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Introduction

This paper is a �rst attempt at the de�nition of a set of operations on speci�cation

frameworks, supporting the modular construction of formal software speci�cation

methodologies.

Since obviously a formalism providing tools to deal with all possible software

speci�cation features, if any, would be a monster and would become out of date in

a short time, in our opinion the �rst step, in order to produce formal speci�cations,

is to get a framework including all the features needed by the particular problem

under examination, but as simple as possible. Following an obvious reuse principle,

the best way to get such a framework is to assemble pieces of formalisms, studied

once and forever, or to tune an available formalism, adding only the \local" features.

As a simple example, think of lifting an existing algebraic approach, where just

sentences without variables can be used to axiomatize the data types, to a richer

formalism, where also formulae with variables are at hand.

In this paper, following the well-established approach by Goguen and Burstall

(see e.g. [4, 5]), speci�cation frameworks are formalized as institutions; thus en-

richments and assembling of formalisms become, in this setting, operations among

institutions.

The need for such a modular approach to the formalism construction has already

been sporadically addressed in the literature. Consider for instance the duplex in-

stitutions by Goguen and Burstall [5], where an institution is built whose sentences

comes from two input institutions, also applied in the database �eld by Fiadeiro

and Reichwein [11]. Another example is the extension by universal closure by San-

nella and Tarlecki [12], of a given institution and a set of its signature morphisms,

where sentences are enriched along these signature morphisms regarding the extra-

symbols as variables universally quanti�ed. Moreover the institution of implementa-

tion speci�cations by Beierle and Voss [3] enrich an institution by tools to deal with

implementation.

Here we present two more operations on institutions, that are originated by

abstracting from the de�nition of several institutions for very abstract speci�cations

in the �eld of concurrency: very abstract entity speci�cations [1], very abstract entity

speci�cations with temporal logic [2], very abstract entity speci�cations with event

?

This work has been partially supported by Esprit-BRA W.G. n.6112 Compass, Pro-

getto Finalizzato Sistemi Informatici e Calcolo Parallelo of C.N.R. (Italy), MURST-40%

Modelli e Speci�che di Sistemi Concorrenti



logic [1, 9], each one in several variants, like with �rst-order, conditional, equational

logic, with partial, non-strict, generalized models and so on.

Let us informally discuss the meaning of \very abstract". Every institution I

de�nes some syntactic structures and o�ers a formal framework where to discuss,

work on, and specify models on such syntaxes, giving an interpretation to the various

syntactic elements (quite often algebras of some kind on signatures). Now we want

to de�ne a \very abstract institution", where to be able to express properties about

not only the models on such syntaxes (i.e. about the interpretations), but also the

syntaxes themselves (i.e. about the structure of the models). In this new setting we

can characterize larger classes of models, having not all the same syntax, but whose

syntaxes satisfy some conditions; thus we call speci�cations in this new institution

very abstract.

An application of the very abstract operation in the �eld of abstract data types

is the prove that the hyper-loose algebraic speci�cations by Pepper (see [7]), whose

models on � are �

0

-algebras on some �

0

\extending" �, is an institution. A speci-

�cation in this institution describe classes of algebras sharing a common syntax and

satisfying properties on such common part, but with possibly some more structure,

analogously to software realizations of a module, that are allowed to have, besides

the operations required by the interface, further internal operations. However the

sentences in this institution are the same as in the parameter institution, so that

properties on the syntax of the speci�cations cannot be imposed. Extending also the

sentences, here we get the institution of very abstract data types, which supports

the speci�cation of high-level requirements on modules also about their interfaces

(e.g. constraints either in the number of operations or on the number of arguments

of the operations, due to limits of the admissible implementations).

Let us consider, now, the institution of entity algebras, see [8], providing a formal

framework for algebraic speci�cations of concurrent systems, where some signature

operations are used to explicitly describe the concurrent structure (i.e. to de�ne the

system components, both static and dynamic, and the system architecture). Thus

very abstract speci�cations (built on the entity institution) describe classes of entity

algebras on possibly di�erent signatures, i.e. formal models of systems with possibly

di�erent concurrent structures, satisfying common properties.

Besides these examples, the very abstract operation has many other interesting

and useful concrete applications, already used in some industrial case studies of the

speci�cation, at di�erent levels of abstraction, of a substation for the electric power

distribution (see [10]).

The de�nition of the very abstract operation can be modularly described as the

composition of two basic operations on institutions: ABSTRACT, that abstracts the

models on a signature �, by regarding as abstract �-models the actual models on

each \extension" of �, and EXTEND, that extends the set of sentences, so that for-

mulas about signature properties are allowed (but this operation is far more general

and can be used, for example, to add in a uniform way logical operators, e.g. the

equality).

The arguments of ABSTRACT are an institution and a family of signature \ex-

tensions", that are signature morphism satisfying some technical conditions. Thus,

as the other parameters only depends on the signature category, the proof of the

existence of such parameters can be shared by all institutions with the same syntac-



tic part. In particular here we show the construction of signature extensions for the

many-sorted signatures (with predicates), so that the same construction can be used

for most \algebraic" institutions (e.g. institutions with partial or non-strict models

and with every logic).

The paper is organized as follows. The operations ABSTRACT and EXTEND

are introduced in Sect. 1 and 2, respectively. In Sect. 3 we apply them to get some

interesting very abstract institutions, including the very abstract entity institution

and the very abstract data types institution.

1 Abstracting Models w.r.t. Syntax

This section is devoted to the de�nition of an operation ABSTRACT that applied on

a logical framework I yields a framework over I, where more abstract speci�cations

can be given, characterizing larger classes of models, that are required to provide a

semantic counterpart for the speci�cation syntax, but can have some extra-structure.

A classical example of such a speci�cation is the mathematical habit of regarding

rings or �elds as groups, without explicitly forgetting the product (the unity and

the inverse) operations; indeed the models of the meta-speci�cation \groups" need

to have a group structure, but are as well allowed to have more operations. A more

applicative example is the de�nition of software modules realizing a data type; indeed

any such module is required to associate a function with each operation of the data

type, but it is quite common in the practice to have (private) local de�nitions,

di�erent for every actual module, giving to the module an extra-structure.

1.1 The Parameters of ABSTRACT

Using the concept of institution (see e.g. [4, 5]) to represent logical frameworks, we

de�ne an operation on institutions yielding a new institution with the same syntax

of its argument, i.e. with the same signatures and sentences, but whose models are,

for each signature, the models of the original institution on each \extension" of the

signature.

Let us recall the de�nition of institution (see e.g. [4]) and then introduce the

basic ingredients needed to generalize the class of models on a signature.

De�nition1. An institution I consists of a category Sign of signatures, a functor

Sen :Sign! Set giving the set of sentences over a signature, a functorMod :Sign!

Cat

Op

giving the category of models on a signature, and a satisfaction relation

j=� jMod (�)j�Sen (�) for each � object in Sign, sometimes denoted by j=

�

, such

that for each morphism �:� ! �

0

in Sign, the satisfaction condition

M

0

j=

�

0

Sen(�)(�) () Mod (�)(M

0

) j=

�

�

holds for each M

0

in jMod(�

0

)j and each � in Sen(�).

Let us �x an institution I = (Sign; Sen;Mod ; j=) and discuss the parameters for

getting a institution H = ABSTRACT(I; : : :) based on I. These elements and their

properties are summarized in tables enclosed by boxes.



Intuitively in H a signature � represents the minimal structure that its models

have, but the models can have a richer structure than the one explicitly described

by �; thus the �-models in H are the �

0

-models in I, for some �

0

which \extends"

�. In most examples signatures are structured (families of) sets, so that extensions

are simply set-inclusions and hence correspond to a particular subclass of signature

morphisms; this leads to consider the class of these morphisms, called admissible,

as one of the ABSTRACT parameters. Note that two minimal requirements have to

be imposed on this class: that the identities are admissible, corresponding to the

intuition that each signature is the trivial extension of itself, and that the class of

admissible morphisms is closed under composition, because extending an extension

should result in an extension, too.

HAMor = fHAMor(�;�

0

)g

�;�

0

2jSignj

s.t. for all �;�

0

; �

00

2 jSignj

{ HAMor(�;�

0

) is a (possibly empty) set of morphisms from � into �

0

;

{ Id

�

2HAMor(�;�) (identities are admissible morphisms)

{ if m 2 HAMor(�;�

0

) and m

0

2 HAMor(�

0

; �

00

), then

m

0

�m 2HAMor(�;�

00

)

Admissible morphisms

Here and in the following we write m:� ,! �

0

to denote that m is an admissible

morphism from � into �

0

; moreover we simply write A

jm

for Mod (m)(A). Given

�;�

0

2 jSignj, we say that �

0

extends � i� there exists an admissible morphism in

HAMor(�;�

0

).

It is now possible to de�ne the abstract models on any signature �, that are pairs

<A;m>, for m:� ,! �

0

and A 2 jMod(�

0

)j; note that we need to keep track of

the way �

0

extends �, because in general �

0

may be an extension of � in di�erent

ways, as several morphisms with the same domain and codomain can be admissible.

Let us consider now the arrows between these new models, in order to get a

category. Since abstract models are pairs, also a morphism between two such models,

say from <A;m

1

:� ,! �

0

> into <B;m

2

:� ,! �

00

>, is a pair of arrows between

the corresponding components. The second element is an arrow from m

1

into m

2

(seen as objects of the comma category � # Sign

HAMor

, where Sign

HAMor

is the sub-category of Sign with arrows in HAMor), i.e. an admissible morphism

m:�

0

,! �

00

in HAMor s.t. the following diagram commutes

�

0 -

�

00

m

�

m

1

�

�

�

�	

m

2

@

@

@

@R

Thus, if such an m exists, B is an algebra on an extension of the actual signature

of A and hence it is natural to choose as �rst component of the model morphism,



a �-morphism from A into B

jm

, preserving all the structure of A and not only the

minimal required by �.

There is (at least) another natural choice of the model morphisms in HMod (�),

that is to have as morphisms from <A;m

1

:� ,! �

0

> into <B;m

2

:� ,! �

00

> the

�-morphisms in Mod (�) from A

jm

1

into B

jm

2

. However in this way the morphisms

do not depend on the extra-structure of �

0

and �

00

, and hence two abstract models,

<A;m> and <B;m> on the same extension can be isomorphic if their restriction

along m are such, while A and B are not even related by a homomorphism either

way. Instead, following our choice, two abstract models (on the same extension) are

isomorphic in the new institution i� they are isomorphic in the starting institution,

accordingly with the intuition that the nature of the speci�ed models is the same

and in the new institution we are only able to specify \bigger" classes of original

models.

De�nition2. For every � 2 jSignj, the category HMod(�) is de�ned by:

Objects jHMod (�)j = f<A;m> j m 2 HAMor(�;�

0

); A 2 jMod(�

0

)jg;

Morphisms HMod(�)(<A;m

1

:� ,! �

0

>;<B;m

2

:� ,! �

00

>) =

f<p;m> j m 2HAMor(�

0

; �

00

);m �m

1

= m

2

and p 2Mod (�

0

)(A;B

jm

)g;

Identities Id

<A;m:�,!�

0

>

= <Id

A

; Id

�

0

>;

Composition <p;m:�

0

,! �

00

> �<q;m

0

:�

00

,! �

000

> = <p � q

jm

;m

0

�m>.

A graphical view of this composition is given below.

A

p

! B

jm

q

jm

! C

jm

0

�m

2

Mod(�

0

)

B

q

! C

jm

0
2

Mod(�

00

)

C 2

Mod(�

000

)

Mod(�)

�

�

�

�

�

�

�

�

�

�*

Mod(m

1

)

H

H

H

H

H

H

H

H

H

HY

Mod(m

3

)
6

Mod(m

2

)

�

Mod(m)

�

Mod(m

0

)

Proposition3. For every � 2 jSignj, HMod (�) is a category.

In order to generalize the above de�nition of HMod(�) to a functor on Sign, a

family of functors HMod (�), for every � 2 Sign(�

1

; �

2

), has to be de�ned, preserv-

ing identities and composition. To de�ne such any HMod(�), since the �

2

-objects in

H are I-models on extensions of �

2

, we need a uniform way of building extensions

of �

1

starting from the �

2

-extensions. Thus in the following de�nition we introduce

a new ingredient for the H-construction.

It is worth to note that the conditions 1 and 2 are needed for HMod (�) to be a

functor, while 3, 4 and 5 are needed for HMod to be a functor, too, i.e. that preserves

composition and identities in Sign.

De�nition4. A backward extension on a classHAMor of admissible morphisms in

Sign, consists of a signature sig(�;m), a morphism mor(�;m): sig(�;m)! �

0

2

and

an admissible morphism amor(�;m):�

1

,! sig(�;m) for each signature morphism



�:�

1

! �

2

and each admissible morphism m:�

2

,! �

0

2

2 HAMor satisfying the

following conditions

2

:

1. The following diagram commutes, i.e. m � � = mor(�;m) � amor(�;m):

sig(�;m)

-

mor(�;m)

�

0

2

�

1

-

�

�

2

amor(�;m)

?

m

?

2. The choice of sig, mor and amor is natural w.r.t. the second argument:

(a) sig(�;m

0

�m) = sig(mor(�;m);m

0

);

(b) mor(�;m

0

�m) = mor(mor(�;m);m

0

);

(c) amor(�;m

0

�m) = amor(mor(�;m);m

0

) � amor(�;m);

�

1

amor(�;m)

?

sig(�;m)

�

-

�

2

m

?

�

0

2

mor(�;m)

-

sig(mor(�;m);m

0

) =

sig(�;m

0

�m)

�

00

2

amor(mor(�;m);m

0

)

P

P

P

P

P

P

P

P

P

Pq

m

0

P

P

P

P

P

P

P

P

P

Pq

@

@

@

amor(�;m

0

�m)

@

@

@

@@R

@

@

@

m

0

�m

@

@

@

@@R

mor(�;m

0

�m) =

mor(mor(�;m);m

0

)

-

3. The choice of sig, mor and amor is natural w.r.t. the �rst argument:

(a) sig(�

2

� �

1

;m) = sig(�

1

; amor(�

2

;m));

(b) mor(�

2

� �

1

;m) = mor(�

2

;m) � mor(�

1

; amor(�

2

;m));

(c) amor(�

2

� �

1

;m) = amor(�

1

; amor(�

2

;m));

2

Note that the (a)-conditions at points 2, 3, 4 and 5 folllow from the corresponding (b)-

conditions (and/or from the (c)-conditions) and are mentioned for the sake of clearness.



�

1

�

2

� �

1

-

�

3

�

2

X

X

X

X

X

X

X

XXz

�

1

�

�

�

�

�

�

�

��:

�

2

amor(�

1

; amor(�

2

;m)) =

amor(�

2

� �

1

;m)

?

m

?

amor(�

2

;m)

?

sig(�

1

; amor(�

2

;m)) =

sig(�

2

� �

1

;m)

mor(�

2

� �

1

;m)

-

�

0

3

sig(�

2

;m)

X

X

X

X

X

X

X

Xz

mor(�

1

; amor(�

2

;m))

�

�

�

�

�

�

�

��:

mor(�

2

;m)

4. The identity as �rst argument is preserved:

(a) sig(Id

�

0

(m)

;m) = �

1

(m);

(b) mor(Id

�

0

(m)

;m) = Id

�

1

(m)

;

(c) amor(Id

�

0

(m)

;m) = m.

5. The identity as second argument is preserved:

(a) sig(�; Id

�

1

(�)

) = �

0

(�);

(b) mor(�; Id

�

1

(�)

) = �;

(c) amor(�; Id

�

1

(�)

) = Id

�

0

(�)

.

Since any backward extension onHAMor is su�cient to de�ne a model functor,

a backward extension is the last parameter of the operation we are describing.

sig; amor; mor

Backward extensions on HAMor

Proposition5. Let I = (Sign; Sen;Mod ; j=) be an institution and sig, amor, mor

be a backward extension on a class HAMor of admissible morphisms. For every

� 2 Sign(�

1

; �

2

), let HMod (�):HMod(�

2

)! HMod(�

1

) be de�ned by:

{ on objects

HMod (�)(<A;m:�

2

,! �

0

2

>) =

<Mod(mor(�;m))(A); amor(�;m):�

1

,! sig(�;m)>

for every <A;m> 2 jHMod (�

2

)j, i.e. the admissible morphism m is translated

into the admissible morphism provided by the backward extensions and the model

A is accordingly translated along the (model-interpretation of) the extension of

�, as the front side of the following picture shows (the back side reminds the

syntactic counterpart):



�

1

�

-

�

2

Mod(�

1

)

Mod(�)

�

Mod(�

2

)

sig(�;m)

mor(�;m)

-

�

0

2

Mod(sig(�;m))

Mod(mor(�;m))

�

Mod(�

0

2

)

amor(�;m)

?

6

Mod(amor(�;m))

m

?

6

Mod(m)

{ on morphisms

HMod (�)(<p;m>) = <Mod (mor(�;m

2

))(p); amor(mor(�;m

2

);m)>

for every <p;m> 2 HMod (�

2

)(<A;m

2

:�

2

,! �

0

2

>;<B;m

3

:�

2

,! �

00

2

>), ac-

cordingly with the translation of models; a complexive picture is given below;

�

1

amor(�;m

2

)

?

sig(�;m

2

)

�

-

�

2

m

2

?

�

0

2

mor(�;m

2

)

-

sig(�;m

3

) =

sig(mor(�;m

2

);m)

�

00

2

amor(mor(�;m

2

);m)

P

P

P

P

P

P

P

P

P

Pq

m

P

P

P

P

P

P

P

P

P

Pq

@

@

@

amor(�;m

3

)

@

@

@

@@R

@

@

@

m

3

@

@

@

@@R

mor(�;m

3

)

mor(mor(�;m

2

);m)

-

Then HMod(�) is a functor.

Putting together the de�nitions of HMod (�) and HMod (�) we �nally get a func-

tor from Sign into Cat

Op

.

Proposition6. Under the hypothesis and using the notation of proposition 5, HMod

is a functor from Sign into Cat

Op

.

As the sentences of the result institution are the same as the one of the parameter

institution, the validity relation for \new" models can be de�ned in terms of the

\old" validity relation and hence we do not need any other parameter in order to

de�ne the ABSTRACT operation.



1.2 The ABSTRACT Operation

ABSTRACT(I;HAMor; sig; amor; mor) = (Sign; Sen ;HMod ; j=

H

)

where HAMor is a family of admissible morphisms, sig, amor and mor are a

backward extension on HAMor, HMod is given as in Prop. 6, j=

H

is de�ned

by:

for each model <A;m:� ,! �

0

> in jHMod (�)j and each � in Sen(�)

<A;m>j=

H

�

� () Aj=

�

0

Sen(m)(�) () A

jm

j=

�

�:

The ABSTRACT operation

Proposition7. Let I = (Sign; Sen;Mod ; j=) be an institution, HAMor be a fam-

ily of admissible morphisms, and sig, amor and mor be a backward extension on

HAMor. Then ABSTRACT(I;HAMor; sig; amor; mor) is an institution.

Remark. Note that, besides the institution I itself, the arguments of the ABSTRACT

operation only depend on the signature category; thus the \non-canonical" part, i.e.

the choice of HAMor, sig, amor and mor, can be shared by the institutions with

the same signatures, disregarding the models and the sentences. In particular in

section 3 a choice for sig, amor and mor backward extension on the embeddings

as admissible morphisms is presented in the case of many-sorted signatures (with

predicates), that applies, hence, in most signi�cant institutions.

2 Enriching sentences by derived ones

Another useful operation to modularly build institutions consists of enriching the

sentences by regarding as sentences on a signature � the sentences on a larger

signature EXT (�). A canonical example is adding equality to �rst-order logic, by

coding the equality as a predicate.

As in general we may able to enrich only the sentences built over particular

signatures and the \new" sentences may be incompatible with some \old" signature

morphisms, a subcategory of signatures has to be selected as signature category of

the result of this operation.

On the semantic side a canonical way of extending the models, in order to de�ne

the validity of the new sentences by a standard interpretation of the extra-symbols,

is needed: this extension is given by a natural transformation Ext transforming

models on � into models on EXT (�), disregarding the model morphisms that are

not involved in the de�nition of validity.

Let us summarize the arguments and the result of this operation.



Given an institution I, a subcategory Sign

E

of Sign with embedding

E :Sign

E

! Sign, a functor EXT :Sign

E

! Sign and a natural transforma-

tion Ext : set �Mod � E ! set �Mod � EXT (set is the functor dropping from a

category all morphisms di�erent from the identities)

EXTEND(I;Sign

E

;EXT ;Ext) = (Sign

E

; Sen

E

;Mod

E

; j=

E

)

where Sen

E

= Sen � EXT , Mod

E

= Mod �E and Aj=

E

�

� i� Ext(A)j=

EXT (�)

�.

The EXTEND operation

Proposition8. Let I, Sign

E

, EXT and Ext be as in the above table; then

EXTEND(I;Sign

E

;EXT ;Ext) is an institution.

3 Examples

3.1 The institution of hyper-loose speci�cations

Let FOE = (FOESign;FOESen;FOEMod ; j=

FOE

) denote the institution of many-

sorted �rst-order logic with equality; in the sequel we assume that FOESign is

the category of abstract signatures, i.e. the quotient of the usual category of �rst-

order signatures w.r.t. isomorphisms, so that � stands for the class of signatures

isomorphic to �.

The institution of the hyper-loose (many-sorted �rst-order with equality) speci-

�cations, introduced in [7], is the very abstract institution over FOE de�ned below

using only the operation ABSTRACT; we do not use EXTEND in this case, since we

do not need to extend the sentences.

Following Sect. 1 we give the parameters for the operation ABSTRACT.

Morphisms characterizing the signature extensions. The elements of YAMor are

the embeddings between many-sorted signatures, i.e.:

YAMor
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be an admissible morphism in YAMor. The idea behind the de�nition of the

backward extension of �
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is to add to �
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all components of �
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, as it is

graphically represented below
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Here, as in the sequel, we assume that representative of di�erent signature classes do not

share any symbol, so that the union of �

1

and �

0
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� �

2

is disjoint.



{ ysig(�; em) = (S;OP ;PR), where:
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It is obvious to see that ysig(�; em) is a many-sorted signature.

{ yamor(�; em) is the embedding of �

1

into ysig(�; em), i.e.

yamor(�; em)(s) = s, yamor(�; em)(Op) = Op, yamor(�; em)(Pr) = Pr, for all

s, Op, Pr.

{ ymor(�; em) is the morphism from ysig(�; em) into �

0

2

is de�ned as follows:

� on sorts:

ymor(�; em)(s) = em(�(s)), if s 2 Sorts(�

1

), s otherwise;

� on operations:

ymor(�; em)(Op) = em(�(Op)) if Op is in Opns(�

1

), Op otherwise;

� on predicates:

ymor(�; em)(Pr) = em(�(Pr)) if Pr is in Preds(�

1

), Pr otherwise.

Proposition9. ysig, yamor and ymor de�ned above are a backward extension on

YAMor.

Y = ABSTRACT(FOE ;YAMor; ysig; ymor; yamor)

The institution of hyper-loose speci�cations

3.2 An institution for the very abstract speci�cations of data types

The idea is to extend the institution Y with appropriate formulae for expressing

requirements on the (extra part of the) signatures of the very abstract models. It is

obvious that there are di�erent ways to choose these requirements; here we present

a rather general and powerful choice, that we think appropriate for many reasonable

applications. Our idea is to give the possibility to express both purely syntactic

conditions on the extra part of the models (e.g. requiring the (non) existence of

an operation or a predicate whose functionality satis�es some conditions) but also

semantic one (e.g. requiring the (non) existence of an operation or a predicate whose

interpretation satis�es some conditions, as commutativity). The practice of using

very abstract speci�cations of abstract data types (shortly VAS) will show whether

this choice is appropriate possibly suggesting improvements and modi�cations.

Then the institution for VAS is built by applying the operation EXTEND of

Sect. 2 to the institution Y and the underlying idea is to take as new formulae on a

signature � the formulae of classical �rst-order logic with equality on the signature

enriching � by sorts, operations and predicates for handling the syntactic elements



on � (e.g.: sorts, operations, predicates, variables, terms, formulae, : : : ) and their

interpretations.

Now we list the parameters for EXTEND.

The extendible signatures. The above kind of sentence extension may be done on

each many-sorted signature, so we do not restrict the objects of FOESign; however

we have to restrict the admissible signature morphisms. For example let � be the

formula \9x; y: sort : x 6= y", �

1

be the signature having just one sort, srt, �

2

be

the signature having two sorts, respectively srt

1

and srt

2

, no operations and no

predicates and �:�

1

! �

2

be the signature morphism de�ned by �(srt

1

) = srt =

�(srt

2

). Now � is false on all algebras in YMod (�

1

), while its translation along �

holds on the algebras in YMod (�

2

).

VSign is the category whose objects are the same of FOESign and whose only

morphisms are the isomorphisms of FOESign and VE :VSign! FOESign is the

embedding functor.

The extended signatures. SYNT :VSign! VSign is the functor de�ned by:

{ on objects:
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For lack of room we do not give the complete de�nition of the extended signature,

however it is easy to understand how to complete it with the remaining sorts,

operations and predicates.

{ on morphisms:

the obvious extension leaving the new symbols ina�ected

SYNT (�)(�) = �(�) if � 2 �, otherwise SYNT (�)(�) = �.

It is easy to see that SYNT is a functor.

Interpretation of the extended signatures. For all � 2 jset(YMod (VSign))j

Synt

�

: jYMod(�)j ! YMod (SYNT (�)) is the functor de�ned by:

{ on objects:

if A 2 jYAMor(�)j, i.e. A is a �

1

-algebra where �

1

= (S;OP ;PR), then, �xed

for every sort s 2 S a denumerable set of variables X

s

, Synt

�

(A) = B, where
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and X,

: : :

op

B

= op

A

if op 2 OP
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for some w; s,

: : :
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B

(�) = A j=

FOE

�,

: : :



{ on morphisms:

Obvious.

Since the morphisms in VSign are isomorphisms, obviously Synt is a natural trans-

formation.

Example 1. We specify the fundamental requirements on a module for handling la-

belled transition trees without completely �xing the interface. The designer in charge

of realizing such module is allowed to devise a nice choice of extra constructors for

trees, but it cannot add operations modifying parts of a tree, so that it is possible

to give implementations where repeated common subtrees are shared.

spec LTT =

enrich LAB; STATE by

sorts tree; sons

opns

{ �xed components of the interface

�:! sons

< ; >& : lab � tree � sons! sons

T : state� sons! tree

axioms

{ properties of the �xed part of the interface

<l; t>&<l; t>&sons = <l; t>&sons
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{ properties of the variable part of the interface

{ each constructor for tree is derived

8op: opn
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For example the operation 1

Ary

: state� lab� tree! tree building unary trees and

de�ned by 1

Ary

(s; l; t) = T (s;<l; t>&�) can be added to the interface, while the

following one, replacing some subtrees, cannot:

Replac: tree� lab� tree! tree

Replac(T (s; sns); l; t) = T (s;Replac

0
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3.3 Very Abstract Entity Speci�cations

The institution of entity algebras, where \entity" stands for processes, either simple

or structured (i.e. several processes interacting together), see [8],

E = (ESign;ESen ;EMod ; j=

E

)

provides a formal framework for the process speci�cation.



Here, for lack of room, we cannot give full details and the motivations of E . From

a formal point of view E is a \subinstitution" of FOE , in the sense that:

{ ESign is a subcategory of FOESign,

{ ESen is the restriction of FOESen to ESign,

{ for all E� 2 jESignj, EMod (E�) is a subcategory of FOEMod (E�), whose

objects are called entity algebras and

EMod (�:E�

1

! E�

2

) = FOEMod (�:E�

1

! E�

2

),

{ EA j=

E

� , EA j=

FOE

�.

The concurrent structure of the entities modelled by an E�-entity algebra (i.e.

which are the process components and how are assembled) is determined by some of

the operations of E�; thus very abstract speci�cations (built on the entity institu-

tion) describe classes of entity algebras on possibly di�erent signatures, i.e. processes

with possibly di�erent concurrent structures, satisfying common properties.

VE is given by using the two operations ABSTRACT and EXTEND as follows (see

[1] for a full de�nition).

YE = ABSTRACT(E ;EAmor; esig; eamor; emor)

where EAmor includes the elements ofYAMor which are alsomorphisms inESign;

esig, eamor, emor are the restrictions of ysig, yamor, ymor to ESign and EAmor

(in [8] it is shown that such restrictions are well-de�ned, i.e. they return signatures

and morphisms in ESign).

VE = EXTEND(YE ;VESign;COMPS ;Comps)

where VESign is the subcategory of ESign s.t. it has the same objects and if in

VESign there exists a morphism from E�

1

into E�

2

, then the E�

1

- and E�

2

-

entity algebras describe systems with similar concurrent structure. COMPS adds

to an entity signature some predicates for testing which are the subcomponents

of the entities (as Is Sub Entity in the following example) and Comps is de�ned

accordingly.

Example 2. We specify the class of all structured processes where deadlocks never

happen without making assumptions on their concurrent structure (i.e. without

\over speci�cation") by a very abstract entity speci�cation.

spec NO DEADLOCKS =

{ basic signature

esorts system { we have at least entities of sort system

axioms

{ if a system cannot perform any activity, then

6 9es

0

; l : es

l

�! es

0

�

{ each of its subcomponents cannot perform any activity

8ec : (ec Is Sub Entity es �6 9ec

0

; l

0

: ec

l

0

�! ec

0

)

e

1

Is Sub Entity e

2

holds whenever e

1

is a subcomponent of e

2

.



Conclusions and further work

We have presented two operations on institutions, that allow to build institutions

for very abstract speci�cations. From the practice of formal methods for software

speci�cation, it is easy to intuit that several other operations are needed in order

to get meta-framework where to be able to modularly build formalisms; some more

operations are presented in [6], but these are case studies rather than an organic

presentation of a reasonable set of operations.

Another relevant point that we do not face here is the study of the properties of

the ABSTRACT and EXTEND operations and in particular their relationships with

the various notions of arrows between institutions (like horizontal/vertical composi-

tion).
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