
Repository Management in an Intelligent Indexing
Approach for Multimedia Digital Libraries

B. Armani1, E. Bertino2, B. Catania1, D. Laradi3, B. Marin3, G.P. Zarri3

1Dipartimento di Informatica e Scienze dell'Informazione, University of Genova, Italy
{armani,catania}@disi.unige.it

2Dipartimento di Scienze dell'Informazione, University of Milano, Italy
bertino@dsi.unimi.it

3 Centre National de la Recherche Scientifique (CNRS), Paris, France
{laradi,marin,zarri}@ivry.cnrs.fr

Abstract. Metadata represent the vehicle by which digital documents can be
efficiently indexed and retrieved. The need for such kind of information is
particularly evident in multimedia digital libraries, which store documents
dealing with different types of media (text, images, sound, video). In this
context, a relevant metadata function consists in superimposing some sort of
conceptual organization over the unstructured information space proper to these
digital repositories, in order to facilitate the intelligent retrieval of the original
documents. To this purpose, the usage of conceptual annotations seems quite
promising. In this paper, we propose a two-steps annotation approach by which
conceptual annotations, represented in NKRL [7], [8], are associated with
multimedia documents and used during retrieval operations. We then discuss
how documents and metadata can be stored and managed on persistent storage.

1 Introduction

It is today well recognized that an effective retrieval of information, from large bodies
of multimedia documents contained in current digital libraries, requires, among other
things, a characterization of such documents in terms of some metadata. A relevant
metadata function consists in superimposing some sort of conceptual organization
over the unstructured information space often typical of digital libraries, in order to
facilitate the intelligent retrieval of the original documents. Querying or retrieving
various types of digital media is executed directly at the metadata level.

Among the classes of metadata proposed by the scientific literature, only content-
specific metadata “reflect the semantics of the media object in a given context” and
provide a sufficient degree of generality [1]. Unfortunately, as well known, a veritable
access by semantic content is particularly difficult to achieve, especially for non-
textual material (images, video, audio). In those cases, content-based access is often
supported by the use of simple keywords, or of features mainly related with the
physical structure of multimedia documents (such as colour, shape, texture, etc.) [4].
In order to overcome the limitations of such approaches, conceptual annotations have
been introduced for describing in some depth the context of digital objects [2], [3],
[6]. However, the current approaches, often based on the use of simple ontologies in a

description logic style, have several limitations in terms of description of complex
semantic contents (e.g., of complex events) events.

To alleviate these problems, we propose a different approach for building up
conceptual annotations to be used for indexing documents stored in a thematic
multimedia library. With thematic multimedia library we mean a library storing
documents concerning a given application domain. Our approach is based on a two
steps annotation process:

 During the first step, any interesting multimedia document is annotated with a
simple Natural Language (NL) caption in the form of a short text, representing a
general, neutral description of the content of the document. In the case of textual
documents, the interesting parts of the text, or the text itself, could represent the
NL caption. This approach corresponds to the typical process of annotating a paper
document, by underlying the interesting parts or writing down remarks and
personal opinions. In the case of other media documents, the NL caption may
represent the semantic content of the document and additional observations
associated with it.

 During the second phase, annotations represented by NL captions are (semi-
automatically) converted into the final conceptual annotations. We propose to
represent the final conceptual annotations in NKRL (Narrative Knowledge
Representation Language) [7], [8]. In NKRL, the metaknowledge associated with a
document consists not only in a set of concepts and instances of concepts
(individuals) but also in a structured set of more complex structures (occurrences)
obtained through the instantiations of general classes of events called templates.
This approach is actually tested in the context of an European project,
CONCERTO [9].

Note that the use of a two-steps annotation process guarantees a high level of
flexibility in querying. First of all, this approach provides a general solution for the
mixed media access. This means that a single metadata query can retrieve information
from data that pertain to different media since the same mechanism is used to
represent their content. Moreover, the first annotation step is quite useful in
supporting a similarity-based indexing. Indeed, by associating similar captions to
different documents we make them “similar” from the point of view of the content
and therefore of the retrieval.

In designing an architecture supporting the approach described above, the
component dealing with the storage and the management of all the types of
knowledge (documents, templates, concepts, and conceptual annotations) on
secondary storage plays a fundamental role, since its implementation strongly
influences the performance of the overall system. The aim of this paper is that of
presenting a proposal for designing and implementing such component, that we call
Knowledge Manager. For this task, we have followed a Web-Based approach. In
particular, the Knowledge Manager has been implemented as a true server manager
that can be hosted on a generic machine connected over Intranet/Internet networks to
the clients requiring such services. The advantage of this approach is that the software
component we have designed can be easily used by other architectures, based on the
use of NKRL or similar languages for encoding conceptual annotations.

The paper is organized as follows. Section 2 introduced NKRL whereas Section 3
introduces an approach for the internal representation of such language. The

Knowledge Manager architecture is then presented in Section 4. Finally, Section 5
presents some concluding remarks.

2 NKRL as a metalanguage for document annotations

In the following, we briefly review the basic characteristics of NKRL (Narrative
Knowledge Representation Language) (we refer the reader to [7], [8], [10] for
additional details).

The core of NKRL consists of a set of general representation tools that are
structured into four integrated components, described in the following.

Definitional and enumerative components. The definitional component of NKRL
supplies the tools for representing the important notions (concepts) of a given domain.
In NKRL, a concept is, therefore, a definitional data structure associated with a
symbolic label like human_being, city_, etc. Concepts (definitional
component) and individuals (enumerative component) are represented essentially as
frame-based structures. All NKRL concepts are inserted into a
generalization/specialization hierarchy that corresponds to the usual ontology of terms
and is called H_CLASS(es).

The enumerative component of NKRL concerns the formal representation of the
instances (individuals) (lucy_, wardrobe_23) of the concepts of H_CLASS.
Throughout this paper, we will use the italic type style to represent a concept_ and
the roman style to represent an individual_.
Descriptive and factual components. The dynamic processes describing the
interactions among the concepts and individuals in a given domain are represented by
making use of the descriptive and factual components. The descriptive component
concerns the tools used to produce the formal representations (predicative templates
or simply templates) of general classes of narrative events, like ‘moving a generic
object’, ‘formulate a need’, ‘be present somewhere’. In contrast to the binary structure
used for concepts and individuals, templates are characterized by a threefold format
where the central piece is a predicate, i.e., a named relation that exists among one or
more arguments introduced by means of roles. The general format of a predicative
template is therefore the following:

 (Pi (R1 a1) (R2 a2)... (Rn an))

In the previous expression, Pi denotes the symbolic label identifying the predicative
template, Rk, k = 1,...,n, denote generic roles, and ak, k = 1,...,n, denote the role
arguments. The predicates pertain to the set BEHAVE, EXIST, EXPERIENCE,
MOVE, OWN, PRODUCE, RECEIVE, and the roles to the set SUBJ(ect), OBJ(ect),
SOURCE, BEN(e)F(iciary), MODAL(ity), TOPIC, CONTEXT. Templates are
structured into an inheritance hierarchy, H_TEMP(lates), which corresponds to a
taxonomy (ontology) of events. The instances (predicative occurrences) of the
predicative templates, i.e., the representation of single, specific events like
“Tomorrow, I will move the wardrobe” or “Lucy was looking for a taxi” are in the
domain of the factual component.

Example 1. The NKRL sentence presented in Figure 1 codes an information like: “On
April 5th, 1982, Gordon Pym is appointed Foreign Secretary by Margaret Thatcher”,
that can be directly found in a textual document, contained in an historical digital
library. The subject of this event is Gordon Pym, represented as a
particular instance (gordon_pym) of the concept individual_person. The
object of this event is the position Gordon Pym is appointed to, represented by the
concept foreign_secretary_pos. Finally, the source of this event is Margaret
Thatcher (represented by the instance margaret_thatcher) since she is
responsible for the event. In the predicative occurrence, temporal information is
represented through two temporal attributes, date-1 and date-2. They define the
time interval in which the meaning represented by the predicative occurrence holds.
In c1, this interval is reduced to a point on the time axis, as indicated by the single
value, the timestamp 5-april-82, associated with the temporal attribute date-1;
this point represents the beginning of an event because of the presence of begin (a
temporal modulator).

c1) OWN SUBJ gordon_pym
 OBJ foreign_secretary_pos
 SOURCE margaret_thatcher
 [begin]
 date-1: (5-april-82)
 date-2:

Fig. 1. Annotation of a WWW textual document

In the previous example, the arguments associated with roles are simple. However,
NKRL also provides a specialized sublanguage, AECS, supporting the construction of
structured arguments by using four operators: the disjunctive (ALTERNative)
operator, the distributive (ENUMerative) operator, the collective (COORDination)
operator, and the attributive (SPECIFication) operator.

Predicative occurrences can also be combined together, through the use of specific
second order structures, called binding occurrences. Each binding occurrence is
composed of a binding operator and a list of predicative or binding occurrences,
representing its arguments. Each document (NL caption, in the considered
framework) is then associated with a single conceptual annotation, corresponding to
the binding occurrence representing its semantic content.

In order to query NKRL occurrences, search patterns have to be used. Search
patterns are NKRL data structures representing the general framework of information
to be searched for, within the overall set of conceptual annotations. A search pattern is
a data structure including, at least, a predicate, a predicative role with its associated
argument, where it is possible to make use of explicit variables, and, possibly, the
indication of the temporal interval where the unification holds. As an example, the
conceptual annotation in Figure 1 can be successfully unified with a search pattern
like: “When was Gordon Pym appointed Foreign Secretary?”, presented in Figure 2.
The variable ?x means that we want to know the instant when the event happened.

We refer the reader to [7], [8] for additional details on these topics.

(?w IS-PRED-OCCURRENCE
:predicate OWN
:SUBJ gordon_pym
:date-1 ?x

Fig. 2. A simple example of an NKRL search pattern

3 A representation language for NKRL

The usual way of implementing NKRL has been, until recently, that of making use of
a three-layered approach: Common Lisp + a frame/object oriented environment (e.g.,
CRL, Carnegie Representation Language, in the NOMOS project) + NKRL. In order
to ensure a high level of standardization, we are now realizing, in the context of the
CONCERTO project [9], a new version of NKRL, implemented in Java and RDF-
compliant (RDF = Resource Description Format) [5].

RDF is a proposal for defining and processing WWW metadata that is developed
by a specific W3C Working Group (W3C = World Wide Web Consortium). The
model, implemented in XML (eXtensible Markup Language), makes use of Directed
Labeled Graphs (DLGs) where the nodes, that represent any possible Web resource
(documents, parts of documents, collections of documents, etc.) are described
basically by using attributes that give the named properties of the resources. No
predefined ‘vocabulary’ (ontologies, keywords, etc.) is in itself a part of the proposal.
The values of the attributes may be text strings, numbers, or other resources. In the
last versions of the RDF Model and Syntax Specifications new, very interesting,
constructs have been added [5]. Among them, of particular interest are the
‘containers’, i.e., tools for describing collections of resources. In an NKRL context
the containers are used to represent the structured arguments created by making use of
the operators of the AECS sublanguage (see Section 2).

A first, general problem to be solved to set up an RDF-compliant version of NKRL
has concerned the very different nature of the RDF and NKRL data structures. The
first are ‘binary’ ones, i.e., based on the usual organization into ‘attribute – value’
pairs. The second are ‘tripartite’, i.e., are organized around a ‘predicate’, whose
‘arguments’ are introduced through a third, functional element, the ‘role’. To provide
the conversion into RDF format, the NKRL data structures have been represented as
intertwined binary ‘tables’ that describes the RDF-compliant, general structure of an
NKRL template.

Example 3. Consider the predicative occurrence presented in Figure 1. The
RDF/XML description of c1 is presented in Figure 3. In general, the RDF text
associated with each predicative occurrence is composed of several tags, all nested
inside the <CONCEPTUAL_ANNOTATION> tag and belonging to two different
namespaces: rdf and ca. The first namespace describes the standard environment
under which RDF tags are interpreted. The second namespace describes specific tags
defined in the context of our specific application. More precisely, the tag
<ca:Template_i> is used to specify that the predicative occurrence is an instance

of the template identified by Template_i. The identifier of the occurrence is an
attribute of such tag (occ11824 in our example). The other tags specify the various
roles of the predicative occurrence, together with the associated arguments.
Additional tags are used to represent temporal information and modulators.

4 The Knowledge Manager architecture

Four main modules compose the architecture supporting our approach:

<?xml version="1.0" ?>
<!DOCTYPE DOCUMENTS SYSTEM "CA_RDF.dtd">
<CONCEPTUAL_ANNOTATION>
 <rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmlns:ca="http://projects.pira.co.uk/concerto#">
 <rdf:Description about="occ11824">
 <rdf:type resource=”ca:Occurrence”/>
 <ca:instanceOf>Template43</ca:instanceOf>
 <ca:predicateName>Own</ca:predicateName>
 <ca:subject rdf:ID=”Subj43” rdf:parseType=”Resource”>
 <ca:filler>gordon_pym</ca:filler>
 </ca:subject>
 <ca:object rdf:ID=”Obj43” rdf:parseType=”Resource”>
 <ca:filler>foreign_secretary_pos<ca:filler>
 </ca:object>
 <ca:source rdf:ID=”Source43” rdf:parseType=”Resource”>
 <ca:filler>margaret_thatcher</ca:filler>
 </ca:source>
 <ca:listOfModulators>
 <rdf:Seq><rdf:li>begin</rdf:li></rdf:Seq>
 </ca:listOfModulators>
 <ca:date1>05/04/1982</ca:date1>
 </rdf:Description>
 </rdf:RDF>
 </CONCEPTUAL_ANNOTATION>

Fig. 3. The RDF format of a predicative occurrence

 Acquisition module, providing a user-friendly interface by which the user can insert
documents and associate with them some short NL captions.

 Annotation module, that is in charge of the translation of the NL captions into the
NKRL format.

 Knowledge Manager module, implementing the basic features for storing and
managing NKRL concepts, templates, original documents, and the associated
conceptual annotations on persistent storage.

 Query module, applying sophisticated mechanisms to retrieve all documents
satisfying certain user criteria, by using conceptual annotations.

In the context of the proposed architecture, the Knowledge Manager plays a
fundamental role. Indeed, since it manages the repositories on secondary storage, its
implementation strongly influences the performance of the overall system. In the
current architecture, the Knowledge Manager has been implemented as a server,
following a Web-based approach, by using Internet derived technologies for the

http://www.w3.org/1999/02/22-rdf-syntax-ns#

communication protocol and metadata representation. In particular, the Knowledge
Manager is organized according to a three-tier architecture, represented in Figure 4.
The first level corresponds to the repository management on persistent storage,
through the use of a specific database management system (IBM DB2 in our case);
the second level is an application level, providing an easy programming interface
(through a Java API) to the repository. Finally, the third level consists of a specific
interface language (called KMIL) to provide access to the Knowledge Manager
through a Web-Based approach. In the following, the repositories and their
management as well as the communication protocol are described in more details.

Fig. 4. General architecture of the Knowledge Manager

4.1 The repositories and their management

In order to deal with NKRL data structures, we designed three distinct but interrelated
repositories. The first repository is the Document Repository, storing the original
documents, together with the corresponding NL captions. In order to deal with
conceptual annotations, the H_TEMP and H_CLASS ontologies are stored in the
Ontology Repository. The concrete conceptual annotations, generated by the
Annotation Module, are then stored in the Conceptual Annotation Repository.

The Conceptual Annotation Repository is certainly the most critical one since user
queries are executed against it. It contains two main types of data: predicative
occurrences and binding occurrences. Each predicative occurrence is characterized,
among the others, by its XML/RDF text and the identifier of the template it is an
instance of. For each template, we also maintain the set of predicative occurrences
representing the leaves of the subtree rooted by it in the H_TEMP. The use of this
information optimizes query processing since a search pattern always selects a set of
predicative occurrences that are instances of a single template. Each binding
occurrence is internally characterized, among the others, by the binding operator and
the identifiers of its arguments (i.e., binding or predicative occurrences).

 Each document is then associated with a single conceptual annotation, arbitrarily
complex, describing atomic information, through the use of predicative occurrences,
and combined information, through the use of binding occurrences. The repository
maintains the relationship between documents and the associated conceptual
annotations. It is important to note that, to guarantee a high level of flexibility, we

assume that each occurrence can be associated with different documents. This
corresponds to the situation in which different documents refer similar or equal events
or contain similar or equal images or sound.

Since RDF can be implemented by using XML, in order to store conceptual
annotations and templates, we choose IBM DB2 Universal Database together with the
XML extender, recently released by IBM. The repositories are then managed through
the use of a Java API, implementing specific operation to be executed against the
repositories. Each operation, before execution, is translated into some SQL commands
to be executed by DB2. The use of a Java API provides a high level of portability for
the system we have developed. Moreover, since several packages for implementing an
XML parser in Java are currently available, this choice fits well in the overall system
architecture. Among the supported operations, queries against the Conceptual
Annotation Repository intensively use the functionalities supported by IBM DB2 and
IBM DB2 XML Extender to retrieve predicative occurrences starting from given
selection conditions.

4.2 The communication protocol and the interface language

The Knowledge Manager services can be executed under two different modalities (see
Figure 4). In a local environment, the Java API operations are directly called and
executed. In a remote environment, communication is performed through the HTTP
protocol. The use of HTTP guarantees an efficient access to the Knowledge Manager
from any software module located at any site on the Internet. In order to guarantee a
standard communication between modules, services have to be expressed by means of
an XML document. Such document has to be constructed according to a specific
XML language, called Knowledge Manager Interface Language (KMIL). KMIL
requests can be sent by using an HTTP post action to a Knowledge Manager front-end
Servlet running under a specific HTTP servlet engine. This solution has the advantage
that the Knowledge Manager can be hosted on a generic machine, becoming strongly
independent from other modules of the architecture. All requests sent to the
Knowledge Manager are then captured by a Web Server that activates a specific Java
Servlet for the execution of the requested services, through the use of the Java API, on
the underlying DBMS. As a result, an XML document containing the result of the
computation is returned to the calling module.

Example 4. Suppose that the conceptual annotation of Figure 1 has to be inserted into
the Conceptual Annotation Repository. This can be specified by using the KMIL
document presented in Figure 5. Such document contains a <KMIL-ACTION> tag for
the document and the predicative occurrence that have to be inserted, respectively,
together with all the required information. This information is then used to
consistently update the content of the Conceptual Annotation and Document
repositories.

<?xml version="1.0"?>
 <!DOCTYPE KMIL-SESSION SYSTEM "KmilIn.dtd">
 <KMIL-SESSION>
 <KMIL-ACTION serial_number="1">
 <KMIL-INSERT-Document IdDoc="doc132" >
 <TEXT>

On April 5th, 1982, Gordon Pym is appointed Foreign
Secretary by Margaret Thatcher

</TEXT>
 </KMIL-INSERT-Document>
 </KMIL-ACTION>
 <KMIL-ACTION serial_number="2">
 <KMIL-INSERT-PredOcc IdPO="occ11824" Doc="doc132">
 <TEXT> RDF Text </TEXT>
 </KMIL-INSERT-PredOcc>
 </KMIL-ACTION>
 </KMIL-SESSION>

Fig. 5. Example of a KMIL request

5 Concluding remarks

In this paper we have presented an approach for indexing and retrieving multimedia
digital documents through the use of conceptual annotations, describing in details the
component entrusted with the management of documents and conceptual annotations
in secondary storage. The techniques presented in this paper are now being exploited
in the framework of the Esprit project CONCERTO (CONCEptual indexing, querying
and ReTrieval Of digital documents, Esprit 29159) [9]. The aim of such project is to
improve current techniques for indexing, querying and retrieving textual documents,
mainly concerning the socio-economical and the biotechnology contexts. Future work
includes the definition of specialized techniques for storing and indexing conceptual
annotations. In particular, disk placement and caching techniques for conceptual
annotations are currently under investigation in order to improve the performance of
the system.

Acknowledgements. We would like to thank Pietro Leo, from IBM, for several
useful comments and suggestions about the design of the proposed architecture.

References

1. S. Boll, W. Klas, and A. Sheth. Overview on Using Metadata to Manage Multimedia Data.
In Multimedia Data Management, pages 1-24, 1998. McGraw Hill, New York.

2. D. Fensel, S. Decker, M. Erdmann, M., and R. Studer. Ontobrocker: Or How to Enable
Intelligent Access to the WWW. In Proc. of the 11th Banff Knowledge Acquisition for KBSs
Workshop, KAW'98. University of Calgary, 1998.

3. J. Heflin, J. Hendler, and S. Luke. SHOE: A Knowledge Representation Language for
Internet Applications. Technical Report CS-TR-4078, Univ. of Maryland, College Park
(MA), 1999.

4. IEEE Computer - Special Issue on Content-Based Image Retrieval Systems. IEEE
Computer, 28(9), 1995.

5. O. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. Technical report, W3C, 1999.

6. A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information Sources Using
Sources Descriptions. In Proc. of the 22nd Int. Conf. on Very Large Databases (VLDB-96),
pages 251-262, 1996.

7. G. Zarri. NKRL, a Knowledge Representation Tool for Encoding the 'Meaning' of Complex
Narrative Texts. Natural Language Engineering - Special Issue on Knowledge
Representation for Natural Language Processing in Implemented Systems, 3:231-253, 1997.

8. G. Zarri. Representation of Temporal Knowledge in Events: The Formalism, and Its
Potential for Legal Narratives. Information & Communications Technology Law - Special
Issue on Models of Time, Action, and Situations, 7:213-241, 1998.

9. G. Zarri et al. CONCERTO, An Environment for the `Intelligent' Indexing, Querying and
Retrieval of Digital Documents. In LNCS 1609: Proc. of the 11th Int. Symp. on
Methodologies for Intelligent Systems, pages 226-234, Varsavia, Poland, 1999. Springer
Verlag.

10.G. Zarri and L. Gilardoni. Structuring and Retrieval of the Complex Predicate Arguments
Proper to the NKRL Conceptual Language. In LNCS 1079: Proc. of the 9th Int. Symp. on
Methodologies for Intelligent Systems, pages 398-417, Zakopane, Poland, 1996. Springer
Verlag.

	Fig. 4. General architecture of the Knowledge Manager
	Fig. 5. Example of a KMIL request

