
Permissive Subsorted Partial Logic in CASL

Maura Cerioli

1

, Anne Haxthausen

2

, Bernd Krieg-Br�uckner

3

, Till Mossakowski

3

1

DISI, Via Dodecaneso 35, I-16146 Genova

2

Dept. of Information Technology, Techn. University of Denmark, DK-2800 Lyngby

3

BISS, Universit�at Bremen, P.O. Box 330440, D-28334 Bremen

Abstract. This paper presents a permissive subsorted partial logic used

in the CoFI Algebraic Speci�cation Language. In contrast to other order-

sorted logics, subsorting is not modeled by set inclusions, but by injec-

tive embeddings allowing for more general models in which subtypes can

have di�erent data type representations. Furthermore, there are no re-

strictions like monotonicity, regularity or local �ltration on signatures at

all. Instead, the use of overloaded functions and predicates in formulae

is required to be su�ciently disambiguated, such that all parses have the

same semantics. An overload resolution algorithm is sketched.

1 Introduction

During the past decades a large number of algebraic speci�cation languages have

been developed. The presence of so many similar speci�cation languages with

no common framework hinders the dissemination and application of research

results in algebraic speci�cation. In particular, it makes it di�cult to produce

educational material, to re-use tools and to get algebraic methods adopted in

industry. Therefore, in 1995, an initiative, CoFI

4

, to design a Common Frame-

work for Algebraic Speci�cation and Development was started [Mos97b]. The

goal of CoFI is to get a common agreement in the algebraic speci�cation com-

munity about basic concepts, and to provide a family of speci�cation languages

at di�erent levels, a development methodology and tool support. The family of

speci�cation languages will comprise a central, common language, called CASL

5

,

various restrictions of CASL, and various extensions of CASL (e.g. with facili-

ties for particular programming paradigms). A design proposal [LD97] of CASL

has already been completed by representatives of most algebraic speci�cation

language groups. Note that the concrete syntax used in this paper is a proposal

and no decision about concrete syntax has yet been taken.

CASL provides constructs for writing structured requirement and design

speci�cations as well as architectural speci�cations. Basic CASL speci�cations

consist of declarations and axioms representing theories of a �rst-order logic in

which predicates, total as well as partial functions, and subsorts are allowed.

Predicate and function symbols may be overloaded.

4

CoFI is an acronym for Common Framework Initiative and is pronounced like `co�ee'.

5

CASL is an acronym for CoFI Algebraic Speci�cation Language and is pronounced

like `castle'.

In this paper we will present the subsorting approach used in CASL. The

main novelties of our approach compared with the usual order-sorted approach

[GM92] are:

{ Functions may be partial.

{ Predicates are allowed as in EqLog [GM86].

{ Projection functions from supersorts to subsorts are naturally de�ned as

partial functions, instead of total retract functions [GM92].

{ Subsorting is not modeled by set inclusions, but by injective embeddings

allowing for more general models in which subtypes may have di�erent data

type representations.

{ There are no requirements like monotonicity, regularity or local �ltration

imposed on signatures.

We dropped the requirements like monotonicity, regularity or local �ltration in

order to avoid problems with modularity (as described in [HN96] and [Mos96,

Mos97a]) and to allow overloading of constants. Instead, the use of overloaded

functions and predicates in formulae is required to be su�ciently disambiguated,

such that all parses have the same semantics. This means a more complicated def-

inition of well-formed formulae, and requires a parsing algorithm which is more

complex than the simple bottom-up least sort parsing algorithm by Goguen and

Meseguer [GM92]. However, in cases where the signatures satisfy the mentioned

requirements, the complexity of the two algorithms is the same.

The idea of dropping regularity (but not local �ltration) has been pro-

posed by Goguen and Diaconescu [GD94], and the idea of dropping local �l-

tration (but not regularity) has been proposed by Haxthausen [Hax97] for a

subsorting approach with implicit, possibly non-injective coercions. However, it

is new that both requirements are dropped at the same time, and it is new that

a parsing (overload resolution) algorithm is sketched.

First, in section 2, some well-known de�nitions from many-sorted partial logic

are given, and, in section 3, the underlying subsorted partial logic of CASL is

de�ned in terms of the many-sorted partial logic. Then, in section 4, the CASL

subsorting language is presented, and in section 5, an overload resolution algo-

rithm and the possibility of re-using existing theorem provers are briey de-

scribed. Finally, in section 6 a discussion is given. A longer version of this paper

with all technical details will appear in a forthcoming report.

2 Many-sorted Partial Logic

This section de�nes the notions of signatures, models, and sentences of many-

sorted partial �rst-order logic. For a full treatment of the topic, see e.g. [CMR98].

2.1 Signatures

De�nition 2.1 A many-sorted signature � = (S;TF ;PF ;P) consists of:

2

{ a set S of sorts

{ two S

�

�S-sorted families TF = (TF

w;s

)

w2S

�

;s2S

and PF = (PF

w;s

)

w2S

�

;s2S

of total function symbols and partial function symbols, respectively, such that

TF

w;s

\ PF

w;s

= fg, for each (w; s) 2 S

�

�S (constants are treated as

functions with no arguments)

{ a family P = (P

w

)

w2S

�

of predicate symbols

For a function symbol f 2 TF

w;s

[PF

w;s

, we call (w; s) its pro�le. For predicate

symbols p 2 P

w

, we call w its pro�le.

Signature morphisms are de�ned as usual, with the speciality that a partial

function symbol may be mapped to a total function symbol (but not vice versa).

Note that function and predicate symbols may be overloaded, occurring in

more than one of the above sets. To ensure that there is no ambiguity in sen-

tences, however, symbols are always quali�ed by pro�les when used. In the CASL

language considered in section 4, such quali�cations may be omitted when these

are unambiguously determined by the context.

2.2 Sentences

Let a many-sorted signature � = (S;TF ;PF ;P) and an S-sorted family of

variables X = (X

s

)

s2S

be given.

De�nition 2.2 The sets T

�

(X)

s

of many-sorted �-terms of sort s, s 2 S, with

variables in X are the least sets satisfying the following rules:

1. x 2 T

�

(X)

s

; if x 2 X

s

2. f

(w;s)

(t

1

; : : : ; t

n

) 2 T

�

(X)

s

, if t

i

2T

�

(X)

s

i

; f 2TF

w;s

[PF

w;s

;w = s

1

: : : s

n

Note that each term has a unique sort.

A many-sorted atomic �-formula with variables in X comprises (1) applica-

tions of quali�ed predicate symbols to terms of appropriate sorts, (2) existential

equations between terms of the same sort, (3) strong equations between terms

of the same sort, and (4) assertions about de�nedness of terms.

De�nition 2.3 The set AF

�

(X) of many-sorted atomic �-formulae with vari-

ables in X is the least set satisfying the following rules:

1. p

w

(t

1

; : : : ; t

n

) 2 AF

�

(X), if t

i

2 T

�

(X)

s

i

; p 2 P

w

; w = s

1

: : : s

n

2 S

�

2. t

!

= t

0

2 AF

�

(X), if t; t

0

2 T

�

(X)

s

; s 2 S

3. t = t

0

2 AF

�

(X), if t; t

0

2 T

�

(X)

s

; s 2 S

4. @ t 2 AF

�

(X), if t 2 T

�

(X)

s

; s 2 S

De�nition 2.4 Many-sorted �-sentences are the usual closed many-sorted �rst-

order logic formulae, built using quanti�cation (over sorted variables), logical

connectives and atomic �-formulae.

3

2.3 Models

De�nition 2.5 Given a many-sorted signature � = (S;TF ;PF ;P), a many-

sorted �-model M consists of:

{ a carrier set s

M

for each sort s 2 S

{ a partial function f

M

from w

M

to s

M

for each function symbol f 2 TF

w;s

[

PF

w;s

, the function being total if f 2 TF

w;s

{ a predicate p

M

� w

M

for each predicate symbol p 2 P

w

.

Notation. We write w

M

for the Cartesian product s

M

1

� ::: � s

M

n

, when w =

s

1

:::s

n

.

De�nition 2.6 A many-sorted �-homomorphism h : M ! N consists of a

family of functions (h

s

: s

M

! s

N

)

s2S

such that

{ for all f 2 TF

w;s

[PF

w;s

and (a

1

; : : : ; a

n

) 2 w

M

with f

M

(a

1

; : : : ; a

n

)

de�ned,

h

s

(f

M

(a

1

; : : : ; a

n

)) = f

N

((h

s

1

(a

1

); : : : ; h

s

n

(a

n

))

{ for all p 2 P

w

and (a

1

; : : : ; a

n

) 2 w

M

(a

1

; : : : ; a

n

) 2 p

M

implies (h

s

1

(a

1

); : : : ; h

s

n

(a

n

)) 2 p

N

2.4 Satisfaction Relation

The satisfaction of a �-sentence by a �-modelM is de�ned as usual in terms of

the satisfaction of its constituent atomic formulae w.r.t. assignments of values to

all the variables that occur in them, the value assigned to variables of sort s being

in s

M

. Variable assignments are total, but the value of a term w.r.t. a variable

assignment may be unde�ned, due to the application of a partial function during

the evaluation of the term. Note, however, that the satisfaction of sentences is

two-valued.

The application of a predicate symbol p to a sequence of argument terms

holds in M i� the values of all the terms are de�ned and give a tuple belonging

to p

M

. A de�nedness assertion concerning a term holds i� the value of the term

is de�ned. An existential equation holds i� the values of both terms are de�ned

and identical, whereas a strong equation holds also when the values of both

terms are unde�ned; thus both notions of equation coincide for de�ned terms.

The value of an occurrence of a variable in a term is that provided by the given

variable assignment. The value of the application of a function symbol f to a

sequence of argument terms is de�ned only if the values of all the argument

terms are de�ned and give a tuple in the domain of de�nedness of f

M

, and then

it is the associated result value.

4

3 Subsorted Partial Logic

This section de�nes the notions of signatures, models, and sentences of subsorted

partial �rst-order logic, leading to an institution SubPFOL which is used in the

semantics of CASL speci�cations.

The de�nitions are based on the many-sorted partial �rst-order logic given

in section 2. Subsorted models, homomorphisms and sentences are de�ned to

be certain many-sorted models, homomorphisms and sentences. This has the

important consequence, that results like the existence of initial models carry

directly over from the many-sorted case.

3.1 Signatures

The notion of subsorted signatures extends the notion of order-sorted signatures

as given by Goguen and Meseguer [GM92], by allowing not only total function

symbols, but also partial function symbols and predicate symbols:

De�nition 3.1 A subsorted signature � = (S;TF ;PF ;P ;�

S

) consists of a

many-sorted signature (S;TF ;PF ;P) together with a reexive transitive subsort

relation �

S

on the set S of sorts.

Notation. The relation �

S

extends pointwise to sequences of sorts. We drop

the subscript S when obvious from the context.

Note that the signatures are not required to be monotonic as in [GM92]. This

decision was taken in order to allow constants to be overloaded and avoid prob-

lems with modularity. This is further discussed in section 6. However, whenever

two quali�ed symbols are in one of the overloading relations de�ned below, their

semantics are still required to be consistent, cf. the overloading axioms in sec-

tion 3.3.

De�nition 3.2 Let a subsorted signature � = (S;TF ;PF ;P ;�

S

) be given,

and let f 2 (TF

w

1

;s

1

[PF

w

1

;s

1

) \ (TF

w

2

;s

2

[PF

w

2

;s

2

) and p 2 P

w

1

\ P

w

2

.

Two quali�ed function symbols f

(w

1

;s

1

)

and f

(w

2

;s

2

)

are in overloading rela-

tion (written f

(w

1

;s

1

)

�

F

f

(w

2

;s

2

)

) i� there exists a w 2 S

�

and s 2 S such that

w �

S

w

1

; w

2

and s

1

; s

2

�

S

s.

Two quali�ed predicate symbols p

w

1

and p

w

2

are in overloading relation

(written p

w

1

�

P

p

w

2

) i� there exists a w 2 S

�

such that w �

S

w

1

; w

2

.

We say that two pro�les of a symbol are in overloading relation if the corre-

sponding quali�ed symbols are in overloading relation.

Note that two pro�les of an overloaded constant declared with two di�erent

sorts are in the overloading relation i� the two sorts have a common supersort.

De�nition 3.3 A signature morphism � : � ! �

0

is a many-sorted signature

morphism that preserves the subsort relation and the overloading relations.

For modularity aspects, it is important that signatures can be combined.

This is guaranteed by the following proposition.

5

Proposition 3.4 The category of subsorted CASL signatures and signature

morphisms is cocomplete.

A proof of this is given in [Mos97a].

De�nition 3.5 With each subsorted signature � = (S;TF ;PF ;P ;�

S

) we as-

sociate a many-sorted signature �

#

, which is the extension of the underlying

many-sorted signature (S;TF ;PF ;P) with

{ a total injection function symbol inj

(s;s

0

)

, for each pair of sorts s �

S

s

0

{ a partial projection function symbol pr

(s

0

;s)

, for each pair of sorts s �

S

s

0

{ a unary membership predicate symbol 2

s

s

0

, for each pair of sorts s �

S

s

0

We assume that the symbols used for injection, projection and membership are

not used otherwise in �.

3.2 Sentences

De�nition 3.6 Subsorted �-sentences are ordinary many-sorted�

#

-sentences.

Note that in the sentences, injections from subsorts to supersorts must be ex-

plicit. In the CASL language considered in section 4 these are left implicit and

must unambiguously be determined by the context.

Since terms are fully disambiguated, they have a unique sort. This implies

that, at this institution level, there is no need at all to require signatures to be

regular and locally �ltered. However, for the parsing of CASL terms it makes a

di�erence whether signatures satisfy these requirements or not.

3.3 Models

De�nition 3.7 Subsorted �-models are ordinary many-sorted �

#

-models sat-

isfying the following set of axioms J(�) (where the variables are all universally

quanti�ed):

inj

(s;s)

(x)

!

= x [identity]

inj

(s;s

0

)

(x)

!

= inj

(s;s

0

)

(y)) x

!

= y for s �

S

s

0

[embedding-injectivity]

inj

(s

0

;s

00

)

(inj

(s;s

0

)

(x))

!

= inj

(s;s

00

)

(x) for s �

S

s

0

�

S

s

00

[transitivity]

pr

(s

0

;s)

(inj

(s;s

0

)

(x))

!

= x for s �

S

s

0

[projection]

pr

(s

0

;s)

(x)

!

= pr

(s

0

;s)

(y)) x

!

= y for s �

S

s

0

[projection-injectivity]

2

s

s

0

(x), @ pr

(s

0

;s)

(x) for s �

S

s

0

[membership]

inj

(s

0

;s)

(f

(w

0

;s

0

)

(inj

(s

1

;s

0

1

)

(x

1

); : : : ; inj

(s

n

;s

0

n

)

(x

n

))) =

inj

(s

00

;s)

(f

(w

00

;s

00

)

(inj

(s

1

;s

00

1

)

(x

1

); : : : ; inj

(s

n

;s

00

n

)

(x

n

)))

for w = s

1

� : : :� s

n

, w

0

= s

0

1

� : : :� s

0

n

, w

00

= s

00

1

� : : :� s

00

n

,

w �

S

w

0

; w

00

; s

0

; s

00

�

S

s, f 2 (TF

w

0

;s

0

[PF

w

0

;s

0

) \ (TF

w

00

;s

00

[PF

w

00

;s

00

)

[function-overloading]

p

w

0

(inj

(s

1

;s

0

1

)

(x

1

); : : : ; inj

(s

n

;s

0

n

)

(x

n

)), p

w

00

(inj

(s

1

;s

00

1

)

(x

1

); : : : ; inj

(s

n

;s

00

n

)

(x

n

))

for w = s

1

� : : :� s

n

, w

0

= s

0

1

� : : :� s

0

n

, w

00

= s

00

1

� : : :� s

00

n

, w �

S

w

0

; w

00

,

p 2 P

w

0

\ P

w

00

[predicate-overloading]

6

De�nition 3.8 �-homomorphisms are �

#

-homomorphisms.

The following result directly follows from the corresponding result for partial

�rst-order logic (PFOL) stated in [Rei87]:

Proposition 3.9 Consider the restriction of SubPFOL to universally quan-

ti�ed positive conditional axioms. In this restriction, all theories have initial

models and along all theory morphisms there exist free extensions.

3.4 Injections Versus Inclusions

In CASL, subsorting is modeled by (implicit) injections (i.e. injective embedding

functions between the corresponding carriers), and not by set inclusions as in

usual order-sorted algebra [GM92]. This extra generality means that it is possible

to specify a sort s

1

to be a subsort of another sort s

2

without requiring that

their implementations use the same data representation (i.e. there are models

in which the carrier set of s

1

is not a subset of the carrier set of s

2

), as it

is often the case in imperative programming languages (for e�ciency reasons).

The injection functions are used to convert the data representation when passing

from a subtype to a supertype. In cases where it is desirable not to have the cost

of converting data representation, a model with subset inclusions should be used.

For locally upwards �ltered signatures, it is possible to pass from a model

with injections to an isomorphic model with true subset inclusions, cf. Goguen

and Meseguer [GM92]. We could have obtained the same result for non-�ltered

signatures, if we in De�nition 3.7 had added axioms expressing that di�erent

compositions of injections and projections to the same term should give the same

result, when well-de�ned. However, as illustrated by the following example, we

want to allow more general models for which this is not always the case.

Example 3.10 Consider the following speci�cation

sorts Digit; Byte;Nat; Character

Digit; Byte < Nat

Digit; Byte < Character

An intended model A would interpret Digit with Digit

A

= f0; :::; 9g and Byte

with Byte

A

= f0; :::; 255g, both obviously included in the natural numbers

Nat

A

= IN . Then, Character is interpreted with Character

A

= f0; :::; 255g.

Since characters are already represented by bytes, the subsort embedding of

Byte to Character is interpreted with the identity (if we had 16bit-characters,

it would be a true inclusion). However, the interpretation of the subsort embed-

ding of Digit in Character maps a digit to its ASCII code (we could also choose

some other code here).

A digit can be mapped to a byte in two ways: either inject it into Character,

and project it onto Byte, or inject it into Natural and project it onto Byte; the

results are di�erent. This is not possible in a model where subsort embeddings

are set inclusions, whichs shows that A is not isomorphic to any such model.

7

3.5 Satisfaction Relation

Since subsorted �-models and �-sentences are just certain many-sorted �

#

-

models and�

#

-sentences, the notion of satisfaction for the subsorted case follows

directly from the notion of satisfaction for the many-sorted case.

4 CASL Subsorting Language

In this section we present the CASL subsorting language. We use an ad-hoc con-

crete syntax, as the concrete syntax for CASL has not yet been decided, and we

give the semantics in terms of signatures, sentences and models of the underlying

institution of subsorted partial logic de�ned in section 3. A description of the

full CASL language is given in the design proposal [LD97].

4.1 Basic Speci�cations

A basic CASL speci�cation consists of a set of declarations and a set of axioms.

In section 4.7 some examples of CASL speci�cations are given.

A speci�cation is well-formed if the declarations (see section 4.2) determine

a subsorted signature � and a possible empty set of subsorted �-sentences E1.

Furthermore, the set of axioms (see section 4.3) must determine a set of subsorted

�-sentences E2. The semantics of the speci�cation is then the class of subsorted

�-models satisfying E1 and E2.

CASL also provides facilities for writing structured speci�cations and ar-

chitectural speci�cations, but these are not covered in this paper as they are

institution independent and hence independent of the subsorting in basic speci-

�cations.

4.2 Declarations

A CASL declaration can be

{ a declaration of a sort, s,

{ a declaration of a total function symbol, f : w ! s or f : s,

{ a declaration of a partial function symbol, f : w !

?

s or f :

?

s,

{ a declaration of a predicate symbol, p : }(w), or,

{ an assertion of a subsort relationship, s

1

< s

2

and contributes in the obvious way to the elements S, TF , PF , P and �

S

of a

subsorted signature (S, TF , PF , P , �

S

).

Furthermore, a declaration can be a predicative sort de�nition of the form:

sorts s = fx : s

0

� �[x]g

where s

0

is an existing sort and �[x] is a formula. It declares the new sort s to be

a subsort of the sort s

0

, asserting that the values of the subsort s are precisely the

projections of those values x from the supersort s

0

for which the given formula

�[x] holds. More formally, the predicative sort de�nition is a shorthand for the

following declarations and axiom:

8

sorts s; s < s

0

8x : s

0

� �[x] , x 2 s

4.3 Axioms

CASL axioms

6

are CASL formulae built from atomic CASL formulae using quan-

ti�cation (over sorted variables) and the usual logical connectives of �rst-order

logic.

An atomic CASL formula can have the following forms:

p(t

1

: : : t

n

) (application of a predicate p to terms t

1

: : : t

n

)

(p : }(w))(t

1

: : : t

n

) (application of a quali�ed predicate to terms t

1

: : : t

n

)

t

!

= t

0

(existential equation between terms t and t

0

)

t = t

0

(strong equation between terms t and t

0

)

t 2 s (the assertion that a term t is within a subsort s)

@ t (the assertion that a term t is de�ned)

A CASL term can have one of the following forms:

x (variable)

f (constant)

f(t

1

; : : : ; t

n

) (application of a function f to terms t

1

: : : t

n

)

(f : w ! s)(t

1

; : : : ; t

n

) (application of a quali�ed total function to terms)

(f : w !

?

s)(t

1

; : : : ; t

n

) (application of a quali�ed partial function to terms)

t : s (sort disambiguation: force term t to have sort s)

t # s (casting a term t to a subsort s)

Sort disambiguations and the quali�cation of function and predicate sym-

bols with their types are used to avoid unintended interpretations of overloaded

function and predicate symbols.

In section 4.4, we introduce the rules for well-sortedness of CASL formulae.

These rules allow implicit embeddings in term formation (i.e. terms of a subsort

can be used whenever terms of a supersort are expected). Well-sorted CASL

formulae can be parsed/expanded to subsorted sentences of the underlying insti-

tution SubPFOL of subsorted partial logic by qualifying function and predicate

symbols with their pro�les, inserting implicit injection functions, replacing casts

with corresponding applications of projection functions and removing sort dis-

ambiguations. Due to the overloading of function and predicate symbols and

implicit injections, it turns out that a CASL formula may have several possi-

ble expansions. The expansion relation is de�ned in section 4.5. Finally, in sec-

tion 4.6, we de�ne a CASL formula to be well-formed, if it is well-sorted and can

be su�ciently disambiguated (i.e. all its expansions have the same semantics).

A well-formed CASL formula then determines all the subsorted sentences it

can be expanded into.

6

In the full CASL language, it is also possible to state sort generation constraints.

9

4.4 Well-sorted Terms and Formulae

The well-sortedness of a CASL formula is de�ned wrt. a subsorted signature

� = (S;TF ;PF ;P ;�

S

) (determined from the declarations in the speci�cation

in which the formula occur).

De�nition 4.1 A CASL formula is well-sorted wrt. �, if each of its constituent

quanti�cations uses S-sorted variables, and each of its constituent atomic for-

mulae ' is well-sorted wrt. � and X , where X is an S-sorted family of variables

determined in the obvious way from those quanti�cations which enclose '.

Before de�ning which atomic formulae are well-sorted, we �rst de�ne the sets

of well-sorted terms.

De�nition 4.2 The set W

�

(X)

s

of well-sorted CASL terms of sort s wrt. �

and X is the least set satisfying the following rules:

1. x 2 W

�

(X)

s

, if x 2 X

s

2. f 2W

�

(X)

s

; if f 2 TF

w;s

[PF

w;s

, w = �

3. f(t

1

; : : : ; t

n

) 2W

�

(X)

s

; if t

i

2 W

�

(X)

s

i

,

and f 2 TF

w;s

[PF

w;s

, w = s

1

: : : s

n

4. (f : w ! s)(t

1

; : : : ; t

n

) 2W

�

(X)

s

, if t

i

2W

�

(X)

s

i

,f 2TF

w;s

,w = s

1

: : : s

n

5. (f : w !

?

s)(t

1

; : : : ; t

n

) 2W

�

(X)

s

, if t

i

2W

�

(X)

s

i

,f 2PF

w;s

,w = s

1

: : : s

n

6. t : s 2W

�

(X)

s

, if t 2W

�

(X)

s

7. t # s

0

2W

�

(X)

s

0

, if t 2W

�

(X)

s

and s

0

�

S

s

8. t 2W

�

(X)

s

0

, if t 2W

�

(X)

s

and s �

S

s

0

The set of well-sorted CASL terms, wrt. � and X is the union of the sorted sets

de�ned above: W

�

(X) = [

s2S

W

�

(X)

s

.

Note that, due to function overloading and implicit injections, a CASL term may

have several sorts.

De�nition 4.3 The set A

�

(X) of well-sorted atomic CASL formulae wrt. �

and X is the least set satisfying the following rules:

1. p(t

1

; : : : ; t

n

) 2 A

�

(X), if t

i

2 W

�

(X)

s

i

; p 2 P

s

1

:::s

n

2. (p : }(w))(t

1

; : : : ; t

n

) 2 A

�

(X), if t

i

2 W

�

(X)

s

i

; p 2 P

w

; w = s

1

: : : s

n

3. t

!

= t

0

2 A

�

(X), if t; t

0

2W

�

(X)

s

4. t = t

0

2 A

�

(X), if t; t

0

2W

�

(X)

s

5. @ t 2 A

�

(X), if t 2W

�

(X)

6. t 2 s 2 A

�

(X), if t 2W

�

(X)

s

0

; s 2 S; s �

S

s

0

4.5 Expansion of Terms and Formulae

In this section we de�ne the expansion relation, ;, between well-sorted terms

or formulae of the CASL language and terms or formulae of the underlying

institution SubPFOL of subsorted partial logic.

The expansion relation for formulae and terms is de�ned wrt. a subsorted

signature � = (S;TF ;PF ;P ;�

S

), and for atomic formulae and terms also wrt.

an S-sorted set of variables X .

10

De�nition 4.4 The expansion relation, ; � W

�

(X) � T

�

#
(X), from well-

sorted CASL terms into subsorted�-terms is inductively de�ned by the following

rules in which t;

s

t

0

is a shorthand for t; t

0

^ t

0

2 T

�

#(X)

s

:

1.

x; x

x 2 X 2.

f ; f

(w;s)

()

f 2 TF

w;s

[PF

w;s

;w = �

3.

t

i

;

s

i

t

0

i

f(t

1

; : : : ; t

n

); f

(w;s)

(t

0

1

; : : : ; t

0

n

)

f 2 TF

w;s

[PF

w;s

;w = s

1

: : : s

n

4.

t

i

;

s

i

t

0

i

(f : w ! s)(t

1

; : : : ; t

n

); f

(w;s)

(t

0

1

; : : : ; t

0

n

)

f 2 TF

w;s

;w = s

1

: : : s

n

5.

t

i

;

s

i

t

0

i

(f : w !

?

s)(t

1

; : : : ; t

n

); f

(w;s)

(t

0

1

; : : : ; t

0

n

)

f 2 PF

w;s

;w = s

1

: : : s

n

6.

t;

s

t

0

t : s; t

0

7.

t;

s

0

t

0

t # s; pr

(s

0

;s)

(t

0

)

s �

S

s

0

8.

t;

s

t

0

t; inj

(s;s

0

)

(t

0

)

s �

S

s

0

De�nition 4.5 The expansion relation, ; � A

�

(X) � AF

�

(X), from well-

sorted atomic CASL formulae into atomic subsorted �-formulae is inductively

de�ned by the following rules:

1.

t

i

;

s

i

t

0

i

p(t

1

; : : : ; t

n

); p

w

(t

0

1

; : : : ; t

0

n

)

p 2 P

w

; w = s

1

: : : s

n

2.

t

i

;

s

i

t

0

i

(p : }(w))(t

1

; : : : ; t

n

); p

w

(t

0

1

; : : : ; t

0

n

)

p 2 P

w

; w = s

1

: : : s

n

3.

t

1

;

s

t

0

1

^ t

2

;

s

t

0

2

t

1

!

= t

2

; t

0

1

!

= t

0

2

4.

t

1

;

s

t

0

1

^ t

2

;

s

t

0

2

t

1

= t

2

; t

0

1

= t

0

2

5.

t;

s

t

0

@ t; @ t

0

6.

t;

s

0

t

0

t 2 s;2

s

s

0

(t

0

)

s �

S

s

0

Well-sorted CASL formulae expand into subsorted �-formulae in the obvious

way by expanding their constituent atomic CASL formulae.

4.6 Equivalent Expansions and Well-formedness of Formulae

In this section, �rst we de�ne an equivalence relation on subsorted formulae, and

then de�ne what it means for a CASL formula to be well-formed.

De�nition 4.6 Two subsorted �-formulae and

0

are equivalent if the for-

mulae are identical up to replacement of equivalent atomic formulae.

11

De�nition 4.7 Two subsorted atomic�-formulae and

0

are equivalent (writ-

ten �

0

), if they are in the least equivalence � on AF

�

(X) generated by the

following rules:

1. �

0

, if and

0

are identical up to replacement of equivalent terms

2. p

w

0

(inj

(s

1

;s

0

1

)

(t

1

); : : : ; inj

(s

n

;s

0

n

)

(t

n

))� p

w

00

(inj

(s

1

;s

00

1

)

(t

1

); : : : ; inj

(s

n

;s

00

n

)

(t

n

))

for w = s

1

: : : s

n

; w

0

= s

0

1

: : : s

0

n

; w

00

= s

00

1

: : : s

00

n

; w �

S

w

0

; w

00

, p 2 P

w

0

\ P

w

00

3. inj

(s;s

0

)

(t

1

) = inj

(s;s

0

)

(t

2

) � t

1

= t

2

for s �

S

s

0

4. inj

(s;s

0

)

(t

1

)

!

= inj

(s;s

0

)

(t

2

) � t

1

!

= t

2

for s �

S

s

0

5. @ inj

(s;s

0

)

(t) � @ inj

(s;s

00

)

(t) for s �

S

s

0

; s

00

6.

pr

(s

0

;s)

(t

0

) � pr

(s

00

;s)

(t

00

)

2

s

s

0

(t

0

) �2

s

s

00

(t

00

)

s �

S

s

0

; s

00

De�nition 4.8 Two subsorted �-terms t and t

0

are equivalent (written t � t

0

),

if they are in the least congruence � (wrt. the function symbols in �

#

) on

T

�

#(X) generated by the following axioms:

1. inj

(s;s)

(t) � t

2. inj

(s

0

;s

00

)

(inj

(s;s

0

)

(t)) � inj

(s;s

00

)

(t) for s �

S

s

0

�

S

s

00

3. pr

(s

0

;s)

(inj

(s;s

0

)

(t)) � t for s �

S

s

0

4. inj

(s

0

;s)

(f

(w

0

;s

0

)

(inj

(s

1

;s

0

1

)

(t

1

); : : : ; inj

(s

n

;s

0

n

)

(t

n

))) �

inj

(s

00

;s)

(f

(w

00

;s

00

)

(inj

(s

1

;s

00

1

)

(t

1

); : : : ; inj

(s

n

;s

00

n

)

(t

n

)))

for w = s

1

: : : s

n

; w

0

= s

0

1

: : : s

0

n

; w

00

= s

00

1

: : : s

00

n

; w �

S

w

0

; w

00

; s

0

; s

00

�

S

s and

f 2 (TF

w

0

;s

0

[PF

w

0

;s

0

) \ (TF

w

00

;s

00

[PF

w

00

;s

00

)

The following theorem states that two equivalent expansions are satis�ed by the

same models.

Theorem 4.9 Let

1

and

2

be subsorted �-sentences, which are expansions

of a CASL formula ', and let m be a subsorted �-model. If

1

and

2

are

equivalent, then m satis�es

1

i� m satis�es

2

.

De�nition 4.10 A CASL formula is well-formed wrt. � i� it is well-sorted wrt.

� and all its expansions are equivalent.

From de�nition 4.10 and theorem 4.9 it follows that all the expansions of a well-

formed CASL formula are satis�ed by the same models. Therefore, we can say

that a well-formed formula determines any of its expansions.

4.7 Examples of CASL Speci�cations

Example 1

This example demonstrates the interplay between subsorting and partiality:

12

NAT =

sorts

nat; pos

pos < nat

even = fn : nat � iseven(n)g

ops

0 : nat

succ : nat! pos

pred : nat!

?

nat

pred : pos! nat

iseven : }(nat)

8n : nat �

: @ pred(0) ^

pred(succ(n)) = n ^

iseven(0) ^

(iseven(succ(n)), : iseven(n))

Now the formula @ pred(pred(succ(succ(0))) can be parsed with the �rst

pred being partial, while the second pred can have any of the two pro�les. But

since the two pro�les are in the overloading relation, this ambiguity is harmless.

If we omit the partial pred from the signature, the formula becomes ill-formed,

since no retracts are inserted automatically. We then have to insert an explicit

projection:

@ pred(pred(succ(succ(0))) # pos)

to make the formula well-formed.

Example 2

This example (inspired by [GD94]) shows that in CASL it is possible to have

multiple representations (for example, points are represented by both cartesian

and polar coordinates), to switch between representations without invoking ex-

plicit conversion functions and even to have overloaded functions on di�erent

representations.

.

.

.

sorts

Point; Cart; Polar

Cart; Polar < Point

ops

atan : F loat! Angle

origin : Cart

coord : F loat� F loat! Cart

origin : Polar

coord : PosF loat�Angle! Polar

.

.

.

8x : PosF loat; y : F loat � coord(x; y) = coord(sqrt(x

2

+ y

2

); atan(y=x))

13

Above, it is assumed that PosF loat is a subsort of F loat, and, sqrt,

2

and

+ have been declared with su�cient types such that sqrt(x

2

+ y

2

) has sort

PosF loat. Furthermore, it is assumed that Angle and F loat do not have a

common subsort. This has the e�ect that the two pro�les of coord are not in the

overloading relation and thus can coexist as di�erent functions. Otherwise, one

would have to use two di�erent names, say coordPolar and coordCart.

5 Tools

The design of CASL has been �nished only recently, so it is clear that tools have

to be developed yet. In this section, we briey describe an overload resolution

algorithm and the possibility to re-use existing theorem provers. Both together

comprise a minimal set of tools which make the \in-the-small" part of CASL

amenable to machine support. This will also be the basis for a shallow encod-

ing of the \in-the-small" part of CASL into the HOL/Isabelle system, cf. the

embedding of Z into HOL [KSW96].

5.1 Overload Resolution

Overload resolution for an arbitrary closed CASL formula proceeds inductively

over the structure of the formula, while an environment with the sorts of the

variables in the current scope is carried around. Thus it su�ces to design an

overload resolution algorithm for atomic formulae, which receives an atomic

formula and an environment as input and which returns either an expansion of

the atomic formula or the message \not resolvable".

There is a simple, naive overload resolution algorithm: just collect the set of

all expansions of a given atomic formula, and check that they are all equivalent.

But this bears a lot of redundancy. The \least sort parse" algorithm for regular

signatures described in [GM92], p. 252, just picks one expansion (the one with

least pro�le) and forgets about all the other ones. Of course, regularity is de�ned

in a such way precisely that this algorithm works. Since CASL does not impose

any condition on signatures, we cannot expect to get such a simple algorithm

here. (But we can expect that our algorithm behaves as simple as the least sort

parse if the signature happens to be regular and locally �ltered.) Instead, we

use an algorithm which inductively computes the set of minimal expansions of

a formula, and then checks that this set is non-empty and all of its elements

are equivalent

7

. If so, the algorithm returns an arbitrary element of the set,

otherwise it returns \not resolvable". A detailed description of this algorithm

can be found in [MKKB97].

5.2 Theorem proving

The traditional way to proceed would be to build a calculus and theorem prover

for SubPFOL, the underlying institution of CASL, from scratch. A calculus for

7

In order to make the equivalence check e�cient, the expansions are divided into

equivalence classes in each inductive step.

14

SubPFOL can be found in [CMR97]. But this approach has the disadvantages

that much work has to be redone and that for PFOL (partial �rst-order logic

with total assignments) there can exist only calculi (like that in [Bur82]) that

do not keep the simple substitution rule of FOL (total �rst-order logic).

It is already clear now that good theorem provers for SubPFOL are avail-

able. This is because it is possible to translate a SubPFOL-theory to a �rst-order

(FOL) theory and then just use any theorem proving tool for �rst-order logic.

The translation is done in two steps: the �rst step is to translate subsorted par-

tial �rst-order logic to partial �rst-order logic, as was indicated in section 3. The

second step is the translation of partial �rst-order logic to total �rst-order logic,

as described in [CMR98]. Both translation steps are particular cases of the bor-

rowing technique proposed in [CM97]. The details are worked out in [MKKB97].

Note that the translation to FOL allows one to use (among others) the

usual substitution- and resolution-based theorem provers for FOL. In general,

such theorem provers can be used directly only for partial logics with partial

variable valuations, see also [Sco79].

6 Discussion

In this paper we have presented the subsorting approach of the CASL language.

The main novelty is that there are no requirements like monotonicity, regularity

or local �ltration imposed on subsorted signatures.

The main argument against these requirements is that they give complica-

tions with modularity. In order to be able to combine speci�cations and to use

the pushout-approach to parameterization, the signature category has to be co-

complete. To guarantee cocompleteness of the signature category, one either has

to restrict the category of signatures in a rather complicated way [HN96] or to

confuse the user with unexpected identi�cations of sorts and extra sorts in the

colimit [Mos96, Mos97a].

A second argument against imposing monotonicity (or regularity, which en-

tails monotonicity) is that monotonicity rules out overloading of constants, which

we consider very useful. Many many-sorted frameworks with overloading already

allow them, and these frameworks should be easily embeddable into CASL.

It turns out that the notions (of models) and results (about initiality and

freeness) remain as simple as in the many-sorted case (and can even be di-

rectly carried over!). The only price for dropping the requirements is a more

complicated de�nition of well-formed atomic formulae than in the regular case.

However, our overload resolution algorithm sketched in section 5 shows that this

does not add too much complexity, and in the case that a signature happens to

be regular and locally �ltered, even the least sort parse algorithm is simulated.

The idea to drop monotonicity and regularity is not new, it stems from

Goguen and Diaconescu [GD94]. They point out that the result about existence

of initial models also holds for non-regular signatures. However, they still assume

local �ltration, and they do not propose how overload resolution should be done.

15

Local �ltration (in combination with regularity) is required by Goguen and

Meseguer [GM92] in order to ensure that equational satisfaction is closed under

isomorphism. This is necessary, because they de�ne equations t

1

= t

2

to be well-

formed if just the least sorts of t

1

and t

2

are in the same connected component.

(Note, that this means that the least sorts are not required to have a common

upper bound). This liberal de�nition has the advantage that well-formedness of

t

1

= t

2

and t

2

= t

3

ensures well-formedness of t

1

= t

3

.

The idea to drop local �ltration has been proposed by Haxthausen [Hax97] for

a subsorting approach with implicit, possibly non-injective coercions. However,

regularity was still assumed. In order to ensure that equational satisfaction was

still closed under isomorphism, it was proposed to use explicitly sorted equations

t

1

=

s

t

2

, which were well-formed only if the least sorts of the terms had the sort

s as a common upper bound. The price for this was that transitivity of well-

formedness of equations only holds for equations over the same sort.

The same idea is adopted in CASL. However, here it was possible to leave

the sort implicit. The following example illustrates how transitivity of well-

formedness of equations in CASL only holds for equations over the same sort:

sorts s; t; u; t < s; t < u

ops a : s; b : t; c : u

a = b; b = c

a = b is well-formed with sort s, b = c is well-formed with sort u, but a = c is

ill-formed. We can repair this by considering a # t = c # t, which is well-formed,

but has a semantics di�erent from a = c in [GM92]. Note that the problem of

satisfaction not being closed under model isomorphism does not arise in CASL.

The overloading relations lead to identi�cation of related functions and pred-

icates in the semantics. This implements the \same name { same meaning" prin-

ciple that is pervasive in the CASL language (cf. e.g. unions of speci�cations).

We have deliberately excluded strong overloading in the sense of [GD94]. An

alternative notion of signature would provide the overloading relations explicitly

instead of deriving them from the other information in the signature, thus allow-

ing strong overloading. In [GD94] it is argued that this may be used, for example,

to model overwriting in the object oriented paradigm. We are not convinced that

this su�ces really to model object orientation, so both object orientation and

strong overloading are left for extensions of CASL.

Acknowledgements The authors would like to thank all the participants of

CoFI, and in particular Peter Mosses and Olaf Owe, for their contributions of

ideas for the subsorting approach.

References

[Bur82] P. Burmeister. Partial algebras | survey of a unifying approach towards a

two-valued model theory for partial algebras. Algebra Universalis, 15:306{

358, 1982.

16

[CM97] M. Cerioli and J. Meseguer. May I borrow your logic? (transporting logical

structures along maps). Theoretical Computer Science, 173:311{347, 1997.

[CMR98] M. Cerioli, T. Mossakowski, and H. Reichel. From total equational to

partial �rst order logic. In E. Astesiano, H.-J. Kreowski, and B. Krieg-

Br�uckner, editors, Algebraic Foundations of Systems Speci�cations

8

. To ap-

pear, 1998.

[GD94] Joseph Goguen and R�azvan Diaconescu. An Oxford survey of order

sorted algebra. Mathematical Structures in Computer Science, 4(3):363{

392, September 1994.

[GM86] J. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules

for logic programming. In Douglas DeGroot and Gary Lindstrom, editors,

Functional and Logic Programming, pages 295{363. Prentice-Hall, 1986.

[GM92] J. A. Goguen and J. Meseguer. Order-sorted algebra I: equational deduc-

tion for multiple inheritance, overloading, exceptions and partial operations.

Theoretical Computer Science, 105:217{273, 1992.

[Hax97] A.E. Haxthausen. Order-sorted algebraic speci�cations with higher-order

functions. Theoretical Computer Science, 183:157{185, 1997.

[HN96] A.E. Haxthausen and F. Nickl. Pushouts of order-sorted algebraic speci-

�cations. In Proceedings of AMAST'96, volume 1101 of Lecture Notes in

Computer Science, pages 132{147. Springer-Verlag, 1996.

[KSW96] Kolyang, T. Santen, and B. Wol�. A structure preserving encoding of Z in

Isabelle/HOL. In Proc. 1996 International Conference on Theorem Proving

in Higher Order Logic (Turku), volume 1125 of Lecture Notes in Computer

Science, pages 283{298. Springer-Verlag, 1996.

[LD97] The CoFI Task Group on Language Design. CASL { the CoFI

Algebraic Speci�cation Language { Design Proposal

9

. 1997.

[MKKB97] T. Mossakowski, Kolyang, and B. Krieg-Br�uckner. Static semantic analy-

sis of Casl. Talk at the 12th Workshop on Algebraic Development Tech-

niques, Tarquinia. Paper has been submitted, 1997.

[Mos96] T. Mossakowski. Representations, hierarchies and graphs of institutions.

PhD thesis, Bremen University, 1996.

[Mos97a] T. Mossakowski. Colimits of order-sorted speci�cations revisited. Talk at

the 12thWorkshop on Algebraic Development Techniques, Tarquinia. Paper

has been submitted, 1997.

[Mos97b] P. Mosses. CoFI: The common framework initiative for algebraic speci-

�cation and development. In M. Bidoit and M. Dauchet, editors, TAP-

SOFT'97, volume 1214 of Lecture Notes in Computer Science, pages 115{

137. Springer-Verlag, 1997.

[Rei87] H. Reichel. Initial Computability, Algebraic Speci�cations and Partial Al-

gebras. Oxford Science Publications, 1987.

[Sco79] D. S. Scott. Identity and existence in intuitionistic logic. In M.P. Fourman,

C.J. Mulvey, and D.S. Scott, editors, Application of Sheaves, volume 753 of

Lecture Notes in Mathematics, pages 660{696. Springer-Verlag, 1979.

This article was processed using the L

A

T

E

X macro package with LLNCS style

8

Available at

http://www.informatik.uni-bremen.de/�kreo/i�p-WG1.3/i�p chapters/chapters.html

9

Available at http://www.brics.dk/Projects/CoFI/CASL/Documents/Proposal

17

