
A SOUND AND EQUATIONALLY-COMPLETE DEDUCTION SYSTEM

FOR

PARTIAL CONDITIONAL (HIGHER-ORDER) TYPES

(Extended Abstract)

Maura Cerioli

Dipartimento di Matematica - Università di Genova

Via L.B. Alberti 4 - 16132 Genova Italy

Abstract. Higher-order algebraic specifications of partial functions lead naturally to

consider partial conditional specifications, ie partial specifications with axioms of the form

∧i∈I ti = t'i ⊃ t = t' where on the left-hand side the equality is strong (the equality

holds iff either both sides are defined and equal (existential equality) or both are

undefined). Contrary to the well explored case of positive conditional axioms (only exis-

tential equalities on the left) those specifications do not always admit free models (the re-

lated theory is much more subtle and still unsettled).

Relying on and completing some our previous results, we present in this paper a deduction

system which is complete w.r.t. strong equalities between open terms, with an application

to the existence of free objects. Since positive conditional partial specifications and

conditional total specifications are special cases of the paradigm investigated here, the

presented theory generalizes the related Birkhoff-like deduction theory.

The system we exhibit here looks nice since it handles also the case of infinitary conjunc-

tions on the left of the axioms; it reduces to a classical one for the positive conditional case

just dropping one rule, and finally solves the empty-carrier problem, noticed by Huet and

Goguen-Meseguer, without using explicit quantification.

Introduction

Higher-order algebraic specifications are a natural and extremely useful extension of

classical first-order algebraic specifications of abstract data types (see e.g. [11]). Since

clearly we need to specify also partial functions, the partial algebra specifications frame-

work is an obvious candidate for investigating the related problems. (Indeed it can be

shown that the problems considered here are essentially the same in the total framework

and our results apply to that case too).

 Work partially supported by MPI 40%

The delicate point with higher-order algebraic specification is extensionality. Indeed classes

of algebras satisfying axioms of the form

(∀ x∈Dom(f): f(x) = g(x)) ⊃ f = g

are not closed under subobjects, since the quantifications only involves the left-hand side.

Thus it is necessary to require a more restrictive extensionality condition, which we call

term-extensionality:

∧ t∈ T Σ f(t) = g(t) ⊃ f = g.

This formula is a particular case of conditional axiom. Conditional axioms have the form

∧ ∆ ⊃ ε, where ∆ is a possibly infinite set of both strong and existential equalities

and ε is an equality too, and their models classes are closed under subobjects and

isomorphisms.

Like the higher-order ones, in general partial conditional specifications do not admit initial

models, contrary to the classical case (considered, e.g., in the work of Broy and Wirsing

[6]; see also Burmeister [5], Reichel [12]) of positive conditional specifications, ie those

whose axioms have only existential equalities in the premises.

In [1] we investigated the problem and gave necessary and sufficient conditions for the

existence of initial models, related them to logical deduction and exhibited a sound system

which is complete w.r.t. closed elementary formulas. In this paper we tackle the problem

of giving a sound system complete w.r.t. open elementary formulas; ie we want to get the

analogous of the classical Birkhoff’s result for equational theories.

The first problem to solve is soundness. Goguen and Meseguer in [10] have shown that

the usual one-sorted inference system trivially adapted to the many-sorted case produces

unsound deductions whenever empty carriers are allowed, and proposed adding explicit

quantification to the formulas, as classical logic does, to avoid the problem. In our for-

malism we can eliminate the unsound deductions without introducing explicit

quantification; indeed the definedness predicate does the job: if x is a variable of sort s,

then D(x) in the premises of an axiom guarantees the existence of an element of sort s.

Thus we can treat the quantification implicitly, by representing a formula ∀X: ∧ ∆ ⊃ ε
by ∧ ({D(x) | x∈X} ∪ ∆) ⊃ ε.

The second problem is completeness. The completeness w.r.t. open equalities of an in-

ference system is usually shown (see e.g. [10,14]) by proving that the relation ≡ between

open terms associated with the system (defined by t ≡ t' iff “t = t') is a congruence

s.t. Fr = TΣ(X)/≡ is a model of T, since Fr satisfies all and only the deduced

existential equalities. But this proof is possible just because both positive and total

conditional specifications always have free objects; indeed if TΣ(X)/≡ is a model, then it

is also the free object for X in the class of T models, because of the soundness of L(T).

Therefore in the case of (non-positive) conditional specifications we cannot use this

technique.

In [1] we have shown the completeness, w.r.t. the closed elementary formulas, of an

inference system, in the following denoted by CLg(T), where g stands for ground. Here

we generalize CLg(T) to a system CLv(T), complete w.r.t. open elementary formulas.

In section 1 we introduce the overall setting and a sound logical system; this system is

complete for all positive conditional specifications w.r.t. open existential equalities, but is

not complete w.r.t. partial conditional specifications. In section 2 we add to this system

one rule, making it complete w.r.t. strong equality for all partial, possibly non-positive,

conditional specifications. Finally in section 3 we relate this complete system and the exis-

tence of free objects. All the proofs are omitted and may be found in [2].

The theory of partial algebras is nowadays well established and widely used (see e.g. [7,

14, 3, 4]). Hence we briefly collect in appendix some basic notions about partial

specifications just in order to fix the notation; thus the reader can look at the appendix

whenever some notations are not clear. A more ample presentation of the partial algebraic

framework can be found e.g. in [5,6,13].

1 Sound logical deduction for conditional specifications

In the following when referring to generic formulas and inference systems we consider

formulas and inference systems within an infinitary logic which extends first-order logic

by admitting countable conjunctions (, disjunctions) and quantification over countable sets

of variables (see e.g.[9]). However we will show that we can restrict ourselves to consider

only conditional formulas.

Let us recall in one definition some basic notions, just in order to fix the notation.

Def. 1.1. Let Σ = (S,F) be a signature and X be a family of S-sorted variables.

• If t,t'∈TΣ(X), then D(t) and t = t' are elementary formulas.

If ∆ is a countable set of elementary formulas and ε is an elementary formula too,

then ∧ ∆ ⊃ ε is a conditional formula.

If ∆ is the empty set, then ∧ ∆ ⊃ ε is an equivalent notation for the elementary

formula ε. (∧ ∆ is a notation for the couple (∧,∆); see [9]).

• A positive conditional formula is a conditional formula ∧ ∆ ⊃ ε s.t. for every

t = t' belonging to ∆ either D(t) or D(t') belongs to ∆.
• For every formula ϕ let Var(ϕ) denote the set of all variables which appear in ϕ. A

formula ϕ is called closed iff Var(ϕ) is empty.

• If A is a partial algebra, ϕ is a formula and V is a valuation for Var(ϕ) in A, then

we say that ϕ holds for V in A (equivalently: is satisfied for V by A) and write

A ‘V ϕ accordingly to the following definitions

• let ϕ be D(t); then A ‘V D(t) iff tA,V is defined; let ϕ be t = t'; then

A ‘V t = t' iff tA,V and t'A,V are either both defined and equal or both

undefined;

• let ϕ be ∧ ∆ ⊃ ε; then A ‘V ϕ iff either A ‘V ε or A ’V δ for some

δ∈∆.

We write A ‘ ϕ for a formula ϕ and say that ϕ holds in (equivalently: is satisfied

by, is valid in) A iff A ‘V ϕ for all valuations V for Var(ϕ) in A.

• A (positive) conditional type (specification) T consists of a signature Σ and of a set

Ax of (positive) conditional formulas over Σ, the axioms of T. A generic condi-

tional type will be denoted by T and a formula belonging to Ax by α.

• For every conditional type T = (Σ,Ax), PMod(T) denotes the class of all models of

T, ie the Σ-algebras satisfying every formula of Ax;

PMod(T) = {A | A∈PA(Σ), A ‘ α , ∀ α∈Ax}. fi

In the following a generic elementary formula will be denoted by ε or γ or δ, while a

generic conditional formula will be denoted by ϕ; moreover for all conditional formulas

ϕ = (∧ ∆ ⊃ ε) we denote ∆ by prem(ϕ) and ε by cons(ϕ); finally we use some

equivalent notations:

• ∧ ∆1∧ … ∧∧ ∆n is the same as ∧ (∪ i=1…n ∆i), where ∆i is a countable set of

elementary formulas for i=1…n;

• ε1∧…∧εn is the same as ∧{ε1,…,εn}, where εi is an elementary formula for i=1…n;

• D(X) is the same as {D(x) | x∈X}, where X is a countable family of variables.

Note that, as usual, quantification is always implicit and is universal, ie every formula ϕ
is a short notation for the formula {∀ x: s | x∈Var(ϕ)s}s∈S : ϕ. However this short

notation can induce in a subtle error whenever empty carriers are allowed; consider the

following example.

Example 1: specification T1

sorts: s1 , s2 operations: a,b: → s1 axioms: D(a), D(b)

f: s2 → s1 a = f(x), f(x) = b

Now if L(T1) is a logical system for T1, then we obviously have L(T1) “ a = f(x)

and L(T1) “ f(x) = b, while L(T1) “ a = b is an unsound deduction, because TΣ is

the initial model of T1 and TΣ ’ a = b. End

First Huet noted, in the framework of total many-sorted algebras, that the family

ℜ = {(t,t') | t,t'∈ T Σ(X) |s A ‘ t = t'}s∈ S

is not a congruence; for example in the specification T1 both TΣ ‘ a = f(x) and

TΣ ‘ f(x) = b, because TΣ|s2 = ∅ and hence there does not exist any valuation for {x}

in TΣ, but TΣ ’ a = b so that ℜ is not transitive. To avoid the problem he suggested

to restrict signatures to the only ones whose carriers either are guaranteed to be non-empty

by the existence of closed terms of that sort, or are in a sense absolutely disconnected by

the non-empty carriers (the rigourous notion is that of sensible signature, see e.g. [8]).

This approach fails in the partial framework since a closed term may be undefined in an

algebra and hence its existence does not guarantee that the corresponding carrier is not

empty; thus we cannot guarantee that all carriers are not empty just because of the

signature.

The problem was also developed by [10] with a particular interest to logical deduction. In

[10] the quantification is made explicit as usual in classical logic; thus the system works on

equalities of the form (∀X) t = t', and produces (∀X-{x}) t = t', eliminating a

variable x from X, only if x does not appear in t = t' and can be instantiated by a

closed term. In that framework in example 1 we have that from (∀{x}) f(x) = b and

(∀{x}) a = f(x) we deduce (∀{x}) a = b, which holds also in TΣ, but we cannot de-

duce a = b, as x cannot be instantiated on a closed term, TΣ|s2 being empty. A similar

approach can be used also in the partial framework, eliminating variables that can be in-

stantiated on closed terms whose definedness is provable.

However we can also handle the problem in a more economical way, explicitly using

definedness predicates. In order to keep memory of extra-variables used in the deduction

we can simply add D(y) to the premises of the deduced formula for all “extra-variables”

y; indeed for all variables y the only effect of the presence of D(y) in the left-hand side

of a conditional axiom is increasing the set of variables appearing in the axiom, since ob-

viously the formula D(y) holds in all algebras. Thus the [10]-like formula

(∀X) ∧ ∆ ⊃ ε is completely equivalent to ∧ D(X) ∧ ∧ ∆ ⊃ ε.

Let us present now a system which takes care of the empty-carriers problem using the

above remark. This system is reminiscent of systems found in the literature (see,

e.g. [14]) and it is easy to check that it is complete for positive conditional types w.r.t.

open existential equalities, but it is not complete both for (non-positive) conditional types

w.r.t. existential equalities and for positive conditional types w.r.t. strong equalities. In the

next section we will add to this system just one rule and obtain a system complete w.r.t.

open strong equalities for all (non-positive) conditional types.

Def. 1.2. The CL(T) c-system for a conditional type T = (Σ,Ax) consists of the axioms

Ax and of the following axioms and inference rules:

0 D(x) all variables x

1 t = t all open terms t

2 t = t' ⊃ t' = t all open terms t,t'

3 t = t' ∧ t' = t" ⊃ t = t" all open terms t,t',t"

4 t1=t'1∧…∧tn=t'n ⊃ op(t1,...,tn)=op(t'1,...,t'n)
all open terms ti, t'i of sort si,
i=1…n, op: s1×… ×sn → s

5 D(op(t1,...,tn)) ⊃ D(ti)
all open terms ti of sort si, i=1…n,
op: s1×… ×sn → s

6 D(t) ∧ t = t' ⊃ D(t') all open terms t,t'

7
 ∧ ∆ ∧ ∧ Γ ⊃ ε , {∧ ∆ γ ⊃ γ | γ ∈ Γ }

 ∧ D(Var(Γ)-Var(∪ γ∈Γ ∆ γ)) ∧ ∧ ∆ ∧ ∧ (∪ γ∈Γ ∆ γ) ⊃ ε

∆, ∆γ, Γ are arbitrary,
countable sets of
elementary formulas, ε
is an elementary
formula.

8
 ∧ ∆ ⊃ ε

∧Xt∧∧{δ[{tx/x|x∈Xs,s∈S}] | δ∈∆}⊃ε[{tx/x|x∈Xs,s∈S}]

Xt={D(tx) | x∈Xs s∈S},∆
is an arbitrary, countable
set of elem. formulas, ε is
an elem. formula, tx are
open terms of sort s for all
x∈Xs.

Prop. 1.3. The system CL(T) is sound for all conditional specifications T. fi

2 A complete conditional system

In the previous section we have seen a sound logical system for conditional types. It is

easy to show directly that if T is a positive conditional type, then CL(T) is complete

w.r.t. open existential equalities (for a similar prove see e.g. [10]). However if T is a

non-positive conditional type, then CL(T) may be not complete w.r.t. open existential

equalities, as we show in the following example.

Example 2: specification T2

sorts: s1,s2 axioms: α1 D(a) ⊃ D(e);

operations: a,b: → s1 α 2 a = b ⊃ D(e);

 e: → s2 α3 D(b) ⊃ D(e);

In all models of T2, either D(a) or D(b) or a = b holds, by definition of strong

equality; thus, because of α1, α2 and α3, also D(e) holds in all models of T2, while

D(e) cannot be deduced using only the rules of CL(T2). End

The example 2 suggests that, to make CL(T) complete, we have to add a rule generalizing

the one which sufficies for ground deduction and finitary axioms

#
 ∧ (∆1∪{D(t)}) ⊃ ε, ∧ (∆2∪{D(t')}) ⊃ ε, ∧ (∆3∪{t = t'}) ⊃ ε

 ∧ (∆1∪∆2∪∆3) ⊃ ε

where t and t' are closed terms. If t and t' are not closed, we have obviously to gen-

eralize # by keeping track of the variables in t and t' in the way introduced in sec.1.

However, since we are working within infinitary logic, we have to generalize # also to

eliminate an infinite number of premises in one step.

Just in order to capture some intuitions about the needed generalization, let us first consider

a finitary case where there are more then one strong equalities to eliminate (though every

finitary case can be handled by a finite number of applications of #).

Example 3: specification T3

sorts: s1 , s2 operations: a,b,c,d: → s1; e: → s2

axioms:

α1 D(a) ∧ D(c) ⊃ D(e); α 2 a = b ∧ D(c) ⊃ D(e); α3 D(b) ∧ D(c) ⊃ D(e);

α4 D(a) ∧ D(d) ⊃ D(e); α 5 a = b ∧ D(d) ⊃ D(e); α6 D(b) ∧ D(d) ⊃ D(e);

α7 D(a) ∧ c=d ⊃ D(e); α 8 a = b ∧ c=d ⊃ D(e); α9 D(b) ∧ c=d ⊃ D(e).

In all models of T3 , by definition of strong equality, at least one among

D(a), D(b), a = b and one among D(c), D(d), c = d holds. Therefore in all models

of T3 the premises of at least one among α1,…,α9 hold and hence we conclude that

D(e) holds in all models of T5. End

Note that in all models of T3 the premises of at least one axiom hold since

{prem(αi) | i=1…9} is the set {D(a),D(b),a = b}×{D(c),D(d),c = d} and one among

{D(a),D(b),a = b} and one among {D(c),D(d),c = d} has to hold. Then for a generic

finitary case we have that we deduce from a family {ϕi | i=1…m} of conditional formu-

las an elementary formula ε iff:

• cons(ϕi) = ε for all i=1…m;

• {prem(ϕ i) | i=1…m} = {D(t1),D(t'1),t1 = t'1}×… ×{D(tn),D(t'n),tn = t'n} for

suitable tj,t'j and j=1…n.

Indeed in all models A one among D(tj), D(t'j), tj = t'j holds for all j=1…n and hence

there exists i∈{1…m} s.t. A ‘ δ for all δ∈prem(ϕi).

In order to generalize this notion to the infinitary case, let us first introduce a short

notation.

If Γi is a set of elementary formulas for all i∈I, then FullInter({Γi | i∈I}) denote the

set of all Ψ ⊆ ∪ i∈I Γi s.t. Ψ ∩ Γi ≠ ∅ for all i∈I.

If {Γi | i=1…m} is Π = {D(t1),D(t'1),t1 = t'1}×…×{D(tn),D(t'n),tn = t'n}, then for

all Ψ ∈ F u l l I n t e r ({ Γ i | i=1…m}) there exists j∈ {1,…,n} s.t.

{ D (t j) , D (t ' j) , t j = t ' j} ⊆ Ψ ; indeed if for all j=1…n there exists

δj∈{D(tj),D(t'j),tj = t'j} s.t. δj∉Ψ, then ∆=(δ1,…,δn)∈Π, but ∆ ∩ Ψ is empty.

Then the intuition of the needed generalization is

• for all Ψ∈FullInter({prem(ϕi) | i∈I}) there exist t,t'∈TΣ s.t.

{D(t),D(t'),t = t'} ⊆ Ψ .

Let us formalize this idea.

Def. 2.1. The canonical c-system for a conditional type T, denoted by CLv(T) where v

stands for variables deduction, consists of the axioms and inference rules of CL(T) and of

the following rule:

9
 {∧ ∆ i ∧ ∧ Γ i ⊃ ε | i∈ I }

∧ D(Z) ∧ ∧ (∪ i∈ i ∆ I) ⊃ ε

I is an arbitrary set (possibly more than countable),
∆i, Γi are arbitrary countable sets of elementary formulas,
ε is an elementary formula too,
Z = ((∪i∈I Var(Γi))-Var(∧ (∪i∈I ∆i) ⊃ ε)).
∀ Ψ∈FullInter(Γ) ∃ terms t,t' s.t. D(t),D(t'),t=t'∈Ψ ,
where
FullInter(Γ)={Ψ | Ψ⊆(∪i∈I Γi),Ψ∩Γi≠∅,∀ i∈I}.fi

Prop. 2.2. For all conditional specifications T the system CLv(T) is sound. fi

It is easy to see that this system is a generalization of the one in [1], from now on denoted

by CLg(T), where g stands for ground deduction, following the idea outlined above of

adding to the premises of deduced formulas a set of the form D(X), so that the variables of

a formula only decrease by rule 7. Thus the completeness of CLv(T) can be deduced from

the one of CLg(T).

Def. 2.3. Let T be a conditional specification and X be a family of variables. A de-

duction system L(T) is complete for T w.r.t. X iff for any equalities t = t' on X, if

M ‘ t = t' ∀ M∈PMod(T), then L(T) “ ∧ D(X) ⊃ t = t'.

Theorem 2.4. The system CLv(T) is complete for T w.r.t. all families X of

variables.
Proof outline. The proof relies on a result of [1], which we briefly recall.

Let CLg(T) be the system defined in def.3.1 of [1], ie CLg(T) consists of the axioms of T, the rules

1…6,8,9 of CLv(T) for only closed terms and formulas and rule 7 of CLv(T), where instantiation only

range on closed terms. Then theorem 3.7 of [1] says that CLg(T) is complete w.r.t. closed elementary

formulas.

Now let us introduce some notations. Let ΣX be (S,F∪{x: → s | x∈Xs}s∈S), ie Σ increased by a

constant symbol x for all variables x, TX be the conditional specification (TX,Ax∪{D(x)}x∈X).

CLg(TX) “ t[x/x|x∈X] = t'[x/x|x∈X] implies CLv(T) “ ∧ D(X) ⊃ t = t', as it can be easily shown

by induction on CLg(TX), for all equalities t = t'.

Let us assume that CLv(T) ” ∧ D(X) ⊃ t = t' and show that there exist B∈PMod(T) and a valuation

V for X in B s.t. B ’V t = t'. Since we have assumed that CLv (T) ” ∧ D(X) ⊃ t = t',

CLg(TX) ” t[x/x|x∈X] = t'[x/x|x∈X] and hence, being CLg(TX) complete, there exists a model A of

TX s.t. A ’ t[x/x|x∈X] = t'[x/x|x∈X]. Now note that if A is a model of TX, then A|Σ (the reduct of

A, see e.g. [6]) is a model of T and U(x) = xA is a valuation for X in A|Σ. Therefore A|Σ is a model

of T and A|Σ ’U t = t'. fi

3 Free objects and logical deduction

In this section we connect the non-existence of free objects with the deducibility of a cer-

tain kind of formulas, called “naughty”, by the system CLv(T). More exactly we first

show that (as usual both in partial positive and total conditional specifications) the quotient

of TΣ(X) naturally associated with CLv(T), in the following denoted by Frv, is the free

object for X in PMod(T) iff there exists a free object for X in PMod(T). Then we

show that Frv is a model of T iff there does not exist any naughty formula.

Let us first introduce some notation.

Def. 3.1. For all conditional types T and all families X of variables

the congruence ≡(T,X) is the family

 {(t,t') | t,t'∈TΣ(X) |s,CLv(T) “ ∧ D(X) ⊃ D(t),CLv(T) “ ∧ D(X) ⊃ t=t'}s∈S;

the algebra Fr(T,X) is TΣ(X)/≡(T,X).

In the following if there is not any ambiguity we will shortly denote ≡(CLv(T),X) by ≡,

and Fr(T,X) by Fr; moreover we will denote by m the valuation m: X → Fr defined

by m(x) = [x]. fi

Remark. Note that, because of rules 1,…,7, the family ≡ is really a congruence; more-

over, because of rule 0, m is always a valuation for X in Fr.

Then we state the equivalence between Fr being the free object for X in PMod(T) and

the existence of a free model for X in PMod(T).

Prop. 3.2. For all conditional specifications T and all families X of variables the

following conditions are equivalent.

1) The algebra Fr is a model of T.

2) The couple (Fr,m) is free for X in PMod(T).

3) There exists a free object for X in PMod(T). fi

In both frameworks, partial positive conditional and total conditional specifications, the

quotient of the term algebra w.r.t. the congruence naturally associated with a sound and

equationally-complete logical system is a model of the specification. In the following ex-

ample we show that such property does not hold for (non-positive) conditional

specifications.

Example 4: Specification T4

Sort: s operation symbols: a,b,c: → s axioms: D(c) ∧ a = b ⊃ D(a)

D(c)

Obviously the two algebras where c and just one between a and b are defined are

models of T4 ; thus, CLv (T 4) being sound, both CLv (T 4) ” D(a) and

CLv(T4) ” D(b).

Therefore Frv ‘m a = b and, since CLv (T 4) “ D(c), Frv ‘m D(c), while

Frv ’m D(a) and hence Frv is not a model of T4. End

Since in general Frv is not a model of T we have to look for necessary and sufficient

conditions guaranteeing Frv∈PMod(T).

Example 4 suggests that the problem arises because of some (non-open) axioms whose

premises hold in Fr while the consequence does not. Consider another example where

there are some non-closed axioms.

Example 5: Specification T5

Sorts: s axioms: α1 D(a);

operation symbols: a,b: → s α 2 b = f(x) ⊃ a = b

f: s → s

Then by α1 we have that CLv(T5) “ D(a), so that, by instantiation of α2, we also have

that CLv(T5) “ b = f(a) ⊃ a = b; moreover, as it is easy to check, CLv(T5) ” D(f(a))

and CLv(T5) ” D(b), so that Fr ‘m b = f(a), while Fr ’m a = b, since Fr ‘m D(a)

and Fr ’m D(b). End

Generalizing this idea we have that Fr is not a model, since there exists an instantiation of

an axiom whose premises hold in Fr w.r.t. m and the consequence does not. This idea

leads us to define the set of Naughty Formulas.

Def. 3.3. For all conditional types T and all families X of variables the set NF(T,X)

consists of all conditional formulas ϕ s.t.

nf1 ϕ is α[ty/y | y∈Var(α)] for some α∈Ax and ty∈TΣ(X) s.t. Fr ‘m D(ty);

nf2 Fr ‘m δ for all δ∈prem(ϕ);

nf3 Fr ’m cons(ϕ). fi

From the definition of NF(T,X) it is easy to understand that Fr∈PMod(T) iff

NF(T,X) = ∅ .

Theorem 3.4. For all conditional types T and all families X of variables Fr∈PMod(T)

iff NF(T,X) = ∅ . fi

Let us collect now all the results about the existence of free objects.

Theorem 3.5. Let T be a conditional type and X be a family of variables. The

following conditions are equivalent:

1) the set NF(T,X) is empty;

2) the algebra Fr is a model of T;

3) the couple (Fr,m) is free for X in PMod(T);

4) there exists a free object for X in PMod(T). fi

Note that if α is a positive conditional axiom, then it is impossible that any of its instanti-

ations belongs to NF(T,X). Thus we can instantiate the theorem for positive conditional

specifications.

Corollary 3.6 [6]. Let X be a family of variables and PT be a positive conditional

type; then (Fr,m) is free for X in PMod(PT). fi

Conclusions. Let us conclude with some hints for the first-order representation of

higher-order types.

A higher-order specification FT on basic sorts S consists of a first-order specification

((S→,F),Ax), where S→ is inductively defined by S ⊆ S→, s1,…,sn,s∈S→ implies

(s1×…×sn → s)∈S→, s.t.

Apply functions: applys∈F(ss1…sn,sn+1) for all s = (s1×…×sn → sn+1)∈S→;

Term-extensionality: [∧ t∈T applys(f,t) = applys(g,t) ⊃ f = g]∈Ax,

for all s = (s1×…×sn → sn+1)∈S→, T = TΣ|s1×…×TΣ|sn, f,g∈Vars.

Assume now that the only non-positive axioms of FT are the term-extensionality axioms.

In this case in order to have the existence of the free object on X we have just to guarantee

that any instantiation of some term-extensionality axioms is not a naughty formula, ie that

either CLv (T) “ ∧ D (X) ⊃ a p p l y s (f , t) = a p p l y s (g , t) for all t∈ T or

CLv(T) “ ∧ D(X) ⊃ tf = tg for all tf,tg∈TFΣ |s s.t.

[C L v (T) “ ∧ D (X) ⊃ D (a p p l y s(f , t)) iff CLv (T) “ D (a p p l y s(g , t))] and

[∧ D(X) ⊃ D(applys(f,t)) implies

CLv(T) “ ∧ D(X) ⊃ applys(f,t) = applys(g,t)] .

Note that this condition requires less equalities between undefined terms than the usual

“total” reduction, where a special symbol ⊥ is introduced to represent the “undefined” and

all undefined terms are equated to ⊥.

Acknowledgements. This paper grew out of some joint work with E. Astesiano, as a

part of a doctoral dissertation, currently developed under his supervision. I wish to thank

him for his constant encouragement and help.

References

[1] Astesiano, E.; Cerioli, M. “On the Existence of Initial Models for Partial
(Higher-Order) Conditional Specifications”, Proc. TAPSOFT’89, vol.1,
Berlin, Springer Verlag, 1989 (Lecture Notes in Computer Science n. 351),
pp. 74–88.

[2] Astesiano, E.; Cerioli, M. “Free objects and equational deduction for partial
(higher-order) conditional specifications”, (Technical report, October 1989).

[3] Astesiano, E.; Reggio, G. “SMoLCS-Driven Concurrent Calculi”, Proc.

TAPSOFT’87, vol.1, Berlin, Springer Verlag, 1987 (Lecture Notes in
Computer Science n. 249), pp. 169–201.

[4] Astesiano, E.; Reggio, G. “An Outline of the SMoLCS Methodology”, (invited
paper) Mathematical Models for the Semantics of Parallelism, Proc. Advanced

School on Mathematical Models of Parallelism (Venturini Zilli, M. ed.), Berlin,
Springer Verlag, 1987 (Lecture Notes in Computer Science n. 280), pp. 81-
113.

[5] Burmeister, P. A Model Theoretic Oriented Approach to Partial Algebras,
Berlin, Akademie-Verlag, 1986, pp. 1-319.

[6] Broy, M.; Wirsing, M. “Partial abstract types”, Acta Informatica 18 (1982),
47-64.

[7] Broy, M.; Wirsing, M. “On the algebraic specification of finitary infinite
communicating sequential processes”, Proc. IFIP TC2 Working Conference on

"Formal Description of Programming Concepts II", Garmisch 1982.

[8] Huet, G. and Oppen, D. Equations and Rewrite Rules: A Survey. In Formal

Language Theory: Perspectives and Open Problems, R. Book., Ed., Academic
Press, 1980.

[9] Keisler, H.J. Model Theory for Infinitary Logic, Amsterdam - London, North-
Holland Publishing Company, 1971, pp. �1-208.

[10] Meseguer, J.; Goguen, J.A. “Initiality, Induction and Computability”,
Algebraic Methods in Semantics, Cambridge, edited by M.Nivat and
J.Reynolds, Cambridge University Press, 1985, pp.459-540.

[11] Möller B., Tarlecki A., Wirsing M. “Algebraic Specification with Built-in
Domain Constructions”, Proceeding of CAAP ’88 (Nancy France, March

1988), edited by Dauchet M. and Nivat M., Berlin, Springer-Verlag, 1988, pp.
132-148.

[12] Reichel H. Initial Computability, Algebraic Specifications, and Partial

Algebras, Berlin (D.D.R.), Akademie-Verlag, 1986.

[13] Tarlecki A. “Quasi-varieties in Abstract Algebraic Institutions”, Journal of
Computer and System Science, n. 33 (1986), pp. 333 - 360.

[14] Wirsing, M.; Broy, M. An analysis of semantic models for algebraic

specifications, International Summer School on Theoretical Foundations of
Programming Methodology, Munich. Germany 28/7 - 9/8, 1981.

Appendix

Def. A.1. A signature, usually denoted by Σ, is a couple (S,F), where S is a (countable) sort

set, and F is an S*×S-indexed family of operation symbols sets s.t. F(w,s)∩F(w',s) ≠ ∅ im-
plies w = w'; if op∈F(s1…sn,s), then we usually write op: s1×…×sn → s. fi

Notice that the requirement F(w,s)∩F(w',s) = ∅ for all w ≠ w' is the less restrictive in order to
have not any ambiguity about the terms interpretation.

Def. A.2.

• A partial Σ-algebra A, in the following simply called Σ-algebra or algebra, is a couple
({sA}s∈S,{opA}op∈F), where sA is a set, called the carrier of sort s, for all s∈S and opA

is a partial function op: s1
A×…×sn

A → sA for all op: s1×…×sn → s. In particular if n = 0,
then opA is either an element of sA or it is undefined.

• The term algebra TΣ(X) on a family X of variables is defined in the usual total way
(see e.g. [10]).

• For all valuations for X in an algebra A the natural interpretation of TΣ(X) w.r.t. V,
denoted by tA,V or simply tA if X = ∅, is inductively defined by:

xA,V=V(x); op(t1,…tn)A,V=opA(t1
A,V,…,tn

A,V) ∀ op:s1×…×sn→s,ti∈TΣ(X)|si i=1…n.
• The Kernel of the natural interpretation of TΣ(X) w.r.t. a valuation V, denoted by

K A , V or just KA if X=∅ , i s t h e c o n g r u e n c e
{(t,t') | t,t'∈TΣ(X)|s,tA,V,t'A,V∈sA,tA,V = t'A,V}s∈S.

• A homomorphism between two partial Σ-algebras A and B, denoted by h: A → B, is a
family {hs} s∈ S of total function hs: sA → sB s.t. if opA (a1,…,an)∈ sA , then
hs(opA(a1,…,an)) = opB(hs1(a1),…hsn(an)) for all op: s1×…×sn→s, ai∈si

A i=1…n. fi

Notice that, being opA a partial function, also the natural interpretation is partial and hence
tA may be undefined.

Def A.3. For all non empty classes C of partial Σ-algebras and all families X of variables
a couple (Fr,f), where Fr is an algebra of C and f is a valuation for X in Fr, is free for
X in C iff for all A∈ C and all valuations V for X in A there exists a unique
homomorphism h: Fr → A s.t. h(f(x)) = V(x) for all x∈X; if X is the empty set, then f
has to be the empty map, so that the definition can be simplified as follows: I is initial in C
iff for all A∈C there exists a unique homomorphism h: I → A. fi

Prop. A.4. Let C be a non-empty class of Σ-algebras.
1 If (Fr,f) is free for X in C, then KFr,f = ∩A∈C,V:X→A KA,V; ie

• tFr,f∈sFr iff (tA,V∈sA for all A∈C and all V:X→A) for all t∈TΣ(X);
• if tFr,f,t'Fr,f∈sFr, then tFr,f = t'Fr,f iff (tA,V = t'A,V for all A∈C and all V:X→A) for

all t,t'∈TΣ(X).
2 If there exists Fr∈C s.t. ϕ: TΣ(X)/∩A∈C,V:X→A KA,V → Fr is an isomorphism, then

(Fr,f), where f(x) = ϕ([x]) for all x∈X, is free for X in C.
3 If C is closed under isomorphisms and subobjects, then (Fr,m), where Fr is the algebra

TΣ(X)/∩A∈C,V:X→A KA,V and m(x) = [x] for all x∈X, is the free object for X in C
iff there exists a free object for X in C, iff Fr belongs to C. fi

