
Multiparadigm Speci�cation

Languages:

a First Attempt at Foundations

�

Egidio Astesiano and Maura Cerioli

DISI{Dipartimento di Informatica e Scienze dell'Informazione,

Universit�a di Genova, Viale Benedetto XV,

6132 Genova, Italy,

e-mail: fastes,ceriolig@disi.unige.it

Abstract

This paper is a �rst attempt at a formal foundation of speci�cation languages al-

lowing their basic modules to be de�ned in several formalisms. More precisely a

rigorous notion of a compositional tool for importing/exporting speci�cations be-

tween two instances of one speci�cation metalanguage on di�erent basic algebraic

frameworks is proposed.

Adopting the notion of institution as a synonym for formalism, we introduce

and develop the concept of simulation of an institution by another. Then we

deal with the simulation of basic and structured speci�cations, introducing the

concept of simulation independent metalanguage, a generalization of institution

independent languages, which allows \putting together theories from di�erent

formalisms to make speci�cations". Since simulation generalizes the notion of

implementation and allows relating implementations in di�erent formalisms, a

third dimension is added to the well known horizontal and vertical compositions

of speci�cations, typical of Clear and ASL.

1 Motivations

Most software systems needed to solve concrete problems are far too large to

be handled by human minds without the support of a rigorous methodology.

Formal speci�cations, providing tools for modularity and re�nement (see e.g. [9,

13]), facilitate reuse and maintenance of produced software.

As a result both of theoretical investigations and of preliminary attempts

at applications, the nature of the algebras, the logics used to de�ne the classes

of admissible realizations of a data type and even the notion of signature have

been changed, w.r.t. the pioneering papers of the ADJ group, more or less

recently, producing a considerable proliferation of speci�cation formalisms. In-

deed this work has grown out of the experience of the �rst author who has been

involved with his group in various formal speci�cation projects, where di�erent

�

This work has been partially supported by Esprit-BRA W.G. n.6071 COMPASS, Progetto Finalizzato

Sistemi Informatici e Calcolo Parallelo of C.N.R. (Italy), MURST-40% Modelli della computazione e dei

linguaggi di programmazione

formalisms, like partial conditional logic, order-sorted logic, �rst-order struc-

tures have been used, depending on the target application.

From a pragmatic point of view, the existence of a number of di�erent

formalisms is pretty reasonable, because each one of them may be the more

comfortable to work within, depending on the problem under examination, the

�eld tradition, the available tools and (not least) the personal taste. However,

from the point of view of a speci�cation language user, the ability of supporting

modularity and re�nement is essential in order to allow reuse of speci�cations.

Thus it is important (not to say crucial) to assemble, possibly at di�erent

levels of implementative detail, speci�cation modules in di�erent formalisms.

Rephrasing the title of a landmark paper by Burstall and Goguen [3], the issue

is \putting together theories from di�erent formalism to make speci�cations".

This paper presents a formal approach to this translation problem, show-

ing how it deals with modularity and re�nement. It is worth noting that, in

order to support the stepwise re�nement, we regard speci�cations as classes of

possibly non-isomorphic models, so that, by �xing implementative details at

the di�erent design levels, the model class is restricted, until only one model

(up to isomorphisms) remains, that is the required realization. Thus we con-

sider speci�cation languages based on this loose approach (see e.g. ASL [15],

or CLEAR [4]) more than languages where speci�cations describe (the isomor-

phism class of) one model (see e.g. VDM [10], Z [16], OBJ [8]).

Adopting the notion of institution, developed by Burstall and Goguen (see

e.g. [6]) in order to de�ne the semantics of the CLEAR language, as a rigorous

counterpart of the notion of formalism, we use the concept of simulation (see

e.g. [1, 5] of an institution by another (section 2): if � is a simulation of I

by I

0

, then I

0

has at least the same expressive power as I and moreover �

indicates how I can be translated into I

0

. Intuitively a simulation � of I by

I

0

codes the syntax of I, i.e. the signatures and the sentences, into the syntax

of I

0

in a consistent way w.r.t. the semantics, in the sense that a class of

models in I

0

is chosen to represent the models of I. Particularly interesting are

logical simulations, that are those for which the class of models in I

0

chosen to

represent the models of I are the model class of a set of I

0

sentences, because

for such simulations there is an immediate correspondence between the basic

speci�cations (i.e. the model classes of sets of sentences) of the two frames.

Then the basic notion of simulation between institutions is extended to deal

with simple and structured speci�cations. In particular using any simulation

of a framework I by another I

0

, every speci�cation language de�ned on I is

allowed to import, in a rigorous way, speci�cations de�ned for the I

0

paradigm.

However this capability is in some sense rough, as the structure of the imported

speci�cation, if any, is lost by the importing process. In order to improve the

import process, the �rst step is using, instead of two generic languages on I and

I

0

, instances of one commonmetalanguagewhose semantics is uniformly de�ned

for both frameworks so that preserving the structure has a formal meaning; for

this aim the notion of institution independent metalanguage by Sannella and

Tarlecki (see e.g. [14]) is perfectly �tting. However institution independence is

not su�cient for every translation to be compatible with the structure of the

language and has to be re�ned to that of (logical) simulation independent op-

eration (section 3), which is the basis for (logical) simulation independent met-

alanguages. Such metalanguages can structure speci�cations de�ned in several

frameworks, provided that the translations of these input speci�cations into a

common framework are given by means of (logical) simulations of the original

paradigms by the new chosen one. Although this approach is very promising,

non every detail has been �xed yet and in particular it is still under investi-

gation which can be the most suitable set of (logical) simulation independent

operators, depending on the actual speci�cation languages used in practice.

Finally, in connection with the re�nement problem, it is shown how simula-

tion adds a third dimension to the well known horizontal and vertical compo-

sition of implementations, thus allowing the composition of software modules

not only from di�erent formalisms, but also at di�erent levels of abstraction.

The concept of simulation plays a central role in the Ph.D. thesis [5], where

many applications are explored and an exhaustive comparison with related

works is made. In [1] it is shown how simulations may provide a tool for

comparing frameworks and translating deductive systems. In the present paper,

corresponding roughly to chapter 5 in [5], the emphasis is on multiparadigm

speci�cation languages.

Following the suggestions of the referees, all technical details have been

summarized in an appendix, keeping the exposition at a semiformal level.

2 The concept of simulation

To introduce the concept of simulation (see e.g. [1]) and the corresponding

notation from an intuitive point of view, we begin with an informal example,

which is the reduction of partial algebra logic with ground conditional formulas

built on existential equations (t = t

0

holds i� t and t

0

denote the same element),

from now on PAR, to the conditional fragment of typed logic, from now on

T L, making explicit the de�nedness of elements, by de�nedness predicates;

this technique has been used in practice in order to make deduction for partial

speci�cations by tools de�ned for the total case, as in [12] (and analogously for

the homogeneous total frame, see e.g. [11]).

Example 2.1 Let us �x a many-sorted signature � with sorts S and function

symbols F . We de�ne the translation of � into a typed logic signature �(�),

by setting �(�) = (S; F; P

0

), where P

0

contains only the typing predicates

and a binary relation, playing the role of existential equality, i.e. P

0

s

= fD

s

g

P

0

ss

= f eq

e

g, where the symbol denotes the place of the arguments in an

in�x notation, and P

0

w

= ; for all w =2 fs; ssg.

Any partial conditional equation over � can be translated into a total

equivalent one over �(�); indeed it is su�cient to substitute the predicate

eq

e

for the existential equality. Thus let us consider a partial positive con-

ditional formula � = (t

1

= t

0

1

^ : : : ^ t

n

= t

0

n

� t = t

0

) over � and de�ne

�

�

(�) = (t

1

eq

e

t

0

1

^ : : :^ t

n

eq

e

t

0

n

� teq

e

t

0

).

To illustrate in which sense �

�

(�) is equivalent to �, a class dom(�)

�

of

total algebras with predicates (�rst-order structures) is chosen, which soundly

represents the partial algebras and s.t. a total algebra satis�es �

�

(�) i� the

partial algebra represented by it satis�es �. Informally, the idea is to distinguish

any carrier of a total algebra in two parts, the \de�ned" elements and the

junk, by means of the de�nedness predicates and to impose that the predicate

eq

e

corresponds to the restriction of the (usual) equality to the de�ned part;

moreover, as in the partial frame functions are strict, i.e. the de�nedness of

a function application result implies the de�nedness of each argument. More

formally a total algebra A

0

is a sound representation of a partial algebra A, we

write A = �

�

(A

0

), i� both aeq

A

0

e

b is equivalent to fD

s

A

0

(a); D

s

A

0

(b); a = bg

for all elements a and b and every sort s, and D

s

A

0

(f

A

0

(a

1

; : : : ; a

n

)) implies

D

s

i

A

0

(a

i

) for all i = 1; : : : ; n, for every function symbol f 2 F

s

1

:::s

n

;s

. If A

0

satis�es this condition, then A is the partial algebra whose carrier of sort s

is D

s

A

0

and f

A

is the restriction of f

A

0

to s

A

1

� : : :� s

A

n

for every functions

symbol f . It is easy to check that A

0

satis�es �

�

(�) i� A satis�es �. Note that

total algebras di�ering only on elements which do not satisfy the de�nedness

predicates represent the same partial algebra.

Thus, for every many-sorted signature � a typed logic signature �(�) and

two functions are de�ned: �

�

, which translates many sorted positive condi-

tional sentences on � into Horn-Clauses on �(�) built on de�nedness and

existential equality predicates, and �

�

, which partially translates total �rst-

order structures on �(�) into partial algebras on � and is surjective, as it is

immediate to check.

Since the change of notation, via signature morphisms, has a great relevance

in the algebraic approach and in particular for speci�cation languages, being

used for example to bind the actual to the formal parameters in parameterized

speci�cations and to \put theories together to make speci�cations", we have to

investigate the compatibility between the coding functions �

�

and �

�

de�ned

for any signature � and the changes of notation.

Let ��: �

1

! �

2

be a morphism of many-sorted signatures, i.e. a pair of func-

tions �:S

1

! S

2

, renaming the sorts, and �:F

1

! F

2

translating function sym-

bols in a consistent way w.r.t. the sort renaming (i.e. if f : s

1

�: : :�s

n

! s, then

�(f):�(s

1

)� : : :��(s

n

)! �(s)). Then �� naturally induces a typed logic signa-

ture morphism (�; �; �) from �(�

1

) into �(�

2

), de�ned by �(D

s

) = D

�(s)

and

�(eq

e

) = eq

e

for any s 2 S. It is easy to check that the translation of sentences is

compatible with signature morphisms, i.e. that

�

1

(��(�)) = �(��)(

�

1

(�)), where

the application of a signature morphism to a sentence is the usual renaming of

function (and predicate) symbols.

Instead the partiality of the translation of algebras makes the compatibility

between the algebra translations and signature morphisms delicate. Indeed it

is intuitive to expect that the translation along a signature morphism of a total

algebra simulating a partial algebra simulates the translation of that partial

algebra; more formally, recalling that algebras are translated along signature

morphisms in a countervariant direction into their reduct, we have that if A

0

2

dom(�)

�

2

, then A

0

j�(��)

2 dom(�)

�

1

and (�

�

2

(A

0

))

j��

= �

�

1

(A

0

j�(��)

). But it

may be that A

0

=2 dom(�)

�

1

only because the interpretation of one function

symbol f in A

0

is non-strict and that such an f is dropped by �(��), so that

A

0

j�(��)

2 dom(�)

�

1

and hence the converse of the �rst implication does not hold.

Therefore we have a weaker condition (called partial-naturality) for algebras

than the one for sentences.

Generalizing this example, we have that every framework consists of a cat-

egory Sign of signatures (representing the symbols for types, operations and

such, together with the admissible changes of notation) and, for every signature

�, of a set of sentences Sen(�) and of a category Mod(�) of models; Mod (�)

and Sen(�) are related by the validity relation j=

�

: A j=

�

� states that the

model A satis�es the sentence �. It is important to notice that the validity

relation is invariant under change of notation, i.e. the reduct of a model along

a signature mor�sm satis�es a formula i� the model satis�es the translation of

the formula along the same signature mor�sm. This notion of logical framework

is formalized by the institutions by Goguen and Burstall (see e.g. [6]), whose

de�nition is recalled in appendix.

Let us abstract from the above construction the general aspects of the coding

of a new formalism I into an old one I

0

, as in the example the \new" partial

framework was reduced the the \old" total; a simulation �: I ! I

0

consists og:

}

of a translation �:Sign! Sign

0

of the new signatures in terms of the old

ones;

}

a translation �

�

: Sen(�) ! Sen

0

(�(�)), for every signature �, coding the

new sentences into the old ones on the corresponding signature;

}

a partial surjective mapping �

�

:Mod

0

(�(�)) ! Mod (�), for every signa-

ture �, of the old models into the new ones on the corresponding signature.

Moreover the translation of sentences has to be natural w.r.t. the signature

morphisms, i.e. the following diagram commutes for every �: �! �

0

:

�

�

0

-

�

�

-

Sen

0

(�(�))

Sen

0

(�(�

0

))

?

Sen

0

(�(�))

Sen(�)

Sen(�

0

)

?

Sen(�)

Analogously the translation of models has to be partially-natural w.r.t. the

signature morphisms, i.e. if the lower path of the following diagram exists, then

the upper path exists too and they are equal for every �: �! �

0

:

�

�

0

-

�

�

-

66

Mod

0

(�(�)) Mod (�)

Mod (�

0

)

Mod (�)

Mod

0

(�(�

0

))

Mod

0

(�(�))

This scheme generalizes to the frame of institutions by lifting maps to the

proper categorical objects, taking care of the delicate points due to the partial-

ity of model translation, and requiring that the only non-categorical structure,

i.e. the validity relation, is preserved (see Def. A.2).

3 Simulations and modularity

In order to support stepwise re�nement, it seems crucial that a speci�cation is

the collection of its possible realizations, i.e. of algebras satisfying appropriate

requirements, expressed at the �rst stage by axioms in the framework and then

by more general properties. Indeed such realizations are non-necessarily iso-

morphic, so that more decisional details can be �xed at every re�nement step,

restricting the class of possible models toward a completely determined model,

hopefully de�ned in a (pseudo)executable language. Thus, as the modularity

principle requires the ability of \putting together" speci�cations by means of

structuring operations, we want to extend the capabilities of speci�cation lan-

guages by allowing the di�erent speci�cations that have to be composed to be

de�ned in di�erent frameworks. Therefore simulations, dealing only with the

basic objects of a frame (i.e. signatures, sentences and models) have to be ex-

tended to work on speci�cations, i.e. classes of models, and the compatibility

with structuring operations has to be investigated.

3.1 Basic Speci�cations

Informally a speci�cation is the collection of the admissible models of a data

type; formally it is completely determined by a class of algebras over one sig-

nature. Thus for every institution I = (Sign; Sen;Mod ; j=), a speci�cation

functor Spec

I

:Sign ! Cat

Op

is de�ned, associating each signature � with

the power set of its model class, i.e. Spec

I

(�) = }(jMod (�)j).

It is worth noting that the above construction is a particular case of building

a new kind of objects starting from the ones explicitly given in the de�nition

of institution, like models, signatures and so on. In the next subsection we will

face the problem from a more general point of view.

Having built a new kind of objects, a new component of the simulation

dealing with them has to be de�ned and is called from now on
 , possibly dec-

orated. As the construction of speci�cations relies on algebras, the modularity

principle requires that
 is analogously based on � , i.e. that if
 (sp) is de�ned,

then
 (sp) = �(sp), where � (sp) = f� (A) j A 2 spg; but it is not obvious

which speci�cations have to be translated.

The minimal requirement that has to be imposed so that
 (sp) is de�ned

is that every model A 2 sp belongs to the domain of the simulation, because

this condition guarantees that the validity relation extended to speci�cations is

re
ected. Indeed, de�ning sp j= � i� A j= � for all A 2 sp, it is always true that

sp

0

j=

0

�(�) implies � (sp

0

) j= �, because if A

0

j=

0

�(�), then �(A

0

) j= � for any

A

0

s.t. �(A

0

) is de�ned, by de�nition of simulation. But in general �(sp

0

) j= �

does not imply sp

0

j=

0

�(�), because A

0

may exist s.t. A

0

6j=

0

�(�) and � (A

0

) is

not de�ned, so that the condition of validity preservation by simulation does

not apply. Of course the totality of � over sp

0

, which is not necessary in the

general case, in many signi�cant cases is needed.

Besides requiring � to be total on sp, many other conditions can be im-

posed in order that a speci�cation translation �ts special purposes. This lack

of canonicity leads to de�ne, for every simulation �: I ! I

0

, a speci�cation

extension of � to be any partially-natural transformation �: Spec

I

0

�� ! Spec

I

s.t. if �(sp) is de�ned then sp � dom(�) and �(sp) = �

�

(sp).

Among the many possible speci�cation extensions, a particular role is played

by themaximal speci�cation extension
 of � (one for each signature �), de�ned

by:

if sp � dom(�)

�

, then

�

(sp) = �

�

(sp), else

�

(sp) is unde�ned.

Since � is surjective on models, there exists at least one sp

0

2 Spec

I

0

(�(�))

for each sp 2 Spec

I

(�) s.t.

�

(sp

0

) = sp. Such an sp

0

consists of fA

0

j �

�

(A

0

) 2

spg. This formalizes the intuitive idea that an institution is simulated by an-

other one if each of its speci�cations is \implemented" by at least one speci�-

cation of the other institution.

Using simulations, then, speci�cations can be imported/exported between

institutions; thus every speci�cation language L de�ned for a frame represented

by an institution I can be enriched by constructs of the form

import sp via �

where sp is a speci�cation in an institution I

0

(possibly de�ned using another

language L

0

) and � is a simulation from I into I

0

. This capability is reminiscent

of the feature common to most programming environment, allowing a program

in a language to use an external module de�ned in another language.

Let us analyze a standard example of use of such an \import" feature: the

speci�cation of the natural numbers with sum and product is enriched by a

predecessor operation. Let us consider how this can be realized in di�erent

formalisms. First of all consider the usual speci�cation of natural numbers in

a total many-sorted paradigm.

spec Nat =

sorts N

opns z:! N

s:N ! N

+ :N �N ! N

� :N �N ! N

axioms x+ z = x

x+ s(y) = s(x+ y)

x � z = z

x � s(y) = x+ (x � y)

Now suppose that this speci�cation has to be enriched by a partial prede-

cessor operation; as the chosen paradigm is total , we have to deal with the

elements obtained as application of the predecessor operation to zero and to

erroneous terms. There are two possibilities, neither of them pleasant: either

no axioms are imposed on the errors, so that in most models, and in particular

in the initial one, several distinguished \junk" elements are present, or many

axioms have to be given in order to propagate the error, making the speci�-

cation innecessarily long, and moreover this propagation is incompatible with

the original speci�cation, against every modularity principle. Consider indeed

the following naive enrichement of the speci�cation Nat.

spec Nat

?

= enrich Nat by

opns err:! N

p:N ! N

axioms p(s(x)) = x

p(z) = err

{ error propagation axioms

s(err) = err

p(err) = err

x+ err = err

err + x = err

x � err = err

err � x = err

It is easy to check that from err � x = err and x � z = z, err = z follows,

and then, by the error propagation axioms, every term is identi�ed with err, so

that the unique (up to isomorphism) term-generated model of the speci�cation

is the trivial one. To avoid this problem the unique possibility is introducing

an \ok" predicate, false on the errors, and restricting the application of the

original axioms to the \ok" elements, by conditional axioms (see e.g. [7]), so

that the \parameter" Nat is changed by its enrichment.

But there is an obvious embedding � of total into partial algebras that can

be formalized as a simulation, so that the Nat speci�cation can be translated

along � and then easily enriched in the partial framework with the successor

operation.

The simulation � consists of the identity translation

�

� of signatures, the

identity translation �� of sentences and the embedding

�

� of the partial algebras

satisfying the family of total axioms D

s

(f(x

1

; : : : ; x

n

)), one for each operation

symbol f : s

1

�: : :�s

n

! s of the signature, where the x

i

are distinct variables of

sort s

i

, respectively. As it is immediate to check, the partial algebras satisfying

such axioms are all and only the total algebras on the same signature, so that

�

� is well de�ned and surjective.

Now, using the \import along a simulation" feature, we can easily de�ne

the required enrichment.

spec Nat

P

= enrich import Nat along � by

opns p:N ! N

axioms p(s(x)) = x

Although, as the above example shows, the capability of importing speci�-

cations along simulations is a �rst step toward assembling speci�cations from

di�erent paradigms, it is quite unsatisfactory, because the possible structure

of the imported speci�cation is lost, as in the above example the axiomatic

characterization of Nat. In order to get a more powerful kind of import, the

structuring operations available in either language should be translated into the

other language and the simulation used to import actual speci�cations should

be compatible with such a structure.

3.2 Structured Speci�cations

In order to attain the capability of translating structured speci�cations along

simulations in a way that the structure is preserved, the languages in the two

frameworks should be instances of one common metalanguage, so that the

intuitive meaning of \preserving the structure" can be rigorously formalized.

Thus we need an institution independent metalanguage (see e.g. [14]). The sorts

of this metalanguage may be both basic, i.e. implicitly de�ned by the concept

of institution, like the sort of signatures, of algebras and so on, and derived,

i.e. built from the basic ones using categorical and set-theoretic concepts, like

the speci�cations which come from the algebras applying the powerset functor.

Analogously the operations of this metalanguage are de�ned only involving the

usual categorical and set-theoretic language, so that the interpretation of sorts

and operations in any institution is standard.

Let us start with a few examples of institution independent operations,

imported more or less from [14] and generalizing some ASL constructs.

models is the basic operation of every formalism, usually implicit; it takes in

input a theory (�;�) and yields the class of models of �, i.e. models(�;�) =

fA j A 2Mod (�); A j= �g; for example models(Nat) denotes the variety of

total algebras satisfying the axioms on + and �. Note that the semantics of

models can be de�ned for any institution, as it only involves the notion of

validity, that is one of the institution ingredients.

+ takes in input two speci�cations on the same signature and yields the

speci�cation whose models are models of both, i.e. sp + sp

0

= fA j A 2

sp and A 2 sp

0

g. In standard frameworks, where signatures consist of sorts,

(predicates) and operations and signature morphisms are changes of nota-

tion, this operation allows the implementations of di�erent operations to

be independently developed, getting several speci�cations on one signature,

eachone with a subset of the operations axiomatically described and the

remaining free (without conditions imposed on them) and then, summing

the subspeci�cations, one speci�cation is obtained where all operations are

axiomatized.

translate by in takes in input a �-speci�cation sp, a signature morphism

�: � ! �

0

and a �

0

-speci�cation sp

0

and yields the subclass of sp

0

models

whose �-reduct is in sp, i.e.

translate sp by � in sp

0

= fA

0

j A

0

2 sp

0

;Mod(�)(A

0

) 2 spg;

In standard frameworks the translate operation is used both to rename the

operation symbols (by a bijective �) and to embed a speci�cation in another

with larger signature, so that parts of a big speci�cation can be developed

on smaller signatures and then lifted by translate to the original signature

so that the + operation applies.

derive by takes in input a �

0

-speci�cation sp

0

and a signature morphism

�: �! �

0

and yields the class of �-reducts of sp

0

models, i.e.

derive sp

0

by � = fMod(�)(A

0

) j A

0

2 sp

0

g:

In standard frameworks the derive operation is used to hide implementative

parts (if � is a non-surjective embedding, then the sorts and/or operations

in �

0

�� concur to build the �-models, but become invisible in the reducts

Mod (�)(A

0

)).

Using these operations more familiar operations can be de�ned, for example

enrich sp by sorts S

0

opns Op

0

axioms Ax

0

for a speci�cation sp on the signature (S;Op), corresponds to

translate sp by � in sp

0

, where sp

0

= models((S [S

0

; Op [Op

0

); Ax

0

) and �

is the embedding of (S;Op) into (S [S

0

; Op[Op

0

).

Let us consider again the example of natural numbers from the previous

section. The speci�cation import Nat along � can now be more formally

expressed by

�

�

�1

(models(Nat)); but also the theory Nat can be translated

along the simulation �, as we will see in the sequel, by a theory extension � and

hence we have an a priori di�erent speci�cation models(�(Nat)). Obviously

the latter possibility is easier to deal with, because it is a basic speci�cation,

so that, for example, deductive tools can be used for rapid prototyping.

Thus it would be interesting to have conditions guaranteeing that

�

�

�1

(models(Nat)) = models(�(Nat)); for this aim we can play with the choice

of theory and speci�cation extensions. Let us consider as speci�cation exten-

sion the maximal one; for every logical simulation � = (�; �; �), and hence in

particular for �, there are two standard possibilities for the de�nition of the

theory extension:

}

any theory (�;�) in the domain is translated by the complete theory exten-

sion 	

�

into the theory (�(�); (�(�) [th(�;�))

�

) in the codomain, where

th(�;�) is a set of sentences de�ning the domain of � and

�

denotes the

validity closure, i.e. �

�

= f� j A j= � for all A j= �g;

}

any theory (�;�) in the domain is translated by the trivial theory extension

	 into the theory (�(�); �(�)) in the codomain (this choice is available for

non-logical simulations as well).

With the trivial theory extension models((Nat)) has many non-total models,

and hence

�

�

�1

(models(Nat)) 6= models((Nat)), while it is easy to check that

with the complete theory extension

�

�

�1

(models(Nat)) = models(

�

(Nat)).

In general it can be proved that this property holds for any logical sim-

ulation, i.e. that given a logical simulation � = (�; �; �), for every theory

th in the domain of � translating speci�cations along the maximal speci�ca-

tion extension and theories along the complete theory extension models(th) =

 (models(

�

(th))).

This last property can be seen as an instantiation of a general property,

quite reminiscent of the homomorphism condition, that can be rephrased for

every institution independent operation (see Def. A.5); for example for the +

operation it becomes �(sp + sp

0

) = �(sp)+� (sp

0

), for the translate it becomes

� (translate sp by �(�) in sp

0

) = translate � (sp) by � in �(sp

0

) and so on.

If, for an institution independent operation op, this generalized homomor-

phism condition is satis�ed by every (logical) simulation, then we call op (log-

ical) simulation independent . In our opinion simulation independent opera-

tions are the crucial point in building a speci�cation language allowing the

basic modules to be de�ned in di�erent frameworks, as they guarantee that the

composition of speci�cations is well behaving w.r.t. their translation between

frameworks. In particular this condition su�ces for the interpretation of ev-

ery (closed) term of the speci�cation language in the domain of the simulation

to be translated in the interpretation of the same term in the codomain, so

that structured proofs are preserved, the expressive power of the language is

una�ected, and the import mechanism can be seen as an easier way for de�n-

ing speci�cations. Thus if the language enjoys the property that every closed

term can be reduced to a basic speci�cation, i.e. to an axiomatic description,

(as many languages do), then simulation independency guarantees that the

imported speci�cation can be reduced to basic speci�cations as well.

It can be directly checked that with the complete theory extension and the

maximal speci�cation extension the models , translate by in and

derive by operations are logical simulation independent.

It is worth noting that the + operation is not logical simulation inde-

pendent w.r.t. this choice of extensions. Indeed a model A may exists in

 (sp) +
 (sp

0

) for which a B 2 sp and a B

0

2 sp

0

exist s.t. � (B) = A = �(B

0

),

but both B =2 sp and B

0

=2 sp

0

and more in general there does not exist a

C 2 sp + sp

0

s.t. � (C) = A, so that A =2
 (sp + sp

0

). As the + operation

is very useful for the modular approach to the speci�cation of complex data

types, it can be interesting to change the notion of speci�cation extension,

by allowing only speci�cations closed w.r.t. the simulation, i.e. those sp s.t.

A 2 sp and �(A) = � (B) imply B 2 sp, to be mapped. In the sequel such

a speci�cation extension will be called closed and denoted by

�

. With this

de�nition the + operation becomes logical simulation independent, and so

are the models and the translate by in ; but the derive by is not, as

in general it does not preserve the closure w.r.t. simulation, so that the result

of derive sp by �(�) cannot be translated, although sp can be and hence the

homomorphism condition is lost.

4 Simulations and the third dimension of

implementation

In the literature a concept of implementation is largely used in di�erent con-

texts, which is based on the idea of re�nement. So a speci�cation sp

2

im-

plements a speci�cations sp

1

, denoted by sp

1

; sp

2

, i� in sp

2

more details

have been �xed and hence sp

2

has less models than sp

1

, i.e. sp

2

� sp

1

(see

e.g. [15, 17]); this concept may also be extended to functions on speci�cations,

by saying that a function f implements a function g i� for every possible ar-

gument sp we have g(sp) ; f(sp), and hence to parameterized speci�cations,

viewed as denotation of functions. For an introductory exposition of the subject

see e.g. section 8.1 of [17].

A relevant result (see fact. 8.1.1 of [17]) is the double composability law of

implementation for speci�cation-building operations monotonic w.r.t. the set-

inclusion: in the \vertical" sense we have that if sp ; sp

1

and sp

1

; sp

2

, then

sp ; sp

2

, by the transitivity of the subset relation, while in the \horizontal"

sense we have that if a parameterized speci�cation p

2

implements another pa-

rameterized speci�cation p

1

of the same type, and if an actual parameter sp

for p

1

is implemented by a speci�cation sp

1

, then p

1

(sp); p

2

(sp

1

).

Since every speci�cation extension is monotonic w.r.t. the set inclusion for

all simulations �, the implementation relation is translated by simulation from

the old to the new frame, whatever notion of speci�cation extension is chosen.

Moreover if closed speci�cation extension is chosen, then it is also preserved

in the opposite direction; in this case the restriction of the old implementation

relation to the domain of

�

coincides with the new implementation relation

(see the appendix for the formal statement).

Using simulations the concept of implementation is generalized, involving

models in two institutions: given a simulation �: I ! I

0

and two speci�cation

sp 2 Spec

I

(�) and sp

0

2 Spec

I

0

(�(�)), we say that sp is �-implemented by

sp

0

, denoted by sp

�

;sp

0

, i� it is implemented in the standard sense by the

translation of sp

0

along �. This generalizes in the obvious way to functions and

parameterized speci�cations (see Def. A.9).

Note that in the particular case that I = I

0

and � is the identity,

�

;

coincides with ; and hence every result for

�

; applies also to ;.

The vertical and horizontal composability for the usual implementation re-

lation can be generalized to deal with simulations, in the sense that the im-

plementation along the composition of two simulations is the composition of

the implementation along the two given simulations and that all monotonic

functions satisfy the \horizontal" composition w.r.t. the relation

�

;, too.

Thus a more suggestive diagram than the usual one can be proposed, where

every path is an implementation (possibly via simulation) arrow and three di-

mensions are present: horizontally and vertically moving within an institution,

while along the third dimension di�erent institutions are connected.

�

�

�

sp

1

�

�

�

sp

2

�

�

�

p

1

�

�

�

p

2

�

�

�

p

1

(sp

1

)

�

�

�

p

2

(sp

2

)

�

�
�

?

�

�
�

?

�

�
�

?

sp

0

1

sp

0

2

p

0

1

p

0

2

p

0

1

(sp

0

1

)

p

0

2

(sp

0

2

)

�

�
�

?

�

�
�

?

�

�

�

?

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

	

�

�

�

� �

� �

�

� �

� �

�

� �

� �

U

� �

� �

U

It is worth noting the di�erence between this approach and the one in [2].

Indeed here implementation is de�ned as a relation between speci�cations in

di�erent institutions, while in [2] an institution is proposed whose sentences

represent the implementation inside a basic institution.

Conclusions

We have presented a preliminary attempt to state the foundation for speci-

�cation metalanguages allowing their speci�cation to be de�ned in di�erent

formalisms. In particular it has been shown how, using simulation in order

to translate modules from one framework into another one, speci�cations can

be declared \external" by a language and imported from a di�erent paradigm.

The issue becomes more complex if we want to preserve the structure of the

imported speci�cation; indeed, for the problem to be meaningful, the import-

ing and exporting languages have to be instances of one metalanguage and the

extension of simulations to the language metasorts have to be carefully tailored

to �t the operations. Although it is not di�cult to �nd extensions working for

a signi�cant subset of the most common speci�cation building operations, a

completely satisfactory choice is missing and this point is still under investiga-

tion.

Acknowledgments. We wish to thank Joseph Goguen and Jos�e Meseguer

for their patient attention, encouragement and useful criticism.

References

[1] E. Astesiano and M. Cerioli. Relationships between logical frames. In Recent Trends

in Data Type Speci�cation, number 655 in Lecture Notes in Computer Science, pages

126{143, Berlin, 1993. Springer Verlag.

[2] C. Beierle and A. Voss. Viewing implementations as an institution. In D. Pitt, A. Poign�e,

and D. Rydeheard, editors, Proceedings of Category Theory and Computer Science,

number 283 in Lecture Notes in Computer Science, pages 196{218, Berlin, 1987. Springer

Verlag.

[3] R. Burstall and J. A. Goguen. Putting theories together to make speci�cations. In

Proceedings of the 5th International Joint Conference on Arti�cial Intelligence, pages

1045{1058, Cambridge, 1977.

[4] R. Burstall and J. A. Goguen. The semantics of clear, a speci�cation language. In

D. Bj�rner, editor, Proceedings of the 1979 Copenhagen Winter School on Abstract Soft-

ware Speci�cation, number 86 in Lecture Notes in Computer Science, pages 292{332,

Berlin, 1980. Springer Verlag.

[5] M. Cerioli. Relationships between Logical Formalisms. PhD thesis, Universities of Pisa,

Genova and Udine, 1993.

[6] J. Goguen and R. Burstall. Introducing institutions. In E. Clarke and D. Kozen, editors,

Logics of Programs Workshop, number 164 in Lecture Notes in Computer Science, pages

221{256, Berlin, 1984. Springer Verlag.

[7] J. Goguen, J. Thatcher, and Wagner. An initial algebra approach to the speci�cation,

correctness, and implementation of abstract data types. In R. Yeh, editor, Current

Trends in Programming Methodology, pages 80{149. Prentice-Hall, 1976.

[8] J. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-CSL-88-9, Com-

puter Science Lab., SRI International, 1988.

[9] C. Hoare. Proof of correctness of data representation. Acta Informatica, 1:271{281, 1972.

[10] C. Jones. Systematic Software Development using VDM. Prentice Hall International,

1990.

[11] V. Manca, A. Salibra, and G. Scollo. Equational type logic. Theoretical Computer

Science, 77:131{159, 1990. Special Issue dedicated to AMAST'89.

[12] M. Navarro, P. Nivela, F. Orejas, and A. Sanchez. On translating partial to total speci�-

cations with applications to theorem proving for partial speci�cations. Technical Report

LSI-89-21, Universitat Politecnica de Catalunya, 1990.

[13] D. Parnas. A technique for software module speci�cation. Communications of A.C.M.,

15, 1972.

[14] D. Sannella and A. Tarlecki. Speci�cations in an arbitrary institution. Information and

Computation, 76:165{210, 1988.

[15] D. Sannella and M. Wirsing. A kernel language for algebraic speci�cation and implemen-

tation. In M. Karpinski, editor, International Conference on Foundations of Computa-

tion, number 158 in Lecture Notes in Computer Science, pages 413{427, Berlin, 1983.

Springer Verlag.

[16] J. Spivey. The Z Notation: a Reference Manual. Prentice-Hall, New-York, 1989.

[17] M. Wirsing. Algebraic speci�cation. In Handbook of Theoretical Computer Science.

North Holland, 1990.

A Formal Foundations

In this appendix we collect the formal de�nitions of the concepts and the rig-

orous statements of results informally presented in the paper.

A.1 Institutions and simulations

We recall �rst the notion of institution.

Def. A.1 [[6] def.14] An institution I consists of a category Sign of signatures,

a functor Sen :Sign! Set giving the set of sentences over a given signature, a

functorMod :Sign! Cat

Op

giving the category (sometimes called the variety)

of models of a given signature (the arrows in Mod (�) are called the model

morphisms) and a satisfaction relation

1

j=� jMod(�)j � Sen(�)

for each � in Sign, sometimes denoted j=

�

, such that for each morphism

�: �

1

! �

2

in Sign, the Satisfaction Condition

M

0

j= Sen(�)(�) () Mod (�)(M

0

) j= �

holds for each M

0

in jMod(�

2

)j and each � in Sen(�

1

).

Since models are partially mapped, the usual notion of natural transfor-

mation is insu�cient to describe the translation of the (old) model functor

and we have to explicitly deal with the partiality of each component of this

\partially"-natural transformation.

Def. A.2 Let I = (Sign; Sen;Mod ; j=) and I

0

= (Sign

0

; Sen

0

;Mod

0

; j=

0

) be

institutions. Then a simulation �: I ! I

0

consists of

}

a functor �:Sign! Sign

0

;

}

a natural transformation �: Sen ! Sen

0

��,

}

a surjective partially-natural transformation � :Mod

0

�� ! Mod , that is

a family of functors �

�

: dom(�)

�

! Mod (�), where dom(�)

�

is a (non-

necessarily full) subcategory ofMod

0

(�(�)), s.t. �

�

is surjective on jMod(�)j

and the family is partially-natural, i.e. for any signature morphism � 2

Sign(�

1

;�

2

)

Mod

0

(�(�))(dom(�)

�

2

) � dom(�)

�

1

and Mod (�) � �

�

2

is the restriction of �

�

1

�Mod

0

(�(�)) to dom(�)

�

2

;

s.t. the following satisfaction condition holds:

A j= �

�

(�) () �

�

(A) j= �

for all A 2 jdom(�)

�

j and all � 2 Sen(�).

If for every � 2 jSignj a set th(�; �) of I

0

-sentences on �(�) exists s.t. the

class of algebras satisfying th(�; �) is the object class of dom(�)

�

and dom(�)

�

is a full sub-category of Mod

0

(�(�)), then � is called logical.

It is easy to check that �

]

:PAR ! T L, whose components were informally

sketched in example 2.1, is a simulation, that is logical if open formulas are

considered in T L.

1

for any category C we denote by jCj the class of the objects of C.

A.2 Simulating Speci�cations

Def. A.3 Let I = (Sign; Sen ;Mod ; j=) be an institution. The speci�cation

functor, Spec

I

:Sign ! Cat

Op

is the composition of Mod with the power

functor, i.e.

}

Spec

I

(�) is the partially ordered category w.r.t. the class inclusion having

as objects }(jMod (�)j), for all � 2 jSignj;

}

Spec

I

(�)(sp) = fMod(�)(A) j A 2 spg for all � 2 Sign(�

1

;�

2

) and all

sp 2 Spec

I

(�

2

).

Def. A.4 Let �: I ! I

0

be a simulation. A speci�cation extension of � is any

partially-natural transformation �: Spec

I

0
� � ! Spec

I

s.t. if �(sp) is de�ned

then sp � dom(�) and �(sp) = �

�

(sp).

The maximal speci�cation extension
 of � is de�ned by:

if sp � dom(�), then

�

(sp) = �

�

(sp), else

�

(sp) is unde�ned. If no ambi-

guity arises

�

will be denoted by
 or, simply, by �.

While it is clear what a metalanguage based on a categorical and set-theoretical

language is, the only way to de�ne it completely formally seems to be explicitly

enumerating which sorts and operations are allowed; thus we limit ourselves to

a semi-formal level and propose a scheme of construction of a generic metalan-

guage using as paradigmatic examples the operations of [14].

A.2.1 A building scheme for an institution independent language.

LetX be a set of variables

2

, which will be evaluated in jSignj for all institutions

I = (Sign; Sen;Mod ; j=).

}

Starting from the elements of X a set MS of metasorts is built, only using

categorical and set-theoretical concepts; for example for any �

1

;�

2

2 X

consider the metasort Sign(�

1

;�

2

) of signature morphisms from �

1

into

�

1

.

}

A set MF of metaoperations of arity in MS is built, only using categor-

ical and set-theoretical concepts; for example for any � 2 X consider the

metaoperation models:} � Sen(�) ! Spec(�), associating with any set of

sentences the class of its models.

}

Let us �x an institution I = (Sign; Sen;Mod ; j=) and a valuation

V :X ! jSignj; with each symbol of MS and each operation symbol in

MF the corresponding standard interpretation is associated; for exam-

ple (Sign(�

1

;�

2

))

I;V

= Sign(V (�

1

); V (�

2

)) and (s

I;V

i

:}(Sen(V (�))) !

Spec

I

(V (�)) on Ax yields fA j A j= �; for all � 2 Axg.

For each new sort we need to know the way it has to be translated w.r.t.

a generic simulation �, as we have seen in the case of speci�cations, where

speci�cation extensions had been de�ned to translate them. Analogously to

the de�nition of the metalanguage, in order to de�ne the new components

of simulations we start from symbols to denote the components dealing with

signatures, sentences and models, which will be evaluated to the components

of the simulation, and use them to formally de�ne an extension of a generic

2

Since in any signi�cant example we have seen, the language is based only on metavariables of sort

signatures, we use a set of variables for sake of simplicity; but there are no problems using a family of

variable sets indexed on the basic elements of institutions.

simulation by means of the categorical and set-theoretic metalanguage. The

only requirement made for the choice of the extensions is that the composition

of the (chosen) extensions of two composable simulations is the extension of

the composition itself.

In the sequel both the symbol for the extension of metasort s of a simulation

and its evaluation on a concrete simulation will be denoted by �

s

.

A.2.2 Simulating Structured Speci�cations

With the help of a metalanguage, institutions are provided of algebraic struc-

ture; thus we are looking for conditions guaranteeing that the simulation exten-

sions are behaving like homomorphisms of this new structure. As the extensions

of a simulation for the derived metasorts can be partial or countervariant, the

standard formulation of many-sorted homomorphisms, h

s

(op

I

(a

1

; : : : ; a

n

)) =

op

I

0

(h

s

1

(a

1

); : : : ; h

s

n

(a

n

)), has to be worked out carefully. It is easier starting

from the following equivalent formulation of the homomorphism condition:

a

0

1

= h

s

1

(a

1

) ^ : : :^ a

0

n

= h

s

n

(a

n

) � h

s

(op

I

(a

1

; : : : ; a

n

)) = op

I

0

(a

0

1

; : : : ; a

0

n

);

indeed it is su�cient to modify the premises, allowing that, depending on the

co/counter-variance of the s component of the homomorphism, either a

0

i

=

h

s

i

(a

i

), or a

i

= h

s

i

(a

0

i

) are used.

Def. A.5 Let �: I ! I

0

be a simulation and L = (MS;MF) be an institution

independent metalanguage on variablesX. Then � is an L-homomorphism i� a

i

related by � to a

0

i

implies op

I;V

(a

1

; : : : ; a

n

) related by � to op

I

0

;��V

(a

0

1

; : : : ; a

0

n

),

where two elements a and a

0

of the same metasort s are related by � i� one

of them is the image of the other one along the extension �

s

, for all valuations

V :X ! jSignj and all op 2MF

s

1

:::s

n

;s

.

Let L be an institution independent metalanguage and M be a class of

simulations. Then L is M -independent i� � is an L-homomorphism for each

� 2 M and it is (logical) simulation independent i� � is an L-homomorphism

for all (logical) simulations �.

It is easy to check that L-homomorphisms are well behaving w.r.t. the compo-

sition of simulations, the union and the operational closure of languages.

A.3 Implementation and Simulation

Def. A.6

}

A speci�cation sp

2

implements a speci�cations sp

1

, denoted by sp

1

; sp

2

,

i� both sp

1

and sp

2

are on the same signature and sp

2

� sp

1

.

}

Let f; g: Spec

I

! Spec

I

be functions on speci�cations; then f implements

g, denoted by g ; f i� g(sp); f(sp) for all speci�cations sp.

}

Let p

1

= �X : �

Par

:sp

1

() and p

2

= �X : �

Par

:sp

2

() be terms of the same

sort on some (institution independent) metalanguage; then p

2

implements

p

1

, denoted by p

1

; p

2

, i� sp

1

[sp]; sp

2

[sp] for all speci�cations sp.

Prop. A.7 Let sp, sp

1

and sp

2

be speci�cations and p

1

, p

2

be parameterized

speci�cations in a metalanguage whose speci�cation-building operations are

monotonic w.r.t. the set-inclusion.

1. If sp ; sp

1

and sp

1

; sp

2

, then sp ; sp

2

;

2. If sp ; sp

1

, p

1

; p

2

and sp is an actual parameter of p

1

(i.e. p

1

(sp) is

de�ned), then p

1

(sp); p

2

(sp

1

).

Proof. See fact. 8.1.1 of [17].

Prop. A.8 Let �: I ! I

0

be a simulation, sp

0

1

and sp

0

2

belong to Spec

I

0

(�(�))

s.t. both sp

0

1

; sp

0

2

� dom(�); if sp

0

1

; sp

0

2

, then
 (sp

0

1

);
 (sp

0

2

). Moreover if

�

(sp

0

1

) and

�

(sp

0

2

) are de�ned, then sp

0

1

; sp

0

2

i�

�

(sp

0

1

);

�

(sp

0

2

).

Proof. If sp

0

1

; sp

0

2

, then sp

0

2

� sp

0

1

and hence
 (sp

0

1

);
 (sp

0

2

), as

 (sp

0

2

) = � (sp

0

2

) � � (sp

0

1

) =
 (sp

0

1

):

Let us assume that

�

(sp

0

1

) and

�

(sp

0

2

) are de�ned; then, analogously to

the previous point, sp

0

1

; sp

0

2

implies

�

(sp

0

1

) ;

�

(sp

0

2

). Vice versa if

�

(sp

0

1

) ;

�

(sp

0

2

), then �

�1

(

�

(sp

0

2

)) � �

�1

(

�

(sp

0

1

)), i.e., by the condition

of de�nedness of

�

, sp

0

1

; sp

0

2

, as

sp

0

2

= �

�1

(

�

(sp

0

2

)) � �

�1

(

�

(sp

0

1

)) = sp

0

1

:

Def. A.9 Let �: I ! I

0

be a simulation, sp 2 Spec

I

(�), sp

0

2 Spec

I

0

(�(�));

then sp is �-implemented by sp

0

, denoted by sp

�

;sp

0

, i� sp

0

� dom(�) and

�(sp

0

) � sp, i.e. i�
 (sp

0

) is de�ned and sp ;
 (sp

0

).

Let f : Spec

I

(�

1

) ! Spec

I

(�

2

) and f

0

: Spec

I

0

(�(�

1

)) ! Spec

I

0

(�(�

2

)) be

functions; then f is �-implemented by f

0

, denoted by f

�

;f

0

, i�

f(sp)

�

;f

0

(�

�1

(sp)) for all sp 2 Spec

I

(�).

Let p

1

= �X : �

Par

:sp

1

() and p

2

= �X : �

Par

:sp

2

() be terms of the same

sort on some institution independent metalanguage; then p

1

is �-implemented

by p

2

, denoted by p

1

�

;p

2

, i� p

1

I;V

�

;p

2

I

0

;��V

for all valuations V for the free

variables of p

1

and p

2

in I.

Prop. A.10 Let I, I

0

and I

00

be institutions, �: I ! I

0

and �: I

0

! I

00

be

simulations. The following conditions hold:

1. sp

�

;sp

0

and sp

0

�

;sp

00

implies sp

���

;sp

00

for all sp 2 Spec

I

(�), all sp

0

2

Spec

I

0

(�(�)) and all sp

00

2 Spec

I

00

(�(�(�))).

2. sp

�

;sp

0

and f

�

;f

0

implies f(sp)

�

;f

0

(sp

0

) for all sp 2 Spec

I

(�

1

), all sp

0

2

Spec

I

0

(�(�

1

)) all monotonic f : Spec

I

(�

1

) ! Spec

I

(�

2

) and

f

0

: Spec

I

0

(�(�

1

))! Spec

I

0

(�(�

2

)).

Proof.

1. Since sp

0

� dom(�) and �

0

(sp

00

) � sp

0

, sp

00

� dom(� � �). Moreover if

sp

0

�

;sp

00

, then �

0

�(�)

(sp

00

) � sp

0

, and if sp

�

;sp

0

, then �

�

(sp

0

) � sp, so that

�

�

(�

0

�(�)

(sp

00

)) � sp, i.e. sp

���

;sp

00

.

2. By de�nition of

�

;, it is su�cient to show that �

�

(f

0

(sp

0

)) � f(sp). By de�-

nition of

�

;, f

�

;f

0

implies that f

0

(�

�

�1

(sp

1

))

�

;f(sp

1

), so that

�

�

(f

0

(�

�

�1

(sp

1

)) � f(sp

1

) for all sp

1

2 Spec

I

(�

1

); thus, for sp

1

=

�

�

(sp

0

), �

�

(f

0

(�

�

�1

(�

�

(sp

0

))) � f(�

�

(sp

0

)). Since sp

�

;sp

0

,

sp

0

� dom(�) and hence sp

0

� �

�

�1

(�

�

(sp

0

)), so that, as f

0

is monotonic,

f

0

(sp

0

) � f

0

(�

�

�1

(�

�

(sp

0

))). Finally from sp

�

;sp

0

, i.e. �

�

(sp

0

) � sp, and

from the monotony of f , the thesis follows.

