)! T

�

(X) s.t. U (x) 2 �(V (x)) for all x 2 X we have:

{ t

A;V

= U (t)

A;V

for every t 2 T

�

(Var(�));

{ V � U (t)�

A

V (t) for every t 2 T

�

(Var(�)).

De�nition11. Let � = (S; F; P) be a signature, X be a family of variables for

�, A = (A;�

A

;P

A

) be a lazy algebra and V :X ! A be a valuation. Then the

kernel k(A; V) of the evaluation w.r.t. A and V is the congruence (�;

�

=

; f�pg)

over T

�

(X) de�ned by:

{ t �

s

u i� t

A;V

= u

A;V

2 s

A

.

{ t

�

=

s

u i� V (t)�

A

V (u).

{ for every p 2 P

s

1

...s

n

, (t

1

; . . . ; t

n

) 2 �p i� (V (t

1

); . . . ; V (t

n

)) 2 P

A

(p).

Let Sp be a speci�cation over � and X be a family of variables for �; then the

lazy congruence K(Sp ; X) is the (componentwise) intersection of k(A; V) for all

A 2Mod(Sp) and all valuations V :X ! A.

It is immediate to check that the kernels are congruences and that the intersec-

tion of congruences is a congruence too.

As quite common in algebraic frameworks, the free object is the quotient of

the corresponding term algebra w.r.t. the \minimal" kernel.

Theorem12. Let Sp be a speci�cation over � = (S; F; P) and X be a family of

variables for �. Then (T

�

(X)=K(Sp ; X); V) is free for X in Mod(Sp).

3 Using Lazy Speci�cations

Let us �rst of all note that every total and partial speci�cation can be im-

mediately and automatically translated

2

into a lazy speci�cation, by adding

the de�nedness of variables in the premises, to make their instantiation range

on values, and axioms of the form p(x

1

; . . . ; x

n

) � D(x

i

) to restrict predi-

cates to work on values; moreover, for total speci�cations, axioms of the form

D(x

1

) ^ . . . ^ D(x

n

) � D(f(x

1

; . . . ; x

n

)) have to be added, too, to have that

the interpretation of function symbols are total functions in all models. As most

speci�cations are total or partial, a speci�cation language based on the lazy

framework should provide facilities to concisely describe those requirements. It

is interesting to note that, from a practical point of view, stating the de�nedness

of variables in the premises does not increase the number of checks; indeed the

typing veri�cation needed in any framework is here replaced by the de�nedness

check.

But lazy speci�cations also allow the de�nition of evaluation strategies. For

instance, let us assume given a speci�cation Sp

B

for the boolean expressions of

a programming language, including the constants true and false, but possibly

with other (partial) operations, and enrich it by an and construct. Then many

di�erent evaluation strategies can be de�ned. Each of the following groups of

axioms presents one of the more usual strategies, assuming that all de�ned terms

reduces either to true or to false; but it is easy to see that others (e.g. \right

to left") could be axiomatized as well.

D(x) ^ y = true � x and y = x

D(x) ^ y = false � x and y = false

�

strict evaluation

x = true � x and y � y

x = false � x and y � false

�

left to right evaluation, strict on the �rst argument

true and x � x

false and x � false

�

non-strict left to right evaluation

true and x � x

false and x � false

x and true � x

x and false � false

9

>

>

=

>

>

;

parallel non-strict evaluation

2

This indeed is a particular case of logical simulation (see e.g. [8]) and its existence

not only guarantees that the lazy framework is at least as expressive as the total and

partial ones, but also allows the use of multiparadigm speci�cation languages (see

e.g. [4])

Notice the di�erence between x = true � x and y � y and true and y � y;

indeed in the �rst case x is required to be de�ned, while the later allows the

simpli�cation of x and y to y even if x is unde�ned, provided that x simpli�es

to true (as from x � true, also x and y � true and y follows, by congruence,

and hence x and y � y is required by transitivity).

Another interesting point is the interaction between error-recovery and mod-

ularity (see [15]). A classical example of this problem is the de�nition of the

stacks (see [5] for a full discussion on the possible speci�cations of stacks). In-

deed the stack data type is parametric w.r.t. the speci�cation of its elements;

thus a priori there is no way to de�ne the value of the top of the empty stack

without destroying the su�cient completeness property; indeed it should be a

new error of the primitive type of elements. In many total approaches the so-

lution is to reduce it to any previously existing error value, but there are no

guarantees that such value exists. Using partial speci�cations, it is easy to have

that top and pop are de�ned only on non-empty stacks, saving the su�cient

completeness; consider indeed the following standard partial speci�cation, para-

metric on the speci�cation of the elements, that is supposed to have a principal

sort, elem.

spec Sp

1

= enrich Elem by

sorts stack

opns empty:! stack

push: elem� stack! stack

top: stack! elem

pop: stack! stack

axioms D(empty)

D(x) ^D(s) � D(push(x; s))

D(x) ^D(s) � top(push(x; s)) = x

D(x) ^D(s) � pop(push(x; s)) = s

If error recovery is required, then the only way to deal with it in partial (as well

as in order-sorted) frameworks is to add the de�nedness (well-formedness) of

\errors", destroying the su�cient completeness, together with recovery axioms,

so that the framework is in no way di�erent w.r.t. the standard many-sorted

approach. Using lazy algebras, instead, it is possible to introduce simpli�cation

on terms.

spec Sp

2

= enrich Sp

1

by

axioms top(push(x; s)) � x

pop(push(x; s)) � s

Notice that in Sp

2

for example the term � = top(push(t; pop(empty))) simpli�es,

in all models, to t, but, even if t is de�ned, � is unde�ned; indeed � represents a

\recovered" computation. The strictness of functions prevents � to be de�ned,

unless pop(empty) is de�ned too. In other words the initial model of Sp

2

consists

of the same partial algebra as the initial model of Sp

1

, but the simpli�cation

relation has been enlarged to recover some errors.

Note that �ner error-recovery strategies can be de�ned as well; for example

the following speci�cation corresponds to the recovery of just one level of error

due to pop and top.

spec Sp

3

= enrich Sp

1

by

axioms D(s) ^D(x) � top(push(x; pop(s))) � x

D(s

1

) ^D(s

2

) � pop(push(top(s

1

); s

2

)) � s

2

A third kind of problem comes from the de�nition of limited data types, for

example limited stacks. The intuition is that after a phase of top-down design,

during which the stacks were regarded as their \ideal" model, in the bottom-up

development stacks should be replaced by a more \real" and limited model. But

in all algebraic approaches this step cannot be done painlessly. Indeed terms

that were seen as perfectly correct (i.e., depending on the framework, as de�ned,

well-formed, labeled by \ok" and so on) should be moved in the \incorrect"

part of the type, loosing so, in some sense, a property, while all frameworks are

incremental and only allow to increase the properties of any term. This re
ects in

the need for a heavy modi�cation of the original speci�cation (e.g. by decorating

the axioms in order to apply them only to those arguments that do not raise an

over
ow), against any notion of modularity.

Analyzing this phenomenon, it is easy to see that the original speci�cation

is overde�ned; indeed if the knowledge about which terms represent values and

which errors is reached only at the last stage of design, then it is incorrect, and

indeed it is a source of troubles, to de�ne push as a total function, because it

is not total in limited models. But the standard approaches require the terms

to be de�ned (well formed/labeled with \ok". . .) in order to apply simplifying

axioms to them, so that the contradiction between the need for delaying the

decision about de�nedness and the capability to state equalities among terms

is inescapable. Using lazy speci�cation, instead, the speci�cation Sp

1

can be

rephrased with equality replaced by the simpli�cation relation, capturing in this

way the intuition that the axioms state an equivalence on computation and that

the de�nedness is only added at the last possible moment.

spec Sp

0

1

= enrich Elem by

sorts stack

opns empty:! stack

push: elem� stack! stack

top: stack! elem

pop: stack! stack

axioms top(push(x; s)) � x

pop(push(x; s)) � s

Now the de�nition of the stacks large at the most max elements, with the conven-

tion that push

n

(x

1

; . . . ; x

n

; s) is the term inductively de�ned by push

0

(�; s) = s

and push

n+1

(x

1

; . . . ; x

n+1

; s) = push

n

(x

1

; . . . ; x

n

; push(x

n+1

; s)) for every term

s of sort stack, is the following enrichment:

spec Sp

0

2

= enrich Sp

0

1

by

axioms D(x

1

) ^ . . . ^D(x

max

) � D(push

n

(x

1

; . . . ; x

max

; �))

By strictness the de�nition of all the subterms is given. Notice that the axioms

of Sp

0

1

de�ne a strong error-recovery strategy as the de�nedness of variables is

not required in the premises; adding such premises, the error-recovery can be

weakened, and even, adding the de�nedness of all subterms instead of variables,

completely banished.

4 A Sound and Complete Calculus

It is implicit in the nature of algebraic speci�cations, seen as tools for reasoning

on programs, the need for a calculus to help the understanding of the speci�ca-

tion basic properties, possibly with the related de�nition of a tool. A calculus is

doubly needed in this framework, that is based on the concept of simpli�cation.

We are mainly interested in formulas where most variables can only range

on de�ned elements, represented in the form fD(x

1

); . . . ; D(x

n

)g � �, or on

subsets described by predicates. Thus, although atomic deduction would su�ce

for the de�nition of the initial object, the calculus presented here is strictly

conditional. This, moreover, enables a concise description of variables used in

deduction already utilized for the partial approach (see e.g. [2]), in order to

avoid well known problems related to empty-carriers.

De�nition13. Let � = (S; F; P) be a signature, X an S-sorted family of denu-

merable variable sets and Ax a set of positive conditional formulas over � and

X.

Then the inference system CL(Sp), where Sp = (�;Ax) consists of Ax and

of the following rules, where t; t

0

; t

00

; t

1

; . . . ; t

n

; t

0

i

are terms on � and X:

Existential equality rules

t=

e

t

0

� t

0

=

e

t t=

e

t

0

^ t

0

=

e

t

00

� t=

e

t

00

D(f(t

1

; . . . ; t

n

)) � D(t

i

)

t

i

=

e

t

0

i

^D(f(t

1

; . . . ; t

n

)) � f(t

1

; . . . ; t

n

)=

e

f(t

1

; . . . ; t

i�1

; t

0

i

; t

i+1

. . . ; t

n

)

Simpli�cation rules

t � t

t � t

0

� t

0

� t t � t

0

^ t

0

� t

00

� t � t

00

t

1

� t

0

1

^ . . .^ t

n

� t

0

n

� f(t

1

; . . . ; t

n

) � f(t

0

1

; . . . ; t

0

n

)

t � t

0

^D(t) ^D(t

0

) � t=

e

t

0

t=

e

t

0

� t � t

0

Predicate rule

t

1

� t

0

1

^ . . .^ t

n

� t

0

n

^ p(t

1

; . . . ; t

n

) � p(t

0

1

; . . . ; t

0

n

)

Substitution rule

�

�(�)

� term substitution

Modus Ponens

� � �; � � �

�� f�g [� [� � �

� = fx � x j x 2 Var(�)� (Var(�� f�g [� � �))g

If � is inferred by CL(Sp), then we write CL(Sp) ` �.

It is worth noting that the side condition of the Modus Ponens rule guarantees

that variables can be eliminated, during a deduction, only if a substitution takes

place. This su�ces for inconsistent deductions to be avoided even in the case of

empty carriers and non-sensible signatures.

The above calculus is sound, as the following proposition will show.

Proposition14. Let Sp = (�;Ax) be a speci�cation; then CL(Sp) ` � implies

that A j=

V

� for all A 2Mod(Sp) and all V :Var(�)! T

�

(A).

We are mainly interested in atomic completeness, as an atomically-complete

calculus gives the free (initial) model, that satis�es as few atoms as possible,

but, since in our framework the variables used in the deduction that cannot be

eliminated (as values for their instantiation are missing) are kept track of by

atoms of the form x � x (if the variable can be instantiated on every term) or

x=

e

x (if the variable can be instantiated only on de�ned term) in the premises,

we should regard

x

1

� x

1

^ . . .^ x

n

� x

n

^ y

1

=

e

y

1

^ . . .^ y

m

=

e

y

m

� �

as an atom in the notation 8x

1

. . .x

n

:T

�

(A); 8y

1

. . .y

m

:A:�. But if the x have

to be instantiated on terms built from the values of A (and hence from the y),

their presence in the premises does not increase the number of elements needed

in the carriers in order to make the deduction possible. Hence we are interested

in an easier form of formulas, those that in the premises have only de�nedness

assertions.

Notation. Every � of the form x

1

=

e

x

1

^ . . . ^ x

n

=

e

x

n

� � is called basically

atomic and if CL(Sp) ` �, then we say that CL(Sp) `

X

� holds for each X �

fx

1

. . .x

n

g.

The above calculus is complete w.r.t. basically atomic sentences; the proof is

done by constructing a model satisfying only the deduced atoms.

De�nition15. Let Sp = (�;Ax) be a speci�cation and X be a family of vari-

ables; then K(CL(Sp); X) is the lazy congruence (�;

�

=

; f�pg) de�ned by:

{ t � t

0

i� CL(Sp) `

X

t=

e

t

0

for all t; t

0

2 T

�

(X);

{ t

�

=

t

0

i� CL(Sp) `

X

t � t

0

for all t; t

0

2 T

�

(X);

{ (t

1

; . . . ; t

n

) 2 �p i� CL(Sp) `

X

p(t

1

; . . . ; t

n

) for all t

i

2 T

�

(X) and p 2 P ;

Moreover let G(Sp ; X) be the quotient lazy algebra T

�

(X)=K(CL(Sp); X) and

let E:X ! G(Sp; X) be the evaluation de�ned by E(x) = [x] for all x 2 X.

Let us remark thatK(CL(Sp); X) is a lazy congruence. Indeed, because of modus

ponens and of the rules for existential equality, � is a partial congruence, whose

domain includes X; moreover, because of modus ponens and of the rules for

simpli�cation,

�

=

is a total congruence, ��

�

=

and if t

�

=

t

0

, with t � t and

t

0

� t

0

, then t � t

0

. Finally, the predicate interpretation is well de�ned w.r.t.

simpli�cation, because of the rules for predicate and modus ponens.

Proposition16. Let Sp = (�;Ax) be a speci�cation, X be a family of vari-

ables and V :Var(�) ! T

�

(G(Sp; X)) be a valuation. Then G(Sp; X) j=

E

� i�

CL(Sp) `

X

�, for every atom � over X.

Note that, in particular, G(Sp; X) j=

E

x=

e

x for all x 2 X, because of the

symmetry rule for existential equality.

Proposition17. Let Sp = (�;Ax) be a speci�cation and X be a family of

variables. Then G(Sp; X) is a model of Sp.

We are �nally able to show the completeness of the calculus w.r.t. basically

atomic formulas.

Theorem18. Let Sp = (�;Ax) be a speci�cation and � be � � �, where � =

fD(x

1

); . . . ; D(x

m

)g; if A j=

V

� for all A 2Mod(Sp) and all V :X ! T

�

(A),

then CL(Sp) `

X

�, where X = Var(�).

The calculus gives the free models.

Theorem19. Let Sp be a speci�cation over � = (S; F; P) and X be a family of

variables for �. Then (G(Sp ; X); E) is free for X in Mod(Sp).

Conclusions and Further Developments

Having proposed an algebraic framework to easily deal with the features of an

imperative or functional programming language, the next step should be the def-

inition of a user-friendly speci�cation language, whose semantics will be de�ned

in terms of lazy speci�cations. This will lead to investigate about rewriting tech-

niques for the lazy framework and, possibly, to an implementation. To this aim

it could be useful to modify the simpli�cation relation, dropping the requirement

that it is a congruence, and making it a \rewrite" relation.

Acknowledgments. I would like to thank my o�ce-mate, Elena Zucca, for pa-

tiently debating with me the original, vague and confused intuitions that brought

to the de�nition of the lazy frame. Moreover I'm indebted to Gianna Reggio for

carefully reading a draft of this paper and to Egidio Astesiano for a continuous

stimulus to research.

References

1. E. Astesiano and M. Cerioli. Non-strict don't care algebras and speci�cations. In

S. Abramsky and T.S.E. Maibaum, editors, Proceedings of TAPSOFT'91, number

493 in Lecture Notes in Computer Science, pages 121{142, Berlin, 1992. Springer

Verlag.

2. E. Astesiano and M. Cerioli. Free objects and equational deduction for partial

conditional speci�cations. Theoretical Computer Science, 1995. To appear.

3. E. Astesiano and M. Cerioli. Relationships between logical frames. In Recent

Trends in Data Type Speci�cation, number 655 in Lecture Notes in Computer

Science, pages 126{143, Berlin, 1993. Springer Verlag.

4. E. Astesiano and M. Cerioli. Multiparadigm speci�cation languages: a �rst at-

tempt at foundations. In D.J. Andrews, J.F. Groote, and C.A. Middelburg, edi-

tors, Semantics of Speci�cation Languages (SoSL'93), Workshops in Computing,

pages 168{185. Springer Verlag, 1994.

5. J.A. Bergstra and J.V. Tucker. The inescapable stack: an exercize in algebraic

speci�cation with total functions. Technical Report P8804, University of Amster-

dam; Programming Research Group, 1988.

6. G. Bernot and P. Le Gall. Label algebras: a systematic use of terms. In Recent

Trends in Data Type Speci�cation, number 655 in Lecture Notes in Computer

Science, pages 144{163, Berlin, 1993. Springer Verlag.

7. P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.

Akademie Verlag, Berlin, 1986.

8. M. Cerioli. Relationships between Logical Formalisms. PhD thesis, Universities of

Genova, Pisa and Udine, 1993. Available as internal report of Pisa University,

TD-4/93.

9. R. Diaconescu. The logic of Horn clauses is equational. Submitted for publication,

1992.

10. J.A. Goguen and R. Diaconescu. A survey of order sorted algebra. Draft, 1992.

11. V. Manca, A. Salibra, and G. Scollo. Equational type logic. Theoretical Computer

Science, 77:131{159, 1990. Special Issue dedicated to AMAST'89.

12. A. M�egrelis. Alg�ebre galactique - Un proc�ed�e de calcul formel, relatif aux semi-

functions, �a l'inclusion et �a l�egalit�e. PhD thesis, University of Nancy I, 1990.

13. P. Mosses. Uni�ed algebras and institutions. In Proceedings of 4th Annual IEEE

Symposium on Logic in Computer Science, pages 304{312, 1989.

14. P. Mosses. The use of sorts in algebraic speci�cations. In Recent Trends in Data

Type Speci�cation, number 655 in Lecture Notes in Computer Science, pages 66{92,

Berlin, 1993. Springer Verlag.

15. A. Poign�e. Partial algebras, subsorting, and dependent types: Prerequisites of error

handling in algebraic speci�cations. In Recent Trends in Data Type Speci�cation,

number 332 in Lecture Notes in Computer Science, pages 208{234, Berlin, 1987.

Springer Verlag.

16. H. Reichel. Initial Computability, Algebraic Speci�cations, and Partial Algebras.

Akademie Verlag, 1986.

17. A. Salibra and G. Scollo. A soft stairway to institutions. In Recent Trends in

Data Type Speci�cation, number 655 in Lecture Notes in Computer Science, pages

310{329, Berlin, 1992. Springer Verlag.

18. D. Sannella and A. Tarlecki. Speci�cations in an arbitrary institution. Information

and Computation, 76:165{210, 1988.

19. M. Wirsing. Algebraic speci�cation. In Handbook of Theoretical Computer Sci-

ence. North Holland, 1990.

This article was processed using the LT

E

X macro package with LLNCS style

