Towards a Rigorous Semantics of UML
Supporting its Multiview Approach*

G. Reggio — M. Cerioli — E. Astesiano

DISI - Universita di Genova (Italy)
email: {reggio,cerioli,astes}@disi.unige.it

Abstract. We discuss the nature of the semantics of the UML. Contrary
to the case of most languages, this task is far from trivial. Indeed, not only
the UML notation is complex and its informal description is incomplete
and ambiguous, but we also have the UML multiview aspect to take into
account. We propose a general schema of the semantics of the UML,
where the different kinds of diagrams within a UML model are given
individual semantics and then such semantics are composed to get the
semantics on the overall model. Moreover, we fill part of such a schema,
by using the algebraic language CASL as a metalanguage to describe
the semantics of class diagrams, state machines and the complete UM L
formal systems.

Introduction

UML is the object-oriented notation for modelling software systems recently
proposed as a standard by the OMG (Object Management Group), see e.g., [12,
14]. The semantics of the UML, which has been given informally in the original
documentation, is a subject of hot debate and of lot of efforts, much encouraged
by the OMG itself. Not only users and tool developers badly need a precise
semantics, but the outcome of the clarification about semantics is seen of great
value for the new version of UML to come.

A most notable effort, which likely preludes to a proposal for semantics to
the OMG, is a very recent feasibility study in [3] for an OO meta modelling
approach. There are serious reasons why that kind of approach seems the right
one for an official semantic definition, if any; in particular the need of seeing
UML as an evolving family of evolving languages (that requires a very modular
approach) and the request of a notation well-known to the UML users (in this
case the meta language would be part of UML).

What we present here is not a proposal for a standard definition and is partly
orthogonal and partly complementary to the above direction of work; we even
believe, as we will argue later on, that it provides insights and techniques that
can be used to fill some scenes in the big fresco of [3].

Essentially our contribution is twofold:

* Partially supported by Murst - Programma di Ricerca Scientifica di Rilevante Inter-

esse Nazionale Saladin and by CoFI WG, ESPRIT Working Group 29432.

— we propose a general schema of what a semantics for UML should provide
from a logical viewpoint, combining the local view of a single diagram with
the general view of an overall UML model;

— we give hints on how to fill some relevant parts of that schema, especially
showing how the dynamic aspects fit in.

In this work we adopt rather classical techniques, like modelling processes as
labelled transition systems as in CCS et similia, and algebraic specification tech-
niques, supported by a recently proposed family of languages, the CoFI family!
[6]. In particular, since we have to model also the behavioural aspects, we use
CAsL-LTL [8], which is an extension of CASL, the basic CoFI language, especially
designed for specifying behaviours and concurrent systems.

We are convinced that explaining the semantics of the UML in terms of
well-known techniques helps the understanding of the UML; indeed, as we have
shown already in [10], this analysis can easily lead to discover ambiguities and
inconsistencies, as well as to highlight peculiarities.

Apart from the work already mentioned [3], several attempts at formalizing
the UML have been and are currently under development. Usually they deal
with only a part of the UML, with no provision for an integration of the indi-
vidual diagram semantics toward a formal semantics of the overall UML models,
because their final aim is the application of existing techniques and tools to the
UML (see [4,13] and the report on a recent workshop on the topic of the UML
semantics for the behavioural part [11], also for more references).

In Sect. 1 we will discuss our understanding of the nature of the expected
semantics for the UML. In Sect. 2 and 3 we will sketch the semantics of class
diagrams and state machines, illustrating our techniques on a running example
which is a fragment of an invoice system. Then, in Sect. 4 we will summarize the
non-trivial combination of the CASL-LTL specifications representing the seman-
tics of individual diagrams, to get the overall semantics for a UML model.

We want to emphasize that the main contributions of the work presented here
are not bound to the particular metalanguage that we used, namely CAsL-LTL;
what is essential is the overall structure of the semantics and the use of labelled
transition systems for modelling behaviour. Still the nice structuring features of
CAasL-LrL have much facilitated our investigation.

1 A View of the Overall Semantics

A UML model consists of a bunch of diagrams of different kinds, expressing
properties on different aspects of a system. In the following we will call UML-
systems the “real world” systems modeled by using the UML (some instances
are information systems, software systems, business organizations). Thus a UML
model plays the role of a specification, but in a more pragmatic context.
Another analogy that we can establish between UML models and specifica-
tions is the fact that the meaning of each diagram (kind) is informally described

! See the site http://www.brics.dk/Projects/CoFI

by [14] in isolation, as well as the semantics of each axiom in logic, and its effect
on the description of the overall UM L-system is to rule out some elements from
the universe of all possible systems (semantic models). Indeed, both in the case
of a UML model and of a collection of axioms, each individual part (one diagram
or one axiom) describes a point of view of the overall system.

Therefore, our understanding of what should be a general schema for a se-
mantics of the UML is illustrated in the following picture, where the UML
formal systems are the formal counterparts of the UM L-systems.

intuitive semantics P(UML systems)
{_romsem]

UML model intuitive correspondence

SEM 1 =
b1 s(MD)—_F!

. P(UML formal systems)'
SEM n

SEM-UML

We have a box representing a UML model, collecting some diagrams of dif-
ferent kinds, and its overall semantics, represented by the arrow labelled by
SEM-UML, is a class of UML formal systems. But, each diagram in the model
has its own semantics (denoted by the indexed SEM), that is a class of appro-
priate structures, as well, and these structures are imposing constraints on the
overall UML formal systems, represented by lines labelled by the indexed =. A
sort of commutativity on the diagram has to hold, that is the overall semantics
must be the class of the UML formal systems satisfying all the constraints im-
posed by the individual semantics. Moreover, the formal semantics must be a
rigorous representation of the expected “intuitive semantics”, described by the
UML standard, [14].

As a technical solution, illustrated in the following picture

SEM-CASL-LTL

CASL-LTL
specification

we propose to translate the diagrams (possibly of different kinds) into a com-
mon metalanguage, whose formal semantics gives, by composition, the semantics
of each diagram in the UML model. Such semantics must correspond to that
informally described in [14] and hence the translations are driven by a careful
analysis of such document. Moreover, the metalanguage has to provide constructs
to compose the translations of the diagrams in order to get an expression repre-
senting the overall UML model. As in the case of the individual diagrams, the
(metalanguage) semantics of such expression gives a rigorous semantics to the
UMTL model and hence the composition as well has to be driven by [14]. Because

of the need of integrating the formalization of both the static and the dynamic
parts of UML, we have found convenient to use as metalanguage an extension of
the CAsL basic language [6], namely CASL-LTL [8], especially devised to model
formally also the dynamic behaviour of the objects.

2 UML Class Diagrams

Let us sketch the algebraic specification describing a given class diagram; its
structure is graphically shown below and reflects the logical organization of the
information given by the class diagram itself.

CONTEXT C1-CONTEXT Cn-CONTEXT

generic static L} static semantics features
semantics features specific of class C1

STATE G =

genericand global .

state features (—> semantics features

of class C1
CLASS-DIAGRAM

Indeed, such specification has four parts.

Two of them, the generic context part and the state part, are generic, in
the sense that they are common to all class diagrams. The generic context part,
CONTEXT, includes, for instance, the sorts, operations and predicates used to
deal with the concepts of object-oriented modeling. The state part, STATE, con-
cerns the form of global and (generic) local states.

The other two parts, the class-context part and the class-semantics part are
specific of an individual class diagram and each of them is the sum of smaller
specifications, one for each classifier in the class diagram. This structure is cho-
sen in order to reflect as much as possible the structure of the UML model.
Analogously to the generic parts, for each classifier C, C-CONTEXT introduces
the information about the static semantics (e.g., names of the class, of its at-
tributes and operations), while C introduces information about the semantics
(e.g., local states of classes or associations).

Two points worth to keep in mind are that in CAasL there is the princi-
ple “same-name same-thing” imposing that the realizations of sorts (functions)
[predicates] with the same name in different parts of the same overall specifica-
tion must coincide. Thus, for instance, the semantics of the generic parts that are
imported by the specifications representing individual classes must be unique,
so that we will have just one global state.

The second point is that the models of a structured specification are not
required to be built from models of 1ts subspecifications, that is the structure of
the specification is not reflected onto the architecture of the model. Therefore,
the choice about the structuring of the information, for instance by layering the
specifications representing individual classes, does not affect the semantics we
are proposing for a class diagram, but only its presentation.

In the following, we intersperse fragments of the specification with expla-
nations. The overall specifications include the lines proposed here and other
analogous parts, that we omit for brevity.

In our specifications, we will use a few standard data types, whose obvious
specifications are omitted. Some of them are parametric, like for instance LiST[],
where _is the place holder for the parameter.

2.1 Generic Parts

Context part (Context) First of all, we introduce data types? for dealing
with UML values and types. The former collect the standard OCL values, like
booleans or numbers, and, in particular, the identites of objects, Ident. The latter
are required in order to translate some OCL constraints and include the names
of the standard types as well as the names of classes, Name.
sorts Ident, Name
preds isSubType: Name x Name

hasType : Ident x Name
axioms Vid : Ident;c,c’ : Name o isSubType(c, c') A hasType(id, c) = hasType(id, c')
type Value ::= sort Bool|sort Date| sort Integer| sort Ident. ..

Type ::= bool | date | integer | sort Name. ..
Other static information have to be recorded as well; for instance we need pred-
icates recording which names® correspond to classes (preds isClass : Name) or
associations; attributes/operations (preds isOp : Namex Name) of a class; types
of the operation input and output (ops argType, res Type : Name —7 List[Typel);
types of the attributes, or of left and right ends of binary associations, etc. Such
operations are defined as partial; thus they accept any name as input, but are un-
defined on those that are not operations/associations. For instance, argType will
be undefined, if applied to those names not corresponding to an operation. The
treatment of other kind of classifiers, e.g., signals, that is analogous, is omitted.

State part (State) Extending the CONTEXT specification, we introduce the
constructs to deal with the global states (sorts State) of the system and the
local states of the objects (sortsObject).

The global states provide information about living instances of the classes,
with tools to check if an object exists (preds knownln : Ident x State), to get
the local state of an object (ops localState : Ident x State —7 Object), etc.

The local states give information about the identity of the objects and the
current values of their attributes. We have operations to get the object identities
(ops getld : Object — Ident) and to read (ops rdAttr: Object x Name —7 Value)
and write (ops wrAttr: Object x Name x Value =7 Object) attributes, as well,
with the usual properties about typing (e.g., we cannot assign to an attribute

2 The datatype construct in CASL, like types ::=...sorts’ ... ¢(...)..., is a compact
notation to declare a sort s stating at the same time that it includes all the elements
of s’ and that its elements may be as well built by a constructor c.

% In the following, we will assume that the names used to represent attributes, opera-
tions and classes are all distinct.

a value of an incompatible type; also updating an attribute is not affecting the
others nor the object identity), axiomatically stated.

Each operation of a class represents a nondeterministic (partial) function hav-
ing as input the operation owner (that is implicit in object-oriented approaches),
the global state (in order to use information on the other objects that can be
reached by navigation) and the explicit parameter list; the output is the result
(if any is expected, else we will use the empty list) and the new global state,
possibly modified by some side effect of the operation call. We formalize the
operations by the predicate named call relating the name of each operation and
the inputs to the possible outputs.
preds call: Ident x Name x State x List Value] x List[Value] x State
This is one major difference w.r.t. other translations of the UML into logic/algebraic
languages, where operations most naturally become functions, that is due to the
need of integrating the semantics of class diagrams given in isolation with the
sematics of the overall UML model, including concurrent features.

The local states of the associations are represented by a sort; since the case of
binary associations is by far the most common in the UML, we are also providing
a specialization (sorts BinAssocState < Association) * of the association type for
such case, having, for each association end, an operation (ops LAssoc, RAssoc :
Ident x BinAssocState — Set[Ident]), yielding the objects that are in relation
with a given object that will be used to represent the UML navigation.

2.2 Class specific parts

To illustrate more concretely how the specification corresponding to a class dia-
gram looks like, we will use as running example a fragment of an invoice system.

Stock_Handler | Stock

guantty: (p: Procuct): Inteq
acidl_product(peProcuct, o Tregen
get_productip:Product, o: Integer)

Order
date’ Date Involecer
cuantty: Cuantity ;
status: enurndpending, invoiced, cancelled} gﬁosrggruenw (Orer)
Mailer. <cexiemalz>

- - Sik: Stock
orders what
Invioice
il 1 Do
Cllent | | Product | Stop

Class Diagram for the Invoice system

We have some passive classes, recording information about clients, products
(we do not detail these parts), current (and past) orders and stock of an e-
commerce firm, and two active classes, managing such data and representing
two kinds of “software” clerks: the stock handler, who put the newly arrived
products in the stock and removes the correct amount of products to settle an

* Subtyping in CASL is denoted by < and a declaration s < s’ implicitly introduces a
predicate _ € s, checking if a term of sort s’ is interpreted on a value of type s.

order, and the invoicer, who processes orders and sends invoices. Finally, there
are associations relating each order respectively to the ordering client and the
ordered product. Notice that we had to introduce the stereotype <<external>>
in order to annotate that the object kept in the Mailer attribute corresponds to
something external to the system.

Class Specific Context Part (C-Context) Each class contributes to the
context with the names introduced by the class. So, for instance, the specifica-
tion for the class Client introduces only its name as a constant of sort Name,
while that for the class Order (Stock) introduces the names of the attributes
(operations) and their typing as well. As the type of some operation of the class
Stock involves another class, Product, we declare the constant with that name,
but we do not state that it is a class, as this information is not part of the class
Stock. When in the end we will put together this specification with that corre-
sponding to the static context of Product, we will have the missing information.

spec STOCK-CONTEXT = CONTEXT then
ops Stock, Prod, quantity, addProd, getProd :— Name
axioms
isClass(Stock)
isOp(quantity, Stock) A argType(quantity) = Prod A res Type(quantity) = integer. ..
We deal with associations in an analogous way with respect to classes.

Class semantics part (C) Each specification corresponding to a class intro-
duces (at least) the sort of the local states of that class objects. Moreover, if we
have OCL constraints, then they are translated into axioms.

spec CLIENT = STATE and CLIENT-CONTEXT then

sorts Client < Object

axioms Vo : Object; « hasType(getld(o), Client) < o € Client

To translate active classes we use CASL-LTL, an extension of CASL, where sorts
may be declared dynamic. As we will see in the next section, in this way we have
the means to describe the behaviour of their elements. Apart from declaring
their object sort as dynamic, active classes are translated like passive ones.

spec STOCKHANDLERO = STATE and STOCKHANDLER-CONTEXT then

dsort StockHandler label StockHandler — Label info StockHandler— Info

sorts StockHandler < Object

axioms Vo : Object; « hasType(getld(o), StockHandler) < o € StockHandler

Also in this part associations are dealt with in an analogous way w.r.t. classes.
The overall specification giving the semantics of the class diagram, called

CLAsSDIAGRAM, is the union (CAsL-LTL keyword and) of the specifications

representing the individual classes and relations.

3 UML State Machines

In [9] we present our complete formalization of UML state machines associated
with active classes using CAsL-LTL; a short version has been presented in [10];
here we briefly report the main ideas.

3.1 How to Represent Dynamic Behaviour

Since the handling of the time in the UML, also of the real time, does not
require to consider systems evolving in a continuous way, we have to describe
a discrete sequence of moves, each one of them representing one step of the
system evolution. Thus, taking advantage of a well established theory and tech-
nology (see, e.g., [5,7]), we model an active object A with a transition tree. The
nodes in the tree represent the intermediate (interesting) situations of the life
of A, and the arcs of the tree the possibilities, or better the capabilities, of A
of moving from one situation to another. Moreover, each arc is labelled by all
the relevant information about the move. In standard transition systems, the
label is unstructured; here, for methodological reasons, we prefer to use pairs as
decorations, where the first component, called label, represents the interaction
with the external environment and a second one, called info, is some additional
information on the move, not concerning interactions.

To describe transition trees, we use generalized labelled transition systems
(shortly glts). A glts (STATE, LABEL, INFO,—) consists of the sets STATE,
LABEL, and INFO, and of the transition relation —C INFO x STATE x
LABEL x STATE. Classical labelled transition systems are the glts where the
set INFO has just one element.

Each (i,s,1,s') €= issaid to be a transition and is usually written i : s LIV
The transition tree for an active object A described by a glts is a tree whose
nodes are labelled by states (the root by the initial state of A) and whose arcs
are decorated by labels and informations. Moreover, there is an arc decorated

by ! and ¢ between two nodes decorated respectively by s and s’ iff 7 : s L
Finally, in a transition tree the order of the branches is not considered, and two
identically decorated subtrees with the same root are considered as a unique one.

A glts may be formally specified by using the algebraic specification language
CAsL-LTL (see [8]), an extension of CASL (see [6]) designed for the specification
of processes based on glts’s, where we have a construct for the declaration of
dynamic sorts:
dsort Staie label Label info Info
introducing the sorts State, Label, and Info for the states, the labels and the
information of the glts, and implicitly also the transition predicate:
pred __: __ — __: Info x State x Label x State
Each model M (an algebra or first-order structure) of a specification including
such construct corresponds to the glts (InfoM, State™ | LabelM, —>M)5.

In most cases we will be interested in a minimal glts, where the only transi-
tions are those explicitly required by the axioms. This is, for instance, the case
when translating active classes, because their activity is required to be fully de-
scribed by the corresponding state machine. To achieve this result we restrict
the specification models to the (minimal) initial ones® (CasL keyword free).

® Given a ¥ algebra A, and a sort s of X, s denotes the interpretation of s in A;
similarly for the operation and predicates of X.
6 If any, otherwise the model set becomes empty.

Active classes as glts Assume to have a given active class ACL with a given
associated state machine SM. For instance, let us consider the following state
machine, associated with the active class Invoicer of our running example.

e N
SP [nitial .
Invoice /
Do OS = Order.allinstances-> Select(status = pending)->asSequence;
[OS->Empty] Do:

Do [OS->noEmpty] /

.. O = OS -> first;

Invoicing if Quantity(O) <= Quantity(O.what)
{Stk.get_Product(Quantity(O);O.what);
Mailer.SEND_INVOICE(......)k

OS = 0S->excluding(O);

Do;

The State Machine Associated with Invoicer

The instances of ACL, called active objects in the UML terminology, are just
processes and we model them by using a glts. We algebraically specify such glts,
named in the following GLTS, with the specification AcL-DyNAMIC.

It is important to notice that the states and the transitions of the state ma-
chine SM are different in nature from, and are not in a bijective correspondence
to, those of the corresponding GLTS. Indeed, one SM-transition corresponds to a
sequence of GLTS-transitions and the GLTS-states are more detailed than those
of the SM. To clarify the relationship, see a small fragment of the transition tree
associated with the state machine for the Invoicer class (to simplify the picture
we only report the configuration and the event queue of each GLTS-state).

3 : 3
£ : 8
> 1 g
[=%
S = 9 g
© Nz 2 o @
o £ o o
S g 2= g = T 2 26 T
3 T O 3} o = —~ S a
= L2 > =N 2 5A roy 5=
E= <) T2 o SN N oN & 070 :
-~ > n o Q-+ =~ o= 2 fifal a
o® € 8% § 2o L XS O X2 9
gg = =V 4 BV 2 ov =~ AV N
S< =z 8 = S S =
2 £ 54 s g S G
> = = > =
[c S [
. £ £
& =4
) £
= 28
= =9
£ SE
ey g
S+
- b
[=3)) oy % E’
o2 o Sc 5
we 128 a2l £ ©
o - 255 © o
£ < 0y [2
=V = o ©
[} c c
g = £
1<) 3]
S
©
Q.
i)
©

A fragment of a transition tree

Each GLTS-transition corresponds to performing a part of a state machine tran-
sition. Then the atomicity of the transitions of SM (run-to-completion assump-
tion) required by [14] will be guaranteed by the fact that, while executing the
various parts of a transition triggered by an event, the involved threads cannot
dispatch other events.

We translate SM into the following specification AcL-DyNAMIC:

spec AcL-DYNAMIC =

LABEL and AcL-STATE and INFO then
free {

dsort Acl label Label info Info
axioms

} end

Following the UML philosophy, we assume that all “static” information about
the class ACL (and the others), like for instance the attributes and operations,
are found in the class diagram and hence in the specification CONTEXT, defined
in Sect. 2.

As in the case of class diagrams, a large part of the specification of the
GLTS representing a state machine is generic, that is, it is common to all state
machines. Actually, the only point where the features of an individual state
machine play a role is in the definition of the function associating each set
of states of the state machine with the set of the transitions starting from it,
discussed at the end of the section.

To illustrate the modularity of the approach, we report the axiom defining
the transitions corresponding to dispatch an event; for the others see [9].

The intuitive meaning of the axiom is that, if

- an active object is not fully frozen executing run-to-completion steps,
- an event ev may be dispatched,
- rds is a set of correct interactions for the class ACL corresponding to read

the attributes of other objects (checked by Ok_Read ACL),
then GLTS has a transition,

- with the label made by rds and the received time ¢,
- where ev has been dispatched and the history has been extended with the
current states.

not_frozen(conf) A dispatchable(ev, e_queue) A Ok_Read ACL(rds) A

Dispatch(ev, conf, e_queue, rds, atirs, id) = conf’, e_queue’ =

id : (conf, attrs, e_queue, history, chinf) m}

id : {altrs, conf', e_queue’, history', chinf)

where history’ = {active_states(conf), t) & history

In such axiom we use the auxiliary operation Dispatch:
Dispatch(ev, conf, e_queue, rds, attrs, id) = conf’, e_queue’ holds whenever the
object id with configuration conf and event queue e_queue using rds and attrs
may dispatch the event ev changing its configuration to conf’ and its event queue
to e_queue’.

Notice that the axiom is independent from the particular state machine to be
translated. However, the (omitted) specification of the function Dispatch is based
on the function Trans associating with each set of states (of the state machine)
S the set of the transitions having S as source, and its specification is different
for each state machine. For instance, Trans for the state machine for the Invoicer
class associates two transitions to {Initial}, three to {Invoicing} and none to
the final state.

4 Semantics of UML Models

The overall semantics of a UML model is given by a set of what we have called
(see Sect. 1) UML formal systems. First we briefly illustrate them also with the
help of our example and then we outline their formal specification.

4.1 UML Formal Systems

A UML model describes the structure of a system, that is which are the com-
ponents and which are their capabilities, and the behaviour of the system itself,
that is the evolution of its components along the time and the interactions of
the system with the external world (e.g., with the users).

Therefore, its semantics i1s a set of acceptable structured processes that we
represent again by means of GLTS, and that we call UML formal systems. But,
since reducing the concurrency among the components of a system to interleaving
appears to be reductive, we want to use structured GLTS, where the transitions
correspond to really concurrent executions of sets of transitions of the system
subcomponents. The sorts State, Info and Label of a GLTS can be endowed
with operations (and predicates) and be defined, or built as datatypes starting
from other (dynamic) sorts. Thus, we can easily impose a state of the structured
GLTS to be a set of states of its subcomponents and its transitions and labels
to be defined in terms of those of its active parts.

For instance, a possible transition of a UML formal system corresponding to
our running example is the following:

[Stock | [Clientl] ...

Orders
-

Mailer.Sendinvoice(ol,cl)
i)
Mailer.Sendinvoice(ol,cl)

Stock.add_prod(p1,91)
i

e

, e Invoicer’
Stock_Handler . []

Both in the source and in the target state we have two active components (rep-
resented by rounded shapes), the Stock_Handler and the Invoicer and a number
of passive components (represented by rectangles): some instances of Client and
Product, the unique instance of Stock and the state of the associations orders and
what. In this picture we consider the parallel execution of two activities, graphi-
cally represented by the thin lines connecting the involved active components of
the source and target state:

— the Stock_Handler adds to the Stock some quantity ¢ of the product pf;
the effect of this action is to change the state both of the Stock_Handler and
of the Stock;

— the Invoicer sends to the client ¢/ an invoice for the order o1, by calling a
method of some external maziler; thus, the effect of this action is to change
the state of the Invoicer and to communicate with the external world through
the label of the transition.

The parallel composition of these actions is described by a transition, graphically
represented by the thick arrow connecting source and target structured states.
Notice that, since the labels of the structured system carry only information
about the interactions with the external world, the label of this transition is
taking into account only the call to the mailer. But the resulting state of the
system is modified because the internal states of all the objects involved in the
move are (possibly) modified.

4.2 The Specification of a UML Formal System

The semantics of a whole UML model is given by the combination of the speci-
fications providing the semantics of the single views determined by the various
diagrams that compose the model. Therefore, we start by extending the spec-
ifications produced by the class diagram(s) and the state machines in order to
describe the glts modeling the system.

The states of the overall system are sets of states of the components. Indeed,
we do not need multisets, since objects are distinguished by their identities.
type State ::= A|sort Object|sort Association| _||(State; State)
op ||-: State x State — State assoc, comm, idem, unit: A
The specification of the labels of the system (SySTEM-LABEL), based on the
interactions with the external environment, is omitted. The informations of the
generalized transitions will be a set of stimuli. Indeed, to be able to evaluate
the satisfaction of a sequence diagram by a UML formal system M we need
to record for each transition of M which are the stimuli exchanged during such
transition. The specification STIMULUS, describing the stimuli, that is the the
trivial translation into CAsL of the UML stimuli (see [14] p. 2-86) is omitted as
well.

In a context extending the specifications CLASS_DIAGRAM, ACL-DYNAMIC,
..., AcL-DYNAMIC,,, SYSTEM-LABEL and FINITESET[STIMULUS|, we can de-
scribe the dynamics of the elements of sort State
dsort State label System-Label info FinSet[Stimulus]

It is worth noting that to state the behavioural axioms we need some temporal
logic combinators available in CASL-LTL that we have no space to illustrate here.
The expressive power of such temporal logic will be also crucial for the translation
of sequence diagrams, though they are not discussed here.

Though most of the identifications needed are already given by the “same-
name same-thing” principle of CASL, we also need axioms stating that an identity
is known 1n a system state iff it corresponds to a component of the system, that
can be easily inductively defined, or axioms stating that for active classes getting
the identity corresponds to selecting the identity component of their state tuples.
There are several such axioms, that, though quite trivial to be expressed, would
produce a long boring list.

Much more interesting are the axioms describing the transitions of the over-
all system. For instance, we can state that we can add to the source and the
target of a transition any number of components that do not participate into
the transition: axiom inf : s L= inf : s||so SN s'||so.

Let us now show how to compose the transitions of the individual active
components, using several auxiliary functions, whose axiomatization we omit for
lack of room. Assume that we have, as part of a state s, a group of active ob-
jects a; which may perform some transitions nf; : a; LN al, accordingly to the
specification of their active classes. Then, we can compose such transitions into
a transition of s only if the interactions appearing on the [;’s, and on the label [
of the resulting transition are pairwise matched, i.e., any thing sent 1s received
by the addressee, including the external environment, and only sent things are
received (this is checked by the predicate Ok_Labels) and the interactions corre-
sponding to read the attributes of passive objects are in agreement with their
actual values (this is checked by the predicate Read_Attributes). If these condi-
tions are satisfied, then the system can move into a new state where the active
objects are evolved into the a}’s, the passive components of s are updated and
some new components may be possibly added.

ANy infi :a N al A
Ok_Labels(l; . .. 1,1) A
Read_Attributes(ly ... 1,1, pss) A
Updated(l; ... 1,1, pss) = pss’ A
Created(l; ...1,1) =033 =

Stimuli_ Of(ly ... 1,1, infs, ... infa) : ar||...||an||pss —> a}||...||al||pss’||o5s

It is interesting to note that there is no guarantee that the specification of the
overall system is consistent. Indeed, if, for instance, the constraints imposed by
the class diagrams are not met by the behaviour described by the state machines,
then the UML model corresponds to no systems and this is shown by the fact
that the overall specification is inconsistent (i.e., it has no models).

5 Conclusion

Our work stems from the belief, supported by concrete experience, that analysing
the UML with different techniques helps the understanding, especially when an

official formal definition of its semantics is lacking and many proposal for im-
provements and extensions are under way. Indeed, this kind of analysis is ex-
plicitly encouraged by some members of the OMG involved in the definition of
UML (Bran Selic during the discussion at the <<UML>> 2000 Workshop “Dy-
namic Behaviour in UML Models: Semantic Questions”, York, October 2000).
Moreover, we have already shown in [10] how this kind of analysis can lead to
spot problematic points and offer various alternatives for a precise definition.

With respect to the proposal of a standard definition by an OO metamod-
elling approach, like the one advocated by [3], our work is complementary, in
two senses. First of all, it provides a basic technique for modelling dynamic be-
haviour, which i1s based on the twenty years long and successful experience of
CCS and the like (labelled transition systems), already used for the full formal
definition of Ada ([1]). That technique is adequate for modelling all dynamic
features of UML; for example by this technique we are currently working on
sequence diagrams; some other kinds of diagrams that we have partly analyzed,
and that we conjecture can be added to our schema without major problems,
are

— the collaboration diagrams, being rather similar to the sequence diagrams;

— the activity diagrams, as they are a specialization of the statechart diagrams.

Thus it would be interesting to explore the possibility of adopting this tech-
nique as a basis in the so called dynamic-core sketched in [3], which is admittedly
rather preliminary. For a proposal in that direction see [2]. A point that we want
to stress again is that our approach is supporting the multiview philosophy, in
the sense that each part of a UML model has a proper formalization that is
integrated with those of the other parts. Moreover, we are considering full UML
and this is quite important, because it is often the case that the semantics given
for a restricted part of UML in isolation is useless when trying to uplift it to

the full UML.

For instance, even from this partial work concerning just two kinds of dia-
grams, it results clear that the separation of concerns apparently achieved by
using class diagrams to describe the system structure and state machines to
capture the system dynamics is limited. Indeed, the class diagram imposes re-
strictions on the dynamic behaviour of the objects, through the constraints on
the operations and on the classes. Vice versa, a state machine cannot be con-
sidered 1n isolation, as we need to know whether it is associated with an active
or with a passive class and which are the operations/signals/attributes of such
class and of the other classes. Moreover, we have also found that we need to
know how a UML model interacts with its external environment, in order to
describe the labels of the overall system (see Sect. 4.2).

We expect that furthering our investigation to other kinds of diagrams more
relationships among the parts of a UML model will be exposed, deepening our
understanding of the UML and paving the way for better new versions and a
standard complete definition of its semantics.

References

1.

10.

11.

12.

13.

14.

E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini, P. Inverardi,
E. Karlsen, F. Mazzanti, J. Storbank Pedersen, G. Reggio, and E. Zucca. The
Draft Formal Definition of Ada. Deliverable, CEC MAP project: The Draft Formal
Definition of ANSI/STD 1815A Ada, 1986.

E. Astesiano and G. Reggio. A Proposal of a Dynamic
Core for UMIL Metamodelling with MML. Technical Re-
port DISI-TR-01-1, DISI - Universita di Genova, Italy, 2001.

ftp://ftp.disi.unige.it/person/ReggioG/AstesianoReggioOla.pdf.

T. Clark, A. Evans, S. Kent, S. Brodsky, and S. Cook. A Feasibility
Study in Rearchitecting UML as a Family of Languages using a Precise
OO Meta-Modeling Approach - Version 1.0. (September 2000). Available at
http://www.cs.york.ac.uk/punl/mnf .pdf., 2000.

R. France and B. Rumpe, editors. <<UML>>"99 - The Unified Modelling Lan-
guage. Number 1723 in Lecture Notes in Conputer Science. Springer Verlag, 1999.
R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.

The CoFI Task Group on Language Design. Cas. Sum-
mary. Version 1.0. Technical report, 1998. Available on
http://www.brics.dk/Projects/CoFI/Documents/CASL/Sumnary/.

G. Plotkin. An Operational Semantics for CSP. In D. Bjorner, editor, Proc. IFIP
TC 2-Working conference: Formal description of programming concepts. North-
Holland, Amsterdam, 1983.

G. Reggio, E. Astesiano, and C. Choppy. Cast-Lt, : A CasL
Extension for Dynamic Reactive Systems — Summary. Technical
Report DISI-TR-99-34, DISI - Universita di Genova, Italy, 1999.

ftp://ftp.disi.unige.it/person/ReggioG/ReggioEtA1199a.ps.

. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. A CAsL Formal Definition

of UML Active Classes and Associated State Machines. Technical Report DISI-
TR-99-16, DISI — Universita di Genova, Italy, 1999. Revised March 2000. Available
at ftp://ftp.disi.unige.it/person/ReggioG/Reggio99b.ps.

G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active
Classes and Associated State Machines — A Lightweight Formal Approach. In
T. Maibaum, editor, Proc. FASE 2000 - Fundamental Approaches to Software En-
gineering, number 1783 in Lecture Notes in Computer Science. Springer Verlag,
Berlin, 2000.

G. Reggio, A. Knapp, B. Rumpe, B. Selic, and R. Wieringa (editors). Dy-
namic Behaviour in UML Models: Semantic Questions. Technical report, Ludwig-
Maximilian University, Munich (Germany), 2000.

J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Object Technology Series. Addison-Wesley, 1999.

S.Kent, A.Evans, and B. Rumpe. UML Semantics FAQ . In A. Moreira and
S. Demeyer, editors, ECOOP’99 Workshop Reader. Springer Verlag, Berlin, 1999.
UML Revision Task Force. OMG UML Specification, 1999. Available at
http://uml.shl.com.

