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Two operations are presented for a modular approach to the de�nition of frameworks for

rigorous development of software, formally represented as institutions.

The �rst one generalizes models, allowing them to have more structure than the minimal

required by their declared signatures, as it happens for software modules, having local

routines that do not appear in their interface.

The second one extends sentences, and their interpretation in models, allowing sentences

on richer signatures to be used as formulae for poorer ones.

Combining the application of these operations, powerful institutions can be de�ned, like

those for , or for .

The compatibility of di�erent sequential applications of these operations and properties

of the resulting institutions are studied as well.

MAURA CERIOLI and GIANNA REGGIO

In the last twenty years, several di�erent formal approaches have been proposed sup-

porting rigorous software development. Even restricting the attention only to

frameworks, the variations are many, depending on the signatures (from the original ho-

mogeneous ones, to many-sorted, order-sorted, higher-order, polymorphic, with or with-

out predicates and so on), the sentences (from pure equations without variables to full

�rst-order, or even higher-order, formulae), the models (from total, to partial, non-strict,

state-based algebras) and the satisfaction relation (from standard evaluation semantics,

to observational de�nitions).

The proliferation of frameworks, is in a sense unavoidable, because a formalism pro-

viding tools to deal with all possible software features, for instance convenient for the

sequential, concurrent and object-oriented paradigms, and in all development phases,

from the requirement to the design, if any, would be a and would become out

of date in a short time.

But, on the other side, having so many possibilities is confusing, especially for the naive
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users, and makes the choice of the paradigm, for any given problem, quite di�cult.

Moreover, the expertise accumulated during a project development may be useless for the

next speci�cation task, because changing the problems, the needed formalism changes as

well. Finally, it is often the case that, in order to provide some new features, brand new

frameworks, or adaptations of already existing ones, have to be developed almost from

scratch, proving standard properties, with standard techniques, but in several slightly

di�erent settings.

In our opinion, a solution for, or at least an improvement of, this situation is to have

means to modularly build the formalisms themselves, assembling pieces of already well-

known formalisms, or tuning them, by adding only the \local" features. Indeed, in this

way the theory can be worked out once and forever and, even more important, the

expertise acquired by the end users can be reused. Moreover, since building a framework

in this way is easy and does not require a time consuming development of new theories,

it becomes convenient to select for any given problem the best formalism, having all the

features needed by the particular problem under examination, but as simple as possible.

In this paper, following the well-established approach by Goguen and Burstall, see

e.g. (Burstall and Goguen, 1984; Burstall and Goguen, 1992), speci�cation frameworks

are formalized as . Thus, enrichments and assembling of formalisms become,

in this setting, operations among institutions.

The need for such a modular approach to the formalism construction has already been

sporadically addressed in the literature. Consider for instance the in

(Burstall and Goguen, 1992), where an institution is built whose sentences come from two

input institutions, also applied in the database �eld in (Reichwein and Fiadeiro, 1992).

Another example is the in (Sannella and Tarlecki, 1988),

of a given institution and a set of its signature morphisms, where sentences are enriched

along these signature morphisms regarding the extra-symbols as variables universally

quanti�ed. Moreover the of (Beierle and Voss,

1987) enriches an institution by tools to deal with implementation.

Here we face the problem of enriching an institution in a way that models possibly have

more structure than the minimal required by their signatures, as it happens for software

modules, having local routines that do not appear in their interface. Thus, in this new

setting we could characterize larger classes of models, having not all the same syntax, but

sharing a minimal structure. Moreover, sentences are extended to provide the capability

of expressing properties on the possible local functionalities, stating properties not only

on the models (i.e. about the interpretations), but also on the syntaxes themselves (i.e.

about the actual structure of the models).

Concrete instances of this constructions can be found in the description of institutions

for in the �eld of concurrency, like for instance the very ab-

stract entity speci�cations in (Reggio, 1991), the very abstract entity speci�cations with

temporal logic in (Astesiano and Reggio, 1993a), the very abstract entity speci�cations

with event logic in (Astesiano and Reggio, 1993b; Reggio, 1993), each one in several

variants, like with �rst-order, conditional, equational logic, with partial, non-strict, gen-

eralized models and so on.

Another application of the very abstract operation, in the �eld of abstract data types,
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is the proof that the hyper-loose algebraic speci�cations in (Pepper, 1991), whose mod-

els on � are � -algebras on some � \extending" �, is an institution. A speci�cation

in this institution describes classes of algebras sharing a common syntax and satisfying

properties on such common part, but with possibly some more structure, analogously

to software realizations of a module, that are allowed to have, besides the operations

required by the interface, further internal operations. However the sentences in this in-

stitution are the same as in the parameter institution, so that properties on the syntax

of the speci�cations cannot be imposed. Extending also the sentences, here we get the

institution of very abstract data types, which supports the speci�cation of high-level

requirements on modules also about their interfaces (e.g. constraints either in the num-

ber of operations or on the number of arguments of the operations, due to limits of the

admissible implementations).

Let us consider, now, the institution of entity algebras, see (Reggio, 1991), providing

a formal framework for algebraic speci�cations of concurrent systems, where some signa-

ture operations are used to explicitly describe the concurrent structure (i.e. to de�ne the

system components, both static and dynamic, and the system architecture). Thus very

abstract speci�cations (built on the entity institution) describe classes of entity algebras

on possibly di�erent signatures, i.e. formal models of systems with possibly di�erent

concurrent structures, satisfying common properties. Moreover, these examples have al-

read been used in some industrial case studies of the speci�cation, at di�erent levels of

abstraction, of a substation for the electric power distribution (see (Reggio et al., 1992)).

The very abstract operation is modularly described as the composition of two basic

operations on institutions: , that abstracts the models on a signature �, by

regarding as abstract �-models the actual models on each \extension" of �, and ,

that extends the set of sentences, so that formulas about signature properties are allowed

(but this operation is far more general and can be used, for example, to add in a uniform

way logical operators, e.g. the equality).

The arguments of are an institution and a family of signature \exten-

sions", that are signature morphisms satisfying some technical conditions. Thus, as the

other parameters only depend on the signature category, the proof of the existence of

such parameters can be shared by all institutions with the same syntactic part and, in

particular, by the result of itself. Therefore if two possible extensions are

available for the same (signature) institution, it is possible to apply sequentially both

constructions. As a paramount instance of application, here we show the

construction of signature extensions for the many-sorted signatures (with predicates), so

that the same construction can be used for most \algebraic" institutions (e.g. institutions

with partial or non-strict models and with every logic).

As it may be expected, the result of an application of is strictly related to

its argument. Indeed, though in the result the very abstract models on a given signature

are more than in the original institution, they can be canonically attened to (standard)

models, simply forgetting the extra structure they may have. On the converse, each

standard model is obviously also a very abstract model, that happen to have no local

structure. This relationships is formalized by saying that institution morphisms and

maps of institutions relate the input to the output of the operation in both ways. Thus,
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morphisms and maps between institutions that are used as inputs for may

be lifted to work on the corresponding results, as well.

While abstracting models only involves the signature part of an institution, to extend

sentences we require that each (extensible) signature is associated with an (intuitively)

richer signature, whose sentences will be used as extended sentences for the starting

signature. Moreover, each model is naturally expanded to a model of the extended signa-

ture, so that the validity of the new sentences can be easily de�ned. Therefore,

a�ects both sentences and validity relation and requires information on how to extend

signatures and models.

Quite natural applications for the operation are the construction of second-

order logic starting from a �rst-order institution, where each signature is extended by

functional sorts, that are interpreted in each extended model as the corresponding func-

tion spaces, and the de�nition of observational speci�cation institutions (see Section 3).

The latter case shows that, interpreting the de�nition of observational satisfaction as

an application of , the required veri�cation for the result to be an institution

simplify to check on the arguments of .

Moreover, as extensively shown in Section 4, can be used in connection with

, enriching very abstract institutions, and in particular that built starting

from many-sorted logic, by the expressive capability for requiring the actual syntax of

the very abstract models to satisfy some properties. This is achieved by introducing

sorts and operations for the syntactical elements of a signature, using an internalization

principle.

Several possible choices of sentence extension are available. Here we have adopted a

simple, but su�ciently expressive one, presenting not only the resulting framework, but

also speci�cations of relevant data types, made within such formalism, to prove that it

is convenient.

The paper is organized as follows. In Section 2 we consider the problem of building a

new institution by abstracting the models w.r.t. the syntax of another one, while Section 3

is devoted to the problem of extending the sentences of an institution to get another one.

Finally in Section 4 we describe the very abstract institutions by combining the two

operations previously de�ned.

A shorter version of this paper, presenting only the core ideas, has been published in

(Cerioli and Reggio, 1994).

In mathematical practice it is quite common to regard algebraic structures, like �elds

or rings, as poorer structures, like groups or monoids. This can be interpreted from two

points of view; the �rst intuition is that we about the extra structure, so that

if we have a ring, then we also have a group on the same set and with the same sum,

inverse and zero as the ring. Thus, di�erent rings with the same underline group result

in one group and, more interestengly, we cannot for instance use the product(s) in order

to prove properties on the sum. The second interpretation is that a ring in itself a

group, i.e. groups are all those entities that have the group operations, but can
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as well have more structure. Therefore the extra operations (if any) are still available to

shorten proofs, clarify reasoning etc.

A more applicative example of the same situation is the de�nition of software mod-

ules realizing a data type. Indeed, any such module is required to associate a function

with each operation of the data type, but it is quite common, in the practice, to have

(private) local de�nitions, di�erent for every actual module, giving to the module an

extra-structure. Then all local operations (and types) of a module can be hidden by

some encapsulating interface, so that users cannot use them anymore. This corresponds,

in the previous example, to forgetting the ring structure. But it is also reasonable to

export (some of) the local operations, in order to improve complexity of algorithms or

simplify termination proofs and such. In other words, the module itself, with all its

structure, is regarded as a realization of the data type.

Using the concept of , see e.g. (Burstall and Goguen, 1984; Burstall and

Goguen, 1992), to represent logical frameworks, the \forget/hide" viewpoint is immedi-

ately available, since it corresponds to the use of the functors, that for any change

of syntax represent how models have to be translated. But the notion that a richer struc-

ture should be regarded in itself, without translations, as a poorer structure too, cannot

be immediately represented. In order to describe this point of view we de�ne an opera-

tion that applied to a logical framework yields a framework over , where

models of a syntax are required to provide a semantic counterpart for all elements of the

syntax, but can have some extra-structure, i.e. where models are, for each signature, the

models of the original institution on \extensions" of such signature.

An (see e.g. (Burstall and Goguen, 1984)) consists of a category

of , a functor : giving the set of over a signature,

a functor : giving the category of on a signature, and a

= (�) (�) for each � object in , sometimes denoted

by = , such that for each morphism :� � in , the

= ( )( ) ( )( ) =

holds for each in (� ) and each in (�).

In the sequel we assume that = ( =) is an institution and discuss

the elements needed in order to build an institution = ( ), with the

same syntax as (signature and sentences), but whose models are allowed to have some

extra structure.

2.1. �

Intuitively in a signature � represents the minimal structure that its models have, but

the models can have a richer structure than the one explicitly described by �. Thus, the

�-models in are the � -models in , for some � \extending" �. In most examples

signatures are structured (families of) sets, so that extensions are simply set-inclusions

and hence correspond to a particular subclass of signature (mono)morphisms. This leads

to consider the class of these morphisms, called , as one of the
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parameters. Note that two minimal requirements have to be imposed on this class: that

the identities are admissible, corresponding to the intuition that each signature is the

trivial extension of itself, and that the class of admissible morphisms is closed under com-

position, because extending an extension should result in an extension, too. Therefore, it

is natural to formalize the admissible morphisms as the arrows of a subcategory having

the same object class as the signature category.

Let = ( =) be an institution; then a family of

for is any subcategory of s.t. = .

Here and in the sequel we write : � � to denote that is an admissible mor-

phism from � into � , that is (� � ). Moreover, we simply write for

( )( ). Given � � , we say that � � i� there exists an admissible

morphism in (� � ).

A class of admissible morphisms available for each institution consists of the identities.

But, since in this case the construction of the very abstract models in the sequel collapses

to the identity, this class is useless.

A more interesting class of admissible morphisms is that of monomorphisms, as they are

composable and include identities. This choice corresponds more closely to the intuition

of extension we want to capture and indeed, in the following we will see a motivating

example using monomorphisms as admissible morphisms.

Using admissible morphisms to represent signature extensions, the abstract models

on any signature � are pairs , where is a (standard) model on a signature �

extending � via , that is : � � and (� ) . Note that we need to keep

track of the way � extends �, because in general � may be an extension of � in di�erent

ways, as several morphisms with the same domain and codomain can be admissible.

Let us consider, now, the arrows between these new models, in order to get a category.

Since abstract models are pairs, also a morphism between two such models, say from

:� � into : � � , is a pair of arrows between the corresponding

components. The second element is an arrow from into (seen as objects of the

comma category � , i.e. an admissible morphism :� � in s.t. the

following diagram commutes

� �

�

Thus, if such an exists, is an algebra on an extension of the actual signature of and

hence it is natural to choose as �rst component of the model morphism, a �-morphism

from into , preserving all the structure of and not only the minimal required by

�.

Let = ( =) be an institution and a family of admis-

sible morphisms for .
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For each � , the category (�) is de�ned by:

(� � ) (� ) and � ;

(�)( : � � :� � ) =

(� � ) = and (� )( ) ;

= ;

: � � :� � = .

A graphical view of this composition is given below, where :

and : .

Notice that if (� � ) = for all � = � and (� �) = , then the

construction of (�) yields (an isomorphic copy of) (�) itself.

For every � , (�) is a category.

It is trivial to check that \ " is associative in (�) and that is the

identity of the composition.

There is (at least) another natural choice of the model morphisms in (�), that

is to have as morphisms from :� � into : � � the �-morphisms

in (�) from into . However, in this way the morphisms do not depend on

the extra-structure of � and � . Hence two abstract models, say and ,

on the same extension can be isomorphic if their restrictions along are such, while

and are not even related by a homomorphism either way. Thus, unmotivated identities

among the models would be introduced.

Instead, following our choice, two abstract models are isomorphic in the new institution

i� in the starting institution they are models on isomorphic signatures (i.e. the structure

of the �rst is a renaming of the structure of the second one) and (their renamed structures)

are isomorphic, accordingly with the intuition that the nature of the speci�ed models is

the same and in the new institution we are only able to specify \bigger" classes of original

models.

Using the notation of De�nition 2.3, for all morphisms in (�),

we have that is an isomorphism i� both and are isomorphisms and the inverse

of is admissible.

Straightforward check of the de�nition.

The models on a signature � can be naturally regarded as very abstract models on

that signature, seen as extension of itself by the identity, and the very abstract models
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on a signature can be translated into models on the signature, by the reduct associated

with their second component, in a sort of .

Using the notation of De�nition 2.3, let : (�) (�) be the

functor de�ned by:

for each (�) , ( ) = ;

for each (�)( ), ( ) = .

Moreover, let : (�) (�) be the functor de�ned by:

for each (�) , ( ) = ;

for each (�)( ), ( ) = .

It is straightforward to check that both and are functors; moreover they are

adjoint to each other, so that is a coreexive subcategory inclusion.

Using the notation of De�nition 2.6, is the left adjoint to and for

every (�) the counit of the adjunction is = .

Let us consider an object (�) and show that for each

(�) and each : ( ) ( ) in (�) the unique :

( ) s.t. ( ) = is itself.

Since is a morphism in (�) from ( ) = into ,

= , i.e. = , and is a morphism in (�) from into , that is

: ( ).

Moreover, ( ) = = = .

Thus the following diagram commutes.

( ) =

( )

=

( ) =

:

( ) =

( ) =

Finally if ( ) = , then = , i.e.

= = and hence = .
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2.2.

Algebraic approaches to the semantics of speci�cations regard as very relevant the notion

of model translation (or reduct) along a signature morphism, because it allows to abstract

from the name of the operations of a module. This is reected, in the institution language,

by the functorial nature of the model component and by the satisfaction condition, that

formalizes the slogan \ ".

Thus, we have to de�ne the translation of very abstract models along signature mor-

phisms, generalizing the de�nition of (�) to a functor from to ; in

other words, a family of functors ( ): (� ) (� ), for every

(� � ), has to be de�ned, preserving identities and composition.

Let us �x a signature morphism :� � ; then ( ): (� ) (� )

should transform a model : � � in a pair : � � , consisting of an

extension of the signature � and a model on such extension. Moreover, if can be

extended to a morphism between � and � , then the model can be easily de�ned

as the translation of along .

Therefore we need a uniform way of building extensions of : � � starting from

any extension : � � of its codomain. Graphically the situation is the following,

where we know the continuous arrows and have to determine the dashed lines.

� �

� �

Notice that, given a class of admissible morphisms, there are di�erent sensible choices

for building extensions of � starting from the � -extensions. Indeed, let us consider

as admissible all monomorphisms (but the example works as well for the set theoretic

inclusions as class of admissible morphisms in the case of standard algebraic institutions).

Then if we pick a (non-identical) monomorphism we can choose itself as and the

identity as or, vice versa, the identity as and itself as .

Thus, in the following de�nition we require that are selected

satisfying the minimal conditions su�cient for each ( ), de�ned by translation of

models along such 's, to be a functor.

Let be a class of admissible morphisms for an institution =

( =). A on for , consists of a signa-

ture ( ), a morphism ( ): ( ) � and an admissible morphism

( ): � ( ) for each signature morphism :� � and each admissi-

ble morphism :� � satisfying the following conditions :

1 The following diagram commutes, i.e. = ( ) ( ):
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( )

( )

�

� �

( )

2 The choice of , and is natural w.r.t. the second argument:

(a) ( ) = ( ( ) );

(b) ( ) = ( ( ) );

(c) ( ) = ( ( ) ) ( );

3 The identity as second argument is preserved:

(a) ( ) = ( );

(b) ( ) = ;

(c) ( ) = .

There are two obvious candidates for local backward extension, that are ( ) =

(and accordingly ( ) = ) and ( ) = (and accordingly

( ) = ). The former actually satis�es all conditions required by the de�nition of

local backward extension, though methodologically it does not have much sense, because

the extension is trivial and, as we will see in the sequel, it does not satisfy the conditions

required to get an institution. The latter is not well de�ned, in general, because

is not required to be admissible for any choice of admissible morphisms; for instance

if admissible morphisms are all monomorphisms in and contains at least a

morphism that is not mono, then ( ) = is not admissible. But even if all

morphisms are admissible, this choice does not satify condition 3c if is not an identity,

because ( ) = .



0

;

1

2

0

0

�

0

; ;

;

�

;

! !

I

�

f ! j g

1 2 2

2

1

2

2

+

� �

1

2

!

!

; !

!

� !

!

!

!

!

� !

� =

:

:

:

:

:

:

� =

:

:

:

:

�

� m ,

S S S

S

s s

� , � x x x :

Application 2.9.

YMon

YMon

sig

sorts

opns

sig

sorts

opns

Institutions for Very Abstract Speci�cations

HMod

HMod

sorts function symbols

predicate symbols

nat time set

0 nat

Reset time

set

S nat nat

Ins nat set set

Clock time time

int list

Zero int

list

Inc Dec int int

Push int list list

11

The conditions required from a local backward extension, besides the technical needs

in the proofs of functoriality for ( ), are determined by the intuition that a local

backward extension along : � � and :� � should endow � with the

algebraic structure present in � that is not already present in � . Indeed, let us consider

again our motivating example of software modules. We start from some representation

of modules in a standard algebraic framework, the institution , and want to regard the

signature of a module as its visible syntax, allowing local internal operations and hence

we (adopt a notion of signature extension and) build . Then, it is natural to require

the translation of module along a renaming of its visible signature to yield the module

itself with the visible part accordingly renamed and the local structure unchanged as far

as possible. Indeed, changing the types of the visible part a�ects the functions having

parameter(s) or result of some global type.

Let us consider many-sorted �rst-order logic with equality. Thus, each

signature � consists of a set of , an -indexed family of

and an -indexed family of . Function symbols are used to build terms

and predicate symbols applied to terms yield atomic sentences.

Signature morphisms are consistent renaming of symbols; thus if a function expects an

argument of sort , then its translation requires an argument of the image of along the

signature morphism.

As admissible morphisms, , we consider the plain inclusions between many-sorted

signatures, i.e.:

= :� � ( ) = for all symbols

Then, for instance, let us consider the signature � of (�nite) sets of natural numbers

with a sort representing (discrete) time.

Moreover, let us consider its implementation by integers and lists, using integers to rep-

resent both natural numbers and time and with sets described by lists. This is formalized

by the following signature �
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nat int 0 Zero S Inc

time int Reset Zero Clock Inc

set list Ins Push

local

list set list
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and by the signature morphism de�ned by

( ) = ( ) = ( ) =

( ) = ( ) = ( ) =

( ) = ( ) = ( ) =

Let us �nally consider an extension of � , where a boolean sort is added

Then the expected extension of � is:

More in general, the intuition behind the de�nition of the backward extension of � is

to add to � all components of � � , as it is graphically represented below.

� �

� �

� � � �

� �

However, this solution is too simpli�ed to cope with more sophisticated examples. Let

us see some instances of the problems that can be encountered, to get an intuition of the

possible solutions. In the sequel, we will use for symbols belonging to an extension

but not to the visible part of the signature.

Let us consider again the previous example, but consider the following extensions � ,

with local functions having visible sorts in their arity.

In this case, as represents , we can imagine that the arguments of sort in the

backward copies of and should be replaced by arguments of sort . But, as

stands for both and , we should expect two backward copies of , one
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for each possible replacement of by corresponding sorts form � . Thus the intended

extension of � is:

where we can use the same symbol for both copies of the , taking advantage of the

overloading of function and predicate symbols granted by the de�nition of functions as

an indexed family instead than a set equipped with an arity function.

Accordingly to our intuition that the source is replacing the target signature in the

extension to get the backward extension, the elements of the target signature that are

not in the image of the morphism are dropped. Therefore, local function (predicate)

symbols having dropped sorts in their arity have to disappear too, as in the following

case. Let us consider again the starting example, but regarding as a morphism from �

into � , that is as its composition with the embedding of � into � , and as extension

the following signature

In this case, as does not belong to the image of the morphism, and hence cannot be

replaced by any sort of � , nor is a local symbol, and hence we do not have to add it to

the backward extension, it will disappear. Accordingly the local function has

to be dropped. Thus the intended extension of � is:

The last problem we want to illustrate is how to deal with name clashes. Let us consider

again the starting example, but using as extension the following signature

If we naively apply the technique suggested at the beginning, then we have two incarna-

tions of in the backward extension, one originated from the enrichment by the local

structure from � and the otherone already present in the source. Unfortunately, as for

each �xed arity the function symbols form a set, this leads to an unduely identi�cation

of the two incarnations. Therefore, a new symbol for the \local" has to be provided

and the intended extension of � is:
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abstract

�nite

abstract signature OP PR

OP

PR

FOESen FOEMod

In order to allow in�nite signatures as well, it su�ces to use an enumeration : IN IN with the

restriction that ( ) implies ( ) for all and all and that there is a maximum

i s.t. ( ) . Analogously for functions and predicates. However, many games on indexes have

to be plaied to keep the construction straight.
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Thus, from this case analysis, we have that the simpli�ed picture we proposed has to be

generalized to account for

| non injective signature morphisms, inducing duplications of local functions (predi-

cates) with the same name, but di�erent arity or result type;

| non surjective signature morphisms, possibly discarding sorts and hence making local

functions (predicates) symbols to be dropped if some discarded global sort appears

in their arity;

| name clashes between the local symbols in the extension and visible symbols in the

source signature, requiring to introduce new names to avoid unduely identi�cations.

The last case actually is the unique problematic from a technical viewpoint, as it seems

to be impossible to �nd a uniform way of introducing new symbols. Therefore, we have to

move to signatures, that is for each isomorphism class of signatures we arbitrary

choose a representative. In order to be sure that we are not discarding needed admissible

morphisms, we �x many details of the representatives for isomorphic signatures that we

are using. Notice that the reduction from concrete to (a particular choice of) abstract

signatures does not a�ect the speci�cation language built over an institution, but is anal-

ogous to translation of user de�ned identi�ers to their internal (usually disambiguated)

representation made through key tables and does not show up at the user level (though

it is used to de�ne the semantics of the speci�cations de�ned by the user).

In order to keep the presentation as simple as possible, and since such restriction does

not seem too severe from a practical viewpoint, we stick to signatures, that is from

now on we take into account only signatures with a �nite number of sorts, operations

and predicates.

Let us �x a denumerable universe of sorts , with enumeration function : IN ,

a denumerable universe of operation symbols , with enumeration function : IN

and a denumerable universe of predicate symbols , with enumeration function

: IN . Then an � = ( ) is a �rst-order signature s.t.

| = ( ) 1 for some IN;

| for each and there exists IN s.t. = ( ) 1 ;

| for each there exists IN s.t. = ( ) 1 ;

Let be the category of abstract signatures, and let =

( = ) denote the institution of many-sorted �rst-order

logic with equality and let us consider as admissiblemorphisms the embedding in .

Then, for instance, the �rst example is interpreted as a presentation in an algebraic

language for the following abstract signatures (the \abstract" names are assigned in

declaration order)
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Notice that, due to the heavy overloading of function symbols in abstract signatures, to describe

morphisms it is needed a decoration to distinguish the several components dealing with function

symbols w.r.t. the arity.
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and, accordingly, the morphism is

( (1)) = (1) ( (1)) = (1) ( (1)) = (1)

( (2)) = (1) ( (1)) = (1) ( (1)) = (1)

( (3)) = (2) ( (1)) = (1) ( (1)) = (1)

Then, the expected backward extension of � is � itself enriched by the elements of �

that do not belong to � . Notice that, since sort sets of abstract signatures are given

by enumeration of intervals, the extra elements are of the form ( ) ,

where is the cardinality of the sorts of the target signature and of its extension,

and have to be translated, so that the �rst element, ( + 1) gets the next free index

in the source signature, that is ( + 1), where is the cardinality of the sorts of

the source signature. Therefore, the representative of a local sort ( ), with , will

be the sort ( + ( )) and analogously for function and predicate symbols. Thus,

for instance, in this example we have to add a sort to represent (3) to the sort set of

� , that is (1) (2) (3) and hence we must add (4) and associate (4) with

(3) by the extension of .

Therefore, we get as extension
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and, accordingly, the extended morphism ( ), denoted by , is

( (1)) = (1) ( (1)) = (1) ( (1)) = (1)

( (2)) = (1) ( (1)) = (1) ( (1)) = (1)

( (3)) = (2) ( (1)) = (1) ( (1)) = (1)

( (4)) = (3) ( (1)) = (1) ( (2)) = (2)

( (1)) = (1)

Let : � � , where � = ( ) and � = ( ), be the morphism

( : : ( ) ( ) : ( ) ( ) )

using to denote its pointwise extension to strings, too, in and :� � ,

where � = ( ), be an admissible morphism in .

Here and in the sequel, we will use to denote the cardinality of a set .

| ( ) = ( ), where:

= ( ) 1 for = + , where = , = , and

= . In the following we will denote by the extension of to , de�ned

by ( ) = ( ) ( ) and

( ) =

( ) if

( + ) if = ( ) and

for each , , = ( ) 1 for = + ,

where = ( ) , = ( ) and = ( ) . In the

following we will denote by the extension of to , de�ned by

( ) =

( ) if ( )

( + ) if = ( ) and

for each , = ( ) 1 for = + , where

= ( ) , = ( ) and = ( ) . In the following we will

denote by the extension of to , de�ned by

( ) =

( ) if ( )

( + ) if = ( ) and

It is obvious to see that ( ) is a many-sorted abstract signature. Notice that

dangling edges are automatically taked care of, as deleted sorts do not appear in

and hence the corresponding set is not taken into account.

| ( ) is the inclusion of � into ( ), that is, ( )( ) = for

all symbols of the signature � .
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� 1
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ymor ysig

ysig ymon ymor
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ysig ysig ymor
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ysig

ysig

ymor ymor ymor

ysig

ymor

ymor ymor

ymor

ymor ymor ymor

ysig

ymor ymon

�; em �; em �;  ; � �

�; em �; em em �

s S �; em �; em s �; em �; em s

�; em s � s � s em � s

�; em em �; em ; em em ,

S ; ;

�; em em S; ; �; em ; em S; ;

�; em S ; ;

S S

S i i n n n n n

n S n S n S

S i i n n n n n n S

n S n S S �; em

S i i n n n n n

n n n n n n n n n n S S

�; em em �; em ; em

s �; em em

s i S

�; em em s � s

� s i n

i n n n < i

�; em ; em s

�; em s i n

i n n n < i

� s i n

i n n n < i n

i n n n < i

n n n n i n n i n n n n i n n

�; em em �; em ; em

� S ; ; S ; ;

�; S; ;

�; �;

S S S S S S S
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| ( ): ( ) � = ( ), that is it coincides with on � and is

the obvious index translation on the symbols from � � .

Let us verify that , and de�ned above are a local backward extension on

.

We have to show that ( ) ( ) = .

Let . Then ( ( ) ( ))( ) = ( )( ( )( )) =

( )( ) = ( ) = ( ) = ( )( ).

Analogously on operations and predicates.

2a)We have to show that ( ) = ( ( ) ), where : �

� is an admissible morphism in and � = ( ). Let us de-

note ( ) by ( ), ( ( ) ) by ( )

and ( ) by ( ).

Let us check that the two signatures have the same sorts, that is, that = .

By de�nition of , we have = ( ) 1 for = + ( ),

= , = and = .

Analogously, we have = ( ) 1 for = + ( ), = ,

= and = and, as is the set of sorts of the signature ( ),

= ( ) 1 for = + ( ).

Therefore, = + ( )+ ( ) = + ( ) = and hence = .

Analogously it can be shown that the two signatures have the same operations

and the same predicates.

2b)We have to show that ( ) = ( ( ) ); let us see that

both yields the same result on each sort of ( ).

Using the notation of the previous point, we have for each = ( )

( )( ) = ( ) =

( ) if

( + ) if

and analogously ( ( ) )( ) =

( )( ) if

( + ) if

=

( ) if

( + ) if

( + ) if

But = + ( ); thus, + = + + = + .

Therefore, the two de�nitions coincide.

The proof that ( ) and ( ( ) ) coincide also on

operations and predicates is analogous to the above proof for sorts.

2c)Trivial, as there is at the most one admissible morphism between two signatures.

Let : � � , where � = ( ) and � = ( ). If

we show that ( ) = ( ) coincides with � , then by de�nition of

( ) and ( ), the conditions 3b and 3c immediately follow.

But, by de�nition, = + = and hence = ; analogously it

can be proved the wanted identi�cation for operations and predicates.
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on objects:

on morphisms:

�

; ; ;

� ; �

� A ;m , �;m A ; �;m , �;m

A ;m m

A

�

� p;m �;m p ; �;m ;m

p;m A ;m , ; A ;m ,
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HMod
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Let us now show that the properties required for local backward extensions su�ce to

have that each ( ) is a functor.

Let = ( =) be an institution and , , be a local

backward extension on a class of admissible morphisms for .

For every (� � ), let ( ): (� ) (� ) be de�ned by:

( )( : � � ) = ( ( ))( ) ( ): � ( )

for each (� ) , i.e. the admissible morphism is translated into

the admissible morphism provided by the backward extensions and the model

is accordingly translated along the (model-interpretation of the) extension of , as

the front side of the following picture shows (the back side reminds the syntactic

counterpart):

( )( ) = ( ( ))( ) ( ( ) )

for each (� )( : � � :� � ), accordingly

with the translation of models; a complexive picture is given below;
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�
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( )
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( ( ) )

�

( ( ) )

( )
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( ( ) )

by de�nition

since ( ( )) is a functor

by condition 3c

by de�nition

since ( ( )) is a functor
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HMod

Proof. HMod HMod

HMod

HMod HMod HMod

HMod

HMod

HMod Id Id

Mod Id Id

Id Id

Id Id

Id

HMod HMod

HMod

HMod

HMod Mod

HMod Mod

HMod Mod

HMod HMod

Mod Mod

Mod

Mod Mod

�

�

� p;m � A;m � A ;m

p A A ;m , A;m ,

A ;m , �

A ;m ,

� ;

�;m ; �;m ;

; �;m ;

;

A;m , ; A ;m , ; A ;m ,

p;m A;m ; A ;m

q;m A ;m ; A ;m

q;m p;m q p;m m

� q;m p;m �;m q p ; �;m ;m m :

� p;m �;m p ; �;m ;m

� q;m �;m q ; �;m ;m ;

� q;m � p;m

�;m q �;m p

�;m ;m �;m ;m

�;m q p

�;m q �;m p

19

Then ( ) is a functor.

It is immediate to see that ( ) sends objects of (� ) into ob-

jects of (� ) and that it preserves the functionality of model morphisms, i.e. that

( )( ) is a morphism from ( )( ) into ( )( ) for ev-

ery morphism : : � � from :� � into

: � � . Thus it is su�cient to check that ( ) preserves identities

and composition.

For every : � � (� )

( )( ) =

( ( ))( ) ( ( ) ) =

( ( ) ) =

=

Let : � � :� � :� � be objects

of (� ), belong to (� )( ) and

to (� )( ).

Then, by de�nition of composition in (� ), =

and hence

( )( ) = ( ( ))( ) ( ( ) )

Moreover, ( )( ) = ( ( ))( ) ( ( ) ) and

( )( ) = ( ( ))( ) ( ( ) ) so that

( )( ) ( )( ) is the pair whose �rst element is

( ( ))( ) ( ( ))( ) and the second is

( ( ) ) ( ( ) ).

Let us consider just the �rst components.

( ( ))( ) =

( ( ))( ) ( ( ))( )
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�

m
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n

n
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w;s � w ;� s � w ;� s

w

w � w � w
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2 2

2

2 2

2 2
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2 2
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1 2 1 1 1 1 2 2 2 2

2
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1
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1

1

1

1

2
( ) ( )

2

( ) ( )

1

2

( )

2

( )

+

1

1

2

1

2

2

by condition 2b, as =

by condition 1

by condition 2b, as =

by condition 2c (for = ( ))
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Mod Mod Mod
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mon mor

mor mon mor
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mor mor mon mor

mor

mon mor mon mor

mon mor mor mon mor

mon mor

wsig

wmon wsig wmon

wmor wsig

wsig wmon wmor

�;m q �;m q

�;m �;m ;m m

�;m

�;m �;m ;m

�;m ;m �;m ;m

m �;m

�;m ;m �;m ;m

�;m ;m ;m �;m ;m

�;m ;m m

� �

� S ; ; S ; ;

em , S ; ;

�; em S; ;

S S S S

� � S � s : : : s

� s : : :� s � s

� s s S

s

w S s S

w S

�; em �; em �; em x x

x

�; em �; em �

; ;
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Therefore, it is su�cient to prove that

( ( ))( ) = ( ( ))( ) ;

that is, since is a functor, that ( ( ) ( ( ) )) and (

( )) coincide. But

( ( ) ( ( ) )) =

( ( ( ) ) ( ( ) )) =

( ( ))

Let us consider now the second components.

( ( ) ) ( ( ) ) =

( ( ( ) ) ) ( ( ) ) =

( ( ) )

2.3.

Given a local backward extension, for each signature morphism a functor ( )

can be de�ned, translating the abstract models. But in general such construction is not

compositional, as shown by the following example.

Consider an alternative local backward extension for �rst-order

signatures where the extension is built making a (non necessarily disjoint) union between

the symbols in the source signatures and those local to the extension of the target. That

is, for each : � � , where � = ( ) and � = ( ) and each

admissible : � � , where � = ( ), the local backward extension is

de�ned as follows.

| ( ) = ( ), where:

= ( ).

In the followingwe will denote by the extension of to , de�ned by ( ) =

( ) ( ) and ( ) =

( ) if

otherwise

= ( ) (( ) ( ) ), for all ,

= ( ) (( ) ( ) ), for all .

| ( ) is the inclusion of � into ( ), that is, ( )( ) = for

all symbols of the signature � .

| ( ): ( ) � coincides with on � and is the identity on the

symbols from � �

The veri�cation that such ( ) actually constitutes a local backward ex-

tension, though bowring, is quite straightforward.

Then consider the following very simple case, where there signature have only sorts and

all arrows are plain embeddings,
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Def. 2.12. HMon

Sign HMon

HMon

f g f g

f g f g

f g

f g ! f g f g ! f g

f g f g f g

f g f g f g

I

j I

I

�

� �

�

sig mor mon

sig mor mon

sig sig mon

mor mor mor mon

mon mon mon

Institutions for Very Abstract Speci�cations

HMod

Sen Mod backward extension

s; x s; x

s s

s

� s s; x � s; x s

s x s

s

�

s; x

�

s

s

�

s; x

�

s; x

� � s � x s

; ; ;

� � ;m � ; � ;m

� � ;m � ;m � ; � ;m

� � ;m � ; � ;m
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But the result is not the same that we get if the identity on is factorized through the

embedding : and the signature morphism : , associating

both and with , as follows

where is the embedding and ( ) = ( ) = .

Thus, in order to get an overall functor , more conditions have to be required

from the backward extensions.

Let be a class of admissible morphisms for an institution =

( =). A on for is a local backward extension

, and on for satisfying the following extra conditions:

4 The choice of , and is natural w.r.t. the �rst argument:

(a) ( ) = ( ( ));

(b) ( ) = ( ) ( ( ));

(c) ( ) = ( ( )).
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as is a functor
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Id

Id Id

Id
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Id

Id
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Proof. HMod
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HMod Id
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5 The identity as �rst argument is preserved:

(a) ( ) = ( );

(b) ( ) = ;

(c) ( ) = .

It is interesting to note that some apparently good candidates for backward extensions

do not satisfy the uniformity conditions and hence cannot be accepted. For instance if

all morphisms are acceptable, then let us consider the that on and

yields the identity as ( ) and as ( ); then for = we have

as ( ) and hence condition 5 is not satis�ed.

Putting together the de�nitions of (�) and ( ) we �nally get a functor

from into .

Let = ( =) be an institution and , , be a

backward extension on a class of admissible morphisms for . For every

(� � ), let ( ): (� ) (� ) be de�ned as in Proposition 2.10.

Then is a functor from into .

Because of Proposition 2.4 and 2.10, we have that is well-de�ned; thus

we only have to show that it preserves identities and composition in .

let � be a signature, = :� � , = :�

� belong to (�) and : be a model morphism.

( )( ) =

( ( ))( ) ( ) =

( )( ) ( ) =

( ) =
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Analogously to the previous point we show that ( )( ) = . There-

fore, ( ) is the identity functor over (�).

let : � � and :� � be signature morphisms, =

:� � and = :� � belong to (� ) and :�

� : be a model morphism.

( ( ) ( ))( ) =

( )( ( ( ))( ) ( ) ) =

( ( ( )))( ( ( ))( )) ( ( )) =

since is a functor

( ( ) ( ( )))( ) ( ( )) =

by condition 4b

( ( ))( ) ( ( )) =

by condition 4c

( ( ))( ) ( ) =

( )( )

By de�nition

( )( ) = ( ( ))( ) ( ( ) ) and

( ) ( )( ) =

( )( ( ( ))( ) ( ( ) ) ) that is equal to the pair

with components ( ( ( )))( ( ( ))( )) and

( ( ( )) ( ( ) )).

Let us consider the �rst component.

( ( ( )))( ( ( ))( )) =

( ( ) ( ( )))( ) =

( ( ))( )

Let us consider the second component.

( ( ( )) ( ( ) )) =

( ( ) ( ( )) ) =

( ( ) )

It is worth noting that di�erent backward extensions can be compatible with the same

family of admissible morphisms. Let us see a(n arti�cial but) simple case.

Let be a category with objects and as non-trivial arrows

only : , : and their composition : .

As admissible monomorphisms we consider the identities, and ; since and are not

composable, this class is closed under composition.

The de�nition of the backward extensions of identities is �xed by property 5; thus we

have the following diagram, where � can be , or and can be or if � = ,

or if � = .
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( ) = �

( ) =

( ) =

�

� �

Moreover property 3 requires that backward extensions along identities is the morphism

itself; thus we have the following diagram, where we can have

| � = , � = and = , or

| � = , � = and = , or

| � = , � = and = .

( ) = �

( ) =

( ) =

�

� �

Therefore, the only relevant backward extension is ( ), ( ), ( ), that

we can de�ne in two di�erent ways

( ) =

( ) =

( ) =

( ) =

( ) =

( ) =

It is straightforward (although boring) to verify that the properties of De�nition 2.12 are

satis�ed.

Let us �nally de�ne an institution with the same signatures and sentences as , but

with very abstract models.

Let = ( =) be an institution, be a family of

admissible morphisms, and , and be a backward extension on for .

Then

( ) = ( = )

is an institution, where is de�ned as in Proposition 2.13 and = is de�ned by:

= = ( )( )

for each model : � � in (�) and each in (�).
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OP PR
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OP PR OP PR
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Because of Proposition 2.13, is a functor from into and

hence we only have to show that the satisfaction condition holds.

Let : � � be a signature morphism, : � � belong to (� ) ,

and (� ) be a sentence. Then, by de�nition of = , = ( )( ) i�

= ( )( ( )( )), i.e. i� = ( )( ).

Since is an institution, = ( )( ) i� ( )( )= , i.e. i� ( ( )

( ))( )= , because of condition 1, and this is, by de�nition of = , equivalent

to ( ( ))( ) ( ) = .

Finally, by de�nition of ( ),

( ( ))( ) ( ) = ( )( ).

The categories (�) and (�) are nicely related by the adjoint functors

and described in De�nition 2.6, that actually are the components of natural trans-

formations between and as we will show in the next section. However, some

interesting properties do not hold for , even if satis�es them. For instance,

the �nite cocompletness of does not imply that of and hence ( ) can be

non-abstract algebraic (see e.g. (Tarlecki, 1985; Tarlecki, 1986)) while is so. Indeed,

roughly speaking, the category (�) is the (disjoint) union of all categories (� )

for some � generalizing �, i.e. s.t. there is an admissible monomorphism from � into

� . Thus, let us consider the case of �rst-order logic; then, the initial signature � is

empty (no sorts, nor functions nor predicates), then (� ) contains (�) for all

signature � and hence is too large to be the terminal object in , that is a singleton

trivial category.

Since is not, in most cases, �nitely cocomplete, institutions with as model

functor cannot be used to de�ne the semantics of speci�cation languages by means of

limits and colimits as, for instance, in (R.M. Burstall and J. A. Goguen, 1980); but

they are perfectly suitable for those speci�cation languages whose semantics is de�ned

using the notion of validity (for basic speci�cations) and set theoretic constructions, like

in (Sannella and Tarlecki, 1988).

The institution of the hyper-loose (many-sorted �rst-order with equality) speci�ca-

tions, introduced in (Pepper, 1991), is the very abstract institution over , with

admissible morphisms and backward extensions as introduced in the following Applica-

tion 2.16.

Let us see that the local backward extension for �rst-order logic

presented in Application 2.9 is also a backward extension.

Let : � � and :� � , where � = ( ), � =

( ) and � = ( ), be morphisms in and :�

� , where � = ( ) be an admissible morphism in , that is a plain

embedding.

Moreover let us denote by � = ( ) the signature ( ).

4a)We have to show that the signatures ( ) = ( ) and ( ) =

( ( )) are equal.

Let us see that the two signatures have the same sorts, using the following notation:

= , = , = and = .
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3

1

2
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2

2

2

2

3

3 1 2

3

3 2

2

1 2 1 2

1

3

3

2 1

2 1 1

1 3 1

1 2

1 1

1 2 1

2 1 2

2 1 1

1 2 2 3 1

1 1

3

3 2 1 2
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�
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It su�ces to show that = . By de�nition = + and =

+ , where is the cardinality of the set of sorts of ( ), that is

= + . Therefore, = + + = .

Analogously it is possible to show that the two signatures have the same operations

and predicates.

4b)Using the same notation as in the previous item, we have to show that (

) = ( ) ( ( )).

Let us see that the equality holds for the sort component and leave the analogous

proofs for operations and predicates to the reader.

Let us assume . Then, using the notation of the previous point, we have

= ( ) for some 1 + and, by de�nition

( )( ) =

( ) if

( + ) if

and analogously

( ( ))( ) =

( ) if

( + ) if

so that

( ) ( ( ))( ) =

( ( )) if

(( + ) + ) if

as + implies + .

4c)Trivial, as there is at the most one injection between signatures.

Straightforward.

Therefore , and are a backward extension, so that we can use them to

de�ne an institution,

= ( )

called the institution of .

Since the de�nition of admissible morphisms and associated backward ex-

tensions only depends on the signature category, the choice of , , and ,

can be shared by institutions with the same signatures, disregarding the models and the

sentences. In particular, the choice for , and backward extension on the

embeddings as admissible morphisms, presented in Application 2.16 for the case of many-

sorted signatures (with predicates), applies, hence, in most signi�cant institutions and

in particular to the institutions of (conditional) equational speci�cations of many-sorted

total (partial, non-strict) algebras.

Let = ( =) and = ( = ) be institu-

tions and be a family of admissible morphisms for . Then is a family

of admissible morphisms for , too, and any backward extension on for is a

backward extension on for as well.

Trivial.
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HMon
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Sign Sign Sign
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Sign

soundness:
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HMon

HMon
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Thus, as does not a�ect the signature category, admissible monomorphisms

and backward extensions for an institution are also such for any institution ( ).

Thus, several applications of can be performed sequentially, given the in-

gredients only for the starting institution. In particular we can always consider =

( ( ) ), that is, in gen-

eral, di�erent from ( ) not only from a technical view-

point, because the models of ( ) are pairs , while

the object of have the form , but also from an intuitive viewpoint. Indeed,

if we regard the symbols in � � as private for a model (module) : � � , then

a model : � � :� � has an intermediate level of privacy between the

global symbols in � and the local symbols in � � .

It is also worth noting that, given an admissible monomorphism family for an

institution = ( =) and a subcategory of , with embedding

, the restriction of to the elements of is a family of admissible monomor-

phisms for the institutions = ( =). Moreover, the restriction

of any backward extension , and for s.t. the extensions of signature mor-

phisms in along admissible monomorphisms in yield morphisms in

too, gives a backward extension for .

Since abstracting models does not a�ect the consequence relation between set of sen-

tences, any (complete) entailment system (see e.g. (Meseguer, 1989)) for an institution

gives an entailment system for any institution ( ) as well.

Let = ( =) be an institution and let us use the following

symbols (�), � � (�) and (�) .

An for is a family ( (�)) (�) satisfying

the following conditions:

if � and = for all �, then = ;

for each (�);

if � and � � , then � ;

if � for all and � , then � ;

if � , then ( )(�) ( )( ) for any :� � in .

An entailment is said i� the following condition holds

if = for all s.t. ( = for all �), then � .

Moreover, is a �, denoted by �= , i� ( = for all �

implies = ) for each (�) .

Let = ( =) be an institution, be a (complete) entailment

system for , be a family of admissible morphisms, and , and be a

backward extension on .

Then is a (complete) entailment system also for the institution

= ( )

Since has the same signatures and sentences as it it immediate to see that

the reexivity, monotonicity, transitivity and -translation conditions are satis�ed.
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Then we have to show that is sound (complete) for , that is � implies �=

(�= implies � ), assuming that is sound (complete) for , that is � implies

�= (�= implies � ).

Thus, in order to show that soundness (as well as completeness) holds, it su�ces to show

that �= i� �= .

Let us assume that �= and let (�) be such that = for all �. Then,

by de�nition of = , = for all �, so that = , that is = .

Therefore, �= implies �= .

Vice versa, let us assume that �= and let : � � (�) be such that

= for all �. Then, by de�nition of = , ( )( )= for all �, so

that ( )( )= , that is = . Therefore, �= implies �= .

2.4.

As we have seen in De�nition 2.6, the categories of models and very abstract models for

a given signature are related each other by a pair of functors. Now we will show that such

relation smoothly generalizes to natural transformations between the model and the very

abstract model functors. Moreover, we will see that, since and preserve and

reect validity, they can be used to relate an institution and any very abstract institution

built on the top of it by both institution morphisms and maps of institutions.

Thus, each institution morphism and each map of institutions between two underlying

institutions can be lifted to work on the very abstract institutions built on them.

Under the hypothesis and using the notation of Proposition 2.13, both

: and : , de�ned for each � as in De�ni-

tion 2.6, are natural transformations.

By Proposition 2.7, for each signature � both and are

functors. Thus, we only have to show that the naturality diagram commutes for them.

Let : � � be a signature morphism in and consider the following diagram.

(� )

( )

(�)

(� )

( )

(�)

Let belong to (� ); then, by de�nition of , ( )( ( )) = ( )( )

and, by de�nition of , ( )( ) is equal to ( ( ))( ) ( ) .

But, by condition 3 of De�nition 2.8, ( ( ))( ) ( ) = ( )( ) ,

that is ( )( ), by de�nition of .

A similar proof applies to morphism translation. Indeed, let : be a morphism in
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(� ); then by de�nition of , and by condition 3 of De�nition 2.8:

( ) ( ) =

( )( ) =

( ( ))( ) ( ( ) ) =

( )( ) ( ) =

( )( ) =

( )( )

and hence is natural.

Analogously we proceed to show that is natural too. Let : � � be a signature

morphism in and consider the following diagram.

(� )

( )

(�)

(� )

( )

(�)

Let be a homomorphism in (� ) from :� � into : �

� .

Then ( ) ( ) is

( )( ( )( )): ( )( ( )( )) ( )( ( )( ))

i.e. ( )( ): ( )( ) ( )( ).

By de�nition of , ( )( ) is the image along of the morphism

( ( ))( ) ( ( ) ) from ( ( ))( ) ( ) into

( ( ))( ) ( ) , that is ( ( ))( ( ( ))( )) from

( ( ))( ( ( ))( )) into ( ( ))( ( ( ))( )).

This, by condition 1, becomes ( )( ): ( )( ) ( )( ) and

hence is natural.

It is also worth noting that the functors and preserve and reect validity.

Therefore, ( ) and ( ) are both maps of institutions

and institution morphisms.

Let = ( =) and = ( = ) be institu-

tions.

A (see e.g. (Meseguer, 1989)) (� ): consists of

| a functor �: ;

| a natural transformation : � and

| a natural transformation : �

such that for each � , each (�) and each (�(�)) the following

property is satis�ed:

= ( ) i� ( )=
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A (see e.g. (Burstall and Goguen, 1984; Burstall and Goguen,

1992)) (� ): consists of

| a functor �: ;

| a natural transformation : � and

| a natural transformation : �

such that for each � , each �(�) and each (�) the following

property is satis�ed:

= ( ) i� ( ) =

Let = ( =) be an institution, be a family of ad-

missible morphisms, and , and be a backward extension on ; moreover

let

= ( ) = ( = )

be de�ned as in Proposition 2.15.

Then ( ) is a plain map of institutions from into and a morphism

of institutions from into and ( ) is a plain map of institutions

from into and a morphism of institutions from into .

To prove that ( ) is a plain map of institutions from

into and a morphism of institutions from into , by de�nition, it su�ces to show

that for each � , each (�) and each (�) we have that

= i� ( )= . But this trivially follows from the de�nition of = , be-

cause ( )= i� ( )( )= , ( ) being .

Analogously, to prove that ( ) is a plain map of institutions from

into and a morphism of institutions from into , it su�ces to show that for each

� , each (�) and each (�) we have that =

i� ( )= . By de�nition of = , = i� ( )( )= i.e., by

de�nition of , i� ( )= .

Since any institution is related to its very abstract generalization by plain maps of

institutions (institution morphisms), any map of institutions (institution morphism) gen-

eralizes to a map (morphism) between the very abstract generalization of its domain and

codomain.

Indeed, let us for instance consider the case of maps of institutions. Let (� ):

be a map of institutions, be ( ) and be ( ),

then the composition of ( ), (� ) and ( ) in

diagrammatic order is a map of institutions, because it is the composition of maps.

However, it is interesting to note that such composition yields (� ), where is

de�ned by ( ) = ( ( )) = ( ) . Thus, in the partic-

ular case of the identity map of institutions, we have that the above composition gives

( ), where ( ) = . That is, the identity yields a non-

identical map of institutions, associating each pair with the element among

those pairs having the same projection on the �xed part. Indeed, denoting by ,

the pair is a morphism from into any s.t. = .

The existence of and relates the existence of initial models in the categories
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of standard and very abstract models. Indeed, since and preserve and reect

validity, they are also adjoint functors between the standard and the very abstract models

of each speci�cation; therefore if the standard models of a speci�cation have an initial

object, then its translation along is initial for the very abstract models.

Let = ( =) be an institution, be a family of ad-

missible morphisms, and , and be a backward extension on ; moreover

let

= ( ) = ( = )

be de�ned as in Proposition 2.15 and , be de�ned as in De�nition 2.6.

Then reects and preserves the initial model of a speci�cation (if any); moreover

preserves the initial model of a speci�cation.

Let = (� �) be a speci�cation for and ; let us denote by the model

class of in , i.e.

= (�) = for all �

and by the model class of in , i.e.

= (�) = for all �

Since and preserve and reect validity, by Proposition 2.22, they are adjoint

functors between and , too, by Proposition 2.7.

Therefore, as left adjoints preserve colimits, preserves initiality, i.e. if is initial in

, then ( ) is initial in .

Let us assume that = :� � is initial in and show that ( )

is initial in .

Let us �rst prove that ( ( )) is isomorphic to and hence it is initial in

. Since is initial in , there exists a unique : ( ( )).

Moreover, by Proposition 2.7, the counit of the adjunction = is a

morphism from ( ( )) into . Therefore is the unique arrow from

into itself, i.e. it is the identity.

Then, denoting by :� � , = = that is

= and = .

Thus, as is a functor, = ( )( ) = =

= .

Therefore = is ( ) = .

Thus ( ( )) is initial in .

Let belong to ; then ( ) and hence there is a unique : ( ( ))

( ), so that its image along is a morphism and, since is the

identity, ( ): ( ) . Moreover if : ( ) is a morphism, then

( ): ( ( )) ( ) and hence ( ) = , so that = ( ( )) =

( ); therefore ( ) is the unique morphism from ( ) into .

Thus if is initial in , then ( ) is initial in and hence preserves

initiality.
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Finally if ( ) is initial in , then, as preserves initiality, = ( ( ))

is initial in , i.e. reects initiality.

3.1.

While last section was dealing with a generalization of models, that is of the semantic

component of a formalism, here an operation is presented, allowing the use of more ex-

pressive logic, leaving the language and the semantics una�ected. Particularly interesting

results can be obtained by the combination of the two operations, as we will see in the

next section.

The starting intuition is that we want to use as sentences on a signature, the sentences

built out of the symbols of a richer signature. A well known purely mathematical ex-

ample is the embedding of �rst-order logic with equality into standard �rst-order logic,

implementing equality as a special binary predicate, whose interpretation in all models

is the identity relation. Thus we can distinguish two steps: the sentences are enriched, by

allowing as sentences on a given signature the formulae on that signature enriched by the

equality predicate, and then the models are extended in a canonical way to models of the

enriched signature, so that the validity of sentences can be borrowed from the standard

de�nition for the extensions.

In the general case the extension operation cannot be performed on some signatures.

For instance those signatures where the symbols to be added are already present, with

a possibly di�erent semantics, cannot be extended at all. Analogously, some signature

morphisms are incompatible with the extensions. Thus, in general, a subcategory of

signatures has to be selected as signature category of the result of this operation.

On the semantic side a canonical way of extending the models, in order to de�ne the

validity of the new sentences by a standard interpretation of the extra-symbols, is needed.

But, since the de�nition of validity does not involve the categorical structure of the model

class, we simply need a function associating each model with its extension, disregarding

the model morphisms.

Let = ( =) be an institution, be a subcategory of

with embedding : , be a functor from into and

be a natural transformation from into , where denotes

the functor dropping from a category all non trivial morphisms. Then

( ) = ( = )

where = , = and = i� ( )= , is an

institution.

The only property that has to be checked is the satisfaction condition.

Let (� � ) be a signature morphism, (� ) be a model and

(� ) be a sentence.

By de�nition = ( )( ) i� ( )= ( ( ))( ); since is an
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In the example sketched here, the set of sorts of the extended signatures are in�nite. Thus, in order

to use abstract signatures, we would have to generalize �rst the category of abstract signatures itself,

as suggested in a footnote in Application 2.9. Moreover we should give the renaming mechanism

sending each functional sort into its abstract representative. On the bright side, we should not restrict

signatures, because we would add new names.
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institution, by the satisfaction condition for ,

( )= ( ( ))( ) i� ( ( ))( ( ))=

i.e. since is a natural transformation, i� ( ( ( ))( ))= , i.e. by

de�nition, i� ( )( ) = .

Notice that the operation can be used to change the notion of validity. Indeed,

if and are identities, but is any natural transformation, then

produces the same institution, but the de�nition of validity refers, in the result, to a

di�erent model. A sensible application of this construction is, for instance, the de�nition

of an institution, where each model is associated by with its

representation. It is interesting to note that in this way, to prove that the result

is actually an institution, it su�ces to check that the de�nition of fully abstraction of a

model is compatible with the reducts along signature morphisms.

Let us see a more extensive example of application of the operation, that is

the use of second-order formulae on �rst-order models. Indeed, in a �rst-order model all

information needed to describe its second-order extension is present, because the function

spaces can be derived from the carriers for the basic values.

Let us consider the institution of �rst-order logic. We want to use a

richer logic for describing properties of its models, allowing quanti�cation to range not

only on values, but also on functions.

The basic idea is to extend a signature with sorts for the function spaces and explicit

operations, whose intended result on a function and arguments for such a function

is the result of the function itself.

Accordingly �rst-order structures are extended, by interpreting the functional sorts by

the corresponding function spaces.

For this application, in order to improve readability, it seems more convenient to use

signatures and to �x a representation for them where names are identi�ers, that

is strings on a �xed alphabet. Therefore, in the following we assume that, in particular,

sorts are strings on a set of symbols including .

Let us describe the arguments for to get a second-order logic

We have to restrict �rst-order signatures to those where the

names we want to use for functional sorts are not already in use. Thus let

be the full subcategory of concrete �rst-order signatures whose objects are the signa-

tures having sort names that do not contain the symbol .

We want to add functional sorts and apply functions. Thus

for each � = ( ) let (�) be the signature ( ), where is

inductively de�ned by:
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and

if then ( ) ;

moreover consists of all the operations in and of the following operations:

for each = ( ) and

for each and 0, where = (

) .

Finally each signature morphism :� � is extended to a signature morphism

( ): (�) (� ) as follows:

| ( ) is inductively de�ned on by:

( )( ) = ( ) if and

( )(( )) =

( ( )( ) ( )( ) ( )( ));

| ( ) is on and on ;

| ( ) is the identity on each operation;

| ( )( ) = ( ) for each .

Let be a �rst-order structure on a signature � = ( );

then = ( ) is the �rst-order structure on (�) de�ned by:

They are inductively de�ned by:

= if and

( ) is the set of all functions from into

for all ( ) ;

There are three cases:

| = for each ;

| = for each ;

| ( )) = ( ) for each , with

= ( ), and all = [ ], .

= for each .

It is immediate to check that is a functor and that is a natural trans-

formation. Therefore = ( ) is an insti-

tution.

An example of speci�cation in taking advantage of the higher-order features is the

speci�cation of standard models of natural numbers.
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In each model of , the carrier of has exactly two elements, thus the variables

of sort are interpreted in the set of all predicates on the carrier of sort .

Therefore, the last axiom has the e�ect of restricting the models to those satisfying the

induction principle.

Many other slightly di�erent \higher-order" extensions are possible. For instance, we can

add only �rst-order sorts (that are those of the form with all the 's in

), getting actually a logic (and the example above can still be expressed),

or we can interpret non-basic sorts in the extension of the models as the set of all

computable functions. However, other apparently good candidates cannot be expressed

through the operation. For instance, we cannot interpret non-basic sorts in

the extension of the models as the set of all expressible functions in some functional

language (e.g. some typed -calculus), nor, in particular, as the set of the interpretations

of the function symbols in the signature, because in that case the extension on models

is not natural, because the reduct functor should throw away the elements that are not

denoted.

3.2.

The de�nition of in Proposition 3.1 does not assume any relation between a

signature and its extension, nor between a model and its extensions. In particular a

signature is not required to be a subsignature of its extension, though this property is

satis�ed in most examples.

As a consequence of this generality, it is not possible to prove that the starting insti-

tution and its extension are related by morphisms, nor by maps.

But, under the more restrictive, but very reasonable, hypothesis that a signature is a

subsignature of its extension and, accordingly, that the restriction of a model extension to

that subsignature gives back the starting model, it is possible to show that the extension

of an institution is embedded by an institution morphism into that institution.

Under the hypothesis and using the notation of Proposition 3.1, let be

a natural transformation from into s.t. each is a signature morphism from

(�) into (�) in and ( ) = for all models .

Then ( ( ) ) is an institution morphism from ( )

into .

Since is a natural transformation from into , by composing it with

the functor , we get a natural transformation from into = .

Thus, the only property that has to be checked is the satisfaction condition. Let

(�) be a model and ( (�)) be a sentence.

By de�nition = ( )( ) i� ( )= ( )( ); since is an institution, by



�

EXTEND

�

E E

E E

E E

E

E

E E

�
(�)

�
(�)

�
(�)

EXT E

E

EXT

EXT

EXT

A � � � A �

M M M A �

�

; ; ;

� �

� �

�

j

0

0 0

0

0

0 0

0

0 0

0

0

0

0

0 0

0 0

0

0

I j j

j

I j

� � � �

� � � �

I � �

�

�

� � � � �

! !

�

Prop. 3.4. Sign Sign Sign

Sign

Sign Sign Sign

Sign Sign

Sign

Sign

Sign Sign

M. Cerioli and G. Reggio

Ext Sen Mod Ext

Ext

existential

Sen Mod

E E EXT EXT

Ext

set Mod E set Mod EXT Ext

set Mod E set Mod EXT

EXT EXT EXT Ext

Ext

Proof. EXT EXT EXT

Ext Ext

set Mod E set Mod EXT EXT

EXT EXT EXT

EXT

Ext Ext EXT

Ext Ext

36

the satisfaction condition for , ( )= ( )( ) i� ( )( ( ))= ,

i.e., since ( ) = for all models , i� = .

A simple example of application of this construction is the introduction of equality in

(fragments of either partial or total) �rst-order logic. In that case, if working with concrete

signatures, then the extensible ones are those where the selected equality symbol does not

appear as binary predicate, and each such signature is extended by adding the equality

as a binary predicate for each sort; otherwise, using abstract signatures, all signatures

are extensible and each one is extended by adding for each sort a binary homogeneous

predicate (determined by the �rst free index for that arity).

The models are extended by interpreting the new predicate as identity (in the partial

case this corresponds to having equality) and the signature morphisms are

simply the embeddings.

The rational behind describing institutions by means of operations on them is making

the de�nition of several frameworks tailored for particular applications modularly based

on a few, well-understood basic institutions. Thus, it is common to have several di�erent

operations, and correspondingly their arguments, for the same institution. For instance,

for the institution of �rst-order logic we have described the extension of sentences allowing

higher-order quanti�cation and the extension adding equalities.

An interesting point is, therefore, whether we can compose di�erent extensions. Indeed,

let us assume that we have the basic ingredients for two extensions on the same institu-

tion. Then it is immediate to see that, in order to sequentially perform both extensions,

we only need that one of them code signatures into signatures that can be extended by

the other one.

Let = ( =) be an institution, and be subcat-

egories of with embedding and , respectively. Moreover, let and

be functors into respectively from and . Finally, let be a natural

transformation from into and be a natural transformation

from into .

If the image of is contained into , then , , and

are correct arguments for the operation .

Since the image of is contained into , then is well

de�ned. Thus, we only have to prove that is a natural transformation from

into .

Let : � � be a signature morphism in ; then ( ): (�) (� )

is a signature morphism in , because the image of is included into .

Therefore, by gluing together the naturality diagram of for and of for ( ),

we get the naturality diagram of for , as follows:
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Notice that (�) = � for each signature � in and hence (�) =

(�) .

In most cases, even if the image of is not included in , it is possible to restrict

the extensible signatures to a subcategory of s.t. its image along is

contained in , without loosing too much interesting languages.

For instance, we can sequentially perform the extension adding equalities and that

adding functional sorts, in any order, restricting ourselves to those signatures where the

equality symbol is not used as a binary predicate and, at the same time, sorts are not

built using the symbol. The construction yields the same result for both composition

orders, as it is always the case for extensions simply adding new symbols, because union

is commutative.

4.1.

Combining the operations proposed in the previous sections we can modularly produce

quite powerful frameworks.

As in the case of composition of extensions, also for the combination of extension and

model abstraction, it is often the case that we have the basic ingredients for the operations

on the same basic institution and that we would like to perform them sequentially.

Thus, let us assume that we are able to apply to some tuple ( )

and to some tuple ( ), for the same institution . The

compatibility conditions between ( ) and ( ) to be

required in order to be able to perform both operations are very simple and intuitive.

Indeed, if we want �rst to extend sentences, since the signatures are in this way restricted

to , we only need that , and can be restricted as well, that is, that

on extensible morphisms they yield extensible morphisms, too. On the other hand, if we

want �rst to generalize models, then we need to be able to lift to work on abstract

models. At this aim, it is su�cient that preserves admissible monomorphisms, to

be able to translate the models, and commutes with , and , to get a natural

transformation.

Let = ( =) be an institution, be a family of admis-

sible morphisms, and , and be a backward extension on . Moreover,

let be a subcategory of with embedding , let be a functor from

into and let be a natural transformation from into .
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1 The family of all admissible morphisms belonging to , denoted by , is

a family of admissible morphisms for .

Moreover, if ( ), ( ) and ( ) belong to for all admissible

monomorphisms and signature morphisms in , then , and ,

de�ned by ( ) = ( ), ( ) = ( ) and ( ) =

( ) for all and all in , is a backward extension for

and .

2 If is contained into the morphisms of and both preserves admis-

sible monomorphisms and commutes with , and , that is

| ( ( ) ( )) = ( ( )),

| ( ( ) ( )) = ( ( )) and

| ( ( ) ( )) = ( ( )),

then , de�ned by ( : � � ) = ( ) ( ) is a natural

extension from into .

Moreover if the hypothesis of both points are satis�ed, then the applications of

and in the two orders yield the same result, that is

( ( ) )

=

( ( ) )

1 Since is a subcategory of , it is closed under morphism compositions and

identities. Therefore, as is closed under morphism compositions and identities

too, so is and hence it is a family of admissible morphisms for .

Moreover, if ( ), ( ) and ( ) belong to for all admissible

morphisms and signature morphisms in , then , and are

well de�ned and inherit from , and the satisfaction of the commutativity

properties required for backward extensions.

2 Since preserves admissible morphisms, each is properly de�ned.

Let us see that is natural. Let us consider a signature morphism :� � in

and a model : � � in (� ) = ( (� )).

Then, by direct application of the de�nitions, we have:

( ( )( )) =

( ( ( ))( ) ( ) ) =

( ( ))( ) ( ( )) =

( ( ( )))( ( )) ( ( )) =

( ( ( ) ( )))( ( )) ( ( ) ( )) =

=

( ( ))( ( ) ( ) ) =

( ( ))( ( ))
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Let us assume, now, that both hypothesis are satis�ed. Then, by de�nition, we have:

( ( ) ) =

(( = ) ) =

( = ) =

where (�) consists of all pairs : � � with an object of (� ) =

(� ) and an admissible morphism in . But, as is contained into the

signature morphisms in , = and hence (�) = (�).

Therefore, = . Moreover, = is de�ned by:

: � � = i� ( )( ) = i� ( ( )( ))= .

Analogously,

( ( ) ) =

(( = ) ) =

( = ) =

Moreover, = is de�ned by:

: � � = i� ( )= i�

( ) ( ) = i� ( ( ))( ( ))=

Thus, since ( ( )( )) = ( ( ))( ( )) by naturality of , we

have that = and = are equal. Therefore, = .

4.2.

Let us see, as a motivating example, the application of the sentence extension operation

to the institution of very-abstract data type, built generalizing the models of �rst-order

logic.

Here, to get a more intuitive and readable result, we are using an algebraic metalan-

guage presenting a signature, that is intended to represent its abstract coun-

terpart. This corresponds to having a translating each concrete symbol into an

abstract one, for instance associating each new sort with ( ) in the order de�ned by

the declaration, starting from the �rst free index (that is the cardinality of the sort set of

the source signature plus 1) and analogously proceeding for operations and predicates.

The idea is to extend the institution , introduced in Applica-

tion 2.16, with appropriate formulae for expressing requirements on the (extra part of

the) signatures of the very abstract models. Obviously, there are di�erent ways to choose

these requirements. Here we present a rather general and powerful choice, that we think

appropriate for many reasonable applications. However, at the same time, we are intro-

ducing only those constructs needed by the speci�cation examples presented here. Our

idea is to give the possibility to express both purely syntactic conditions on the extra part

of the models (e.g. requiring the (non) existence of an operation or a predicate whose

functionality satis�es some conditions) but also semantic one (e.g. requiring the (non)

existence of an operation or a predicate whose interpretation satis�es some conditions,

as commutativity). The practice of using very abstract speci�cations of abstract data
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types (shortly VAS) will show whether this choice is appropriate, possibly suggesting

improvements and modi�cations.

Then the institution for �rst-order VAS is built by applying the operation to

the institution and the underlying idea is to take as new formulae on a signature �

the formulae of classical �rst-order logic with equality on the signature enriching � by

sorts, operations and predicates for handling the syntactic elements on � (e.g.: sorts,

operations, predicates, variables, terms, formulae, ) and their interpretations. Let us

now list the parameters for .

The extendible signatures. We have to restrict the admissible signature morphisms. In-

deed, having formulae stating the (non) existence and the (dis)equality of the signature

symbols, non-injective or non-surjective signature morphisms may do not preserve or re-

ect validity. For example, let us consider a non-injective signature morphism :� �

between signatures having only sorts and no operations nor predicates, � = ( )

and � = ( ), de�ned in the only possible way: ( ) = = ( ).

Then, let be the formula : = , where the type is interpreted in all

extensions of models as the set of sorts of their signature. Now, is satis�ed by any � -

model of the form , that is the translation along of the � -model ,

while its translation along does not hold for .

If, vice versa, we consider a non-surjective morphism :� � , de�ned by ( ) =

, then the formula : = holds for each such , but its transla-

tion along does not hold for .

Therefore we can only extend signature isomorphisms.

Extending signatures. We want to add to each signature sorts representing the elements

of the signature itself and functions and predicates to manipulate them. In order to get

terms of such extra sorts as close as possible to their \meta" counterparts, we are using

an algebraic speci�cation language with heavy overloading, mix�x notation and silent

operations, but it is intended to represent an abstract signature, so that the following

axioms are unambiguous. Di�erent speci�cation languages could be adopted in order to

get a clearer distinction between the levels or, vice versa, to let the users forget that there

are two levels.

Let : be the functor de�ned by:

for each signature � = ( ) in , let us de�ne
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is the obvious extension leaving the new symbols una�ected,

that is ( )( ) = ( ) if � or is a constant of type , or ,

otherwise ( )( ) = .

It is easy to see that is a functor.

Extending models. For all � = ( ) the function : (�)

( (�)) is de�ned interpreting each new symbol as its meta-level counterpart.

Thus, for each : � � , where � = ( ), let us denote by ( ) the

(standard) term algebra on the following subsignature of (�):

sort sort seq sort seq

opn term seq term

Var var

var seq

var var seq var seq

var term

term seq

term term seq term seq

pred term seq atom

term term atom

atom formula

formula formula

formula formula formula

var seq sort formula formula

Holds formula

HasSort term sort

HaveSorts term seq sort seq

Basic opn

Basic-gen term

sort sort seq atom formula opn pred var var seq term term seq

sort seq

sort sort seq sort seq

opn term seq term

Var var

var seq

var var seq var seq

var term
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term term seq term seq
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term term atom

atom formula

formula formula
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var seq sort formula formula
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and the family of variables :

= = = = otherwise

Then ( ) = , where

= for all

= for all

= for all

= ( ) otherwise

( ) = for all

( ) = for all

( ) = for all

= otherwise

( ) i� (� ) and =

( ) i� ( ( ) )

is inductively de�ned by:

{ ( ) i� =

{ ( ) i� ( ) and ( )

( ) i�

= ( ( ) )

Since the morphisms in are isomorphisms, obviously is a natural transfor-

mation.

Therefore, we can apply the operation and get an institution.

= ( )

where = ( ), is the speci�cation of the

speci�cations.

Let us now see some examples of speci�cations in the institution , motivating our

choice of sentence extension.

We specify the fundamental requirements on a module for handling

labelled transition trees without completely �xing the interface. The designer in charge

of realizing such module is allowed to devise a nice choice of extra constructors for trees,

but it cannot add operations modifying parts of a tree, so that it is possible to give

implementations where repeated common subtrees are shared.
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For example the operation 1 : building unary trees and de�ned

by 1 ( ) = ( & �) can be added to the interface, while the following

( ), substituting for each -labelled subtree of , cannot:

:

( ( ) ) = ( ( ))

:

(� ) = �

( & ) = & ( )

= ( & ) = & ( )

Another application of very-abstract speci�cation, is the description of properties re-

quired on the local structure of actual parameters for parameterized speci�cations.

In most speci�cation languages constructs are provided to describe

parameterized speci�cations, that are (partial) functions yielding a speci�cation, that

is a class of models, for any given value of the parameter(s) speci�cation(s). The type

of the expected argument is usually described by a speci�cation, too and an actual

parameter is acceptable if it is a subclass of the formal parameter. Thus, the heading of

a parameterized speci�cation has form ( : ) = and an instantiation ( )

is correct if ( ) ( ).

The speci�cation provides the names for the minimal structure required from the

parameter, in order to be able to de�ne the body of the parameterized speci�cation.

For instance let us consider the following trivial example of a list speci�cation, parame-

terized on the type of the list elements. Thus has one sort, , no operations, no

predicates and no axioms, and a speci�cation of list with only constructors is as follows.

Now, we intuitively could instantiate on a speci�cation of integer numbers in order

to get lists of integers, but the names introduced by , like and �, should be

unused in the actual parameter in order to avoid name clashes.

While many speci�cation languages provide means to apply a parameterized speci�cation
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to arguments on signatures di�erent from that of the formal parameter, by using so

called , the problem of preventing name clashes is usually left to side

conditions, but cannot be expressed within the logic of the speci�cation itself.

Instead, using �rst-order very abstract speci�cations we have a powerful tool to charac-

terize the admissible actual parameters of parameterized algebraic speci�cations.

For example, in the case of , we can substitute the parameter speci�cation

for and be ensured that no name clashes can happen during correct instantiations.

Notice that the symbols � and : : can be overloaded, but, as does not appear in

the parameter signature, they cannot be confused with the same notation introduced by

.

A more sophisticated example is the following speci�cation, implementing sets using list.

where the parameter speci�cation , to be consistent with the axioms of ,

cannot have operations nor predicates distinguishing lists on the basis of their length or

of the order of their elements.

The axioms of prevent to instantiate with actual parameters

which can cause inconsistencies, as a speci�cation of lists with predicates checking if a

list has length (a natural number).

Let us �nally see another application of very-abstract speci�cations, where it is useful,

not to say necessary, to be able to pick up an operation, possibly in the non-�xed part
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of a speci�cation, for each sort. In order to achieve this result, we combine very-abstract

speci�cations with the higher-order extension. Thus, we get a carrier and

any constant in it represents a parameterized family of operations in the signature.

The motivating example of the construction we are going to introduce

is the .

In her recent work on formal modelization of actor systems, C. Talcott has presented a

class of structures, called , see (Talcott, 1996), by giving their

relevant properties. Such structures can be characterized as the models of a �rst-order

very abstract speci�cation (with term-generation constraints), but not of a �rst-order

(with term-generation constraints) speci�cation.

The relevant point is that the actors in one system use values which can be completely

di�erent by those used in another system and such values can be built also using the

\actor names". Furthermore, on any sort of such structures a renaming operation is

de�ned, which given a bijective mapping over the actor names renames each occurrence

of an actor name in an element of that sort accordingly with . For example, if the values

are lists of integers and of actor names, then the application of such renaming on a

bijective mapping and the following list 1 2 0, where and are actor names,

will produce 1 ( ) 2 ( ) 0.

Thus we want to be able to express the following points:

| for each sort we have a function ;

| the typing of each such is

| the semantics of each such is (mutually) inductively de�ned by a set of

rules, one for each operation : with = , of the form

( ( )) = ( ( ) ( ))

Moreover, we have the inductive basis ( ) = ( ).

By a very abstract speci�cation we can express all the above requirements, but the �rst.

In order to be able to denote a sort indexed family of functions we combine the very

abstract speci�cations with the sentence extension introducing higher-order sorts.

Let us consider the institution

= ( )

where, with a slight notational abuse, we denote by its restriction to .

Since the sets of extra symbols introduced by the two sentence extensions are disjoint,

we can sequentially perform both applications starting from the signatures that can be

extended in both senses (see e.g. Proposition 3.4).

Now, without �xing the values used by the actors, nor the signatures used to manip-

ulate them, we can qualify \Abstract Actor Structures" by means of a speci�cation in

.

Let us see the more signi�cant part of such speci�cation.
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entity

identity

ESen EMod

entity signature

OP PR

ent id lab

id ent OP

ent lab ent PR

name state actor actor

name value message message

mapping name name

Rename sort opn

Rename mapping term seq term seq

sort Arity Rename mapping

sort Type Rename

Holds Var mapping Var name Rename name Var Var Var Var

mapping Rename

sort mapping term term seq

HasSort Rename Rename Rename

opn term seq HaveSorts Arity

Holds Var mapping Rename Type Var Rename Var
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4.3.

Entity algebras, where stands for processes, either simple or structured (i.e. sev-

eral processes interacting together), see (Reggio, 1991), provide a formal framework for

the process speci�cation. Each entity has associated an in such a way that it is

possible to retrieve its entity subcomponents depending on their identities and its concur-

rent/distributed structure. Moreover, such structure can be graphically represented in a

way that makes the subcomponent relationships and the subcomponent sharing explicit.

This latter feature is very roughly based on the idea that \the concurrent/distributed

structure of processes in an entity algebra is given by the algebraic structure of such alge-

bra" (also supported by J. Meseguer (Meseguer, 1992)). Thus, a speci�cation expressing

abstract requirements on the concurrent/distributed structure of some processes mod-

elled by entity algebras will naturally be a very abstract speci�cation, i.e. having models

with di�erent signatures, i.e. modelling processes with di�erent concurrent/distributed

structures.

Technically, we have the basic institution of �rst-order entity speci�cations

= ( = )

where

| is a category whose objects ( ) are pairs � = (� ), where

� = ( ) is a many-sorted �rst-order signature (an object of ) and

such that for each � there exist:

{ some sorts ( ), ( ), ( ) (entities of type , their identities and the

labels of their transitions respectively, is the sort of their bodies);

{ an operation : : ( ) ( ) (entity constructor, which taken a body

and an identity returns an entity) and

{ a predicate : ( ) ( ) ( ) (describing the activity of the

entities by means of labelled transitions);
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ESen FOESen

EMod FOEMod

EMod FOEMod

EA EA

COMPS Comps

COMPS

Comps

=

{ basic signature

{ we have at least entities of sort

{ if a system cannot perform any activity, then

{ each of its subcomponents cannot perform any activity

( )

The precise de�nition of is too complex to be accommodate within an example. But

intuitively an algebra represents a distributed structure, and hence is an acceptable entity algebra, i�

identities are unique within each entity, are preserved by the transitions and each entity is structured,

that is if the corresponding carriers are basically term-generated.
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and whose morphisms are those of preserving entity sorts and the related

auxiliary sorts, operations and predicates.

| is the restriction of to .

| ( �) is the subcategory of ( �), whose objects are the entity algebras

and ( : � � ) = ( : � � ), de�ned in (Reggio, 1991) .

| = = .

The conditional speci�cations in under reasonable conditions admit initial models,

and so they can be used to specify the design of some particular concurrent system,

because in such cases the structure of the system is fully determined.

For requirement speci�cations, instead, we use the very abstract speci�cations of the

institution given, by using the two operations and , as follows.

First, we de�ne

= ( )

where includes the elements of which are also morphisms in ; ,

, are the restrictions of , , to and (in (Reggio,

1991) it is shown that such restrictions are well-de�ned, i.e. they return signatures and

morphisms in ); then

= ( )

where is the subcategory of s.t. it has the same objects and whose only

morphisms are the isomorphisms. adds to an entity signature some predicates

for testing which are the subcomponents of the entities (as in the following

example) and is de�ned accordingly.

We specify the class of all structured processes where deadlocks never

happen without making assumptions on their concurrent structure (i.e. without \over

speci�cation") by a very abstract entity speci�cation.

(recall that holds whenever is a subcomponent of ).
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