
Channel Rei�cation: a reective approach to

fault-tolerant software development

M. Ancona W. Cazzola G. Dodero V. Gianuzzi

DISI-University of Genoa, Via Dodecaneso 35, 16146 Genova, Italy

E-mail: fanconajcazzolajdoderojgianuzzig@disi.unige.it

October 9, 1995

Abstract

Reective systems can be used to ease the implemen-

tation of fault tolerance mechanisms in distributed ap-

plications as show in [Anc95, Fab94]. In this paper

we introduce a new model for reective computations,

and we show how it can be used for building up fault

tolerant applications.

Keyword: Object-Orientation, Reection and Fault Tol-

erance.

1 Introduction and Background

1.1 Fault Tolerance

Software mechanisms used to support fault tolerant

applications include checkpointing facilities and repli-

cated servers, for a survey see [Anc90], such fault toler-

ant behaviors can be implemented either by error pro-

cessing protocols in the underlying runtime systems, or

using pre-de�ned library functions and primitives, or

using object-oriented methodologies, so making non-

functional

1

characteristics inheritable. All these ap-

proaches have advantages and drawbacks: if the error

processing mechanisms are provided by the underlying

system, then transparency and separation of concerns

2

can be achieved, but this lacks of exibility. If fault

tolerance behavior is supported by prede�ned libraries

then programmers can write their own error process-

ing mechanisms but transparency and separation of

1

The non-functional characteristics are the features not

needed to solve the problems but used for adding properties like

fault tolerance, to the applications

2

By separation of concerns, also called application trans-

parency or reection transparency, we mean separation of en-

tities that perform application tasks from entities performing

checkpoints and error recovery tasks.

concerns cannot be achieved. In object oriented sys-

tems, when using inheritance separation of concerns is

achieved but transparency is not totally covered, be-

cause some programming conventions are required.

1.2 Reection

Computational reection is de�ned as the activity per-

formed by an agent when doing computations about

its own computation [Mae87]. Thus, a reective sys-

tem incorporates data structures representing itself in

order to support actions on itself. A reective object-

oriented system may:

� monitor the behavior of its components and com-

putations;

� dynamically acquire methods from other objects;

� make additionjdeletion or changes to the set of its

own methods.

In a reective system there is a reective tower of com-

putational domains D

i

. A reective architecture thus

de�nes a layered system, where the base level repre-

sents the application domain, and the other levels, the

meta levels, represent the system domain.

Reection makes it possible to open up a system imple-

mentation without revealing unnecessary implementa-

tion details, thus appearing to be an adequate mean for

adding properties to a system. The use of meta level

programming permits transparent separation of func-

tional components from non-functional components in

a system. Three basic approaches to computational re-

ection in class based languages have been pointed out

in [Fer89, Mae87]:

� The metaclass model, where the class of an object

plays the role of the metaobject, controlling the

1

execution of all its instance objects. This approach

is considered \the canonical one" for its structural

computational model, but it lacks of exibility, in

that all objects in a given class are controlled by

the same metaclass.

� The metaobject model, where each object may

be controlled by a corresponding metaobject.

This approach is more exible since it specializes

metaobject behavior in accordance with the indi-

vidual object, thus providing good encapsulation.

� The metacommunicationmodel, which is based on

the rei�cation of messages sent to objects running

at the base level. Instead of sending a message M

to object O, M is rei�ed into an object M

O

and the

special message \handle" is sent to it. This model

is the most exible one, due to its �ner granular-

ity of reection with respect to the other models.

On the other hand, it cannot preserve information

between meta computations (called lack of con-

tinuity), and causes an extremely large number

of object creations (an object is created for each

method call).

Poor exibility and lack of continuity respectively

make the metaclass model and the metacommunication

model not well suited for building up fault tolerant ap-

plications. In the following a new model called channel

rei�cation is proposed, and an example of a fault toler-

ant application built with the metaobject model, and

with the channel rei�cation model, is shown.

2 Channel Rei�cation Model

This model extends the meta-communication approach

with the aim of solving some of its drawbacks, while

keeping its advantages. Channel rei�cation is based

on the following idea: a method call is considered as

a message sent through a logical channel established

between an object (or a group of objects

3

) requiring a

service, and an object (or a group of objects), provid-

ing such service (both objects are involved in the call,

in a clientjserver relationship as in �gure 1). Then a

logical channel is rei�ed into an object called channel.

A channel is characterized by the objectsjgroups it con-

nects and by the kind of the computation performed.

For kind of a channel we mean the reective behavior

provided by the channel. In a typed object oriented

3

An object group is an abstraction for a set of objects per-

forming collective jobs, like a distributed execution of requests

or management of replicated data [Yon87]

Receiver

Class

Reificated

Sender

Class

Sender

Channel

Receiver

Channel

Class

Message

Instance of

Checks

Instance of

Instance of

Checks

 in

Figure 1: Channel Rei�cation Model Scheme

language the kind is also the type of the channel class.

The kind is used to distinguish the reective activity

to be performed.

The lack of continuity of the metacommunication

model is eliminated by keeping channels after com-

pletion of each meta computation. Such a channel is

reused when a meta computation of the same kind is

performed. In this way, objects operating at meta level

are created only once (when they are activated for the

�rst time), and reused until required.

The channel is persistent i.e. it continues to exist after

the method activation that originated it.

The features of the model are:

? Finer granularity than other reective approaches.

? Continuity of information between meta com-

putations. As we will show channel rei�cation

model is well suited for supporting fault toler-

ant applications where maintaining all links to

replicasjversions is fundamental.

? Possibility to connect more channels to the same

object.

? Di�erent method calls can have di�erent channels

handling them, thus it is easy to specialize the

reective computations for each method.

? Possibility to structure channels in an inheritance

hierarchy. In fact, a channel is an object, i.e. an

instance of a class that is can be structured in an

inheritance hierarchy.

Applications of this model, as fault tolerance, are in

distributed environments. In this case, an e�cient

2

channel implementation is mandatory. In order to im-

plement a channel linking two objects running on dif-

ferent sites, we create a meta object at each site, called

stub, which is a representative of the channel: a pair

of stubs implement a channel connecting two objects,

residing on di�erent sites. For groups, the channel con-

nects the group coordinators at meta-level.

With the stubsjchannel concept, distributed objects

are low level components accessible to remote clients

by means of channel supervision. Namely, a stub en-

capsulates all low level encodingjdecoding between dif-

ferent processors and environments, besides that each

stub takes care of performing its own meta computa-

tion.

For more details see [Caz95].

In the rest of this paper we will show how the reective

paradigm can be merged with fault tolerance. This is

done by comparing di�erent approaches to error recov-

ery, developed using two reective models: the metaob-

ject model and the channel rei�cation model.

The implementation requires that a method call is

trapped and handled by the channel operating at meta

level. We assume that method calls are implemented

by send, which transfers control to the meta level and

returns at the base level after execution of the meta

computation (the shift up). The opposite change of

layer (shift down), is made by apply. Meta computa-

tion is performed by handle.

This message passing mechanism is a transparent in-

terface between non functional characteristics (meta

level) and functional ones (base level).

In such a way fault tolerance can be added to each crit-

ical object organizing it within the meta level, without

interfering with the structure of objects belonging to

the application domain.

3 Passive Replication:

An Example of Reective Sys-

tem Fault Tolerance

Passive replication is based on replication of critical ob-

jects building up the application. Only one of the repli-

cas (the primary replica) processes input messages and

delivers output messages (in the absence of failures),

while the remaining replicas (the backup replicas) only

update their internal status when a checkpoint of the

primary replica is performed.

In the �rst example, we assume the application to be

composed by a client, a primary server and a single

backup replica server. Client requests are processed

 Group

Meta-Object Model

Server

Level

Base

Meta

Level

Primary

Refplica

MetaObject

Replica

MetaObject

MetaObject

Figure 2: Metaobject Passive Replication

by the primary server, and upon completion of status

update operation, the server sends its new status to

the backup replica. If the primary server crashes, the

backup replica may provide continuous service to the

client, and a new backup replica is created.

3.1 Passive Replication using the

Metaobject Model

The reective tower can be organized as in [Anc95],

where a recovery level monitors the execution of the

application programs and implements the recovery al-

gorithms, accessing system primitives for fault toler-

ance support. The application level is only required to

specify the fault tolerance technique to be used, to in-

dicate the critical regions, and to supply the redundant

code. The structure, of this model is shown in �gure

2):

� At the base level there are the client, the primary

and replicated server. These entities ful�ll their

own tasks without taking care of fault tolerance

mechanisms.

� At the meta level there is a meta object (actually

group) that manages all fault tolerant aspects of

the application (i.e. replica creation, updating and

recovery from failures).

The primary server is the only object processing in-

put data, and its method calls are achieved by send.

Then, the control passes to the metaobject, which han-

dles the method call by apply execution. After the call

has been serviced, if the object status is changed, the

metaobject updates the status of the replica. If the

primary object crashes, the metaobject authorizes the

3

replica to become the new primary server and creates

a new replica.

To be able to overcome a metaobject failure, we

should introduce an additional meta level with a meta-

metaobject in charge of fault tolerance with respect

to metaobjects of the underlying level. To avoid an

in�nite regression of metalevelsjmetaobjects, we close

the reective tower at meta level, by implementing

a metaobject group that implements a fault tolerant

metaobject.

3.2 Passive Replication using the

Channel Rei�cation Model

The metaobject model associates a fault tolerant

scheme to application objects. On the other hand,

channel rei�cation provides an abstraction of object

communication, encapsulating all fault tolerant opera-

tions.

In a distributed environment, objects can interact with

di�erent levels of fault criticality, as for example:

1
\Normal" interaction between a client and a

server. If the server fails, an error ag is returned.

2
Interaction of a client object with a server group,

composed by a set of server replicas. (see example

in section 3.1).

3 Interaction between a client group, composed by

a set of client replicas, and a server group.

Channel rei�cation easily supports all the above cases:

case 1 by means of a \normal channel" which sim-

ply provides an interface between the client and the

primary server. Case
2

by means of an \updating

channel" operating among clients, primary and replica

servers as shown in �gure 3 (for additional details

see section 3.3 below). Finally, case
3

by means of

a transaction-like interaction among all participants.

Thus we achieve the separation of concerns.

This is possible since in the channel rei�cation model

each object can be connected at meta-level to more

than one object. In the metaobject model, on the con-

trary, each object is connected with only one meta ob-

ject, and all object interactions mechanisms have to be

included in such a metaobject, increasing its complex-

ity and reducing its exibility.

Channel rei�cation is better suited to fault detection

and recovery than other models for reection. Recov-

ery from site crashes is supported by channel stubs con-

necting the client to the server. When one site crashes

the stub on the other site establishes a temporary con-

nection with a replica of the failed object. A replica

Level

Normal

Channel

Updating

Channel

Base

Channel

Channel Reification Model

Meta

Level

Primary
Server

Replica

Logic

Figure 3: Channel Rei�cation Passive Replication

of the failed stub is then rei�ed on the corresponding

site, and a new channel connecting the replica with

the non-failed stub is established. Finally execution is

restarted from the last stable state.

3.3 Implementing Di�erent Kinds of

Channels

Assuming that we wish to implement cases 1 and 2

of the previous section, we will show in more details

how two kinds of channel are implementable.

Assume that we have an application consisting of two

objects A and B, respectively at site � and �. Object

B is critical, so we keep its replica B

0

at site . B has

two methods b and c; method b modi�es the status

of B while c does not. Changes performed by b must

be applied also to B

0

. In channel rei�cation execution

of these methods is handled by two channels of di�er-

ent kind, an updating channel for b that replicates all

changes to replicaB

0

, and a normal channel for c which

does not perform modi�cations. Both channels show

a common behavior consisting of failure detection and

recovery.

�gure 4 shows how a request B.b from A is handled:

1
At base level A asks to B to execute b.

2
Request at point

1
is trapped by the channel stub

at the meta level.

3
The stub communicates to the other stub, data

and operation relative to the trapped call.

4 The second stub activates method b, by executing

meta method \apply".

4

Updating Channel

1

Logical

6

Updating Channel

α

βγ

A B

B’

B.b

10

9

11

8

12

7

13
2

4 5

3

Figure 4: UpDating Channel Approach

5
At the end of the execution of b, \apply" returns

the results of the execution of B.b to the stub.

6
The stub forwards data computed in step

5
to the

other stub.

7
Since this logical channel is an updating one, the

stub requires to update the status of B

0

.

8 The request (performed in 7) is trapped by the

stub of the meta channel connecting the channel

with the replica B

0

.

9
The stub communicates to the other stub the data

and status of the trapped call.

10 The stub updates the status of the replica B

0

(structural reection possibilities).

11 After the update, a commit message is passed to

the other stub.

12
The stub passes the commit message to the client.

13
The client stub, returns (to A) the result of acti-

vation of B.b.

Figure 5 represents how a request from A of B.c is

handled.

1
-

6
As in the example of the updating channel (�gure

4).

7
Method c does not perform status changes, then

the status of B

0

has not to be updated: the chan-

nel used is of \normal" kind and the stub returns

to A the results of B.c.

Normal Channel

Normal Channel

1

B.c

α

A B

B’

γ β

Logical

2
4 57

3

6

Figure 5: Normal Channel Approach

Now let us assume that site � crashes. In both cases

(i.e. updating or normal channel use), a fault detection

and recovery action must be performed. Such behav-

ior is the same for both channels (it could be inherited

from some common superclass in the channel hierar-

chy).

The non-failed stub at � detects the failure of the stub

at site �.

After fault detection, the stub at � authorizes the

replica B

0

to become the primary server. A new replica

B

00

is created and execution is restarted.

>From now on existing channels are senseless, because

they were established between entities that do not exist

any more. So these channels are destroyed and replaced

by other channels with the same behavior, which con-

nect the new object to A.

Figure 6 shows how a request B.c from A is handled,

after the original object B has failed.

1
At base level, A asks a service to B.

2
Request B.c is trapped by the channel stub at

meta level (the one shown shaded in �gure 6).

3 The shaded stub tries to communicate to the other

stub; detecting its down status.

4
The shaded stub promotes the secondary replica

B

0

to become the primary one.

5 The shaded stub creates another secondary replica

B

00

.

6
A new \normal" channel is established between

A and B

0

that starts the computation of c, the

shaded stub provides to it information needed for

completing the execution of c.

5

B

α

Normal Channel

A

B’’

B.c

β

ε

B’

γ

1

2

3

4

5

6 7
8

9

12
10

11

Logical

Figure 6: Handling � crash

7
The shaded stub is destroyed.

8
-
12

As in actions
3
-

7
of �gure 5.

A request of B.b would be treated in a similar way.

4 Conclusion and Future Work

In this paper, a new reective model, channel rei�ca-

tion, has been introduced and examples have been pro-

vided, which should highlight the potentiality of this

model in fault tolerant systems development. Channels

are rei�cations of messages to be exchanged between

two objects, which can survive and be reused by subse-

quent messages. The reective behavior is identi�ed by

the kind of the channel: examples have illustrated how

di�erent requirements for fault tolerance are mapped to

channels of di�erent kind. Channel rei�cation has been

compared to other models for reection, the metaob-

ject and metacommunication models: we have shown

how it can solve the drawbacks of both.

We have considered how to implement channel rei�ca-

tion in order to experience on this new approach to

reection. Channel rei�cation could be implemented

on top of a distributed object system (e.g. CORBA) or

else on top of a distributed system, like ISIS or PVM.

Due to its wider di�usion, we have selected the latter

as a basis for our implementation, taking into account

the fact that its message passing features already im-

plement many of the stubs functionalities.

We have �rst implemented a non distributed proto-

type of channel rei�cation in SmallTalk, then, we have

designed a C

++

implementation on top of PVM. In

all cases, the implementation requires only two pro-

cedures/methods, (send, and apply), and a channel

class hierarchy. Implementation of channel rei�cation

in distributed object systems (like CORBA [Cor93]) is

under analysis.

References

[Anc90] M. Ancona, A. Clematis, G. Dodero,

E.B. Fernandez, V. Gianuzzi, \A System

Architecture for Fault Tolerance in Concurrent

Software", IEEE Computer, 23(10), pp.23-32,

1990.

[Anc95] M. Ancona, G. Dodero, V. Gianuzzi,

A. Clematis, L. Lisboa, \Reective ar-

chitectures for reusable fault-tolerant soft-

ware", proc. 1

st

Ibero American Microelectron-

ics Conf., Canela, Brazil, july 31, Aug.4, 1995.

[Caz95] W. Cazzola, \The Role of Reective Archi-

tectures in the Development of Fault Tolerant

Software.", DISI-University of Genoa, Master

Thesis (in Italian) 1995.

[Chi93] S. Chiba, T. Masuda, \ Design an Ex-

tendible Distributed Language with a Meta-

Level Architecture", In Proceeding of 7

th

Eu-

ropean Conference on Object-Oriented Pro-

gramming (ECOOP 93), pages 482-501,

Kaiserslautern Germany, July 1993.

[Cor93] OMG TC, \The Common Object Request

Broker: Architecture and speci�cation", Doc-

ument Number 93.12.1, Revision 1.2, Decem-

ber 1993.

[Fab94] J. Fabre, V. Nicomette, T. P

�

eren-

nou, Z. Wu, \Implementing Fault Tol-

erant Applications using Reective Object-

Oriented Programming", PDCS2, 2

nd

year re-

port, Predictably Dependable Computing Sys-

tems, Newcastle upon tyne, England, Septem-

ber 1994, pp 291-313.

[Fer89] J. Ferber, \Computational Reection in

Class Based Object Oriented Languages",

Proc. OOPSLA'89, Sigplan Notices, pp. 317-

326.

[Mae87] P. Maes, \Concepts and Experiments in

Computational Reection", Proc. OOPSLA

'87.

[Yon87] A. Yonezawa et al., \Modelling and Pro-

gramming in an Object-Oriented Concurrent

Language ABCL/1", Object-Oriented Concur-

rent Programming, The MIT Press 1987.

6

