
Chapter 3

From total equational to

partial �rst order

Maura Cerioli, Till Mossakowski and Horst Reichel

The focus of this Chapter is the incremental presentation of partial �rst-

order logic, seen as a powerfull framework where the speci�cation of most

data types can be directly represented in the most natural way. Both model

theory and logical deduction are described in full detail.

Alternatives to partiality, like (variants of) error algebras and order-

sortedness are also discussed, showing their uses and limitations.

Moreover, both the total and the partial (positive) conditional fragment

is investigated in detail, and in particular the existence of initial (free)

objects for such restricted logical paradigms is proved.

Some more powerful algebraic frameworks are sketched at the end.

(Preliminary version of the chapter for the forthcoming IFIP state of the

art book)

Equational speci�cations introduced in last Chapter, are a powerful tool

to represent the most common data type used in programming languages

and their semantics. Indeed, Bergstra and Tucker have shown in a series

of papers (see [16] for a complete exposition of results) that a data type is

semicomputable if and only if it is (isomorphic to) the initial model of a

�nite set of equations over a �nite set of symbols.

However this result has two main limitations.

The �rst point is that initial approach is appropriate only if the speci-

fying process of the data type has been completed, because it de�nes one

particular realization (up to isomorphism), instead of a class of possible

1

�

nat

; =

=

�

!

!

! �

� =

:

:

:

k

k n

k

k n

Example 3.0.1

sig

sorts

opns

E

E

f : : :

f k

k

x

x

k

x

CHAPTER 3. PARTIAL FIRST-ORDER

Nat

nat nat

zero nat

succ nat nat

nat nat

nat

nat

succ zero succ zero

succ zero

succ zero succ

We want to specify a data type having sorts for the nat-

ural numbers and for their quotient identifying all odd numbers, with the

usual constructors for the natural numbers and an operation associating

each number with its equivalence class. Thus the signature of the type should

be the following.

Let us see whether we can give a �nite set of equations on this signature

in a way that the initial model of such a speci�cation is (isomorphic to) our

intended data type.

First of all note that our set cannot contain any non-trivial equation

of sort . Indeed, using to denote the iterative application of any

function a number of times, an equation of sort can have (up to

symmetry) four forms.

that is either trivial or not valid in our in-

tended model, as the term is interpreted by the number

.

that cannot be satis�ed by a non-trivial model,

because the left-hand side is interpreted as a constant and the right-

hand side changes its value depending on the interpretation of ; in

particular in our intended model it does not hold if is substituted

for .

2

models, still to be re�ned. In particular if the data type has partial func-

tions, the treatment for the \erroneous" elements must be already �xed in

all details.

The second, more problematic, point is that, since the expressive power

of the logic used to axiomatize the data types is so poor, quite often it is

not possible to de�ne the intended data type through its abstract prop-

erties, but it is necessary to describe one of its possible implementations.

Technically speaking, in order to de�ne a data type, auxiliary types and

operators can be needed, drastically decreasing the abstractness level of

the speci�cation and reducing its readability and naturalness. Consider,

indeed, the following example, showing an arti�cial but simple data type,

that cannot be �nitary equationally speci�ed. Other, far more interesting,

data types, like the algebra of regular sets, cannot be expressed by a �nite

set of equations as well, but the proof that more powerful logics are needed

is made too complex by their reacher structure..

( )

( ) = ( )

( )

( ) = ( )

+1



�

�

!

!

= �

:

:

+1

2 +1 2 +1

2 +1

�

� �

� �

�

� �

�

�

�

� �

� �

� �

�

�

spec enrich by

sorts

opns

k n

k n

k n

k n

k

n n

n

k

n

k n

k n

k n

k

Odd

Nat

bool

true,false bool

odd nat bool

x x

x

x y x y

x k y

=

E =

k n k n

k n

x

k

k

x

x x

x x

k n

x x

x y x y

k x n k y

E

:

k n E

3

( ) = ( )

0

( ) = ( )

0 + 1

( ( )) = ( ( ))

=

( ( )) = ( ( ))

( ( ))

( ( )) ( ( ))

( ( ))

( ( )) =

( ( )) 0 1

( ( )) = ( ( ))

0 1

( ( )) = ( ( ))

+ 2 + 2

( ( )) = ( ( ))

2 +1 2 +1

( ( ))

�

succ succ

succ succ

nat

nat

nat

succ zero succ zero

succ zero succ

succ zero

succ succ zero

succ zero

succ zero

succ

succ succ

succ succ

succ zero succ zero

succ zero

Nat

that is either trivial or does not hold in our intended

model if is substituted for .

with and distinct variables, that does not hold if

is substituted for and for

Let us analize, analogously, the non-trivial equalities of sort to see if

they can belong to . Since terms of sort are given by the application

of nat to terms of sort , we have again four cases.

nat nat that is not valid in our intended

model if or is even (unless , in which case is trivial), while

it is valid whenever both and are odd.

nat nat that is not valid in our intended model,

because nat is interpreted as a constant (either ,

if is even, or the class of all odd numbers), while the value of

nat changes, and in particular nat and

nat have di�erent interpretations, the classes of

an even and an odd number respectively, so nat

nat cannot be true both if or if is substituted for .

nat nat that is either trivial or does not hold in

our intended model, because if or is even it is not satis�ed sub-

stituting for , else it is not satis�ed substituting for .

nat nat with and distinct variables, that does

not hold if is substituted for and for .

Therefore all non trivial equations in must have the form

nat nat

Any such equation can only identify the result of the interpretation of nat

on the two odd numbers and . Thus, if is �nite, only a �nite

number of identities between terms of the form nat can

be inferred.

Therefore there is not a �nite equational speci�cation of the required

data type using the signature . However, if we enrich the signature,

we can de�ne the data type, using the extra symbols. Indeed, let us consider

the following speci�cation.

�

�

� � �

� � !

true

axioms

nat nat nat

; x; y x

; x; y y

x x

x x ; ; x

CHAPTER 3. PARTIAL FIRST-ORDER

:

( ) =

( ) =

( ) =

( ( )) =

( ( ( ))) = ( )

( ) = ( ( ) ( ( )) ( ))

are

inside

hidden sorts and operations

implementation

directly

cond bool nat nat nat

cond true

cond false

odd zero false

odd succ zero true

odd succ succ odd

cond odd succ zero

4

Roughly speaking equational speci�cations are su�ciently expressive to ini-

tially de�ne any semicomputable (total) data type, because recursive func-

tions can be described using recursion and conditional choice. But recursion

is immediately embedded in the equational framework, as recursive de�ni-

tions given by equalities, and Booleans and conditional choice can be

equationally implemented, as in the previous example. Thus the intuition

here is that if the logic used in speci�cations is poor, for instance equational,

complex data types can be expressed as well, by implementing the

data type a \Boolean" sort with operations to represent logical connectives

and translating any assertion at the metalevel into an equation between

the Boolean term corresponding to and the constant value .

Since all logical connectives can be equationally described, all theories

of predicate calculus (without quanti�ers) can be translated into an equa-

tional speci�cation with , that is, adding auxil-

iary symbols to the data type, that should be not exported to the users of

the speci�cation. However the resulting speci�cation lacks of abstraction,

because what logically is a statement on the data type has been imple-

mented by an equation between elements of the data type itself. In other

words the equational speci�cation is actually an of the nat-

ural axiomatic description of the data type. This in particular implies that

we have to �x the data type of Booleans to have just two elements. Such

a thing cannot be done, though, within positive conditional logics. On the

other hand, positive conditional logics have a simpler proof theory.

This Chapter will be devoted to introduce an algebraic framework suf-

�ciently expressive in order to represents the most common data

types. As we have seen, the �rst obstacle to overrun is the limitation of

the formulas that can be used to specify the data types. Thus we need a

richer logic, but not too rich. Indeed, we want to keep the logical language

easy to read and to implement, in order to have tools for rapid prototyping

of the data types. Moreover, we do not want to loose the initial semantic

approach. Thus, our formulas should be able to describe only classes of

algebras having an initial object.

A far more challenging problem is the speci�cation of partial functions.

Indeed, many data types in practice have partial operations, whose result

on some input is \erroneous". Sometimes such errors can be avoided simply



� � �

� �

::k

::k

x x ; ; x

x x :

nat nat nat

nat nat

3.1 Conditional axioms

type array of

var integer

3.1. CONDITIONAL AXIOMS

my array T

i

A my array

A i i

i

cond

cond odd succ zero

succ zero odd

5

using a better typing, as it is the case, in a programming language with

declarations

= [1 ]

: ;

: ;

for expressions of the form [ ] if assumes values outside the array range,

but that could be forbidden declaring of type 1 .

Even if a better typing is not possible (or not convenient), most errors

can be statically detected and hence axioms to identify them to some \error

element", representing an error message, can be given.

But, whenever a partial recursive function that has no recursive domain

has to be speci�ed, it is obviously not possible to detect the errors intro-

duced by its application. Hence there does not exist a (total) speci�cation

of the function identifying all its erroneous applications to some \error".

Note that partial recursive functions without recursive domain are needed,

for instance, whenever describing the semantics of (universal) programming

languages. Hence any algebraic approach has to deal with them in some

way, or can be used only to describe the data types of a program but not

to verify properties of the programs using them.

As usual, the easier the theory, the harder its use. Thus in the to-

tal equational framework, having nice and intuitive semantics and e�cient

rewriting techniques, speci�cations of complex data types are often hard

to �nd (if any). On the other hand making the framework powerful can

make its theory too complex and hence compromise its understanding by

the users. Here we will incrementally introduce a very expressive partial

framework, showing how and when its features are needed or simply con-

venient, so that users can restrict themselves to some subtheory of it, if

dealing with su�ciently easy problems.

Following the guideline of Example 3.0.1, we need a way to impose equations

only to those values that satisfy a condition, implemented in that example

by introducing the operation , corresponding to a conditional choice,

and then imposing the axiom

( ) = ( ( ) ( ( )) ( ))

that corresponds, logically, to requiring

( ) = ( ( )) if ( )

1

1

�

n

n

i

i

^ ^ )

)

�

�

�

0 0 0

0

0

� � � �

�

�

De�nition 3.1.1

Example 3.1.2

CHAPTER 3. PARTIAL FIRST-ORDER

odd

succ zero succ succ

nat

odd

odd

t t : : : t t t t

t t

t t

� x x x

=

� x

S; ;

S;

S

S; ; S

X T X

equational equational conditional

nat nat nat nat

and

nat

predicates

A is a triple where

is a many-sorted signature;

is an -sorted family ( )

Given a �rst-order signature , the -terms on an -sorted

family of variables are the many-sorted term algebra .

A reasonable signature for the Example 3.0.1, then is the

following.

6

Thus we move from to , or simply con-

ditional, speci�cations. Therefore in the following the axioms will have the

form

= = =

that is satis�ed by a valuation if the consequence = is satis�ed whenever

all the premises = are satis�ed and holds in a model i� it is satis�ed

by all valuations in that model (see De�nition 2.7.1 for the formal details).

Although, as shown in [16], conditional speci�cations, as well as equa-

tional ones, need hiding sorts and operations to de�ne all semicomputable

total data types, they are strictly more expressive than equational axioms,

because the data type introduced in Example 3.0.1, that cannot be axiom-

atized be a �nite set of equations on its signature, can be easily de�ned by

the following conditional axiom

( ) = ( ( )) ( ( ( ))) = ( )

But note that the above speci�cation works, because all even number are

distinct from the odd ones. Indeed, let us consider the same problem, but

with the quotient identifying all odd numbers 0. Then the axiom

is uncorrect, because if the classes of 0 and 1 coincide instantiating

on 0 we identify all integers.

The point is that the informal speci�cation of is based on the

distinction between odd and even numbers, but our signature does not

have syntactical meaning to express this concept. Thus, although using

conditional axioms we actually enrich the expressive power of our logic, the

logic we get is still too poor, because the atoms we can use to build axioms

are only equations, while we would need symbols to state that a number is

even or odd. Of course we can always use the same trick, implementing a

Boolean sort with a Boolean function, but it is much more clear to add

a facility to our speci�cation framework, providing symbols for .

�rst-order signature � ( 
 �)

( 
)

� predicate symbols

� = ( 
 �) �

( )



P

�

1

1

=

=

n

n

i

nat

�

! �

Nat

� = �

:

:

1

1 1 1

�

�

De�nition 3.1.3

P

n A s s

n A s s n B

n i s

A

3.1. CONDITIONAL AXIOMS

Nat Nat

nat

nat nat

is odd nat

sig enrich by

sorts

opns

preds

�

� � � � � � 2 j j � � � � � j j

�!

2 2 �

� � � � 2 2j j

2

2 �!

S; ;

S; A

P s s P A A

P A

A B A

B

h A B

a ; : : : ; a P h a ; : : : ; h a P P s

s a A i ; : : : ; n

C I C I C

A C I A

A S X

T X A

T X

A

The signature completely captures our intuition that we want to

enrich the natural numbers by the new sort of their quotient and that to

describe the equivalence relation we discriminate odd from even numbers

and hence we need a symbol stating whether a number is odd.

A -structure consists of

an many-sorted algebra , called the

;

for each a subset of ,

representing the of in , that is the tuples of elements on

which the predicate is true.

Given two -structures and , a from

into is a truth preserving homomorphism of many-sorted algebras between

the underlying many-sorted algebras, that is a homomorphism

s.t. if , then for all

and all for .

Let be a class of -structures. A -structure is in i�

and for each a unique homomorphism of -structures

exists.

Given a -structure and an -sorted family of variables ,

and for in are, respectively, variable

valuations and term evaluations for in the many-sorted algebra un-

derlying .

larger

richer

7

�

In the rest of this section, let � = ( 
 �) be a �rst-order signature.

In each �-structure predicate symbols are interpreted by their truth set.

�

( 
) underlying many-sorted

algebra

: �

extent

� homomorphism of �-structures

:

( ) ( ( ) ( )) :

� = 1

� � initial

� ! :

� variable

valuations term evaluations ( )

( )

Notice the di�erence between enriching a signature by a Boolean sort and

some operations, as in the equational presentation of Example 3.0.1, and by

predicates. Indeed, in the former case the models are than the models

we are interested in, in the sense that sets and functions have been added to

their structure. Instead, in the latter the models are , because they

are the same algebras, as collections of sets and functions, but the language

we use to handle them is more expressive (and correspondingly we need

now to know how to interpret in them some more condition). Thus, for

instance, we have the same number of elements, but we know each element

better and are, hence, able to state the (un)truth of some property on them.

N

eq

�

�

�

nat

�

�

�

Odd

Nat

eq

eq

eq

=

eq

p

p

p

=

j j

j j [ f g

j j f g

j j

j j [ f g

eq

eq

eq

eq

eq

eq

eq

eq

p

p

CHAPTER 3. PARTIAL FIRST-ORDER

T; F

T

F

n n

n;m n m

n

n; k n k

;

b; n;m

n; b T

m;

n

F; k n k

T;

n n

nat

nat

bool

zero

true

false

succ

plus

cond

odd

nat

nat

zero

succ

spec N

Carriers

N N

N N

N

Functions

N

N

N

N

N

N

N

N

spec N

Carriers

N N

N N

Functions

N

N

=

=

= 2 1

=

= 0

=

=

( ) = + 1

( ) = +

( ) =

if there is s.t. = 2

1 otherwise

( ) =

if =

otherwise

( ) =

if there is s.t. = 2

otherwise

=

=

= 2 1

= 0

( ) = + 1

8

This distinction has an important implication for proof theory. Indeed,

with positive conditional axioms and predicates, we cannot talk about false-

hood of predicates. The approach of enriching a signature by a Boolean

sort and treating predicates as operations to this sort does not have this

restriction. But to ensure that the Boolean sort indeed has just two el-

ements, a more complex (�rst-order) axiom is needed. Thus the simpler

proof theory of positive conditional axioms cannot be used here.

Another aspect is the easy speci�cation of inductively de�ned relations

using initial semantics (or initial constraints). This is possible only with

the predicate approach. Note that initial constraints are a second-order

principle, so proof theory here gets even more complex, since an induction

principle is needed.

Consider for instance once again the Example 3.0.1. Then a model of

the speci�cation is the algebra

and consists of the algebra we wanted, that is its � -reduct, plus a

set and a bunch of functions. Instead, using predicates we get the �rst-order

structure



�

�

nat

0 0

0 0

p

p

p

i

f j 9 2 g

plus

is odd

N

N

Predicates

N

N

n;m n m

n

n; k n k

;

n k n k

s n

n i s

n n i

n n A

n n n i i

� 1

1 �

1 +1

�

# #

1

#

1

#

1 +1 +1

3.1. CONDITIONAL AXIOMS

( ) = +

( ) =

if there is s.t. = 2

1 otherwise

= s.t. = 2 + 1

De�nition 3.1.4

De�nition 3.1.5

Exercise 3.1.6

f j 2j j g [ f j

� � � � � 2 2j j g

f8 ^ � � � ^ ) j 2 g

8 2 j 8

`̀

� `̀

� `̀ 2

� `̀ ^ � � � ^ ) `̀ 6`̀

h i

h i

S; ; X

S X

At ;X t t t; t T X P t ; : : : ; t

P s s t T X i ; : : : ; n

X

Cond ;X X:� � � � At ;X ; i ; : : : ; n

A A

X:' Cond ;X A X:'

� X A ' � '

� t t � t � t

� P t ; : : : ; t � t ; : : : ; � t P

� � � � � � � � �

Ax

;Ax

Mod ;Ax

Ax

9

that is exactly what we wanted, enriched by the information of which ele-

ments of its carrier are odd.

Let us now formally de�ne conditional axioms and their validity.

� ( 
 �)

�-atoms

(� ) = = ( ) ( )

: � and ( ) = 1

�-conditional axioms

(� ) = (� ) = 1 + 1

In other words conditional axioms are positive Horn-Clauses, built using

the predicates in � and the equality symbol. As for many-sorted algebras,

quanti�cation is explicit to avoid inconsistent deductions in the case of

possibly empty carriers.

� satis�es

(� ) =

satisfy

= ( ) = ( )

( ) ( ( ) ( ))

presentation � �

�

( � ) �

Let be the �rst-order signature and be an

-sorted family of variables. The set of on is

The set of on is

Given a -structure , we say that a condi-

tional axiom (denoted by ) if all valuations

for in (denoted by ), where satisfaction of a condi-

tional axiom by a valuation is de�ned by the following rules:

i�

i�

i� or there is an s.t.

A consists of a �rst-order signature and a set of -

conditional axioms and the class of models of a presentation , de-

noted by , consists of all those -structures satisfying the

axioms in .

Generalize the notion of signature morphism, reduct and

sentences translation and prove the satisfaction lemma for �rst-order struc-

tures with conditional axioms.

1

1

1

1

1

1

1

1

�

#

1 1

1 1 1 +1

i

i

n

n

n

n

n

n

n

n

n i k

i n i k

0 00 0

0 0

0 0 00 00

0 0 0 0

0 0 0 0

�

CHAPTER 3. PARTIAL FIRST-ORDER

De�nition 3.1.7

Congruence Axioms

Proper Axioms

Substitution

Cut Rule

`

` 8

` 8 )

` 8 ^ )

` 8 ^ ^ )

` 8 ^ ^ ^ )

` 8 8 2

` 8

` 8

�!j j

` 8 ^ � � � ^ ) ` 8 ^ � � � ^ )

` 8 [ ^ � � � ^ ^ ^ � � � ^ ^ ^ ^ )

S; ;

� � '

X Y S t; t ; t ; t ; t

X:t t

X:t t t t

X:t t t t t t

X:t t : : : t t f t ; : : : ; t f t ; : : : ; t

X:t t : : : t t P t ; : : : ; t P t ; : : : ; t

X:' X:'

X:'

Y:' �

� X T Y

' � ' �

X:� � � Y:� � �

X Y:� � � � � : : : � �

quasi

varieties

partial �rst-order structures

Let be a �rst-order signature. The infer-

ence system consists of the following axioms and inference rules, where we

assume that, as usual, and , possibly decorated, are atoms over , is a

conditional axiom over , is a countable set of conditional axioms over

, and are -sorted family of variables, and are -terms.

Where is the formula with each term in it translated by .

10

Most of the theory of many-sorted algebras carries over to �-structures

smoothly. In particular the de�nition of sub-structure, product, and reach-

able structure are inherited from the many-sorted case, with the predicates

de�ned in the one reasonable way (the interested reader is encouraged to

generalize the theory of the previous chapter to the case of predicates).

Moreover conditional axioms, as in the case without predicates, de�ne

and hence their model classes always admit initial models.

Since �-structures are a particular case of ,

studied afterward in the present chapter, and their theory does not intro-

duce innovative aspects, here we do not investigate the matter in details.

But we present a sound and complete calculus for conditional axioms, that

we will \borrow" for the partial case as well, and show how the calculus

itself de�nes the initial (free) model for a presentation.

� = ( 
 �)

�

� �

� �

� =

� = =

� = = =

� = = ( ) = ( )

� = = ( ) ( )

� �

�

� [ ]

: ( )

[ ]

� �

�



;� �h i

2

2

2

V

^

V

V

;

n

n n

F X:

;

;

;

n

-

@

@

@

@

@R �

�

�

�

��

h i

0 0 0

0

0 0

h i

h i

h i

0 0

0

0

3.1. CONDITIONAL AXIOMS

� �

� � �

1

1 1

�

�

( �)

� �

� �
� �

� �

�

�

�

#

#
#

�

1 2

#

1

#

2

#

1

#

2

#

1

#

2

#

1

#

2

1

` 8 j j 8

`

` 8 )

h i �

� � ` 8 )

� � � � � � 2

f j ` 8 ) � g

�

�

�!

� �!

�

� � 2

`̀ ` 8 ) �

2

2

`̀

� ` 8 )

�

Proposition 3.1.8

Proof.

Exercise 3.1.9

De�nition 3.1.10

Lemma 3.1.11

Proof.

X:' M M X:'

X:� � � X

; At ;X

F X:

T X = t t X: t t

P s s

t ; : : : ; t X: P t ; : : : ; t

t t

P

� Y F X:

= T X F X:

�

Y

�

F X:

=

T X

� = � � � At ; Y

� � X: � �

� y t t � y

� u � u u T Y

� u u � � � u � u

� u � u � u � u X: � u

� u

� P u ; : : : ; u

11

� = � =

�

As for the equational case, also here the proposed calculus is complete w.r.t.

equations without variables and the proof is done by building a reachable

model satisfying exactly the deduced equations. Therefore, since the calcu-

lus is sound too, that model is initial, satisfying the

conditions.

� � � (� )

( �)

( ) � � =

� � : �

([ ] [ ]) � � ( ) for some � �

[ ]

It is immediate to verify that is a many-sorted congruence, because

of the �rst four axioms and the Cut Rule. Moreover, because of the �fth

axiom and the Cut Rule, is well de�ned.

: ( �)

: ( ) ( �)

( �)

( )

= (� )

� � ( ) � �

( ) := ( )

( ) = [ ( )] ( )

= ( ) = ( )

[ ( )] = [ ( )] ( ) ( ) � � ( ) =

( ) � �

( )

The calculus introduced in De�nition 3.1.7 is sound,

that is if and , then .

By induction on the de�nition of .

Using the congruence axioms and the cut rule show that

for all atoms on .

no-junk & no-confusion

Let be a presentation and be a

�nite set of atoms. Then the structure has as underlying al-

gebra , where if and only if for

some , and a predicate is interpreted as

where we denote by the equivalence class in of any term .

Each valuation can be factorized (in

general not uniquely) through as follows

Moreover, for any s.t. and any atom , we have

if and only if for some .

Let us de�ne for some . Then it is easy to show

by induction on term structure that for each .

Now if is of form , then i� i�

i� i�

, for some .

If is of form , the proof is similar.

�

V

V

V

-

@

@

@

@

@R

�

�

�

�

�	

Theorem 3.1.12

Proof.

;

;

;

;

;

n n

;
n

n

i i i

n

i

i

;

T X

;

;

h i

h i

h i

h i

h i

h i

h i

0 0

0

0

h i

h i

CHAPTER 3. PARTIAL FIRST-ORDER

� �

� �

� �

� �

� �

1 1

� �
1

�

#

1

# #

#

=1

#

� �

#

( )

#

# #

� �

� �

h i

�!

�!

h i

�! �

;

8 ^ � � � ^ ) 2 ` 8 ^ � � � ^ )

�!

� � `

8 ^ � � � ^ )

` 8 ) �

` 8 [ ) `̀

h i

`̀

` 8 ) 2

�! h i

`̀

� ` 8 )

`̀ `̀

�! h i

�! �

F X: ;

� X F X: � x x

� X A

; A

� F X: A � � �

�

X

�

F X:

�

A

F X: �

Y:� � � Y:� � �

� Y F X: � ; : : : ; �

� = � �

X:� � � � � � i

; : : : ; n X: � �

X: � � � �

F X: ;

� � x x

� id �

X:� � �

� X A ; A

�

� t � t

t t X: t t

� � t t

� t � t

� X A ; A

� F X: A � � �

F X: �

Using the notation of De�nition 3.1.10.

1. is a -algebra.

2. The valuation given by satis�es

and is universal w.r.t. this property, i.e. for any valuation

into a -algebra satisfying , there exists exactly one homo-

morphism with

3. If then and are the free object in the model class

of .

12

( �) � �

: ( �) ( ) = [ ] �

:

� � �

~: ( �) ~ =

( �)

~

� = ( �)

�

1. Let �, so that � ,

and : ( �) be a valuation satisfying . By

the Substitution Rule applied with any s.t. = , �

( ) ( ) ( ). By Lemma 3.1.11, for all =

1 , � � ( ) for some � �. By the Cut Rule,

� � ( ). Again by Lemma 3.1.11, . Thus

( �) is a � � -algebra.

2. Using the notation of Lemma 3.1.11, let be de�ned by ( ) := .

Then, = ; hence Lemma 3.1.11 immediately gives us �,

as � for all atoms � (see Exercise 3.1.9).

Now let : be a valuation into a � � -algebra such that

�.

Just put ~([ ]) := ( ), which is the only possible choice. To prove

well-de�nedness, let . Then � � = . By

soundness of the calculus and �, we get = , that is,

( ) = ( ).

The homomorphic property is showed similarly.

3. If � is empty, then all algebras satisfy it. Thus, by the previous

point 2, for any valuation : into a � � -algebra , there

exists exactly one homomorphism ~: ( �) with ~ = .

That is ( �) and are the free object in the model class of �.



�

�

2

2

!

!

�

� �

a a

=

:

:

=

=

V

V

V

V

V

Action

T X

;

; ;

;

#

#

( )

� �

� � � �

� �

0 0

0

0 0

h i

h i h i

h i

Action

Act

Act

Act Act

spec

sorts

opns

axioms

3.1. CONDITIONAL AXIOMS

j 8 )

� ` 8 )

j 8 ) `̀

`̀ ` 8 )

� ` 8 )

; h i

; h i

Theorem 3.1.13

Proof.

Example 3.1.14

X:

� X: �

X: � �

� � X: � �

� id X: �

F X: ; X

F X X F X ;

I

13

The calculus proposed can deduce all conditional formulae valid in all mod-

els in a stronger form, that is with possibly less premises. We call this prop-

erty . Obviously any strongly complete system can be

made complete in the usual sense by adding a weakening rule.

� = �

� � � �

Assume � = � . By Theorem 3.1.12, �. By this

and the assumption, . By Lemma 3.1.11, � � ( ) for

some � �. But since = , � � .

If � = , ( �) is called the � � , writ-

ten ( ). If moreover = , ( ) is called the � � -

structure, written .

Let us see an incremental use of conditional speci�cations to describe a

data type as initial model of a presentation.

agents actions

transition

complementary

internal

strong completeness

The calculus is strongly complete, that is if

, then exists s.t. .

free -structure over

initial

Let us consider the problem of the de�nition of a very

primitive dynamic data type that is a subset of the CCS language. The

intuition is that there is a set of , who can perform either

individually or in cooperation with each other. The description of the pos-

sible activities of an agent at a �xed instant cannot be given by a function,

because our agents are able to perform non-deterministic choices, and is de-

�ned as a predicate stating how an agent, performing an action,

evolves in another.

The starting point is the speci�cation of the possible actions, that we as-

sume given by the speci�cation . Although such a speci�cation can

be as complex as needed by the concrete problem of concurrency we want to

describe, at this level the only interesting feature is that each action deter-

mines a action, representing the subject/object viewpoint

of two interacting agents. Moreover there is an action given by

the composition of an action with its complement, representing the abstrac-

tion of a system, composed by two agents interacting between them, that

perform a changement of its internal state without e�ects on the external

world. Here and in the sequel we use the notation to denote the place of

operands in an in�x notation.

a

b

a

b

0 0

0

j

0

j

a

a a

a a

a a �

�

0 0

0 0

0 0 0 0

=

:

:

:

:

+ =

=

+ = +

=

+

jj

jj jj

jj jj jj

6 ^ ) ) )

send receive

Agents

CHAPTER 3. PARTIAL FIRST-ORDER

spec enrich by

sorts

opns

preds

axioms

!

� !

� !

) � �

jj

jj jj

)

) ) )

) ) jj ) jj

) ^ ) ) jj ) jj

14

transition

( + )

( )+ ( )

( + ) = ( ) + ( )

hiding

=

�

:

p � p

p � p

p q q p

p q q p

a:p p

p p p q p

p p p q p q

p p q q p q p q

a:� b:� c:�

a:� c:� b:� c:� a b

c

p p q p q p q

a b p p p p p

a a b p

a

CCS Action

Agents

Agents

Act Agents Agents

|| , + Agents Agents Agents

Agents Act Agents

As an example of actions, we can think of instructions like or .

Now we add the sort with the idle agent, that cannot perform

any action, operations for pre�xing an action, parallel composition and non-

deterministic choice. The dynamic aspects of the data type are captured by

a predicate.

The axioms stating equalities between agents capture the properties of the

operations between agents, but notice that there are agents having the same

transition capability that are not identi�ed, as, for instance,

and , that both can perform either or and then are

in a situation where is the only move available.

Thus the given axioms leave open many di�erent semantics, de�ned at

a meta-level in terms of the action capabilities of agents. But more re-

strictive axioms could be imposed as well to describe more tightly the oper-

ations on agents, for example a distributive law

would impose the equivalence of terms disregarding the level where the non-

deterministic choice has taken place.

In our speci�cation there is no means to impose that an action take

place instead of another when both choices are available. This is usually

achieved by some action in an agent, so that it cannot be individu-

ally performed but is activated only by a parallel interaction with an agent

capable of its complementary action. To axiomatize this construct we must

be able to say if two actions are equal or not, in order to allow all actions

but the restricted one. Notice that the use of equality is not su�cient, be-

cause we want to express properties with inequalities in the premises like

, saying that if has the capability of making an

action and is not the action we want to hide, then the restriction of

can perform as well. This is a limit of conditional axioms: whenever the



1

�

1

2

a

b

a

b

b

�

j

0

j

0

j

0 0

� !

) ^ ) )

�

, 8 8 ) )

�

^ ) jj

^ )

15

:

requirement

design

=

:

( )

=

:

( : : = )

=

:

must do +

3.1. CONDITIONAL AXIOMS

different Act Act

must do

must do

CCS

p p a; b p p

p a p : b :p p a b

a:p a

p a q a p q a

p a q a p q a

spec enrich by

opns

axioms

spec enrich by

preds

axioms

spec enrich by

preds

axioms

axioms

axioms

CCS CCS

Agents Act Agents

different

CCS CCS

must do Agents Act

must do Agents Act

CCS CCS

must do Agents Act

must do

must do must do must do

must do must do

negation of a property is needed in the premises of an axiom, it must be in-

troduced as a new symbol and axiomatized. Equivalently, the property must

be expressed as a Boolean function, introducing Boolean sort and operations

as well, instead than as a predicate.

Thus let us assume that the speci�cation of actions is actually richer

than the �rst proposed and includes a predicate .

Then we can enrich the agent speci�cation

Negation of equality (and more in general of atomic sentences) is not

the unique kind of logical expression that we may want to express but are

not allowed by the conditional framework.

For instance, let us suppose that we want to de�ne a predicate describing

that an agent is allowed to perform, if any, just one action. Then we

basically would like to give the following speci�cation.

But this is not, nor can be reduced to a conditional speci�cation. Indeed,

it has no initial model, because the minimality of the transition predicate

con
icts with the minimality of the predicate .

The lack of initial model, as well as the need for a more powerful logic,

is quite common whenever functions and predicates are described through

their properties instead than by an algorithm computing them and this situ-

ation is unavoidable in the phase of the speci�cation of a data

type, when the implementative details are still to be �xed, and are left un-

derspeci�ed for the phase to complete. Indeed, for instance the given

description of the predicate does not depend on the structure of

the agents, that could still be changed leaving the speci�cation una�ected,

nor suggests a way to compute/verify if it holds on given agent and ac-

tion. But we can as well specify as follows the same predicate, exploiting

the information we have on the de�nition of the transition predicate.

Notice, however, that the latter speci�cation has the expected initial model,

but has models that do not satisfy the speci�cation (as some agent in

L

V

L

L V

� �!

1

2

1

Sp

Sp

eq

!

� !

!

� � !

)

� !

1

1 2 2

1 2

2 1

2 1

Example 3.1.15

CHAPTER 3. PARTIAL FIRST-ORDER

=

:

:

=

:

:

( ( ) ) = ( )

( ) = ( ( ) ) =

( ( ) )

=

:

( ( ) ) =

CCS must do

CCS

CCS

loc value

Stores

store

retrieve store loc value

spec

sorts

opns

spec enrich by

sorts

opns

axioms

spec enrich by

opns

axioms

Sp

; : : :

T; F

eq : : :

Sp ; Sp

s;x; v ; x; v s; x; v

eq x; y F s; x;v ; y; v

s; y; v ; x; v

s; x;v ; x v

loc bool

bool

loc loc bool

Stores

store

empty store

update store loc value store

update update update

update update

update update

Stores Stores

retrieve store loc value

retrieve update

16

Let us see one more example of (initial) speci�cation of data types, that

is the speci�cation of �nite maps. Since �nite maps are the basis for the

abstract description of stores and memories, this data type is, obviously,

crucial for the description of each imperative data type.

store

:

them has more transitions than those strictly required by the speci�cation

) and moreover the de�nition of the predicate is correct only

for this description of the agents, but should be updated if, for instance, a

new combinator would be added for agents. Therefore, is much more


exible and can be used during the requirement phase, while can be

adopted as a solution only for the design phase.

Let us assume given speci�cations of locations ( , with

main sort ) and values ( , with main sort ) for a given type

of our imperative language and de�ne the speci�cation of the data

type. Since we want to update a store introducing a new value at a given

location, we need the capability of looking whether two locations are equal

or not, as in Example 3.1.14. Therefore we assume that a Boolean function

representing equality is implemented in our speci�cation of locations.

Using , we can impose the extensional equality on stores, requiring that

the order of updates of di�erent locations is immaterial and that only the

last update for each variable is recorded.

The initial model of has the intended stores as elements of sort

, but no tools to retrieve the stored values. In order to introduce an

operation , we should �rst �x our mind

about the result of retrieving a value from a location that has not been

initialized in that store. Indeed if we simply give the speci�cation



2

V

s; x s

x s

; x

Sp

; x

Bibliographical notes

3.1. CONDITIONAL AXIOMS

retrieve

empty

value

Stores

retrieve empty

retrieve empty

17

( )

=

( )

( )

partial

�

After proposing the equational speci�cation of abstract data types, the need

for conditional axioms was soonly recognized [91]. Conditional axioms with

predicates (but without full equality) are also used in logic programming

and Prolog [62]. A combination of both points of view, that is conditional

axioms with equations predicates, is done in the Eqlog language [42],

see also [82].

then in its initial model the application to stores where

has never been updated, for instance if , cannot be reduced to

a primitive value, but is a new element of sort . This is a patent

violation of any elementary principle of modularity and unfortunately does

not depend on the initial approach or the particular speci�cation.

Indeed, in all (total) models of , a value for (the interpretation

of) must be supplied, that logically should represent an

error. Hence if de�nes only \correct" values, either a new \error"

value is introduced, violating the modularity principle, or an arbitrary cor-

rect value is given as result of , against the logic of the

problem. A (quite unsatisfactory) solution is requiring that all sorts of all

speci�cations provide an \error", so that when modularly de�ning a function

on already speci�ed data types, if that function is uncorrect on some input,

the result can be assigned to the \error" element. But this solution has two

main limitations. Indeed, possibly simple and perfectly correct speci�cations

have to be made far more complex, by the introduction of error elements,

that can appear as argument of the speci�cation operators, requiring axioms

for error propagation and messing up with the axioms for \correct" values.

Moreover if the errors are provided by the basic speci�cations, then they

are classi�ed depending on the needs of the original speci�cations; hence

they do not convey any distinction among di�erent errors due to the newly

introduced operators. Therefore, the di�erent origins of errors get confused

and it is a complex task to de�ne a sensible system of \error messages" for

the user.

The point is that stores are inherently functions and hence the

speci�cation of their application should be partial as well. In the following

sections we will see how, relaxing the de�nition of -structure by allowing

the interpretation of some function symbols to be partial, the speci�cation

of most partial data types is simpli�ed.

and

P

P P

�

�

�

�

P

P

f

f f

3.2 Partial data types

CHAPTER 3. PARTIAL FIRST-ORDER

errors

exceptions non-terminating operations

S. Feferman

transition typing

false

stacks empty

push pop top

lists

search trees

limited bounded in-

teger successor predecessor

stacks push

stack

18

The need for a systematic treatment of partial operations

is clear from practice. One must be able to handle and

, and account for . There

are several approaches to deal with these in literature, none of

which appears to be fully satisfactory. [34]

Partial operations, besides being a useful tool to represent not yet com-

pletely speci�ed functions during the design re�nement process, are needed

to represent partial recursive functions. In the practice partiality arises

from situations that can be roughly parted in three categories:

a semidecidable predicate has to be speci�ed, like in concurrency

theory the relation on processes, or the relation

for higher-order languages. Thus, representing as a Boolean func-

tion , it is possible to (recursively) axiomatize the truth, but not

whether yields on some inputs and hence is partial (or its

image is larger than the usual Boolean values set);

a partial recursive function with non-recursive domain, for example

an interpreter of a programming language, has to be speci�ed;

a usual total abstract data type, like the positive natural numbers,

is enriched by a partial function, like the subtraction; in particular

the inverse of some constructor is axiomatically introduced. Most of

the examples take place in this category, like the famous case of the

, where the stacks are built by the total functions and

and then and are de�ned on them (i.e. the result of the

application of these operations is either an \error" or a term on the

primitive operations);

the partial functions that have to be speci�ed are the \constructors"

of their image set; consider for example the de�nition of without

repetitions of elements, or of ; in both cases the new data

type is constructed by partial inserting operations. This is not uncom-

mon especially for hardware design or at a late stage of projects, when

or data types have to be de�ned, as, for instance,

subranges (where and operations are the

constructor and result in an error when applied to the bounds of the

subrange), or bounded (where ing an element on a full

yield error).

The �rst case has already be solved, by explicitly adding predicates to our

signature, as in the last section. Thus let us focus on the others.



;

!

!

!

!

!

=

:

:

=

:

:

:

3.2. PARTIAL DATA TYPES

spec

sorts

opns

spec

sorts

opns

3.2.1 Programming on Data Types

Static elimination of errors with order-sorted algebra

Nat

nat

zero nat

succ nat nat

Nat

pos

nat pos

zero nat

succ nat pos

prec pos nat

constructors

programmed

selectors

zero successor

prede-

cessor

erroneous

succ

prec prec

succ zero

prec zero

prec zero prec zero

err

err

Nat pos prec prec

prec

nat prec

nat

pos Nat

19

Consider the following situation: We have de�ned a data type by a mini-

mal set of (total) functions providing a denotation for each element of our

data type, and hence are called . Then we want to enrich it

by some (possibly partial) functions that are in terms of the

constructors, in the sense that their application to primitive elements either

reduces to a term built by the constructors too, or is an error.

A particular case is the speci�cation of the constructor inverses, from

now on called . Consider, for instance, as running example, the

(Peano's style) speci�cation of the natural numbers, by and .

Suppose that now we want to de�ne the inverse of , that is the

. Then the unique problem comes from the application of

to elements that are not in the image, that is to .

Since we are within a total approach, either we introduce a new sort,

representing the domain of , that does not contain , so that

( ) is not a well-formed term any more, or ( ) denotes an

element , and hence all other errors, for instance those due

to the application of the operations of the data type to the error, should

be identi�ed with .

It is worth to stress that both possibilities, that we will see more in de-

tails in the next paragraphs, correspond to an entirely static type checking,

where errors are completely predictable and can be detected at the signa-

ture level. Thus partial recursive functions with non-recursive domains are

not supported.

Let us con-

sider again the example of natural numbers. Basically we want to enrich

by a new sort , representing the domain and the function

itself. But we also have the intuition that the domain of is a subset

of and that in particular can be applied to all strictly positive

elements of sort . Thus in a pure many-sorted style we should also add

the embedding of into , producing the following speci�cation.

�

8

osa

!

8

�

!

!

!

8

e

x : x x

x : x x

e

t

r >

s :r > s s

:

: ( ( )) =

=

:

:

:

: ( ( )) =

axioms

spec

sorts

opns

axioms

CHAPTER 3. PARTIAL FIRST-ORDER

sub-sort

order-sorted

statically

dynamic

Dynamic treatment of errors: retracts and sort-constraints

pos nat

nat prec succ

Nat

pos nat

zero nat

succ nat pos

prec pos nat

nat prec succ

prec succ succ zero prec succ succ zero

pos

nat

Nat

pos

prec

prec prec succ succ zero

prec nat prec

pos prec succ succ zero

succ zero pos

nat pos

pos nat pos

20

Thus, for instance, the expression 0 + 1 + 1 1 is represented by the term

( ( ( ( )))), while we would have expected ( ( ( ))).

Therefore, it is much preferable to enrich the theory by explicitly allowing

the case, that is having sorts that must be interpreted in each

model as subsets of the interpretation of other sorts. Thus, for instance,

the size of each model it is not unduly enlarged by a sub-sort declaration

and this can be relevant in the implementation phase. Accordingly, the

rules for term formation are relaxed, so that any function requiring an

argument of the supersort can also accept an argument of the subsort.

The resulting theory of algebras will be more extensively

presented in the next subsection and we refer to it for a formal presenta-

tion of the order-sorted approach. Here we informally use the following

speci�cation

with the convention that if is a term of sort then it is a term of sort

as well. In other words the above speci�cation is a more convenient

presentation of but it has an equivalent semantics.

Then two main problems can be seen. First of all, as the domain of

is described by means of the signature, it cannot capture our intu-

itive identi�cations of terms as di�erent representations of the same value,

that depend on the deductive mechanism of the speci�cation and hence

are, so to speak, . Thus the term ( ( ( ( ))))

is incorrect, because the result type of is , while expects

an argument of sort , even if ( ( ( ))) can be deduced

equal to ( ) and intuitively should, hence, have sort . This

problem cannot be avoided by any approach based on a static elimination

of error elements, that is on a re�nement of the typing of functions at the

signature de�nition level.

In

OBJ3, this problem is solved by automatically adding retracts :

which can be removed using retract equations

: : ( ) =



1

0

0

1

s s

�

8

partial

r >

r >

s

s s

n : n

n

3.2. PARTIAL DATA TYPES

Actually, and only need to belong to the same connected component

prec prec succ succ zero

prec nat pos prec succ succ zero

prec zero

prec nat pos zero

CoFI

nat prec succ succ pos

prec prec succ succ zero

prec succ succ pos

21

and which are irreducible in case of ill-typed terms. Then in a term like

( ( ( ( )))), a retract is added:

( : ( ( ( ( )))))

which, by the retract equation, has the intended semantics. Now terms like

( ) are parsed as an irreducible term:

( : ( ))

which can be seen as an error message. The problem is, however, that

this term introduces a new error element, thus changing the semantics

of the speci�cation. In [45] it is shown that speci�cation with retracts

have an initial semantics given by an injective homomorphism from the

initial algebra of the speci�cation without retracts to the initial algebra

of the speci�cation with retracts. This hiatus between the signature of

the models, and in particular of the initial one, that has no retracts in it,

and the signature of the terms used in the language can be eliminated, if

retracts are allowed to be truly functions. This solution needs a

framework where order-sorted algebra is combined with partiality, as for

instance in the language in course of de�nition within the initiative.

An alternative approach uses (conditional) sort constraints [72, 93]. A sort

constraint expresses that some term, which syntactically belongs to some

sort , is always interpreted in such a way that it already belongs to a sort

.

Now let us add a sort constraint

: ( ( ( ))) :

to the above speci�cation.

If now well-typedness of terms is de�ned by also taking sort constraints

into account [40], the term

( ( ( ( ))))

is well-typed because ( ( ( ))) is of sort by the sort con-

straint. This means that type checking now can generate proof obliga-

tions which in general can be resolved only dynamically by doing some

theorem proving. But we cannot expect all de�nedness conditions to be

resolved statically, because de�nedness is undecidable in general. And in-

deed, within usual approaches to partial algebras, terms may not denote and

there de�nedness can be checked only dynamically with theorem proving.

osa

�!

8

0 0 0

2

3

4

2

2

3

4

�! �! �

f

x :f x x

�

!

!

8

8 ,

8

modular

spec

sorts

g s s g s s s s

g g

f

x : x x

x :x x

x : x x

=

:

:

=

( ) = ( )

: ( ( )) =

: : =

=

: ( ( )) = ( )

CHAPTER 3. PARTIAL FIRST-ORDER

Nat Nat

pos

Nat

Nat succ

pos

succ nat

pos nat succ

succ

CoFI

http://www.brics.dk/Projects/CoFI/DesignProposals/Summary

succ

Nat

even nat

mod 2 nat nat

div 2 even nat

zero mod 2 zero

succ zero mod 2 succ zero

nat succ succ mod 2 mod 2

nat even mod 2 zero

zero div 2 zero

even succ succ div 2 succ div 2

In the algebraic language that is currently being de�ned within the forum, in-

deed, subsorting is combined with and given semantics through partial�rst-order struc-

tures. We refer to for

further details on such setting.

In an order-sorted approach overloading of symbols is allowed and even encouraged;

in particular functions with the same name must coincide on the \common part" of

their domain, that is if : and : are both declared with , then the

interpretation of the �rst is the restriction of the interpretation of the second . Thus

in this case we should use again the name instead of and automatically get the

axiom to hold.

In most order-sortedapproaches, data typeswhich are de�ned by constructors always

are equipped with one subsort for each constructor. Thus, the problems presented here

do not arise in that case. But they persist for functions that are not constructors

22

So parsing of terms becomes quite complex. Some work in this direction

has be done in [93].

The contribution of order-sorted algebra with sort constraints is to allow

a separation of those parts of type-checking which can be done statically

from those which can be done only dynamically. This distinction is lost

in the approach of partial algebras introduced below. Therefore it may be

worthwhile to combine the order-sorted and the partial approach , see [79].

The second point is that ( ) can be hardly said

w.r.t. , though our aim was just to add a derived function to the already

de�ned data type . Indeed, the functionality of has been changed

to use that function in order to build the subsort . Of course, instead of

changing the functionality of , we could add a new symbol :

with the axiom : ( ) = ( ). But in this way, even if

formally the original speci�cation is preserved, the constructor has

become redundant.

If the partial function to be introduced is not the inverse of one of the

constructors, then the domain of the partial function has to be introduced

and axiomatized. This can be done with sort constraints, which allow

to specify subsorts to consists of all those values which satisfy a given

predicate. As an arti�cial, but simple, example let us consider the division

by 2, that is well de�ned only for even numbers, corresponding to the

following speci�cation in an order-sorted simpli�ed notation.



8 )

8

�

�

x :x x

x :x

x

x

n

n

Error elements

3.2. PARTIAL DATA TYPES

product

Error algebras

axioms for correct

elements error propagation axioms

even

nat mod 2 zero even

even mod 2 zero

prec zero

err err zero

zero zero err

zero err

23

Note that the equivalence de�ning can be expressed with a conditional

sort constraint

: = :

together with an ordinary axiom

: =

If the partial function to be introduced is not unary, the order-sorted

approach does not immediately apply, because the domain should be a

subsort of a sort, but usually the sort set does not include the

products. One then has to de�ne products explicitly by a tupling operation

together with projections, and specify the domain of the operation to be a

subsort of the product, using sort constraints.

The second possibility to deal with ( ) is us-

ing this term as a denotation for error. This is clearly inconsistent with a

modular approach, as one or more new (s) interpreting the error(s) have to

be added to the models of the original speci�cation (see [83] for an argu-

mentation against the introduction of error elements in basic types by the

hierarchic building of more complex speci�cations). Moreover having added

(at least) one new element, the application of the data type functions to

it has to be speci�ed as well. In the pioneering , introduced

by the ADJ group in [39], to achieve a reasonable uniformity, one constant

symbol for each sort is added and all the errors have to reduce to it by intro-

duction and propagation axioms. Of course the naive application of error

propagation can produce a lot of troubles. Indeed, consider, for instance,

the de�nition of natural numbers with product. Then, by instantiating the

error propagation axiom for the product, = , on and the

standard basis of the inductive product de�nition, = , on ,

we deduce = .

Thus in [39] a uniform technique to avoid these inconsistencies is intro-

duced, consisting basically of a distinction of axioms into

and . Since error algebras are described

as equational speci�cations of many-sorted algebras, the resulting speci�ca-

tions are quite heavy, but using predicates and conditional formulae, their

usage is improved, because the implementation of the Boolean type, with

its connectives, is not needed anymore. However, for each function of

arguments, error propagation axioms have to be stated, each construc-

tor requires a correctness propagation axiom and each error introduction

must be detected by an appropriate axiom. Thus speci�cations in this style

cannot be concise. Moreover, each axiom stating properties on the correct

?

!

!

� !

)

)

)

^ )

)

)

)

^ )

)

)

)

^ )

)

)

)

spec

sorts

opns

preds

axioms

CHAPTER 3. PARTIAL FIRST-ORDER

guarded

exception algebras

clean algebras

non-

ok a priori

;

; ;

;

x x

x x

x x; x

x y x; y x;y

x x; y

x y; x

x x;

x y x; y x; x;y

x x; y

x y; x

x x; x

x y x ; y x; y

; x

x x; y

x y; x

x x

=

:

:

:

:

( )

( ) ( ( ))

( ) ( ( ))

( )

( ) ( ) =

( ) ( ) ( ( )) = ( ( ))

( ) ( ( ))

( ) ( ( ))

( ) ( ) =

( ) ( ) ( ( )) = ( ( ))

( ) ( ( ))

( ) ( ( ))

( ) ( ) =

( ) ( ) ( ( ) ( )) = ( )

( ( ( )))

( ) ( ( ))

( ) ( ( ))

( ) =

Nat

nat

zero err nat

succ nat nat

plus minus times nat nat nat

OK IsErr nat

OK zero

OK OK succ

IsErr IsErr succ

IsErr err

OK plus zero

OK OK plus succ succ plus

IsErr IsErr plus

IsErr IsErr plus

OK times zero zero

OK OK times succ plus times

IsErr IsErr times

IsErr IsErr times

OK minus zero

OK OK minus succ succ minus

IsErr minus zero succ

IsErr IsErr minus

IsErr IsErr minus

IsErr err

24

elements, that is the proper axioms of the data type, must be by

the predicates stating the correctness of their input in the premises.

For instance one of the more classical example, that is the speci�cation

of natural numbers with sum and product, using a predicate to state that

a term is correct, would be the following.

Notice that removing the last axiom, the incorrect terms are all distinct

and can serve, then, as very informative error messages.

Many other approaches 
ourished from the original error algebras, re-

�ning the basic idea of cataloging the elements of the data type but using

more powerful algebraic framework to express the speci�cations (see e.g.

the in [18], where both the elements of algebras and the

terms are labeled to capture the di�erence between errors and exceptions,

or the in [38], where an order-sorted approach is adopted to

catalogue the elements of algebras). In spite of the potentiating and the

embellishments, these approaches share with the original one the di�culties

of interaction with the modular de�nition of data types. Indeed the

elements of basic types have to be designed to support error

messages, or exceptions caused by other modules that use the basic ones.

Thus error algebras (and variations on the theme) are more suitable



�

n n

i

n

� �

� �

�

1 1 +1

1

!

!

� �

�

� ) �

: : :

; x

x y x y

=

:

:

:

( )

( ) ( )

Example 3.2.1

Elem elem

push

push

3.2. PARTIAL DATA TYPES

s

w s : : : s w s

w

s : : : s s

x y z x y z

3.2.2 Partial constructors

spec

sorts

opns

preds

axioms

Nat

nat

zero nat

succ nat nat

nat nat

zero

succ succ

on the shelf

Let us de�ne the data type of stacks of elements with no

more than a pre�xed number of items. This speci�cation is, of course,

parametric on the de�nition of the element data type, that we assume given

by the speci�cation , with principal sort , and is based also on a

speci�cation of natural number with an order relation on them, in order

to de�ne the depth of a stack.

Now the point to �x is the value of an application of on a stack already

full. Indeed, being in a total approach, it should yields a value.

Notice that the order-sorted style is not convenient in this case, as the

domain of the function is not intuitively built by a total constructor.

25

for specifying a completely de�ned system than for re�ning a project or

represent (parts of) a library of speci�cations .

A quite di�erent problem from that introduced by the last section is the

de�nition of data types whose constructor themselves are partial functions.

A paramount example of this case is in the formal languages �eld.

Indeed, each production of a contex-free grammar, with the form ::=

, where the possibly decorated 's are non terminal sym-

bols and each is a string of terminal symbols, corresponds to a total

function from into . Thus, contex-free grammars can be rep-

resented by total signatures. But attributed grammars cannot, because the

applicability of production rules, i.e. of constructors, may be partial. The

same applies also to grammars for languages whose operators are assigned

a priority. Indeed, for instance in the case of plus and times on integers, to

have that a string + unambiguously represents + ( ), the rule

for times cannot apply to terms having some plus in the outmost position.

Therefore the interpretation on the times operator must be partial.

Other very relevant examples may be found, for instance, during the

implementation phase, where, due to the machine limits, data types are

limited. For instance, let us consider the speci�cation of bounded stacks,

where pushing an element on a stack is correct only if the stack in not \too

large".

�

�

�

�

n

i

i : : :n n

n n

!

!

� !

!

� )

)

� )

)

�

!

!

� !

;

;

;

: : :

s x; s

x; s x; s s

s x; s

s s

;

CHAPTER 3. PARTIAL FIRST-ORDER

push push

nat err

depth err

nat

bstack

=

:

:

:

:

:

=

( )

( ) =

( ) = ( )

( ) ( ( ))

( ( )) ( ( )) = ( ( ))

( ) ( ) ( ( ))

( ) =

=

:

:

:

spec enrich by

sorts

opns

opns

preds

axioms

spec enrich by

sorts

opns

opns

26

1

= 1 1

error

( )

With sort constraints, one has to specify bounded stacks as a subsort

of ordinary stack. Note that the sort of bounded stacks here contains those

stack on which a push can safely be performed staying within the bound.

Thus the largest bounded stack is in the sort .

BoundedStacks Nat Elem

bstack

max nat

empty err bstack

Bpush elem bstack bstack

depth bstack nat

OK Is Err bstack

max

OK empty

depth empty zero

depth err succ max

depth max OK Bpush

OK Bpush depth Bpush succ depth

succ max depth Is Err Bpush

Is Err err

BoundedStacks Nat Elem

bstack stack

max nat

empty bstack

push elem stack stack

Indeed, the natural constructor for is itself, but only a �xed num-

ber of iterations should be allowed. Of course it is always possible, although

awkward, to introduce ad hoc constructors, for instance constructors

each one representing the creation of a stack with exactly elements for

, where is the maximal allowed depth of a stack. This

approach would be not only unnatural, but also non-parametric w.r.t. the

maximum ; indeed if the value would be changed in a further stage of

design, functions should be added to the speci�cation as well as axioms.

Then we can consider a classical total approach where pushing too many

elements on the same stack results in one element.

The �rst axiom �xes the actual maximal size of the bounded stacks, while

the last one identify all errors.

Even if obvious operations should be added to this type, the standard

error propagation problem would arise. In particular, for operations with

result type arbitrary correct values should picked up as results on ,

as in the forth axiom in the case of , or an \error" should be

added to the , violating the modularity principle.

not



axioms

� !

!

8

8 , �

: : :

x ; s : x; s s

s :s s

:

:

=

( ) =

: : ( ( )) = ( ( ))

: : ( )

design

requirement

partial

3.3 Partial First-Order Structures

3.3. PARTIAL FIRST-ORDER STRUCTURES

push elem bstack stack

depth stack nat

max

depth empty zero

elem stack depth push succ depth

stack bstack depth max

27

Although quite often in the last stages of the re�nement process even

functions that are partial from a philosophical point of view (for instance

the constructors of bounded stacks, bounded integer, search trees, ordered

lists and other bounded resources or �nite domains) are implemented as

total functions, identifying incorrect applications with error messages, we

cannot delay the semantics of the data until every detail has been decided,

because of methodological reasons.

Therefore we have to �nd a way of dealing with the requirement speci�-

cation of partial functions and in particular of partial constructors. In the

above example we have seen the speci�cation of bounded stack, that

cannot be furtherly re�ned. For instance all errors have been identi�ed and

cannot be anymore distinguished in order to get a more informative error

message system. In a total approach it is impossible (or, better, unnatural

and inconvenient) to give the speci�cation of bounded stack.

Therefore in the next section we will introduce a more powerful framework,

based on the (possibly) interpretation of function symbols and see

how it can be used to easily describe this and other speci�cations.

When considering a model theory for partial �rst-order structures, it is

not obviously clear in which way to proceed, as there are possibilities for

di�erent choices at various points. Sometimes di�erent choices have severe

technical implications, sometimes they are more or less only a matter of

taste. See [33] for an overview over di�erent approaches.

The introduction of symbols denoting partial functions has the e�ect

that not all terms can be interpreted in each model (unless well-formedness

of terms is made dependent on the model where they have to be interpreted

in, which seems to be not very useful). Thus, the valuations of terms is

inherently partial, but it is still the question whether such partiality should

propagate to formulae built over terms.

We here follow the two-valued approach developed by Burmeister [22]

and others. In a two-valued logic of partial functions, formulae which con-

tain some nondenoting term are interpreted as false. Later on, we brie
y

2

+

�

0 0

h i

�

h i

[

De�nition 3.3.1

3.3.1 Model theory

S; ; ;

S S S S

S

S; ; ; S X

s s

X S;

CHAPTER 3. PARTIAL FIRST-ORDER

partial

A consists of a set

, denoted by , of , two componentwise disjoint -sorted

families and , respectively denoted by and , of and

and an -sorted family , denoted by , of

.

Given a partial signature and an -sorted family

of variables, the of sort are the carrier of sort of the term al-

gebra over the signature and , for , as introduced in

De�nition 1.4.1.

28

sketch a three-valued logic where the valuations for formulae may be par-

tial as well, that is, a formula contain some nondenoting term is neither

interpreted as true nor as false, but some third truth-value is assigned to

it.

This section is devoted to the study of the (a) category of partial �rst-order

structures. Since many de�nitions and results can be stated in a uniform

language, using category theory, and hold for many algebraic framework, we

will try to clarify the basic nature of our category, discussing the existence

of very simple constructions, to allow an experienced reader to apply the

available theories to our framework. However, as the proposed construc-

tions have a quite natural and intuitive counterpart, basically generalizing

analogous constructions in (indexed) set theory, even those who are not

interested in categories and their applications, can �nd useful our theory,

simply ignoring the categorical terminology.

Partial �rst-order structures di�er from (total) structures in the inter-

pretation of function symbols being possibly functions, i.e. they are

not required to yield a result on each possible input. Thus total functions

are a particular case of partial functions, that happen to be de�ned on all

the elements of their source. It is anyway convenient to discriminate as

soon as possible between total and partial functions of a data type, be-

cause knowing a function (symbol) to be (interpreted as) total simpli�es

its treatment not only from an intellectual point of view designing the data

type, but also, for example, applying rewriting techniques or proof deduc-

tions. Therefore we distinguish already at signature level between function

symbols that must be interpreted as total and function symbols that are

allowed to denote partial operations (but can, obviously, be total as well in

some model).

partial signature � = 
 	 �

(�) sorts


 	 
(�) 	(�) total

partial function symbols � �(�)

predicate symbols

� = 
 	 �

terms

� � = ( 
 	)

Thus terms on a partial signature are de�ned as usual, disregarding the

distinction between total and partial functions. Therefore the same symbol



;

; ;

Elem

elem

�!�

f j 2

2 g

g X Y

g X g x x

X g x Y

� =

:

:

:

:

:

:

� = �

:

:

:

:

:

:

!

!

� !

�!�

� �!�

�

!

� !

�!�

�!�

�

3.3. PARTIAL FIRST-ORDER STRUCTURES

Example 3.3.2

Notation 3.3.3

Exercise 3.3.4

sig

sorts

opns

popns

preds

sig enrich by

sorts

opns

popns

preds

Nat

nat

zero nat

succ nat nat

plus times nat nat nat

prec nat nat

minus div mod nat nat nat

multiple nat nat

Stack Elem

stack

empty stack

push elem stack stack

pop stack stack

top stack elem

is in elem stack

is empty stack

Let us see a signature for non negative integers, with par-

tial operations, like predecessor, subtraction and division, and a predicate

stating if a number is a multiple of another.

Analogously a signature for stacks with possibly partial interpretation of top

and pop on an empty stack, based on a signature describing the type

of the elements for the stack, is the following.

is

For each partial function , we will denote by

dom its , that is the subset of de�ned by dom

.

Generalize the notion of signature morphism for partial

signature.

29

cannot be used for a total and a partial function with the same arity, as

such an overloading would introduce a semantic ambiguity.

�

Since function symbols are partitioned into total and partial ones and both

families are classi�ed depending on their input/output types, the same

symbol can appear many times in the same signature, possibly making

the term construction ambiguous. Here and in the sequel we assume that

terms are not ambiguous, i.e. that the overloading of function symbols is

not introducing troubles (or that, if the overloading problematic, that a

di�erent, unambiguous notation for terms has been adopted, for instance

substituting for each function symbol a pair consisting of its name and its

type).

:

domain =

and ( )

#

"

#

9

#

h i

� j j

De�nition 3.3.5

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

CHAPTER 3. PARTIAL FIRST-ORDER

0

0

0

#^ # � #_ # �

#^ #^ # �

#^ #^ #_ # � #^ #^

e e

e e

e e

e e e

e

e

e

e s e e x:e x

x s e e

S; ; ;

A

S A

e e e e e e e e e e e e

e e e e e e e e e e e

e e e e e e e e e e e e

E

W

S

E

E S

E W S

E

=

E

= ( )

E

= ( )

E

=

S

=

S

= ( )

S

=

S

=

E W S

W

=

W

= ( ) (

W

= )

existential equality

weak equality

strong equal-

ity

Given a partial signature , a

is a triple consisting of

an -sorted family of ;

30

As the interpretations of function symbols in 	 can be unde�ned on

some input, not all (meta)expressions denote values in the carriers of a

partial �rst-order structure. Thus the meaning of an equality between ex-

pressions that can be non-denoting becomes ambiguous; indeed it is arbi-

trary to decide if an equality implicitly states the existence of the denoted

element, or holds also if both sides are unde�ned (assuming the viewpoint

that (non-existing) unde�ned elements are undistinguishable), or is satis-

�ed whenever the two sides do not denote di�erent elements. Therefore in

the sequel we will use di�erent equality symbols for the di�erent concepts

and in particular we will use = ( ) to state that both

sides denote the same value, = ( ) to state that if both

sides denote a value, then the two values coincide, and = (

) to state that either both sides denote the same value or both do not

denote any value. Thus, in particular = , is equivalent to denoting a

value, and hence is usually represented by (and its negation becomes

).

It is interesting to note that assuming as primitive either existential

or strong equality, the other notions can be derived; indeed for an

expression of sort can be expressed simply as = or as ( = )

with of sort non free in and then using as syntactic sugar for the

above mentioned logical formulas we have the following table.

using: = becomes = becomes = becomes

On the other hand, weak equality is too weak, indeed, to describe the

other kinds of equality, because in particular it is not possible to state

the de�nedness of an expression using only weak equalities. Indeed in any

trivial �rst-order structure with singleton carriers, all weak equalities are

true, disregarding the de�nedness of the involved expressions. But using

weak equality and de�nedness assertions it is possible to represent both

existential and strong equalities, as follows.

= becomes = becomes = becomes

� = 
 	 � partial �-

structure

carriers



2

�

�

2 �

2

1

1

1

1 1 1

1

1

1

1

1

1

n

n

n

n n n

n

i

n

i

n

i

n

n

n

( )

1

1

1

E

1 1

1 1

E

1

1

1 1 1

1

1

1

3.3. PARTIAL FIRST-ORDER STRUCTURES

w;s

A

w;s w;s w;s
w;s S S

s ; ::: ;s ;s

s s s

w;s

A

n

w;s

A

A w;s w;s

s ; ::: ;s

A

s ; ::: ;s s s s ; ::: ;s S

w;s

A

A n

s s s

s A n B s s n

n i s

A n s A n B s s n

n i s

n A s s n B

n i s

n A s

s s

n A s

s s

n A s s

A A A f

f s s s

x x x

} A A

P P P s s

A B

A B S h

h A B

h f a ; : : : ; a f h a ; : : : ; h a f s

s s a A i ; : : : ; n

g a ; : : : ; a h g a ; : : : ; a g h a ; : : : ; h a

g s s s a A i ; : : : ; n

a ; : : : ; a P h a ; : : : ; h a P P s

s a A i ; : : : ; n

S A

f s s s f A

A A f A

g s s s g A

A A g A

P s s P A A

P A

� fI [ �! g

j j � � � � � j j j j I

� � � � � �! 2

I 2 [

� fJ �! j j � � � � � j j g

J � � � � � 2

j j �!j j

� � � � � �

�! 2 2j j

� #

� � � � � �!� 2 2j j

� 2 2 �

� � � � 2 2j j

� j j

� � � � � � �! 2 j j � � � � � j

j �!j j

� � � � � � �!� 2 j j � � � � � j

j �!� j j

� � � � � � 2 j j � � � � � j j

a family of

, where is the set of all partial functions

from into , s.t. is total for each

. In the sequel, if no ambiguity will arise,

will be denoted by for each .

a family

of . In the sequel, if no ambiguity will arise,

will be denoted by for each .

Moreover, given partial -structures and a of partial

-structures from into is an -sorted family of (total) functions

s.t.

for all

and all for ;

if , then

for all and all for ;

if , then for all

and all for .

The category has partial -structures as objects and homomor-

phism of partial -structures as arrows, with the obvious composition and

identities.

interpretation

interpretation

truth values

31

: 
 	 PFun function in-

terpretations PFun

( )

: 


( ) 
 	

: � ( )

predicate interpretations

( ) : �

� homomorphism

�

:

( ( )) = ( ( ) ( )) :


 = 1

( ) ( ( )) = ( ( ) ( ))

: 	 = 1

( ) ( ( ) ( )) :

� = 1

Mod(�) �

�

Therefore, in order to de�ne a partial �-structure, we must provide:

the -sorted family of carriers;

for each : 
 a total function :

, the of in ;

for each : 	 a partial function :

, the of in ;

for each : � a subset of ,

representing the of in .

Notice that, although the interpretation function for partial and total func-

tion symbol is one, it is often convenient to distinguish between partial and

total function symbols, as in the above de�nition of homomorphism, where

the de�nedness condition can be dropped for the total symbols.

Let us see a couple of examples of partial �-structures on the signatures

introduced by the previous example 3.3.2.

E

E

E

Nat

32

�

E

E

E

E

E

E

Example 3.3.6

�

�

�

�

�

(

(

(

8

>

<

>

:

CHAPTER 3. PARTIAL FIRST-ORDER

j j

�

�

� �

6

6

f j g

j j [ f g

2

2

2

� 2

2

� 2

� 2 �

2

2 2

spec N

Carriers

N N

Functions

N

N

N

N

N

N

N

div

N

mod

Predicates

N

mod

spec N

Carriers

N N

Functions

N

N

N

N

N

N

N

N

N

N

N

N

nat

zero

succ

plus

times

prec

minus

div

mod

multiple

nat

underflow err minus division by 0

zero

succ

plus

times

prec underflow

minus

err minus

n n

n;m n m

n;m n m

n

n ; n >

;

n;m

n m; n m

;

n;m

n m; m

;

n;m

n m; m

;

n;m n m

E E ; ;

n

n ; n

n;

n;m

n m; n;m

n; n E

m;

n;m

n m; n;m

n; n E

m;

n

n ; n ; n >

; n

n;

n;m

n m; n;m ;n m

n; n E

m; n ;m E

;

The natural numbers with the \obvious" interpretation of

function symbols is a partial -structure.

Another �rst-order structure on the same signature is, for instance, the

following, where \error messages" have been added to the carrier.

=

=

= 0

( ) = + 1

( ) = +

( ) =

( ) =

1 if 0

unde�ned otherwise

( ) =

if

unde�ned otherwise

( ) =

if = 0

unde�ned otherwise

( ) =

if = 0

unde�ned otherwise

= ( ) = 0

=

= for =

= 0

( ) =

+ 1 if

otherwise

( ) =

+ if

if

otherwise

( ) =

if

if

otherwise

( ) =

1 if 0

if = 0

otherwise

( ) =

if

if

if

otherwise



1

1

E

E

E

n

n

i

E

1

1

1

S

1

1

Nat

Stack

8

>

<

>

:

8

>

<

>

:

2 6

2

2 2

2 6

2

2 2

f j 2 g

#

#

h i

j j �!� j j

� 2 [

� � � � � 2j j

E

A n

B s s n

s s s

s A n B s s n w;s

w;s n i s

N

div N

N

N

mod N

N

Predicates

N

N mod

3.3. PARTIAL FIRST-ORDER STRUCTURES

div

division by 0

mod

division by 0

multiple

N N

Exercise 3.3.7

Exercise 3.3.8

De�nition 3.3.9

( ) =

if = 0

if

if

otherwise

( ) =

if = 0

if

if

otherwise

= ( ) and = 0

n;m

n m; n;m ;m

n; n E

m; n ;m E

;

n;m

n m; n;m ;m

n; n E

m; n ;m E

;

n;m n;m n m

g a ; : : : ; a

g h a ; : : : ; h a

S; ; ; A B

X S

A B S h

h A B

h f a ; : : : ; a f h a ; : : : ; h a f

w s s a A i ; : : : ; n

It is immediate to see that the embedding of the -structure into

is a homomorphism.

Following the guideline of the previous example, de�ne sev-

eral -algebras and relate them by homomorphisms, when possible.

weak

minimal

no-junk & no-confusion

Generalize the notion of reduct for partial �rst-order struc-

tures.

partial

Let be a partial signature, and be

partial -structures, and be an -sorted family of variables.

A homomorphism from into is an - sorted family

of partial functions s.t.

for all

, where , and all for ;

33

�

�

Homomorphisms of partial �rst-order structures are truth preserving

homomorphisms using the notation of De�nition 2.7.28. There are several

other possible notions of homomorphism, basically due to the combina-

tions of choices for the treatment of predicates (truth-preserving, truth-

re
ecting or both) and partial functions (the condition ( )

can be dropped or substituted by ( ( ) ( )) ), that are

used in literature (see e.g. [22, 84]). The de�nition adopted here guaran-

tees that initial (free) models (if any) in a class are , following the

principle from [71].

It is worth noting that standard term algebras as de�ned in the total case

can be endowed with (possibly in�nite) choices of predicate interpretations

in order to get partial �rst-order structures (with predicates); however the

usual inductive de�nition of term evaluation is not a homomorphism, disre-

garding the interpretation of predicates, because it is, in general, a

function. Thus, a di�erent notion of homomorphism has to be introduced

to capture term evaluations.

� = 
 	 �

�

strict partial

:

( ( )) = ( ( ) ( )) 


	 = = 1

2

2

0 0

0

1

1

�
1

�

1

i n

i

n

i

n

n

i

Lemma 3.3.10

CHAPTER 3. PARTIAL FIRST-ORDER

1 1

1

1 1

1

�

( )
�

� 1

�
( )

1

� �

#

�

#

S

#

1

S

#

1

#

1 �

#

#

#

#

#

# #

E

#

W

#

W

#

s i n A s s n

B n i s

s

s s n B n A

n i s

T X
s

s n

T X

n

s s s

s

s

s

A n B

s s

n w;s w;s

n i s

s

s

A

A

� # 2 2

� � � � � 2 2j j

2

2 2

� � � � � 2 2j j

[ �j j � � � � � j

j � � � � � 2

; � � � � � 2

�!� j j

�!�

� 2 2

� 2 [

� � � � � 2j j

2

2j j

h i

� # �

�!

�

2

h a i ; : : : ; n a ; : : : ; a P h a ; : : : ; h a

P P s s a A i ; : : : ; n

h s S

h a ; : : : ; h a P a ; : : : ; a P

P s s a A i ; : : : ; n

X T X

S; P T X

T X P s s

T X P

P s s X

T X T

� X A S

� X A � X A

� T X A

� x � x x X s S

� f t ; : : : ; t f � t ; : : : ; � t f

w s s t T X i ; : : : ; n

t t � t �

� t A t A �

X �

A � eval

t t

� A

� X � A

�

S; ; ; A

X S �

X A

t � t h � t h � t

h A B

� X A � x � x

x X � t � t t

34

( ) = 1 ( ) ( ( ) ( ))

: � = 1

strict homomorphism closed

( ( ) ( )) ( )

: � = 1

term �-structure ( )

( 
 	) ( )

( ) : �

( ) � =

: �

( )

variable valuation

: term

evaluation : ( )

( ) = ( )

( ( )) = ( ( ) ( )) 
 	

= ( ) = 1

-interpretable

( ) value of in under the valuation

�

� generated

by

term-generated

It is straightforward to verify, by induction on the de�nition of , the

following technical lemma, whose proof is left as exercise to the reader.

� = 
 	 �

�

( ) ( ( )) = ( ) ( )

:

( ) = ( )

( ) = ( )

if for and , then

for all and all for .

A (called in [22]) is a strict partial homo-

morphism which happens to be total (i.e., is a total function for all )

and for which implies for

all and all for .

A over , consists of the (total) term algebra

over and an interpretation

of each .

In particular we will denote by the term -structure where

for all and, if is the empty family of variables,

will be simply denoted by .

A for in is any -sorted family of partial

functions ; given a variable valuation for in , the

is the strict partial homomorphism inductively

de�ned by:

for all and all ;

for all ,

where , and all for ;

Given a term , we say that is , if dom and in this

case we call the .

In particular if is the empty family of variables, then is the empty

map for each partial -structure and we will denote by and its

application to a term by .

Whenever is surjective, we say that the -structure is

and if is the empty set (and hence is the empty map), is simply

said .

Let be a partial signature, be a partial

-structures, be an -sorted family of variables, and be a valuation for

in .

For each term , if , then for all homo-

morphisms .

For each valuation for in , if for all variables

, then for all terms .



0

0

0

0

0

2

2

s

s

s

s

s

s s

n A

n A

n A

3.3. PARTIAL FIRST-ORDER STRUCTURES

1

2 1 2 1 2 0

1 2 1 2 0 1 2

1 2 1 2

1 2 0

1 2

1 2 0

0 �

1

�

1

1

#

1

#

2

1

1 2 2

#

1

#

2

0

0

Notation 3.3.11

Proposition 3.3.12

Proof.

De�nition 3.3.13

h i

�! �

� �!

2

2

� � �!

� �

�! 2

2

j j

� j j f g

h i

� � � � � � �! 2

f g

� � � � � � �!� 2

� � � � � � 2

� �

� j j�j j

S; ; ;

A B

h A B h h

h h h h h ; h A A h

s S

h s S

h h h h h ; h A A h h

h h h h h h

h ; h A A h s

S s S h

a a A

h a h a A

A T x

S; x s

f s s s f

f T x

g s s s g

P s s P

� � � x

a � x a

h � h �

A

A A

A A

35

� = 
 	 �

From the de�nition of homomorphism, a notion of sub-object immedi-

ately follows, as domain of a monomorphism.

�

� : =

= :

= : =

= =

:

( ) = ( ) �

( ) � =




: 


( )

: 	

: �

� ( ) =

( ) = �

=

Thus a sub-object is, up to isomorphism, a subset of the carriers, inherit-

ing the interpretation of total functions from the original �-structure and

with partial functions and predicates possibly weakened; this justi�es the

following de�nition.

� �

weak substructure subobject

In the sequel let us �x a partial signature .

Let and be partial -structures. A homomor-

phism of partial -structures is a monomorphism, that is

implies for all , if and only if is injective

for all .

It is immediate to see that if is injective for all then

for some homomorphisms implies .

Vice versa let us assume that implies for all

homomorphisms and show that is injective for all

. Let us assume by contradiction that an exists s.t. is not

injective, i.e. s.t. there are two di�erent elements, say and , in

s.t. . Let us denote by the partial -structure de�ned

by:

are the carriers of the total term algebra over

and one variable of sort ;

for each the total function is the

interpretation of in ;

for each the partial function is totally

unde�ned;

for each the subset is empty.

Then the total -term evaluations and induced respectively by

and , are di�erent homomorphisms of partial -structures, by

de�nition, but .

Let be a partial -structure; then a partial -structure

is a (a ) of i�

;

2

2

� =

:

:

:

:

:

0

0

0 0

0

0

0

0

0

0

!

!

�!�

� �!�

� �

s

c s

f s s

pc s

g s s s

P s s s

1

E

1 1

1 1

E

1

1

1

0

1

S

1 1

1 1 1

0 0

sig

sorts

opns

popns

preds

CHAPTER 3. PARTIAL FIRST-ORDER

Proposition 3.3.14

Proof.

Example 3.3.15

A n A n n

i i A

A n A n A n

n i i A

A A n

A n A n n

i i A

n A n A n

i i A

� � � � � � �! 2

2j j

� #

� � � � � �!� 2 2j j

� � � � � � � 2

� � � � � � �!� 2

2j j

� 2 2 � � � � � 2

2j j

!

f a ; : : : ; a f a ; : : : ; a f s s s

a s i ; : : : ; n

g a ; : : : ; a g a ; : : : ; a g a ; : : : ; a

g s s s a s i ; : : : ; n

P P P s s

A A

A

g a ; : : : ; a g a ; : : : ; a g s s s

a s i ; : : : ; n

a ; : : : ; a P a ; : : : ; a P P s s

a s i ; : : : ; n

e A , A A A

A

36

( ) = ( ) : 


= 1

( ) ( ) = ( )

: 	 = 1

: �

� substructure regular sub-

object

( ) = ( ) : 	

= 1

( ) ( ) : �

= 1

embedding :

�

� reachable

Notice that substructures as given by the above de�nition correspond to

substructures in [22].

Thus, while many di�erent weak substructures of one �-structure exist

sharing the same carriers, as partial function and predicate interpretations

can be weakened, the carriers completely determine the substructure hav-

ing them. Moreover, each subset of the carriers closed under functional

application obviously de�nes a substructure.

�

for all

and all for ;

if , then for all

and all for ;

for all .

A weak substructure -structure of is a (a

) of i�

for all

and all for ;

i� for all

and all for .

The of a (weak) substructure into is the ho-

momorphism of partial -structures whose components are set embeddings.

A -structure without proper substructures is said to be .

closed

A weak substructure is a substructure i� the embed-

ding is a strict homomorphism.

It is straightforward from the de�nition of substructure and strict

homomorphism.

Let us consider the following homogeneous signature

and the following -structure



X

�

�

1 2

1

1

2

2

max

max

max

max max

f g

f g

f g

f g f g

1

1

1

1

1

2

2

2

2

2

37

0 0

0

�

0

0 0 0

unique

s

A

A

A

A

A

s

A

A

A

A

A

s

A

A

A

A

A

j j f g

f j g

j j f g

;

j j f g

f g

; : : : ;

A A

A

A

pc A

X ; : : : ;

A A

3.3. PARTIAL FIRST-ORDER STRUCTURES

A

A ; : : : ;

c

f x x

pc

g x; y

x; x y

;

P x; y; z x y x z y z

A

A

c

f x x

pc

g x; y

x; x y

;

P

A

A

c

f x x

pc

g x; y

P ; ;

spec

Carriers

Functions

Predicates

spec

Carriers

Functions

Predicates

spec

Carriers

Functions

Predicates

=

= 0

= 0

( ) =

=

( ) =

if =

unde�ned otherwise

= ( ) = or = or =

=

= 0

= 0

( ) =

= unde�ned

( ) =

if =

unde�ned otherwise

=

=

= 0

= 0

( ) =

= unde�ned

( ) = unde�ned

= (0 0 0)

Then any subset of the range including can be the carrier of

several weak substructures. For instance, let us consider the singleton ,

then the following -structures and are both weak substructures of

:

and moreover the two substructures are not related by homomorphisms in

either way. There does not exist a substructure of with as carrier,

because the interpretation of in is de�ned but its value does not belong

to . But each subset of including and de�nes a

substructure of , consisting of:

�

max

j j

f j 2 g

s

A

A

A

A

A

1 0 1

1

1

0 1 1

0 1

1

1 0

i

n n

n

i

n

n n

n

i

n

i i

n

CHAPTER 3. PARTIAL FIRST-ORDER

0

0 0

1

1

E

1 0 1

E

1

1

1

1

E

1 0

1

S

1

1

E

1

1

1 1

0 0

1

Exercise 3.3.16

Lemma 3.3.17

Proof.

spec

Carriers

Functions

Predicates

A

A X

c

f x x

pc

g x; y

x; x y

;

P x; y; z x y x z y z;x; y; z X

=

=

= 0

( ) =

=

( ) =

if =

unde�ned otherwise

= ( ) = or = or =

�!

�!

� � � � � �! 2 2j j

� � � � � �!� 2 2j j

#

� � � � � 2 2j j

2 2

2j j

2

n i s

s B n

A s s n A s s n

A s s n

n i s

B n

s B n A s s n

A s s n A s s n

s B n A s s n

n i s

n B s s n

A s i s

s s n A

A A

h B A B S

A h B A

f s s s b B i ; : : : ; n

h B A h f b ; : : : ; b

f h b ; : : : ; h b A A f h b ; : : : ; h b

f h b ; : : : ; h b

g s s s b B i

; : : : ; n h B A g b ; : : : ; b

h g b ; : : : ; b g h b ; : : : ; h b A

A g h b ; : : : ; h b g h b ; : : : ; h b

h g b ; : : : ; b g h b ; : : : ; h b

P s s b B i ; : : : ; n

h B A b ; : : : ; b P h b ; : : : ; h b

P h b A A A

h b ; : : : ; h b P

38

Notice that the image of a homomorphism is not, in general, a substructure,

because the interpretation of a partial function in the target can be more

de�ned than in the source.

If a family of functions satis�es the homomorphism conditions for a �-

structure, then it is a homomorphism into any substructure including its

image.

�

:

:

: 
 = 1

( ( )) =

( ( ) ( )) ( ( ) ( )) =

( ( ) ( ))

: 	 =

1 ( )

( ( )) = ( ( ) ( ))

( ( ) ( )) = ( ( ) ( ))

( ( )) = ( ( ) ( ))

: � = 1

( ) ( ( ) ( ))

( )

( ( ) ( ))

Prove that the image of a homomorphism is a weak sub-

structure of the homomorphism target and show an example of homomor-

phism whose image is not a substructure of the target. Moreover show that

the image of a partial strict homomorphism is a substructure of the homo-

morphism target.

Let be a substructure of a partial -structure and

be a homomorphism s.t. the image of is an -indexed subset

of . Then is a homomorphism.

For all and all for ,

as is a homomorphism from into , we have

and, as is a substructure of ,

.

Analogously for all and all for

, as is a homomorphism from into , if , then

and, as is a substruc-

ture of , . Thus

.

Finally for all and all for , as

is a homomorphism from into , if , then

; moreover and hence, as is a substructure of ,

.



2

2

i i

i

0

E

1

E

1

E

1

1

0

0 0

0

0

0 0

0

0

0

0

0

0

A A

A

A

s s

s

s

i s s i

s

i

i

s A n B n

s

A n

A n s

�! �!

� �

� � �!

�! �

�!

j j f j 2j j

g 2

� 2j j

2j j

3.3. PARTIAL FIRST-ORDER STRUCTURES

Exercise 3.3.18

Corollary 3.3.19

Proof.

Proposition 3.3.20

Proof.

h B A

eval A eval

A

eval

A A eval

h; h A B e E A

e h h h e h e e

h h

e h k h k k K A

k K E k e k

h h

h; h A B

h h

E A E a a A

h a h a s S A

E

A

a E i ; : : : ; n h a h a

b

h f a ; : : : ; a f b ; : : : ; b h f a ; : : : ; a

f a ; : : : ; a E

39

�

Substructures are closed w.r.t. term evaluation, while weak substructures

are not.

�

�

The category of partial �-structures has equalizers. That is given two par-

allel homomorphisms : there exists a homomorphism :

s.t. and , i.e. = , and moreover is , that

is each other homomorphism equalizing and factorizes in a unique way

through , i.e. = for some : implies that there exists

a unique : s.t. = . Indeed, it is possible to \restrict"

the domain of such and to the elements on which they yield the same

result.

:

�

=

and ( ) = ( )

= 1 ( ) ( )

( ( )) = ( ) = ( ( ))

( )

Therefore is a homomorphism of partial -structures from into .

Prove that if the valuation of a family of variables is

contained in the carriers of a substructure, the evaluation of any term w.r.t.

such a valuation in the -structure and in the substructure are equal.

A -structure is term-generated if and only if it is reach-

able (i.e. it does not have proper substructures).

Since substructures are closed w.r.t. term evaluation, the image of

is contained in all substructures of . Thus if is surjective

is contained in all its substructures, that is, it does not have proper

substructures.

Moreover, it is immediate to verify that the image of a strict homomor-

phism is a substructure. Therefore the image of is a substructure of

; hence if does not have proper substructures, then is surjective.

equalizes universal

Let be parallel homomorphisms of par-

tial -structures; then the equalizer of and is the (embedding of the)

substructure of whose carriers are de�ned by

for all (into ).

Let us �rst show that the carriers of actually describe a substruc-

ture of , i.e. that they are closed under function application.

Let us consider for ; then and

denote the same value and hence, by de�nition of homomorphism,

. There-

fore .

2

2

0

0 0

i

i

i

5

6

0

0

0

�!

� � 6 6

1

1

E

1

E

1 1

1 1

5

6

0

0

0

0

0

0 0

0 0

0

0

0 0

Proposition 3.3.21

Proof.

E

A E

A

B A

E

A

B

h k; k B C

B B

k h k h h B B k k

h

CHAPTER 3. PARTIAL FIRST-ORDER

i s A n

s i

s

i i s A n

B n

s

A n A n

A n A n s

s s s

s s s

� 2j j #

#

# 2j j

!

� � �!

� � 2j j 2j j

j j j j

�!

j j � �

�!

� � �!

a E i ; : : : ; n g a ; : : : ; a

h a h a b h g a ; : : : ; a

g b ; : : : ; b h g a ; : : : ; a g a ; : : : ; a

g a ; : : : ; a g a ; : : : ; a E

E e E ,

A

e

h k h k k K A

h k a h k a a K k a E

k K E

k K E

e

h A B

B h

A h k h k h

k k k; k B C

k h k h k; k B

C h k k

E k k B

h h B

B

k k B k k

40

= 1 ( )

( ) ( ) ( ( )) =

( ) = ( ( )) ( )

( ) ( )

� :

= :

( ) = ( ) ( )

Thus the domains of equalizers are substructures , that justi�es the equiv-

alent notation \regular subobject" for substructures.

While monomorphisms are all injective functions, as in set theory, epi-

morphisms are not required to be surjective.

: �

=

= :

= :

It is also true the converse, that is, for any given substructure of a �-structure

there is a pair of homomorphisms whose equalizer is itself. However, the result is

unnecessary for the model theory we want to present here and the construction of such

homomorphisms is not elementary. Indeed, they are basically the embedding of into a

�-structure , built by duplicating the elements of and then identifying the elements

of , and adding new values to denote the results of total functions on mixed inputs

from both copies of .

Assuming that substructures coincide with regular subobjects, it is easy to show that

this condition is necessary, too. Indeed, calling the smallest substructure including

the image of , two parallel homomorphisms : exist s.t. the embedding of

into is their equalizer, because substructures are regular subobjects, and obviously

= , as factorizes through the embedding. Thus = implies = , that

is is not epi.

Analogously, let us consider for s.t. .

Then and denote the same value and hence

, as . Therefore

if , then .

Thus is a partial -structure and by de�nition the embedding

is an equalizing homomorphism; hence we only have to show that the

universal property holds for .

Let us assume that for some homomorphism ;

then for all and hence , i.e.

is a total function from into . Thus, by Lemma 3.3.17,

is a homomorphism from into and hence it is the required unique

factorization of itself through .

Let be a homomorphism of partial -

structures. If is generated by (regarded as a valuation of the family

of variables), then is an epimorphism , that is implies

for all .

Let us assume that for some homomorphisms

. Then equalizes and and hence, by Proposition 3.3.20, its image

is a subfamily of the equalizer of and . But, since is generated

by , the functional closure of the image of in , that is the smallest

substructure including the image itself, is itself. Therefore the equalizer

of and is , that is and coincide.



i

i

De�nition 3.3.22

1

1

1

1 1

1 1

1

1

1

1 1 1

1

E

1

1 1

1

0 0

0 0 00 00

0 0 0

0

0 0 0 0 0 0

�

�

�

�

3.3. PARTIAL FIRST-ORDER STRUCTURES

s s s

s s

s s s

i s

i

A n s A

n

n

i s

i

A n s A n

A

n

s A

n

A n s A

n

n

s s

s s

A=
n A n n

i i
A=

A=
n A n i i

A n s A n

n i i
A=

� � j j � j j

� � �

� � � �

� � �

� � � � � �! 2

� � �

� �

� � � � � �!� 2

� �

f j 2j j � g �

�

�

� �

� j �j f j � g 2

� � � � � � �!

2 2j j

� 2

�

� � � � � �!� 2 2j j

A

B

B A

A B A B

A A

S A A

a a a a

a a a a a a

a a i ; : : : ; n f a ; : : : ; a f a ; : : : ; a

f s s s

a a i ; : : : ; n g a ; : : : ; a g a ; : : : ; a

g a ; : : : ; a g a ; : : : ; a g a ; : : : ; a g a ; : : : ; a

g s s s

A

S a a A a a

A A

A=

A= a a a s S

f a ; : : : ; a f a ; : : : ; a f s s

s a s i ; : : : ; n

g x ; : : : ; x g a ; : : : ; a a x i ; : : : ; n

g a ; : : : ; a g a ; : : : ; a

g s s s x s i ; : : : ; n

congruence

Let be a partial -structure; a on is

an -sorted family of subsets of satisfying the following

conditions:

if , then ( );

if and , then ( );

if for , then

for all ( );

if for and both

and , then

for all ( ).

Given a congruence on a partial -structure the of is the

-family ; if the domain of coincides with the

whole carrier, then is called .

Given a congruence on a partial -structure , the of by

is the partial -structure de�ned by:

for all ;

, for all

and all for ;

if exist for

s.t. ; otherwise it is unde�ned, for

all and all for ;

41

It is worth noting that bijective homomorphisms are not required to be

isomorphisms, that is their inverse may do not exist. Consider, indeed,

the signature � with one sort, no total function, one partial constant and

no predicates at all. Then let us call the �-structure on such signature

with a singleton carrier and the interpretation of the constant de�ned and

let us call its weak substructure, with the same carrier, but with the

interpretation of the constant unde�ned. Then the embedding of into

is a bijective homomorphism, but there does not exist any homomorphism

from into , as the constant is de�ned in but it is not in . Therefore

in the category of partial �-structures monomorphisms are not required to

be sections (that is their left inverse may do not exist) and epimorphisms

are not required to be retractions (that is their right inverse may do not

exist).

As usual in most algebraic approaches, a notion of is intro-

duced to represent the kernels of homomorphisms.

� congruence

symmetry

transitivity

= 1 ( ) ( )

: 
 total function closure

= 1 ( ) ( )

( ) ( ) ( ) ( )

: 	 partial function weak closure

� domain

and

total

� quotient

�

= [ ]

([ ] [ ]) = [ ( )] :


 [ ] = 1

( ) = [ ( )] = 1

( ) ( )

: 	 = 1

2

2

2

1 1

1

�

�

�

0

0 0

n
A=

n A i i

n i i
A=

s

h h

h

h h

h

� �

CHAPTER 3. PARTIAL FIRST-ORDER

� 2 2 2

� � � � � 2 2j j

�

�

�

2j j 2

�

�

�! �

A

h i

2 A A

2 A

�! �

2 A

A A

A

h i

A

Proposition 3.3.23

Proof.

De�nition 3.3.24

Lemma 3.3.25

x ; : : : ; x P a ; : : : ; a P a x

i ; : : : ; n P s s x s

i ; : : : ; n

A

A A=

h A B

h h A a h a

h a h a a; a A s S

A=

A

h

h

h

A B h A= h B h h

A= h h h a

h a

A= h

h

S; ; ; X S

F X

e X F A

� X A h F A � h e

F

S; ; ;

S X

X

42

( ) ( )

= 1 : �

= 1

�

�

kernel

( ) = ( )

It is immediate to verify that is actually a partial �-structure

for any given congruence on a partial �-structure . Indeed the condi-

tions on weak partial and total functional closure ensure the unambiguous

de�nition of function interpretation.

Moreover, is symmetric, re
exive and transitive, by de�nition,

and the conditions of functional closure are guaranteed by the de�nition

of homomorphism. Therefore, is a total congruence. The �rst

homomorphism theorem holds for our de�nition of congruence.

�

: =

([ ]) =

( )

� = 
 	 �

free

: =

initial

� = 
 	 �

i� for some for

, for all and all for

.

Given a total congruence on a partial -structure , we will denote by

nat the homomorphism from into associating each element with

its equivalence class in .

Let be a homomorphism of partial -structures from into . Then

the Ker( ) of is the total congruence on de�ned by Ker( )

i� for all and all .

Ker( )

Ker( )

Given a homomorphism of partial -structures from

into , there exists a unique

Ker( )

Ker( ) s.t.

Ker( )

nat

Ker( )

.

By de�nition of Ker( ) such a

Ker( )

has to be given by

Ker( )

. It is a well de�ned total function, by de�nition of kernel, and satis�es

the conditions of homomorphism, by de�nition of the function interpreta-

tion in Ker( ). Thus, it is a homomorphism and hence it is the unique

factorization of through nat

Ker( )

.

Let be a class of partial �rst-order structures over a

partial �rst-order signature and be an -sorted family

of variables.

Then a partial �rst-order structure is for in i� there ex-

ists a total valuation for in s.t. for all and all total valuations

for in a unique homomorphism exists s.t. .

A free partial �rst-order structure for the empty family of vari-

ables in is called in .

Let be a class of partial �rst-order structures over a

partial �rst-order signature closed under substructures.

Then a free �rst-order structure for an -sorted family of variables in

, if any, is generated by .



X

2

Proof.

�

#

E E

#

E

# #

E

#

E

E

3.3.2 Partial logic

A

2 A 2 A

�!

�

A

�! �

� �

� �

2

� �

�

�

� X

X

e X e

e X

F e X F

X X

e

e e e e

e X e F

e X X

3.3. PARTIAL FIRST-ORDER STRUCTURES

X

F e X F A

� X A h F A

� h e F e

F i

F

F h F F e h e

e h i e F

e id e h i id

a F F

t T X e t a h a

h e t h e t h h e t e t a

h a a a i h id

h i F F F

X

Let us assume that has a free �rst-order structure for , i.e. that

there exist and a total valuation for in s.t. for all and

all total valuations for in a unique homomorphism exists

s.t. . Let us denote by the image of , that is a substructure

of because of Exercise 3.3.16 and hence belongs to , and by its

embedding into .

Since is free, there exists a unique s.t. .

Therefore and, since the identity of is the unique map s.t.

, .

Let us consider a generic element of . By de�nition of some

term exists s.t. ; therefore, by Lemma 3.3.10,

and, by de�nition of , .

Thus, for all and hence .

Therefore is the inverse of ; hence , that is is term-

generated by .

43

:

=

: =

=

= =

( ) ( ) = ( ) =

( ( )) = ( ) ( ) ( ) ( ) = ( ) =

( ) = =

=

We now want to generalize the concept of describing classes of algebras by

axioms introduced in Chapter 2 and extended at the beginning of this Chap-

ter, by allowing conditional axioms built starting not only from equalities,

but also from predicate symbols applied to tuples of terms.

The presence of partial functions introduces the possibility of terms

which do not denote in all structures. This phenomenon causes di�erent

possible generalizations of the concept of equation to the partial case. Thus

the proliferation of equality symbols that we introduced at the meta-level

also re
ects on formulas, having three di�erent kinds of atomic formulas

representing respectively existential, weak and strong equalities between

terms, besides atomic predicate formulas.

Moreover, in Section 3.1, we only allowed universally quanti�ed condi-

tional axioms, since they have the nice properties that initial models and

relatively fast theorem provers exist. Here, we pass over to full �rst-order

logic. This increased expressiveness of axioms allows to write requirement

speci�cations (to be interpreted loosely) which are more succinct and more

related to informal requirements than speci�cations with conditional equa-

tions can be, as illustrated at the end of Example 3.1.14. Moreover, there

are interesting data types that cannot be directly expressed within the con-

ditional fragment; see, for instance, Section 3.4 below. Since the existence

of initial models is needed sometimes (e.g. for initial constraints or for de-

sign speci�cations), we later identify those fragments of �rst-order logic

which still have initial models.

i

0 0

0 0

s

n n i s

1 2 1 2 �

1 1 �

1 2 1 2 1 2

1 2 1 2 1 2

�

�

CHAPTER 3. PARTIAL FIRST-ORDER

h i

� 2j j

� � � � � � 2 2j j

�

� ^ ) 2

� 8 2 [

^

: )

_ : : ^ :

, ) ^ )

_ )

^ )

9 : 8 :

2

2

� 2

2

� 2

De�nition 3.3.26 First-order formula

De�nition 3.3.27 First-order axiom

De�nition 3.3.28

S; ; ; S

X Form ;X

X Form ;X S

t t t ; t T X

P t ; : : : ; t P s s t T X i ; : : : ; n

F

'  '  ';  Form ;X

Y:' ' Form ;X Y Y S

'  

' ' F

'  '  

'  '   '

D t t t

t t D t D t t t

t t D t D t t t

Y:' Y: '

X;' X:'

' Form ;X

t T X FV t

t X X t T X

' Form ;X FV '

' X X ' Form ;X

X '

X FV '

X:' FV '

X FV ' :'

Let be a signature. We inductively de�ne for all -

sorted sets in parallel the set of -formulas in variables

. is the least -sorted set containing

e

for

for and ,

(read: false)

and for

for , an -sorted set

If there is no ambiguity, the brackets around etc. can be omitted.

We de�ne the following abbreviations:

stands for

stands for

stands for

stands for

e

s

stands for

e

w

stands for

e

stands for

A over a signature is a pair , written , where

.

Given a term , the set of

is the least set such that already .

Likewise, given a formula , the set of

is the least set such that already .

44

We now want to use terms for building formulas, which eventually serve

as axioms in speci�cations.

� = 
 	 �

(� ) �

(� )

= ( )

( ) : � ( ) = 1

( ) ( ) (� )

( ) (� )

( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) =

= ( ( ) ( )) =

= ( ( ) ( )) =

( ) ( )

�rst-order axiom � ( )

(� )

The usual de�nition of free variables of a term or a formula now becomes

easy.

( ) ( ) free variables

of ( )

(� ) ( ) free vari-

ables of (� )

It is common practice to leave out, in the de�nition of axioms, the

family of variables over which the formula is de�ned and just write ,

where is recovered as ( ). But, at least for a semantics based on total

valuations, it is essential to allow also axioms where ( ) is a proper

subset of , which may behave di�erent from ( ) , see section 3.3.3.



n n n

A

s s

s

t

p

� 1 2

#

1

E

#

2

� 1

#

1

# #

1

#

�

� � �

� � �

�

S

�

�

�

De�nition 3.3.29 Satisfaction

{

{

3.3. PARTIAL FIRST-ORDER STRUCTURES

2

�!j j

� `̀

� `̀ # � � � # 2

� `̀

� `̀ ^ `̀ `̀

� `̀ ) `̀ `̀

� `̀ 8 [ �!j j

n 2 n 2

# 2 2

`̀

n

j �!j j

j �!j

j

;

' Form ;X

� X A '

� t t � t � t

� P t ; : : : ; t � t � t � t ; : : : ; � t

P

� F

� '  � ' �  

� '  � ' �  

� Y:' � X Y A

� X Y � x � x x X Y ; s S

Y � y y Y ; s S

� '

� � X Y

Y �

'

A X:'

A X:' � X A

'

A X:'

A X:' � X

A '

X:' X

Satisfaction of a formula by a (possibly partial) valuation

is de�ned inductively over the structure of :

e

i�

i� and and and

not

i� and

i� implies

i� for all valuations which

extend on (i.e. for all )

and

are de�ned on (i.e. for )

we have

Thus we treat quanti�cation by extensions of valuations to the quanti�ed

variables. By requiring to be an extension of on only, variables in

are treated as fresh variables: their value under is disregarded within

.

A partial -structure a �rst-order axiom

(written ), if all total valuations satisfy

.

A partial -structure a �rst-order axiom

(written ), if all (partial of total) valuations

satisfy .

closed

45

To be able to formally understand what a model of a speci�cation is,

we now have to de�ne satisfaction of �rst-order axioms by �rst-order struc-

tures. We base the de�nition of satisfaction of a �rst-order axiom in a

�-structure on partial valuations, but we want to quantify over the de�ned

only, so quanti�cation is treated by extension of valuations which have to

be de�ned for the quanti�ed variables.

(� )

:

= ( ) = ( )

( ) ( ) ( ) ( ( ) ( ))

( )

( )

( ) :

( ) = ( )

( )

� satis�es w.r.t. total

valuations = :

� satis�es w.r.t. partial

valuations = :

A �rst-order axiom is called , if = . Satisfaction of

arbitrary �rst-order axioms w.r.t. total valuations can be reduced to that of

closed axioms, because the satisfaction of a quanti�ed formula is equivalent

to that of its universal closure:

0

S

0

2

0

0

2

s

s

A

A

!

j j f g

j j ;

s s

a; b s

A

A ;

A

a

b

� =

:

=

= 0 1

=

= 0

= 1

� �

�

� �

� �

� �

�

�

�

�

�
�

� �

t t

p

p p

p

p p

t

X X

X

p

p

t

t

t

t

p

Y: M

Y X

CHAPTER 3. PARTIAL FIRST-ORDER

sig

sorts

opns

spec

Carriers

Functions

2

j j ; 8 j ; 8

j ; 8 6j f g

j

� 2

�

j j

j

�!

`̀ j `̀ j �!

�! �!

j n j ,

j

j

j f g f

g�! 6j ;

j j

[ �!j j

j `̀ 2 j `̀

Exercise 3.3.30

Proposition 3.3.31

Proof.

De�nition 3.3.32 Semantical consequence

A ' Form ;X

A X:' A : X:' A : X:'

A : x s:x x A x s :x x

X Y S '

Form ;X Form ; Y

A

A Y:' A X:'

' X

' � Y A

� ' � ' � X A � X

� X A � Y A

� � � Y X A Y:'

A X:'

A x s :a b � x

s A A :a b

X:'

M M ' M

' � X Y A

A

�  Y: M � '

Prove that for a partial -structure and

if and only if if and only if

Let be two -sorted variable systems and

be a �rst-order formula. Then for any partial

-structure ,

if and only if

while the corresponding property for does not hold.

A �rst-order axiom is

said to (resp. w.r.t. partial valu-

ations) from a set of �rst-order axioms , written (resp.

), if for all total (resp. total or partial) valuations

into partial -structures we have:

if for all then

46

� (� )

= = =

The counterexample = :

e

= but = :

e

= shows

that open formulas are interpreted by = quite di�erently.

(� ) (� )

�

= =

=

Since the free variables of are already contained in , an easy

induction over the structure of shows that for a valuation : ,

i� , where : is the restriction of to . Now

any valuation : can be extended to a valuation : with

= by just taking to be unde�ned on . Thus =

= follows.

Now the counterexample for = : Take the signature

and the partial �-structure

Then = : = , since there is no total valuation : :

, but = =

follow semantically w.r.t. total valuations

= =

:

�



2

7

8

� �

7

8

�

p p

t

t

t

p

p

p

p

� [

f g � �

j j

j

j

j

j

j

j

j

h i

h i

Proposition 3.3.33

Notation 3.3.34

3.3. PARTIAL FIRST-ORDER STRUCTURES

X Y S M

' Form ;X Form ; Y

M Y:' M X:'

' FV ' :'

;

;

Let be to -sorted variable systems and

be �rst-order formulas. Then

if and only if

while the corresponding property for does not hold.

Concerning , we may drop the variable system from

formulas and understand as an abbreviation of .

model

Indeed, the only references developing many-sorted �rst-order logic with possibly

empty carriers we found are [2] and [59].

Of course, we can keep both true if we de�ne the semantics of quanti�cation over

partial extensions of valuations, so that quanti�ed variables, as free variables, need not

denote a value. But then, in practice, we have to add many de�nedness conditions to

quanti�ed axioms.

47

Proposition 3.3.31 can be easily extended to semantical consequence:

(� ) (� )

= =

=

The peculiarity of = shown in Propositions 3.3.31 and 3.3.33 is not

introduced by the extension of logical power, but it is already present in

the total many-sorted equational fragment, where it leads to inconsistent

calculi unless quanti�cation is very carefully treated. For this reason in

most part of the literature on total algebras empty carrier sets are not

allowed or they are required to be unconnected to the non-empty carriers

by any function symbol. In [52] syntactical conditions on signatures are

given, guaranteeing that the empty carriers cannot introduce troubles. Not

only such conditions are not signi�cant anymore for the partial case, but

in the context of speci�cation, there may be very well the situation of

some data set being empty, for instance during the design phase, before the

decisions on some kind of elements have been completed. Thus we do not

require that the models of a speci�cation have non-empty carriers.

Both Exercise 3.3.30 and Proposition 3.3.31 (the latter together with

its companion 3.3.33) do hold for one-sorted total �rst-order logic. When

generalizing to the partial many-sorted case, we cannot keep both true. So

we have to choose between the equivalence of formulas to their universal

closure (which holds for = ) and invariance under changes of the variable

system (which holds for = ). While many treatments of partial logics

[22, 84] are guided by the former, we prefer the latter, also because of the

easier Substitution Lemma for = (see Lemmas 3.3.40 and 3.3.41 below).

The price for this preference is a slightly more complex manipulation of

quanti�cation. But the invariance under changes of the variable system of

= allows us now to drop the variable system:

=

( )

As in Section 2.2, we de�ne a presentation to be a pair � � where �

is a set of �-�rst-order axioms. A of a presentation � � is a partial

2

8 ^ :8

8 ^ :

p

n

n

p

p

n

n

�

1

1

�

�

1

1

3.3.3 Proof theory

=

:

( : ( )) ( : ( ))

=

:

: ( ( ) ( ))

CHAPTER 3. PARTIAL FIRST-ORDER

j h i

h i

h i

h i

[ f g j

j ^ � � � ^ )

h [ f : gi

^ :

f g

8

spec

sorts

preds

axioms

spec

sorts

preds

axioms

INCONSISTENT

s

P s

x s:P x x s:P x

PECULIAR

s

P s

x s: P x P x

De�nition 3.3.35

Proposition 3.3.36

Example 3.3.37

A A ;

;

;

;

' ; : : : ; '  

M ' ; : : : ; '  

M ' '  

;M ' ; : : : ; ' ;  

A A A

s x

x s:A A

Mod

A presentation is called

, if is empty. Otherwise, it is called

.

For -�rst-order formulas , , the follow-

ing are equivalent:

1. ;

2. ;

3. is inconsistent.

An easy example of an inconsistent presentation is given,

as usual, requiring for some formula without free variables.

not

48

�-structure such that = �. ( � � ) is the class of all models of

� � .

� � semantically inconsis-

tent Mod( � � ) semantically consis-

tent

�

=

=

�

It is interesting to note that the following, quite similar, speci�cation is

inconsistent.

Indeed it has the empty structure as a model, because if the carrier of sort

is empty, there does not exist a total valuation for in it and hence

: is satis�ed disregarding the formula .

Whereas model theory introduced in the previous section lays the founda-

tion for speci�cation of data types (understood as partial algebras), proof

theory is essential for deriving in a syntactical, computable way the seman-

tical consequences of a speci�cation. The consequences may not only reveal

wanted or unwanted behaviour of the speci�ed system, but possibly also

the inconsistency of the speci�cation.

We here present two natural deduction-style proof calculi for partial

�rst-order logic. The �rst one was developed by Burmeister [22] to capture



t

p

n n

s

8

>

>

<

>

>

:

�

�

�

�

�

#

1 2

E

1 2

1

E

1

E

S

S

S

De�nition 3.3.38

De�nition 3.3.39

3.3. PARTIAL FIRST-ORDER STRUCTURES

j

j

�!j j

�!j j

n [ �! [

n

2

2

2

2

�

�

�

� ^ ^

� ) )

� 8

8 n 8 2 2

6 2 8

\ ;

� X T Y

� X T Y S Z

� Z X Z T Y Z

Z � X Z

t � T Y

� t T X

t � � t

' � Form ; Y

� ' Form ;X

'

t t � t � t �

P t ; : : : ; t P t � ; : : : ; t �

F � F

'  � ' �  �

'  � ' �  �

Z:' �

Z: ' � Z ; x X ; s S:

� x x x FV Z:'

Z FV � x

;

A function is called a .

Given a substitution and an -sorted variable system ,

we denote by the substitution being the identity

on and being on .

The term resulting from applying the sub-

stitution to a term is de�ned by

The formula , which, if de�ned, results from applying

the substitution to a formula is de�ned inductively over

:

e e

if

and

implies

unde�ned otherwise

49

= . Burmeister's calculus covers only the one-sorted case. Here, in accor-

dance with the previous sections, we generalize it to the many-sorted case

(also allowing carriers to be empty), which forces us to carefully keep track

of variables (cf. [43]). The second calculus captures = and follows the

ideas of Scott [86]. In this calculus, because of Proposition 3.3.33, we can

omit the variable system.

Both calculi are based on a notion of substitution. The usual notion

(see Exercise 1.4.9) can be easily generalized to the partial case:

: ( ) substitution

: ( )

: ( )

Substitutions can be applied to terms as well as to formulas, where in

the case of formulas, the application is not de�ned in all cases because of

possible name clashes of substituted with quanti�ed variables.

[ ] ( )

( )

[ ] = ( )

[ ] (� )

(� )

( = )[ ] = [ ] = [ ]

( ) = ( [ ] [ ])

[ ] =

( )[ ] = ( [ ]) ( [ ])

( )[ ] = ( [ ]) ( [ ])

( )[ ] =

( [ ])

( ( ) = ( )

( ( )) = )

2

2

t

s

p

p

t

t

t

;X

�

#

�

#

� �

�

#

� �

1 2 3

�

CHAPTER 3. PARTIAL FIRST-ORDER

8

j

�! �!

j j 2

� � �! 2 2

`̀

�

� `̀ `̀

j

j

�!

�!j j 2

� `̀ `̀

j

j

` 2

Z:' �

� x

Z

A � Y A � X

T Y ' Form ;X

� � X A x X ; s S

� D � x

' �

� � ' � ' �

A � Y A

� X T Y ' Form ;X

' �

� � ' � ' �

; ; ; Form ;X

' '

Lemma 3.3.40 Substitution Lemma for

Lemma 3.3.41 Substitution Lemma for

A Calculus for

Assumption

Let be a partial -structure, be a total valuation,

be a substitution and a formula. Under the

conditions that

is a total valuation as well (i.e. for all

we have ) and

is de�ned,

we have

if and only if

Let be a partial -structure, be a (total or partial) valuation,

be a substitution and a formula. Under

the condition that is de�ned, we have

if and only if

50

The last case, causing ( )[ ] to be unde�ned in the case of name

clashes, prevents a free variable in ( ) to get bound by the quanti�cation

over . This restriction is important to keep the intended semantics of

substitutions. This semantics is re
ected by the following Lemma from

[22]:

=

� : :

( ) (� )

:

( ( ))

[ ]

[ ]

Compared with the usual Substitution Lemma for total logics, we here

have to make the additional assumption that the terms being substituted

are de�ned. On the other hand, the Substitution Lemma for = keeps the

simplicity of substitution in the total case:

=

� :

: ( ) (� )

[ ]

[ ]

The more complicated Substitution Lemma for = also complicates the

rules of the calculus dealing with substitution, while the others rules can

be taken directly from total �rst-order logic.

=

Let � � � � be �nite sets of formulas in (� ). Application

of substitution to such sets is understood elementwise. We introduce the

following rules of derivation:

� �



[

�

[

[

3.3. PARTIAL FIRST-ORDER STRUCTURES

1

�

2

�

1 2

�

�

�

�

�

1

�

2

�

1 2

�

�

�

1

�

1

2

�

1

1 2

�

1 1 1 +1

1

�

�

1

�

�

�

�

51

-

�

�

� � ( )

-

� ( )

�

-

� ( )

�

�

� ( )

� �

�

�

�

�

� �

-

�

�

-

� ( )

�

-

�

� ( )

if (�) =

'

 

'  

'  

'

'  

 

'  

' F  

 

F

 

' '  

  �

  ' '  : : : � �

' ; : : : ; '  

' '  

Y:'

'

'

Y:'

Y FV

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

t

;X

n i

t

;Y

k

t

;X Y

i n i k

n

t

;X

t

;X

n

t

;X

t

;X Y

t

;X Y

t

;X

^

`

`

[ ` ^

^

` ^

`

^

` ^

`

[ f g `

[ f ) g `

[ `

`

`

` ^ � � � ^ )

` ^ � � � ^ )

[ ` ^ � � � ^ ^ ^ � � � ^ ^ ^ ^ )

)

[ f g `

` ^ � � � ^ )

8

` 8

`

8

`

` 8

\ ;

introduction

left elimination

right elimination

Tertium non datur

Absurdity

Cut

introduction

elimination

introduction

Re
exivity

2

2�

V

V

V

S

[
2

2

[

s

s

Y: 

�

�

�

�

�

�

�

�

1 2

�

1 2

�

1

�

1

� =1

�

1

1

�

�

�

�

CHAPTER 3. PARTIAL FIRST-ORDER

`

2

`

` )

�!j j #

`

` )

�!j j # #

`

`

`

`

� � � � � 2

`

`

� � � � � �! 2

`

; `

j `

t

;X

s

t

;X

t

;X Y
x X

t

;X

t

;Y
x X

t

;X

t

;X

t

;X

n

t

;X

i

n

t

;X i ; ::: ;n

i

t

;X

n

n

t

;X

t

;X

t t

;X Y

derivation

derivation of

a formula

The calculus is sound and complete, i.e.

if and only if

x x

x X

'

x � x ' �

� X T Y ' �

'

� D � x ' �

� X T Y ' � �

t t

D t

t t t

P t ; : : : ; t

D t

P s s

D t

D f t ; : : : ; t

f s s s

D t t t

'

X:' '

X:' '

Congruence

Substitution

Function Strictness

Predicate Strictness

Totality

Theorem 3.3.42

Proof.

Congruence

52

�

e

=

for

�

� (

e

= ( )) [ ]

for : ( ) with [ ]

�

�[ ] ( ( ( ))) [ ]

for : ( ) with [ ] and �[ ]

�

e

=

� ( )

some subterm of or

� ( )

� ( )

for : �

� ( )

� ( ( ))

for : 


Here ( ) is syntactical sugar for

e

= .

A is a �nite sequence of judgements of form � such

that each member of the sequence is either an axiom or obtained from

previous members of the sequence by application of a rule. A

is a derivation whose last member is the judgement .

Burmeister states the following theorem in [22]:

� = �

Soundness is shown by an induction on the rules.

The proof of completeness follows the same lines as the usual Henkin

style proof for total �rst-order logic. See [33] for a completeness proof for

partial higher-order logic.

All rules of the calculus up to are taken from a calculus

for total �rst-order logic [49] (except that we index judgements with sig-

natures and variables here, which is necessary to cover the case of empty



s

s

V

V

�

�

�

�

2 2

2 2

s

t

p

p

p

p

y Y ;s S

p

y Y ;s S

p

D � x x X

Y:'

D y '

D y '

Y:'

Y FV

f j 2 g

j

j

j

^ ^ ^

`

8

` 8

` )

8

` )

` 8

\ ;

3.3. PARTIAL FIRST-ORDER STRUCTURES

Func-

tion Strictness Predicate Strictness

Totality

Substitution

A Calculus for

Assump-

tion introduction left elimination right elimination Ter-

tium non datur Absurdity Predicate Strictness Function Strict-

ness Totality

elimination

introduction

53

carriers). On the other hand, the last four rules are entirely new.

and state that atomic formulas

are interpreted \existentially strict", that is, their truth entails de�nedness

of all terms occurring in them. states that the application of a

total function to de�ned terms is de�ned.

Finally, the Rule also occurs in the calculus for total

�rst-order logic, but has to be modi�ed for the partial case: it contains

additional assumptions

( ( ))

in the derived judgement, which state that the terms to be substituted are

de�ned. This is a syntactical version of the de�nedness condition in the

Substitution Lemma for = .

The calculus (especially when extended with suitable derived rules for

the de�ned connectives, quanti�ers and equalities, some of which can be

found in [49]) is useful for doing proofs whose structure follows the reason-

ing of a mathematician. But for automated theorem proving, more e�cient

proof calculi are used, like analytic tableaux, resolution and the connection

structure method [36]. One crucial source of e�ciency is the use of uni�-

cation (i.e. �nding a substitution under which two given formulas become

equal). But in the above calculus, the rule of substitution is restricted to

the case where the things being substituted are de�ned. This causes dif-

�culties, at least, when using the well-known techniques and results based

on uni�cation.

=

This is a further strong argument in favour of = , which can be also cap-

tured by a proof calculus. This calculus consists of the rules

, - , - , - ,

, , ,

and which are obtained by the corresponding rules from the

above calculus by dropping the variable system as an index for , and the

following further rules:

-

� ( )

� ( ( ))

-

� ( ( ))

� ( )

if (�) =

2

�

�

�

�

� �

p

p

p

p p

t p

` )

`

`

�!j j # #

j `

8 8

j j

x y y x

'

� ' �

� X T Y ' � �

D t t t

' '

CHAPTER 3. PARTIAL FIRST-ORDER

The calculus is sound and complete, i.e.

if and only if

universal logic

borrowing

Symmetry

Substitution

Theorem 3.3.43

Substitution

elimination introduction

Congruence Congruence

Translating partial to total �rst-order logic

54

�

e

=

e

=

�

�[ ] [ ]

for : ( ) with [ ] and �[ ]

Again, ( ) is syntactical sugar for

e

= .

� = �

This calculus has a simple substitution rule , while the

quanti�er rules - and - now have to take care

of de�nedness. Re
exivity of

e

= does no longer hold and has to be replaced

by symmetry, which is strictly weaker because it follows from re
exivity

together with . (Transitivity follows by in either

case.)

The success for total �rst-order logic is based on the fact, that it is expres-

sive enough to be called a in [68] but just not too expressive,

so there is a sound and complete calculus. First-order logic being universal

means that there are translations from many-sorted, higher-order, dynamic,

modal etc. logics to �rst-order logic. We will now describe a translation

from partial �rst-order logic (denoted by PFOL) to total �rst-order logic,

from now on denoted by FOL. This translation allows us to take any de-

ductive system for total �rst-order logic and re-use it for PFOL (either with

= or = ). This is a particular case of the technique proposed

in [26].

Of course, since PFOL is a superset of FOL, it shares the universal

character with FOL. On the other hand, it becomes clear that no essential

expressive power is added by the passage from FOL to PFOL, but, as we

shall see, we gain much notational convenience.

We here use the standard FOL introduced in many textbooks. That

is, a FOL-signature consists of a PFOL-signature with exactly one sort



n

n

1

1

0 0 0 0 0

0

�

1

1

1 1

1

1 1

1 1 1 1

1

1 1 1 1

1 1 1

3.3. PARTIAL FIRST-ORDER STRUCTURES

FOL

n

n

n n

g

n

n n

s

s s

s s s

s n s n n s n

n

s n s n n s n

n s n n

^ ^

^ 8

8

8 8

`

9

^

^ � � � ^ ^

h i

f � g ]

� [f� � j 2 g

� � ) � 2

� � ^ � ) � 2

� � ^ � � � ^ � ) �

� � � � � �! 2

� � ^ � � � ^ � ^ � )

� � � � � � �!� 2

g t ; : : : ; t

� g t ; : : : ; t

x s ; : : : ; x s ; x s:

R x ; : : : ; x ; x

� x t � x t � x t

S; ; ;

; ;

s s s S

C

x y y x s S

x y y z x z s S

x y x y f x ; : : : ; x f y ; : : : ; y

f s s s

x y x y g x ; : : : ; x g x ; : : : ; x

g x ; : : : ; x g y ; : : : ; y g s s s

Assumption introduction left elimination

right elimination Tertium non datur Absurdity elimination

introduction Re
exivity Substitution Congruence

elimination introduction Re
exivity Congruence

55

symbol and no partial operation symbols. �-structures have to have a non-

empty carrier, in order to get a simple calculus. Such a calculus for FOL

consists of the rules , - , - ,

- , , , - ,

- , , and . For the

rules - , - , and , the

variable system has to be dropped and

e

= has to be replaced by =. This

gives us an entailment relation .

The idea is now to translate PFOL to FOL and then re-use the easier

calculus for FOL via this translation. In particular, the world of automated

theorem provers for FOL can thus be adapted for PFOL.

The only translation from partial to FOL fully representing PFOL-

structures and -homomorphisms is the representation of partial operations

by their graph relations, sketched by Burmeister in [22]. Substitution of

terms containing partial operation symbols is avoided, but instead appli-

cations of partial operation symbols have to be expanded into long exis-

tentially quanti�ed conjunctions: a term ( ) is translated to the

formula ( ( )) =

: : :

( ( )

(

e

= ) (

e

= ) (

e

= ))

This makes the treatment of partial operations even more cumbersome

than in Burmeister's calculus.

But there is another translation from PFOL to FOL along the lines of

Scott's ideas [86]. Though model categories are not represented faithfully,

proof theory is, so it �ts for our purposes here.

A PFOL-signature � = 
 	 � is translated to a FOL-signature

�(�) = ( 
 	 � ), where 
 and 	 result from 
 and 	 by replacing

all sorts by , and � = � : . To the translated signature,

there has to be added the set of axioms (�) consisting of

for

for

( ) ( ) for

: 


( ) ( )

( ) ( ) for : 	

V

1 n

i

i

i

s

B

f 2 2 g

�!

�!

�

Proposition 3.3.44

Proof.

CHAPTER 3. PARTIAL FIRST-ORDER

s n s n n n

n

n s n i s i

n

n s n i s i n

n i s i n

s s

n n

y Y ;s S

s

B

PFOL FOL

1 1 1 1

1

1 1 1

1 1 1

1 1

�

� 1 2 1 2 1 2 �

� 1 1

�

� � �

� � �

� �

�

�
� �(�)

� �(�)

�
�(�)

�

For each -axiom and each total valuation

into a -structure we have

nat if and only if

� � ^ � � � ^ � ^ )

� � � � � 2

� � ) � � � � � �

�! 2

� � ) � � � � �� �!

� 2

� ) � � � � � � 2

�

� � 2

�

�

� ^ ^

� ) )

� 8 8 � )

h i

j �

j �!

�!

h i

� `̀ `̀

x y x y P x ; : : : ; x P y ; : : : ; y

P s s

f x ; : : : ; x f x ; : : : ; x x x f s

s s

g x ; : : : ; x g x ; : : : ; x x x g s s

s

P x ; : : : ; x x x P s s

' � '

� t t t t t ; t T X

� P t ; : : : ; t P t ; : : : ; t

� F F

� '  � ' �  

� '  � ' �  

� Y:' Y: y y � '

;C B

� B

� B B =

B B

B

' � X

B ;C B

� ' � � '

'

56

( ) ( ) for

: �

( ) ( ) for for :




( ) ( ) for for :

	

( ) for for : �

stating that is a strict partial congruence and partial operations and

predicates are strict.

A �-axiom (in PFOL) is translated to the �(�)-axiom ( ):

(

e

= ) = for ( )

( ( )) = ( )

( ) =

( ) = ( ) ( )

( ) = ( ) ( )

( ) = ( ) ( )

A �(�) (�) -structure (in FOL) is translated to the partial �-

structure ( ) (in PFOL) with

( ) = ( )

where is the reduct of along the obvious map � �(�),

i.e. interpreted as partial �-structure, and the quotient is taken as in

De�nition 3.3.22.

This translation now has the following crucial properties:

� :

�(�) (�)

( )

By induction over the structure of .

Considering existence equations, we have



2

2

V

�

�

�

�

� �

�

�

�

f 2 2 g

�

B

B B

B

B

B

s

B

i

i

i

Proposition 3.3.45

Proof.

3.3. PARTIAL FIRST-ORDER STRUCTURES

�

1 2

#

1

E

#

2

#

1

#

2

�(�)

1 2

�(�)

� 1 2

�

�

�

�(�)

�

�(�)

�

�(�)

�

�(�)

�

�

1

1

1

1 1

1 1

1 2 1 2

PFOL

s;B

FOL

s;B

FOL

B

PFOL

PFOL

s;B s

PFOL

s;B s

FOL

FOL

y Y ;s S

s;B

FOL

s;B s

s s

B n

A n i s

B n

A n i s A n

B n i s A n

s;B s

� `̀

� �

�

`̀ �

`̀

�

� `̀ 8

[ �! � n

`̀

[ �! n

� 2 2

� `̀

[ �! n

� 2 2 `̀

`̀ 8 � )

`̀ 8

h i

�!

�! �

� 2 2

� j j j j ]f?g 2

�

2j j

?

�

2j j #

?

� 2j j

� � 2j j

�

#

?

For each partial -structure there exists a -

structure with , such that for each valuation there

exists a total valuation with nat . If moreover is

total as well, then for all .

� t t

� t � t

� t � t

� t t

� � t t

� Y:'

� X Y � B � X Y

Y � '

� X Y B � X Y

� y � y y Y ; s S

� � '

� X Y B � X Y

� y � y y Y ; s S � � '

� Y: y y � '

� � Y:'

A ;C

B � B A � X A

� X B � � �

� x � x x X ; s S

B A s S

f a ; : : : ; a

f a ; : : : ; a ; a A

;

g a ; : : : ; a

g a ; : : : ; a ; a A g a ; : : : ; a

;

P a ; : : : ; a a A P a ; : : : ; a

a a a a A

� x

� x ; � x

;

57

nat

e

=

i� ( nat ) ( ) = ( nat ) ( )

i� ( ) ( )

i�

i� (

e

= )

Here, strictness of is used to show the that de�nedness condition is

equivalent in each line.

Considering universally quanti�ed formulas, we have

nat

i� for all : ( ) extending nat on

and being de�ned on ,

i� for all : extending on for which

( ) ( ) for all ,

nat ( )

i� for all : extending on for which

( ) ( ) for all , ( )

i� ( ) ( )

i� ( )

The other cases are treated similarly.

� �(�) (�)

( ) = :

: =

( ) ( )

Take

= ( )

( ) =

( ) if

otherwise

( ) =

( ) if and ( )

otherwise

( ) i� and ( )

if = .

( ) =

( ) if ( )

otherwise

[

2

B

B

2

�

�

i�

i�

CHAPTER 3. PARTIAL FIRST-ORDER

�

�

�

�(�)

�

�

�

�(�)

�

�

�(�)

�

�

�(�)

�

�(�)

�

�(�)

�

� �

� �

�

3.3.4 Conditional logic with existential premises

t

s

Y: 

FOL

p

FOL

FOL

FOL

FOL

FOL

FOL

PFOL PFOL

PFOL PFOL

p

j [ [ f � j 2 [ g `

j [ `

[ `

[ j

`

�!

h i `̀

) `̀

�!

h i � `

` ) � `̀

�!

`̀ ) `̀

j

Theorem 3.3.46 Borrowing of proof calculus from FOL for PFOL

Proof.

X:' C � x x x s X Y � '

' C � � '

C � � '

C � � '

� X B

;C B �

� � � '

� X B

;C B nat �

nat � '

� X A

A

� � '

'

58

� = (�) (�) : ( )

� = (�) (�) ( )

We here only prove the second statement.

(�) (�) ( )

i� (�) (�) = ( ) by sound-

ness and complete-

ness of

i� for all total valuations : into

a �(�) (�) -structure ,

(�) ( )

i� for total all valuations : into a

�(�) (�) -structure ,

�

by

Proposition 3.3.44

i� for all valuations : into a �-

model ,

�

by

Proposition 3.3.45

i� � =

The translation of PFOL to FOL can also take advantage of special theo-

rem prover for FOL coping also with the partial congruences very well. This

translation generates partial congruence relations, which can be treated in

a way similar to equality with the results of Bachmair and Ganzinger [11].

Although having full �rst-order logic at hand to describe a speci�cation

allows in many cases to give a concise and close to the intuition axioma-

tization, there are several data types that are quite easily and naturally

described within a far smaller fragment of PFOL, consisting of the condi-

tional axioms.

The advantages in using such restricted language are basically two: on

one side, if the form of the axioms used in the deduction is restricted,

better theorem provers are available, taking advantage, for instance, of

paramodulation (see [82]) and conditional term-rewriting techniques (see

Chapter 1 by H. Kirchner and [30, 58]).

On the semantic side, the existence of an initial model for such classes of

speci�cations is guaranteed. Moreover the initial model is characterized as



I

�

�

I

I

I

I

�

0 0

0

Example 3.3.47

Stack

pop top

push

!

� !

�!�

�!�

�

j j

j j

�

�

�

3.3. PARTIAL FIRST-ORDER STRUCTURES

e; s s

e; s e

I

I X

I X

�

x; s x s

s

s ; s x s

;

s

x; s x s

;

sig enrich by

sorts

opns

popns

preds

spec enrich by

axioms

spec

Carriers

Functions

� = �

:

:

:

:

:

:

= �

( ( ))

s

=

( ( ))

s

=

=

=

=

=

( ) =

( ) =

if =

unde�ned otherwise

( ) =

if =

unde�ned otherwise

Stack Elem

stack

empty stack

push elem stack stack

pop stack stack

top stack elem

is in elem stack

is empty stack

Stack

Stack

pop push

top push

elem

stack

empty

push

pop

top

59

the �rst-order structure satisfying the axioms of the speci�cation.

Thus, using it corresponds to an economy of thought.

Let us �rst see an example of partial conditional speci�cations, before

their formal de�nition and the proof of existence of initial (free) models for

such a class of speci�cations.

stacks

�

positive conditional

no-junk no-confusion

minimal

Let us see as, using the partial framework, the speci�ca-

tion of with their constructors and selectors becomes easy and elegant,

indeed. Let us recall the signature from Example 3.3.2

Then the minimal speci�cation of stacks on this signature, is given by the

axioms identifying the and as (partial) inverse of the constructor

As we will see all speci�cations, i.e. speci�cations with

axioms that are implications whose premises are (�rst-order equivalent to) a

set of existential equalities and predicate applications, have an initial model,

characterized by the & properties. Therefore, in par-

ticular, the above speci�cation of stacks have the following initial model

.

2

1

�

0 0

0

I

n

i

�

2

8 ^ � � � ^ )

2

;

De�nition 3.3.48

CHAPTER 3. PARTIAL FIRST-ORDER

I

s ; s x s

�;

' Form ;X

' X: � � �

� �

; Ax ' Ax

Stack

pop

Stack

pop empty empty

Stack

pop

pop

Stack

It is interesting to note that the speci�cation is the most abstract

interpretation of stacks and can be furtherly specialized to get an

where more details have been �xed. For instance the operation

on the empty stack could be recovered on the empty stack, as in many

standard total approaches, by enriching with the following axiom

s

Since also this axiom is positive conditional, the enriched speci�cation has

an initial model too, that is the -structure with the interpretation

of function modi�ed into

if

otherwise

More re�ned error recovery (or detection) techniques can be implemented

as well, by di�erently enriching .

A formula is a well-formed �rst-

order formula of the form

where is any atom and each is either a predicate application or an

existential equality.

A speci�cation Sp is called if it has the same model

class as a speci�cation Sp and each is a positive condi-

tional formula.

60

imple-

mentation

( ) =

�

=

=

positive conditional

(� )

=

positive conditional

= (� )

A particular case of partial positive conditional speci�cations are total con-

ditional speci�cations. Indeed, a total �rst-order signature is a partial �rst-

order signature with the empty family of partial function symbols 	(�) =

and, moreover, each partial �rst-order structure is a total �rst-order struc-

ture too. Thus the distinction among di�erent kind of equalities is im-

material and hence the model class of a total conditional speci�cation is

the same as the model class of the partial positive conditional speci�cation

having the \same" axioms, where each = symbol has been replaced by

e

=.

Another important class of positive conditional speci�cations that can

be easily recognized are those whose axioms are conditional and each strong

equality in the premises is guarded by a de�nedness assertion on either side

of the equality and, analogously, each weak equality in the premises is

guarded by a de�nedness assertion on both sides of the equality, because

such a formula has the same models as the given conditional formula where

all equalities in the premises have been substituted by existential equalities.



1

T

T

0

0

0

0

Sp

Sp Sp

n

i

i j

i j

k

!

!

�!�

� �!�

x x

x; x

x ; y x; y

pop top

pop top

2

8 ^ � � � ^ )

� 2

� 2

=

:

:

=

:

:

( ( ))

s

=

( )

s

=

( ( ) ( ))

s

= ( )

Exercise 3.3.49

Example 3.3.50

3.3. PARTIAL FIRST-ORDER STRUCTURES

sig

sorts

opns

spec enrich by

popns

axioms

; Ax

' Ax

' X: � � �

� �

� t t j ; : : : ; n �

D t D t

� t t j; k ; : : : ; n �

D t � D t

Nat

nat

zero nat

succ nat nat

Nat Nat

prec nat nat

minus nat nat nat

prec succ

minus zero

minus succ succ minus

Show that a speci�cation Sp is positive condi-

tional if each has the form

where and all are atoms and the following two conditions are satis�ed:

if is the strong equality

s

, then there exists s.t.

is or ;

if is the weak equality

w

, then there exist s.t.

is and is .

constructors

The basic speci�cation of non-negative integers is the

usual (total) one, given by the absolutely free constructors \zero" and \suc-

cessor".

Then on this signature we want to de�ne, for example, the predecessor and

the minus operations.

61

= (� )

=

= 1

( ) ( )

= 1

( ) ( )

Using initial semantics of speci�cations with positive conditional formulae

to describe a data type intuitively corresponds to using inductive de�nition.

A particular, but very common, case is the axiomatization of a data type

where the carriers are built by some total functions, called ,

and then other, possibly partial, operations are de�ned on such elements

simply imposing the equality of their applications to terms built by the

constructors.

An instance of this methodology of data de�nition is, indeed, the previ-

ous example of the stacks, that are built by pushing elements on the empty

stack, where the evaluation of a ( ) reduces by the axioms to the

evaluation of simpler terms, without ( ). Let us see another example,

that is the speci�cation of the minus between non-negative integers.

�

�

1
( )

1

h i

2 j 8

�

k

k

n
T X

n

Theorem 3.3.51

CHAPTER 3. PARTIAL FIRST-ORDER

I

I

I

I

I

S; ; ; X S

X

F T X

t ; : : : ; t P A X:P t ; : : : ; t A

prec

minus

succ zero

prec zero

prec

succ zero

The above speci�cation follows the intuition that the new operations are

on a data type built by zero and successor, inductively de�ned

by means of the constructors. Indeed, a term starting with a or a

symbol can be deduced de�ned i� it reduces to a term of the form

, because the axioms are strong equalities. Thus, for instance,

cannot be deduced to be de�ned (and indeed in the initial model,

it is unde�ned) and represents an erroneous of .

It is also worth noting that the given axioms allow the intuitively in-

tended identi�cations for minimal models, that are those partial �rst-order

structures where each element of the carrier is denoted by a term of the

form .

smallest

minimal

Let Sp be a positive conditional conditional speci�cation

over a partial �rst-order signature and be an -sorted

family of variables. Then there is a free Sp-model for , that is (isomorphic

to) the quotient of the term algebra with the following interpreta-

tion of predicate symbols:

i� for all models of Sp.

by the following congruence :

62

programs

( )

( )

call

( )

The existence of initial (free) models for positive conditional axioms is due

to the particular structure of the model class, as in the total (both equa-

tional and conditional) case.

Roughly speaking the �rst step to prove the existence of an initial (free)

model is to show that if it exists, then it is term-generated. This property

is due to the fact that the model class of a positive conditional speci�cation

is closed under substructure, so that the term-generated part of is a

model too and hence, as the initial (free) model is in a sense the

(w.r.t. the partial order induced by homomorphism existence), and its

term-generated part must coincide.

Thus is (isomorphic to) a term-algebra quotient. Moreover, since

homomorphisms preserve existential equalities and predicate assertions, the

congruence de�ning must be , i.e. it must be the intersection of

all the kernels of term-evaluation in a model of the speci�cation.

The last step is to prove that the quotient of the term algebra w.r.t.

the intersection of all the kernels of term-evaluation in a model of the

speci�cation is actually a model too, i.e. that it satis�es the axioms. This

point too relies on the form of the axioms. Indeed, if the premises of an

axiom hold in such a quotient, then they must hold in each model. Hence

the consequence too holds in all models, so that it holds in the quotient,

that is, therefore, a model.

� = 
 	 �

( )

( ) = ( )



2

1 n

i

0 0

2

1 1

1

1

1

3.3. PARTIAL FIRST-ORDER STRUCTURES

t

p

p

T

s s s S

T T

s s n s n

n

s n s i

n

s s

s s

s s

s

s s

s s s

� j 8

h i

h [ i h i

j 8

j

j

h i

�

h [ [ f � g i

^ � � � ^ )

� � � � � �! 2

)

� � � � � �! 2 [

)

)

^ )

)

)

^ )

t t A X:t t A

; I

Mod ;C � � I Mod ;

S; ; ;

S; ; D s; s s

Ax

D x D x D f x ; : : : ; x

f s s s

D f x ; : : : ; x D x

f s s s

x y D x

D x x x

D x x y x y

x y x y

x y y x

x y y z x z

Proposition 3.3.52

Assumption Cut

elimination Re
exivity Congruence Substitution Function Strict-

ness Predicate Strictness Totality

Re
exivity Symmetry

De�nition 3.3.53

i�

e

for all models of Sp.

Let be a presentation and an initial model in

Then is an initial model in .

borrowed

borrowing

Let be a partial signature.

Let denote the total �rst-order signature

e

and denote the following set of total conditional formulas on :

e

e

e

e

e e

e e e

63

= =

We also can use the translation from PFOL to FOL to get initial models

in the partial conditional case:

� �

( �(�) (�) (�) ( ) ( � � )

A sound and complete calculus for the conditional fragment of par-

tial �rst-order logic for = consists of the rules , , -

, , , ,

, and . For = , it consists of the same

rules modi�ed for = , except that is replaced by .

But like full partial �rst-order logic, also positive conditional speci�-

cations are reducible, from a deductive point of view, to the usual total

�rst-order speci�cations which turn out to be conditional again, so that

automatic tools and techniques developed for the conditional total case can

be for the partial as well.

The key point of such a reduction technique is the translation of a posi-

tive conditional speci�cation into a corresponding total conditional speci�-

cation, whose models satisfy the same atomic formulas (up to translation).

This is a particular case of the technique proposed in [26] and a

sugared version of the borrowing for PFOL, where also de�nedness predi-

cates are allowed.

� = 
 	 �

�


 	 � : = :

�

( ) ( ) ( ( ))

for all : 


( ( )) ( )

for all : 
 	

= ( )

( ) =

( ) = =

= =

= =

= = =

2

1

s

n

1 +1

1

+1

1 +1

1

1

1

1 1

1

CHAPTER 3. PARTIAL FIRST-ORDER

{

{

{

{

Lemma 3.3.54

Exercise 3.3.55

n n i

n

n

x X s n n

T T

s s

A

B A

n

B A

n n s

A

s

A

A n s

A

B n

B A

n

T

t

T

T T

�

8 ^ � � � ^ )

8 ^ � � � ^ )

^ ^ ^ � � � ^ )

�

j j 2

�

� � � � �! 2

� � � � �

�!� 2 2 � �

2

�

� � � � 2

j , j

[

X X: � � � �

' X: � �

� � '

D x � � �

A ;Ax � A

B

B D s S

f f B f s

s s

g g B g s

s s a ; : : : ; a D : : : D

g a ; : : : ; a = D g a ; : : : ; a

P P B P s

s

Ax

�

A

'

� A ' A � '

;A

; � A Ax

�

Let us call a formula over a �nite set of

variables having the form with each

a predicate application, or an existential equality, or a de�nedness

assertion.

For all strictly positive conditional formulas

, let denote the following total conditional axiom:

For all total �rst-order structure modelling , let

denote the following partial �rst-order structure :

for all .

is the restriction of to the carriers of for all

.

is the restriction of to the carriers of for all

; in particular if

but , then is unde�ned.

is the restriction of to the carriers of for all

.

Using the notation of De�nition 3.3.53, the following

holds for all total �rst-order structure and all strictly

positive conditional formulas :

Show that each positive conditional speci�cation has the

same model class as a speci�cation whose axioms are all strictly positive

conditional formulae.

Sp

Sp

Sp

64

strictly positive conditional

=

( )

( )

(� ) ( )

=

:




:

	 ( )

( ) ( )

:

�

Thus each total �rst-order structure satisfying corresponds to the par-

tial �rst-order structure where the \unde�ned" elements have been dropped

and this correspondence re
ects on the logic too, in the sense that the re-

duction of a total to a partial �rst-order structure satis�es the same strictly

positive conditional formulae (up to the translation).

sat-

isfaction condition

( ) = = ( )

Therefore for each partial positive conditional speci�cation = (� )

the model class of satis�es a strictly positive conditional formula i� the

model class of the total conditional speci�cation = (� ( ) )

satis�es its translation along . Hence each deductive system (theorem

prover) for total conditional speci�cation can be used to verify the valid-

ity of strictly positive conditional formulae in the model classes of partial



�

L

L V

=

:

=

T

t T

L

L V

�

�

�

j [ `

`

Sp

: : :

; : : :

Sp ; Sp

�

;A

'

' � A Ax

� '

Sp

Sp Sp

Theorem 3.3.56

Example 3.3.57

spec

sorts

preds

spec enrich by

sorts

3.3. PARTIAL FIRST-ORDER STRUCTURES

AreEqual AreDifferent

AreEqual

value

loc

AreEqual AreDifferent loc loc

Stores

store

65

positive conditional speci�cation. Moreover this result can be extended to

any class of formulae that can be e�ectively translated into strictly positive

conditional form without a�ecting their validity. Indeed, in this case the

validity veri�cation splits in

a preliminary coding of the formula into strictly positive conditional,

a translation of this form into a total conditional formula via ,

an application of any (conditionally complete) deduction system for

,

= (� )

Mod( ) = ( )

( )

positive conditional

Sp

Let Sp be a partial positive conditional speci-

�cation (with axioms all in strictly positive conditional form) and be a

strictly positive conditional formula.

Using the notation of De�nition 3.3.53, Sp i�

, where is given in De�nition 3.1.7.

Let us consider again the problem of store speci�cation

already presented in Example 3.1.15.

Here, as natural in a context having predicates, we assume that the

speci�cation of locations de�nes also some predicates, instead of their im-

plementations as Boolean functions as in Example 3.1.15. Using the pred-

icates and to check the equality between locations

instead than any of the prede�ned equalities of our logic, allows a greater

freedom. Indeed, the user can axiomatize those predicates in a way that

their interpretation in some model is not the identity.

Notice that, since the (assertion of the) negation of the equality between

locations is needed in the premises of some axioms, then also its negation

has to be axiomatized as a (di�erent) predicate, only because we want to

get a speci�cation. Otherwise, using a more expres-

sive fragment of partial �rst-order logic, we could have just the predicate

.

Therefore let us assume that the speci�cation of locations includes

the following:

Then we can enrich and the speci�cation of values, with main

sort to get the store speci�cation.

)

T

L

T

V

T T

L

T

V

s; x s x

s

Sp Sp

x; y D x

1 2 2

1 2

2 1

1 2

1 2 2

1 2

1 2 2 1

CHAPTER 3. PARTIAL FIRST-ORDER

Stores

retrieve

empty

Stores

AreDifferent

opns

popns

axioms

spec enrich by

sorts

opns

axioms

!

� � !

� �!�

)

)

)

!

� � !

� !

^ ^ )

)

)

)

)

)

^ ^ ^ ^ )

^ ^ ^ ^ ^ )

^ ^ ^ ^ ^ )

^ ^ )

66

( )

( ) ( )

Another case where partial speci�cations come in hand is the speci�ca-

tion of data types, where the themselves are partial

:

:

:

( ) ( )

s

= ( )

( ) ( ( ) )

s

= ( )

( ) ( ( ) )

s

=

( ( ) )

( ( ) )

s

=

=

:

:

:

( )

( ) ( ) ( ) ( ( ))

( ( )) ( )

( ( )) ( )

( ( )) ( )

( ( )) ( )

( ( )) ( )

( ) ( ) ( ) ( ) ( )

( ) = ( )

( ) ( ) ( ) ( ) ( ) ( )

( ( ) ) = ( )

( ) ( ) ( ) ( ) ( ) ( )

( ( ) ) = ( ( ) )

( ) ( ) ( ) ( ( ) ) =

x; y s;x; v s; y; v

x; y s; x; v ; y; v s; x; v

x;y s;x; v ; y; v

s; y; v ; x; v

s; x;v ; x v

Sp ; Sp

D

D s D x D v D s; x; v

D s;x; v D s

D s;x; v D x

D s;x; v D v

D s; x D s

D s; x D x

D x D y D s D v x; y

s; x;v s; y; v

D x D y D s D v D v x; y

s; x; v ; y; v s; x; v

D x D y D s D v D v x;y

s; x; v ; y; v s; y; v ; x; v

D x D s D v s; x; v ; x v

empty store

update store loc value store

retrieve store loc value

AreEqual update update

AreEqual update update update

AreDifferent update update

update update

retrieve update

Stores

store

empty store

update store loc value store

retrieve store loc value

empty

update

update

update

update

retrieve

retrieve

AreEqual

update update

AreEqual

update update update

AreDifferent

update update update update

retrieve update

Notice that, thanks to the partial setting, in initial model the ap-

plication to stores where has never been updated, for

instance if is , does not yield any value, because it cannot be de-

duced de�ned, and hence the problem on hierarchical consistency seen in

the total case does not apply here.

In [84], a much more sophisticated speci�cation for stores, where for

instance it is possible to remove an association from a store, is given in

a di�erent setting. The reader is encouraged to rephrase it using positive

conditional data types.

The inference system for is the total conditional one, for the

speci�cation

where and are the corresponding translations where for example

axioms like have being added.

bounded constructors



�

max

skip read write

!

!

!

� �!�

�!�

�!�

� )

, �

)

)

Example 3.3.58

Example 3.3.59

;

s x; s s

D x; s s

D x; s x; s s

D x; s x; s x

3.3. PARTIAL FIRST-ORDER STRUCTURES

spec enrich by

sorts

opns

opns

popns

axioms

= �

:

:

:

:

:

:

( ) =

( ) ( ) ( ( )) = ( ( ))

( ( )) ( )

( ( )) ( ( ))

e

=

( ( )) ( ( ))

e

=

BoundedStacks Nat

Elem

bstack

empty stack

max nat

empty bstack

Bpush elem stack stack

pop stack stack

top stack elem

depth empty zero

depth succ max depth Bpush succ depth

Bpush depth max

Bpush pop Bpush

Bpush top Bpush

67

functions. For instance let us consider the speci�cation of bounded stacks,

parametric on a positive constant representing the maximum number

of element that can be stacked.

Let us �nally see a motivating example of a partial recursive function

with non-recursive domain (that cannot, hence, be described by a total

speci�cation identify all \erroneous applications"). It is (a fragment of)

the de�nition of the semantics for an imperative language based on envi-

ronments and states. Here we try to capture the key-points of this complex

example, leaving the details for the interested reader to �ll in. In particular

we are not considering the declarative part of the language nor the environ-

ment aspects; thus commands can be simply represented as functions from

states to states (and expressions as functions from state to values).

partial

command constructs

Let us assume given the speci�cation of the states; then

commands are functions among them. It is worth noting that we

are not interested in deducing the extensional equality between commands,

because not only we do not need it in order to describe the language seman-

tics, but it is also too restrictive to capture for instance complexity criteria,

that are interesting for imperative language semantics. Therefore we do

not really need (a representation of) partial higher-order and can, hence,

restrict ourselves to positive conditional types, while extensionality implic-

itly requires a more powerful and technically more complex fragment of the

logic (see e.g. [7, 9] for an extended treatment of the subject).

Here we are more interested in than in basic com-

mands like , and , that are more relevant to the speci�ca-

tion of states and the language data types than to proper command part. In

0

2

b; c; c ; s

0 0 0 0

0

0 0

0

0

!

� �!�

!

� � !

� !

� !

� �!�

)

)

)

)

^ )

CHAPTER 3. PARTIAL FIRST-ORDER

while do

BExp

if then else CEval if then else

true

68

non-strict ( ( ) )

strict

functions ground elements

real

spec enrich by

sorts

opns

popns

spec enrich by

sorts

opns

popns

axioms

=

:

:

=

:

:

:

:

:

( )

e

= ( ( ) )

s

= ( )

( )

e

= ( ( ) )

s

= ( )

( )

e

= ( ( ) )

s

= ( )

( )

e

= ( ( ) )

e

=

( )

e

= ( )

e

=

( ( ) )

s

= ( ( ) )

;

; : : :

: : :

;

: : :

: : :

: : :

c; s s c; c ; s c ; s

b; s b; c; c ; s c; s

b; s b; c; c ; s c ; s

b; s b; c ; s s

b; s c; s s

b; c ; s b; c ; s

BExp States

bool BoolExps

true false bool

BEval BoolExps state bool

ImpLang States BExp

commands

skip commands

if then else BoolExps commands commands commands

while do BoolExps commands commands

conc commands commands commands

CEval commands state state

CEval CEval conc CEval

BEval true CEval if then else CEval

BEval false CEval if then else CEval

BEval false CEval while do

BEval true CEval

CEval while do CEval while do

particular we are interested in the command, as source of possi-

ble non-termination and hence as paramount example of partial recursive

function with non-recursive domain.

Therefore we also assume given the speci�cation of a data type,

where the Boolean expressions of our imperative language should be inter-

preted, with the obvious constants, axiomatized by the following speci�ca-

tion. The actual constructs for the Boolean expressions are omitted, as

immaterial; the relevant part of Boolean expressions for the command spec-

i�cation is simply the fact that any such expression can be evaluated onto

a state producing, possibly, a truth value.

Let us �nally see the speci�cation for the kernel of the language semantics

concerning the command constructs.

It is worth noting that, as usual in programming languages, the conditional

choice is , in the sense that

can result in a value even if the evaluation of some its subterm in the same

state does not. For instance if the Boolean expression yields , then the

evaluation of the second branch can be unde�ned. However the interpreta-

tion of all functions of the signature are . Indeed, the non-strictness

has been achieved by using instead than as in-

terpretation for commands and expressions.

If non-strictness is needed, as it is sometime the case for instance

in the design phase, then partial logic is inadequate and more powerful

frameworks should be applied (see e.g. [10, 25]).



1 1

!

! ! !

t

p

t

p

n n

real

basic

j

j

j

j

� 2 ) � � � � � ! 2

B

S

B S s ; : : : ; s ; s S s s s S

3.4 More advanced problems

3.4. MORE ADVANCED PROBLEMS

Bibliographical notes

Partial Higher-Order Speci�cations

69

Full many-sorted and order-sorted �rst order logic was introduced by Ober-

schelp [81]. Many-sorted logic is studied extensively in [68]. The empty

carrier problem, which is ignored by most authors, is treated by Goguen

and Meseguer in [43].

Two-valued �rst-order logic with partial functions and = was intro-

duced by Burmeister [22, 23] and generalized to categorical logic by Kni-

jnenburg and Nordemann [59]. The = -logic follows ideas of Scott [86],

which are worked out for the classical �rst-order logic by Moggi [73]. =

and = are compared by Beeson [13].

There is a calculus and a Henkin-style completeness theorem for partial

higher order logic in [33], Burmeister has a calculus for one-sorted partial

logic [22], The translation from partial to total �rst-order logic is described

by Scott [86]. This translation generates partial congruence relations, which

can be treated in a way similar to equality with the results of Bachmair

and Ganzinger [11].

The restriction to the positive conditional case is studied by Reichel and

others in [84, 14, 9].

Although the positive conditional fragment of partial �rst-order logic is

powerful enough for most data type speci�cations, there are a few cases

where it is insu�cient to directly represent the intended data type, or where

even full partial �rst-order logic is too poor. In the following paragraphs

we will see some of the most relevant and common problems.

As we have noticed before, higher-order partial data types are quite com-

mon in programming languages, for instance to represent environment and

stores in the imperative paradigm, or to describe functional (or procedural)

parameters.

Since their use is reasonably restricted, it is not necessary to have

higher-order logic, but it is su�cient to consider a particular case of �rst-

order speci�cations. The main intuition is that the set of sort is not unstruc-

tured, but is constructed by a subset of sorts and a (polymorphic)

operation building the functional type. That is the set of sort is a subset

of the set inductively de�ned by the following rules:

( )

�

s

0 0 0

0

2

0 0

1

1

1

+1

1

+1

CEval BEval

n

n

n n i

n

n

t

t T

CHAPTER 3. PARTIAL FIRST-ORDER

� � � � � !

� � � � �

�

� � � � ! 2 2

� � � � � !

2

8 ! 8 )

^ )

s s s

s s s

S s

s s S s S

s s

s S

? f; f s s : x s f; x f ; x f f

f f

? f; t f ; t f f

apply

total

partial

extensionality principle

apply apply

in�nitary

apply apply

70

Of course the sort ( ) represents the type of functions

with arguments in the cartesian product and result of sort .

Accordingly, in the signature an explicit operation, taking as input

an element of a functional sort and the arguments for it and yielding the

result of the application of the function to its input, is provided.

Therefore the set of sort must be downward-closed, that is if (

) , then all .

Since we are interested in the speci�cation of partial functions, the ap-

plication must be a partial function, even if the other operations of the

signature are total (in which case we can speak of speci�cation of

higher-order functions). For instance in the above example of the

speci�cation of a kernel of a programming language semantics, the appli-

cation of commands (respectively Boolean expressions) to their input, the

current state, was denoted by ( ).

The intuition that the elements of a functional sort (

) actually are (isomorphic to) functions, is expressed not only by

the application function, but also by the , requiring

that two functions yielding the same result on each possible input must be

the same.

Although usually the speci�cation of higher-order types for program-

ming languages can be described within the positive conditional fragment,

the axiomatization of the extensionality property requires a more powerful

logic. Indeed, the natural form of the extensionality axiom (for simplicity

in the case of unary functions) is

: ( ) ( : ( )

s

= ( ))

e

=

Notice that the equality in the premises is strong, capturing the idea

that and should have the same de�nition domain and yield the same

result on applications within their domain.

A particularly interesting case is that of term-generated models. In that

case, indeed, the premise of the extensionality axiom is equivalent to the

in�nitary conjunction of all its possible instantiations on (de�ned) terms.

Therefore, for term-generated models, extensionality can be reduced to an

conditional axiom

( )

s

= ( ))

e

=

But notice that the equalities in the premises are not, nor can be substituted

by, existential. Thus, even in this simpli�ed case, partial higher-order do

not reduce to positive conditional speci�cations. Indeed, in the general

case even total equational speci�cations of partial higher-order algebras do



t

; ;

;

;

=

:

:

:

� !

!

!

1 2

1 2

1 2

2 2

Non strictness

spec

sorts

opns

?

?

c c

c c s

c s c

c s c

3.4. MORE ADVANCED PROBLEMS

if then else

if true then else

if then else

and or

Bool

bool BoolExps dummy

dummy

T F bool

true false BoolExps

strongly conditional

strict

conditional choice

escamotage

71

not have an initial model in the class of all extensional models, that are

the models satisfying the axiom , nor in the class of all term-extensional

models, that are the models satisfying the axiom (see e.g. [7]).

It is worth noting that moving from a �nitary to an in�nitary logic, al-

though obviously a�ecting computational issues for the involved deductive

systems, does not change the nature of the problem. Indeed, in [69, 74, 75]

where the same problem is tackled for total types, the same results as for to-

tal conditional types are achieved. Moreover, in a partial context, the same

problems existing for term-extensional higher-order algebras, are already

present for partial speci�cations, that are conditional

speci�cations whose axioms admit (unguarded) strong equalities in their

premises (see e.g. [9]).

Using the extensionality requirement as unique non-positive conditional

axiom of a speci�cation, it is possible to describe awkward data types, for

instance with all non-trivial models having �nite carriers with bounded

cardinality. We demand to [7] for an analysis and exposition of the problem

of higher-order partial types.

A completely orthogonal problem is that of non-strictness, because it con-

cerns not the logic used to specify data types, but the semantic side, that

is the class of acceptable models. Indeed, in partial logic the interpretation

of both total and partial operation symbols in the models are , that

is they can produce a result only if all their inputs are provided correct.

This is not the case, for instance, for the , like the

in many programming languages, that can results in a correct

value even if one of the branches would not, because only one branch is

actually evaluated.

The classical for representing such functions is lifting their

domain to function spaces. Consider for example the case of ,

where and are commands, then its evaluation on a state is the eval-

uation of on disregarding the value, if any, of the evaluation of .

But, even if the evaluation of on is incorrect, the interpretation of

is still a well-de�ned element of a functional sort and hence, technically,

the interpretation of is strict. The same technique, although

less naturally, can be applied for instance to Boolean and with lazy

valuation, as follows.

_

axioms

� !

� !

�

�

� )

� )

� )

� )

n : : :n

n : : :n

f a

a f a

f x x

D f a D a D f x

CHAPTER 3. PARTIAL FIRST-ORDER

; : : :

;

;

x; x; y

x; x; y y: : :

x; x; y

x; x; y y: : :

:

:

( )

e

=

( )

e

=

( )

e

= ( )

e

=

( )

e

= ( )

e

=

( )

e

= ( )

e

=

( )

e

= ( )

e

=

partial

true

monotonic

don't

care

partial product

partial

BEval BoolExps dummy bool

and or BoolExps BoolExps BoolExps

BEval true T

BEval false F

BEval F and false

BEval T and

BEval T or true

BEval F or

72

Where, of course, the speci�cation becomes interesting only if some

constructors for Boolean expressions are provided.

Instead of trying to implement non-strictness inside a strict framework,

it is also possible to weaken the requirements on the semantic models, to

get a richer class providing non-strictness, so to speak.

A �rst possibility is considering the case of non-strictness,

that is requiring that if a function can produce a result with some of its ar-

guments unde�ned, then whatever is substituted for them the result should

be the same. This point of view deals perfectly well with the so called

parameters, like the non interesting branch in conditional choices or

super
uous data for suspended valuations. But it cannot be used for error

recovery, because in that case di�erent \unde�ned" cases should result in

di�erent correct recovered data.

In [10], an algebraic paradigm for the non-strict don't care case is pre-

sented, that is based on the idea of . The intuition is that,

while in the standard strict case the argument of an n-ary function are

-tuples, that are functions from the range [1 ] into the carriers, here

-tuples, that are partial functions from the range [1 ] into the

carriers, are allowed as well.

Starting from this new point of view the standard algebraic theory is

developed. But it is important to note that the monotonicity requirement

implicitly introduces disjunctive axioms. Indeed if we know that ( ) is

de�ned, for some constant and unary function , then we have that is

de�ned or ( ) is de�ned for whatever value of (including the unde�ned).

Thus ( ( )) is equivalent to ( ) ( ( )).

Therefore the theory of equational non-strict data types is more or less

equivalent to the theory of disjunctive non-strict data types, that are stud-

ied in [10], giving necessary and su�cient conditions for the existence of

initial models.

A completely di�erent point of view on non-strictness is presented in [25],

where the intuition is that non-strictness comes from evaluational issues and

is not inherent to the underlying data-type. Thus the idea is to keep as



9

#

� � `̀

9 #

8

>

>

<

>

>

:

zero zero�

[ f g�!

nf g

`̀

8 , 8 ,

8 �

The description operator

3.4. MORE ADVANCED PROBLEMS

t

t

' {x s:' x '

s ' '

x

{x s:'

� {x s:'

� x ; � X x s A

� X x s

� '

;

y s: y {x s:' x s: ' x y

x; y real: x=y {z real:x y z

Syntax of terms and formulas as well as their semantics (i.e. and ) have to

be de�ned in parallel now.

73

models standard partial algebras, but each one is equipped with a total con-

gruence on terms, representing the simpli�cations that are done on terms

before the actual evaluation.

In this approach error recovery follows the intuition that errors never

take place, because terms can be simpli�ed before their evaluation. Thus

a term can be simpli�ed into a perfectly correct term, even if it contains

some subterm that is incorrect. For instance a term denoting an integer

value, of the form can be simpli�ed to , and then evaluated

onto the 0 value, even if is incorrect, allowing in this way a strategy of

error recovery.

The form of the axioms allow the de�nition of subtle error recovery

strategy, or lazy/suspended evaluation.

A de�nite description operator allows a term to be constructed from a

formula describing the properties of a unique value.

The presence of partial functions makes it easy to introduce a de�nite

description operator. Assume, indeed, that we have an arbitrary �rst order-

formula ; then : (read \the for which ") is a new term of sort

. should be the implicit description of some value, such that is true

if and only if this value is substituted for . The intended meaning is that

: denotes this unique value, if existing, while it is unde�ned, if no

such value exists or there is more than one. Thus we have to add the

following semantical rule:

( : ) =

( ) if there is a unique : :

extending on :

for which

unde�ned otherwise

The description operator is characterized by the axiom

: (

e

= : : (

e

= ))

which has to be added to the calculus.

For example, the division function can now be de�ned easily in terms

of multiplication:

: (

s

= :

e

= )

properties

and

Three-valued logic

�

?

?

?

^ ?

?

? ? ?

_ ?

? ? ?

?

:

? ?

) ?

?

? ? ?

CHAPTER 3. PARTIAL FIRST-ORDER

x=

{z real:x y z

{

t f

t t f

f

f f f f

t f

t t t t

t

f t f

t f

f t

t f

t t f

t

f t t t

74

where 0 is unde�ned, as expected.

In absence of a division operation, the term :

e

= is not

equivalent to a term without . Therefore, Corollary 3.3.19 does no longer

hold: there may be term-generated structures which are not reachable.

When reasoning about programs, we cannot avoid the use of some three-

valued logic. For example, the condition in a while-loop if of type three-

valued Boolean, because it may either be true, or false, or unde�ned due

to some in�nite computation or some exception.

On the other hand, when writing speci�cations, we want to specify

of data types and programs, which may hold or not hold, but

without a third possibility. For example, a de�nedness predicate delivering

unde�ned when the argument is unde�ned does not make much sense. That

is, the outer level of speci�cations is two-valued, but somewhere we have to

have the possibility to talk about three-valued programs.

Basically, there are two points where three-valuedness can be intro-

duced:

1. Incorporate three-valuedness into the logic itself. Thus there is a

distinction between the false and the unde�ned. The fact that some

term is non-denoting is propagated to the formulas containing the

term. Thus valuations of terms of formulas have to be partial.

The latter causes the need for a third truth-value, say , which is

assigned to formulas containing a non-denoting term. Then, non-

strict predicates also may yield when applied to denoting terms.

The connectives can be extended to deal with in several ways. A

natural choice is Kleene's three-valued logic [57], which is guided by

a strictness (resp. continuity) principle (cf. [27]).

It is used, for example, in the speci�cation languages SPECTRUM

[19] and VDM [56]. The latter reference also describes an easy calculus

for the Kleene logic.

But as said above, at the level of speci�cations there is the need for

other, two-valued connectives which are non-strict when incorporated

in the three-valued world. For example, the de�nedness predicate



3

3 3 3

3

3

3

3

3 3

3

Bool3

Bool3 t t

f f

?

8 ) �

?

8

8

8 )

^ 8 : ? ^9 )

^ 9 ? ) ?

spec

sorts

preds

opns

axioms

3.4. MORE ADVANCED PROBLEMS

�

? !

: !

^ ) � !

8 _ _ ?

_ ?

,

, ^ ^:

?, : _:

ThreeV alued

; ;

; logor ;

x :x x x

: : :

x y x y

x y D x D y x y

x y D x D y

: : :

D

t t

f

f t

x; y; z nat: x z=y x y z

y

X:' '

'

X:'

{b : X:

'

b

X:

'

X:

'

b

X:

'

b

=

3

= :

:

:

:

:

e

=

e

=

e

=

e

=

(

3

= )

e

=

e

=

(

3

= )

e

= ( ( ) ( )

e

= )

(

3

= )

e

= ( ( ) ( ))

Bool3

Bool3 Bool3

t f Bool3

Bool3 Bool3

Bool3 Bool3 Bool3

Bool3 t f

t t

t

f

75

is non-strict but nevertheless needed for speci�cations. Another ex-

ample is an implication like

: = =

which is valid without a restriction on in two-valued logic, but not

in three-valued logic. To make it valid in three-valued logic, we have

to use a non-strict implication which identi�es false and .

But non-strict connectives complicate the calculus by introducing the

need for a more complex case analysis.

See [27] for an overview over multi-valued logics.

2. Use a two-valued logic as introduced above and shift the issue of three-

valuedness to the object level. This can be done with a speci�cation

like

A quanti�ed formula is expressed by �rst translating induc-

tively to a term : and then taking to be

: ((

e

= )

e

= )

((

e

=

e

= )

e

= )

((

e

= )

e

= )

CHAPTER 3. PARTIAL FIRST-ORDER76

The need for a case analysis when doing theorem proving is made explicit

in the de�nitions here.



Contents

3 PARTIAL FIRST-ORDER 1

: : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : :

: : : : : : : : : : : : : : : : : : : :

3.1 Conditional axioms 5

3.2 Partial data types 18

3.2.1 Programming on Data Types 19

3.2.2 Partial constructors 25

3.3 Partial First-Order Structures 27

3.3.1 Model theory 28

3.3.2 Partial logic 43

3.3.3 Proof theory 48

3.3.4 Conditional logic with existential premises 58

3.4 More advanced problems 69

77

78 CONTENTS



204

624

16

152

Bibliography

Abstract and Concrete Categories

Locally Presentable and Accessible Categories

Disserta-

tiones Mathematicae

CPRS 92

Logic Programming and Automated Reasoning

92 Lecture Notes in Computer Science/LNAI

Veri�cation of Sequential and Concurrent

Programs

Funda-

menta Informaticae

Recent Trends in Data Type Speci�cation: 8th Workshop on Speci�ca-

tion of Abstract Data Types { Selected Papers

Theoretical Computer Science

[1] J. Ad�amek, H. Herrlich, G. Strecker. .

Wiley, New York, 1990.

[2] J. Ad�amek, J. Rosick�y. .

Cambridge University Press, 1994.

[3] H. Andr�eka, I. N�emeti. Generalization of the concept of variety and

quasi-variety to partial algebras through category theory.

, 1983.

[4] V. Antimirov, A. Degtyarev. Consistency and semantics of equational

de�nitions over prede�ned algebras. In , Lecture Notes in

Computer Science. Springer Verlag, 1992.

[5] V. Antimirov, A. Degtyarev. Consistency of equational enrichments.

In A. Voronkov, editor.,

, , 313{402. Springer

Verlag, 1992.

[6] K. R. Apt, E.R. Olderog.

. Springer Verlag, 1991.

[7] E. Astesiano, M. Cerioli. Partial higher-order speci�cations.

(2), 101{126, 1992.

[8] E. Astesiano, M. Cerioli. Relationships between logical frames. In

, number 655 in Lecture

Notes in Computer Science, 126{143, Berlin, 1993. Springer Verlag.

[9] E. Astesiano, M. Cerioli. Free objects and equational deduction for par-

tial conditional speci�cations. (1),

91{138, 1995.

79

BIBLIOGRAPHY

6

278

16

46

33

18

Mathematical Structures in Computer Science

Proc. 9th IEEE Symposium on Logic in Computer Science

Toposes, Triples and Theories Grundlehren der

mathematischen Wissenschaften

Logic, Methodology and Philosophy of

Science VII

Algebra Universalis

Quaestiones Mathematicae 13

Theoretical Computer Science

Theoretical Computer Science

Theoretical Computer Science

Acta Informatica

80

[10] E. Astesiano, M. Cerioli. Non-strict don't care algebras and speci�-

cations. (1), 85{125,

1996.

[11] L. Bachmair, H. Ganzinger. Rewrite techniques for transitive relations.

In , 384{393.

IEEE Computer Society Press, 1994. Short version of TR MPI-I-93-

249.

[12] M. Barr, C. Wells. ,

. Springer Verlag, 1985.

[13] M. J. Beeson. Proving programs and programming proofs. In

R. B. Marcus et al., editor.,

, 51{82. North Holland, Amsterdam, 1986.

[14] K. Benecke, H. Reichel. Equational partiality. ,

219{232, 1983.

[15] H.L. Bentley, N. Murthy. Essentially algebraic categories of partial

algebras. , 361{384, 1990.

[16] J.A. Bergstra, J.V. Tucker. Algebraic speci�cations of computable and

semicomputable data types. , 137{181,

1987.

[17] J.A. Bergstra, J.V. Tucker. The inescapable stack: an exercize in

algebraic speci�cation with total functions. Technical Report P8804,

University of Amsterdam; Programming Research Group, 1988.

[18] G. Bernot, M. Bidoit, C. Choppy. Abstract data types with exception

handling: an initial approach based on the distinction between excep-

tions and errors. (1), 13{45, 1986.

[19] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hu�mann, D. Nazareth,

F. Regensburger, O. Slotosch, K. St� len. The requirement and design

speci�cation language spectrum: An informal introduction, version

1.0, part I. Technical Report TUM-19311, TU M�unchen, 1993.

[20] M. Broy, C. Pair, M. Wirsing. A systematic study of models of abstract

data types. , 137{174, 1984.

[21] M. Broy, M. Wirsing. Partial abstract types. ,

1982.



15

753

80

6

21

55

BIBLIOGRAPHY

Algebra Univer-

salis

A Model Theoretic Oriented Approach to Partial Alge-

bras

Relationships between Logical Formalisms

Recent Trends in Data Type Speci�cation:

10th Workshop on Types { Selected Papers

Theoretical Computer Science

A Study of Logics

Application of Sheaves

Lecture Notes in Mathematics

Infor-

mation and Computation

Handbook of Theoretical Computer Science

Fundamentals of Algebraic Speci�cations 1: Equa-

tions and Initial semantics EATCS Monographs on Theoretical Com-

puter Science

Fundamentals of Algebraic Speci�cations 2 EATCS

Monographs on Theoretical Computer Science

Journal of Symbolic Logic

81

[22] P. Burmeister. Partial algebras | survey of a unifying approach to-

wards a two-valued model theory for partial algebras.

, 306{358, 1982.

[23] P. Burmeister.

. Akademie Verlag, Berlin, 1986.

[24] M. Cerioli. . PhD thesis, Uni-

versities of Genova, Pisa and Udine, 1993. Available as internal report

of Pisa University, TD-4/93 or by anonymous ftp at ftp.disi.unige.it in

/pub/cerioli/thesis92.ps.z.

[25] M. Cerioli. A lazy approach to partial algebras. In G. Reggio E. Aste-

siano, A. Tarlecki, editors.,

, number 906 in Lecture

Notes in Computer Science, 188{202, Berlin, 1995. Springer Verlag.

[26] M. Cerioli, J. Meseguer. May i borrow your logic? (transporting log-

ical structures along maps). , 1996. To

appear.

[27] J. P. Cleave. . Oxford University Press, 1991.

[28] M. Coste. Localisation, spectra and sheaf representation. In M.P.

Fourman, C.J. Mulvey, D.S. Scott, editors., ,

, 212{238. Springer Verlag, 1979.

[29] P.L. Curien. Partiality, cartesian closed categories and toposes.

, 50{???, 1989.

[30] Nachem Dershowitz, Jean-Pierre Jouannaud. Rewrite systems. In

J. van Leeuwen, editor., ,

243{320. Elsevier Science Publ. B.V., 1990.

[31] H. Ehrig, B. Mahr.

,

. Springer Verlag, New-York, 1985.

[32] H. Ehrig, B. Mahr. ,

. Springer Verlag,

New-York, 1990.

[33] W. A. Farmer. A partial functions version of Church's simple type

theory. , 1269{1291, 1991.

i

2

7

194

30

BIBLIOGRAPHY

Mathematical Structures in Computer Science

Bull. Austral. Math. Soc.

Handbook of Logic in Arti�cial Intelligence and

Logic Programming, Vol. 1: Logical Foundations

�

Uber partiell geordnete Sortenmengen und deren An-

wendung zur Fehlerbehandlung in abstrakten Datentypen

Proceedings TAPSOFT'87

Current Trends in Programming Methodology

Proceedings, 1985

International Conference on Automata, Languages and Programming

Lecture Notes in Computer Science

Logic

Programming. Functions, Relations and Equations

EATCS Bulletin

Proceed-

ings, Second Symposium on Logic in Computer Science

Information and Computation, 103

82

[34] S. Feferman. A new approach to abstract data types, informal de-

velopment. , 193{229,

1992.

[35] P. Freyd. Aspects of topoi. , 1{76, 1972.

[36] D. M. et al. Gabbay.

. Oxford Science Pub-

lications, 1993.

[37] M. Gogolla.

. PhD thesis,

Braunschweig, 1986.

[38] M. Gogolla. On parametric algebraic speci�cations with clean error

handling. In , number 249 in Lecture Notes

in Computer Science, 81{95, Berlin, 1987. Springer Verlag.

[39] J. Goguen, J. Thatcher, Wagner. An initial algebra approach to the

speci�cation, correctness, and implementation of abstract data types.

In R. Yeh, editor., , 80{

149. Prentice-Hall, 1976.

[40] J. A. Goguen, J. Meseguer, J.P. Jouannaud. Operational semantics

of order-sorted algebra. In Wilfried Brauer, editor.,

,

. Springer Verlag, 1985.

[41] J.A. Goguen. Order sorted algebras: Exceptions, error sorts, coercion

and overloaded operators. Semantics and theory of computation report

no. 14, University of California, Los Angeles., 1978.

[42] J.A. Goguen, J. Meseguer. Eqlog: Equality, types, and generic modules

for logic programming. In D. DeGroot, G. Lindstrom, editors.,

, 295{363. Prentice-

Hall, Englewood Cli�s, New Jersey, 1986.

[43] J.A. Goguen, J. Meseguer. Remarks on remarks on many-sorted equa-

tional logic. , 66{73, 1986.

[44] J.A. Goguen, J. Meseguer. Order-sorted algebra solves the constructor

selector, multiple representation and coercion problems. In

, 18{29. IEEE

Computer Society, 1987. Also Report CSLI-87-92, Center for the Study

of Language and Information, Stanford University, March 1987; revised

version in , 1993.



BIBLIOGRAPHY

105

50

29

25

530

115

Theoretical Computer Science

Current Trends in Programming Methodology

Theoretical

Computer Science

Introduction to mathematical logic

Category Theory, an Introduction

Universal Algebra (Proc. Coll.

Esztergom 1977) Colloq. Math. Soc. J. Bolyai

Formal

Language Theory: Perspectives and Open Problems

Algebra Universalis

Category Theory and Computer Science

Lecture Notes in Computer Science

Theoretical Computer

Science

Systematc Software Development Using VDM

Introduction to Metamathematics

Handbook of Logic in Computer

Science,

83

[45] J.A. Goguen, J. Meseguer. Order-sorted algebra I: equational deduc-

tion for multiple inheritance, overloading, exceptions and partial op-

erations. , 217{273, 1992.

[46] J.A. Goguen, J. Thatcher, E. G. Wagner. An initial algebra approach

to the speci�cation, correctness, and implementation of abstract data

types. In R. Yeh, editor., ,

80{149. Prentice-Hall, 1978.

[47] J.A. Goguen, T Winkler. Introducing OBJ3. Research report SRI-

CSL-88-9, Computer Science Lab., SRI International, 1988.

[48] J. W. Gray. Categorical aspects of data type constructors.

, 103{135, 1987.

[49] H. Hermes. . Springer Verlag, 1973.

[50] H. Herrlich, G.E. Strecker. . Helder-

mann Verlag, Berlin, 1979.

[51] H.-J. Hoehnke. On partial algebras. In

, , 373{412. North

Holland, Amsterdam, 1981.

[52] G. Huet, D. Oppen. Equations and rewrite rules: a survey. In

. Academic Press,

New York, 1980.

[53] G. Jarzembski. Weak varieties of partial algebras.

, 247{262, 1988.

[54] G. Jarzembski. Programs in partial algebras | a categorical approach.

In D.H. et al. Pitt, editor., ,

, 140{150. Springer Verlag,

1991.

[55] G. Jarzembski. Programs in partial algebras.

, 131{149, 1993.

[56] C. B. Jones. . Prentice

Hall, 1990.

[57] S.C. Kleene. . North Holland, 1952.

[58] Jan Willem Klop. Term rewriting systems. In S. Abramsky, Dov M.

Gabbay, T.S.E. Maibaum, editors.,

volume 2, 1{116. Oxford University Press, 1992.

4

267

94

77

100

BIBLIOGRAPHY

Mathematical Struc-

tures in Computer Science

Proc. ICALP 87 Lecture Notes in Computer

Science

Foundations of Logic Programming

Categories for the Working Mathematician

Proceedings of Mathematical Foundations of

Computer Science 1990

Theoretical Computer Science

Theoreti-

cal Computer Science

The Uni�ed Com-

putation Laboratory

Many-sorted Logic and its Applica-

tions

Theoretical Computer

Science

Logic Colloquium '87

Algebraic Methods in Semantics

84

[59] P. Knijnenburg, F. Nordemann. Partial hyperdoctrines: categorical

models for partial function logic and hoare logic.

, 117{146, 1994.

[60] H.J. Kreowski. Partial algebras 
ow from algebraic speci�cations. In

T. Ottmann, editor., ,

, 521{530. Springer Verlag, 1987.

[61] H.J. Kreowski, T Mossakowski. Equivalence and di�erence of institu-

tions: Simulating horn clause logic with based algebras. To appear.

[62] J.W. Lloyd. . Springer Verlag, 1987.

[63] S. MacLane. . Springer

Verlag, 1971.

[64] V. Manca, A. Salibra. Equational calculi for many-sorted algebras

with empty carriers. In

, number 452 in Lecture Notes in Computer

Science, Berlin, 1990. Springer Verlag.

[65] V. Manca, A. Salibra. Soundness and completeness of the birkho�

equational calculus for many-sorted algebras with possibly empty car-

riers. (1), 101{124, 1992.

[66] V. Manca, A. Salibra, G. Scollo. Equational type logic.

, 131{159, 1990. Special Issue dedicated to

AMAST'89.

[67] V. Manca, A. Salibra, G. Scollo. On the expressiveness of equational

type logic. In C.M.I. Rattray, R.G. Clark, editors.,

. Oxford University Press, 1992.

[68] J. Meinke, J.V. Tucker, editors.

. Wiley, 1993.

[69] K. Meinke. Universal algebra in higher types.

(2), 385{417, 1992.

[70] J. Meseguer. General logics. In , 275{329, Ams-

terdam, 1989. North Holland.

[71] J. Meseguer, J.A. Goguen. Initiality, induction and computability. In

M. Nivat, J. Reynolds, editors., , 459{

540. Cambridge University Press, Cambridge, 1985.



103

906

145

BIBLIOGRAPHY

Information

and Computation

The Partial Lambda-Calculus

Proceedings of IFIP TC 2 Working Conference on Program Speci�ca-

tion and Transformation

Proceed-

ings of CAAP'88

Algebraic Methodology and Software

Technology (AMAST'93)

Recent Trends in Data Type Speci�cation: 10th

Workshop on Types { Selected Papers Lecture Notes in Computer Sci-

ence

Proceedings of 4th An-

nual IEEE Symposium on Logic in Computer Science

Mathematische Annalen

Computing in Horn Clause Theories

Recent Trends

in Data Type Speci�cation: 5th Workshop on Speci�cation of Abstract

85

[72] J. Meseguer, J.A. Goguen. Order-sorted algebra solves the constructor

selector, multiple representation and coercion problems.

(1), 114{158, March 1993.

[73] E. Moggi. . PhD thesis, University of

Edinburgh, 1988. Available as CST-53-88.

[74] B. M�oller. Algebraic speci�cation with higher-order operations. In

, Amsterdam, 1987. North Holland.

[75] B. M�oller, A. Tarlecki, M. Wirsing. Algebraic speci�cation with built-

in domain constructions. In M. Dauchet, M. Nivat, editors.,

, number 299 in Lecture Notes in Computer Science,

132{148, Berlin, 1988. Springer Verlag.

[76] T. Mossakowski. Parameterized recursion theory { a tool for the sys-

tematic classi�cation of speci�cation methods. In M. Nivat, C. Rat-

tray, T. Rus, G. Scollo, editors.,

, Workshops in Computing, 139{146. Springer

Verlag, 1993. Also submitted to Theoretical Computer Science.

[77] T. Mossakowski. Equivalences among various logical frameworks of

partial algebras. Bericht 4/95, Universit�at Bremen, 1995.

[78] T. Mossakowski. A hierarchy of institutions separated by properties

of parameterized abstract data types. In E Astesiano, G. Reggio,

A. Tarlecki, editors.,

,

, 389{405. Springer Verlag, Berlin, 1995.

[79] T. Mossakowski, A. Tarlecki, W. Pawlowski. Combining and repre-

senting logical systems. Presented at Logic Colloquium 96, 1996.

[80] P. Mosses. Uni�ed algebras and institutions. In

, 304{312, 1989.

[81] A. Oberschelp. Untersuchungen zur mehrsortigen quantorenlogik.

, 297{333, 1962.

[82] P. Padawitz. . Springer Verlag,

Berlin, 1988.

[83] A. Poign�e. Partial algebras, subsorting, and dependent types: Prereq-

uisites of error handling in algebraic speci�cations. In

40

753

62

37

33

BIBLIOGRAPHY

Data Types { Selected Papers

Initial Computability, Algebraic Speci�cations, and Partial

Algebras

Journal of Pure and Applied

Algebra

Application of Sheaves

Lecture Notes in Mathematics

Mathematical Logic

Peano-algebras and quasi-algebras Dissertationes Math-

ematicae (Rozprawy Mat.)

Theoretical Computer Science

Journal

of Computer and System Science

Handbook of Theoretical Com-

puter Science

Theory and Implementation of Sort Constraints for Order

Sorted Algebra

86

, number 332 in Lecture Notes in Com-

puter Science, 208{234, Berlin, 1987. Springer Verlag.

[84] H. Reichel.

. Akademie Verlag, Berlin, 1986.

[85] J. Rosick�y. Semi-initial completions.

, 177{183, 1986. correction ibid. 46:109, 1987.

[86] D. S. Scott. Identity and existence in intuitionistic logic. In M.P.

Fourman, C.J. Mulvey, D.S. Scott, editors., ,

, 660{696. Springer Verlag, 1979.

[87] J.R. Shoen�eld. . Addison-Wesley, Reading, Mas-

sachusetts, 1967.

[88] J. S l ominski. ,

. 1968.

[89] A. Tarlecki. On the existence of free models in abstract algebraic

institutions. (3), 269{304, 1985.

[90] A. Tarlecki. Quasi-varieties in abstract algebraic institutions.

, 333{360, 1986.

[91] J. Thatcher, E. G. Wagner, J. B. Wright. Speci�cation of abstract

data types using conditional axioms. Technical Report RC 6214, IBM

Yorktown Heigths, 1981.

[92] M. Wirsing. Algebraic speci�cation. In

. North Holland, 1990.

[93] Han Yan.

. PhD thesis, Oxford University, 1993.


