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Abstract

We address the problem of indexing conjunctions of linear constraints with two vari-

ables. We show how containment and intersection selection problems for constraint

databases can be reduced to the point location problem by using a dual transform-

ation. The proposed representation is then used to develop an e�cient secondary

storage solution for one important particular indexing case.
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1 Introduction

Constraint programming is very attractive from a database point of view be-

cause it is completely declarative and because often constraints represent the

communication language of several high-level applications [5]. Constraints can

be added to relational database systems at di�erent levels. At the data level,

quanti�er free conjunctions of constraints �nitely represent possibly in�nite

sets of relational tuples. Thus, constraints are a powerful mechanism for mod-

eling spatial and temporal concepts, where often in�nite information should

be represented. For example, the conjunction 1 � X � 2 ^ 2 � Y � 3,

where X and Y are real variables, represents the in�nite set of tuples having

a real number between 1 and 2 as value for the X attribute and a real number

between 2 and 3 as value for the Y attribute. Thus, the conjunction identi�es
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a rectangle. Such conjunction of constraints is called generalized tuple and the

possibly in�nite set of relational tuples it represents is called extension of the

generalized tuple. A �nite set of generalized tuples is called generalized relation

[5]. Di�erent logical theories can be used to model di�erent information. At

the query language level, constraints increase the expressive power of simple

relational languages by allowing mathematical computations. The integration

of constraints in existing query languages introduces several issues. In par-

ticular, constraint query languages should preserve all the good features of

relational languages. For example, they should be closed and bottom-up eval-

uable [5]; moreover they should also preserve e�ciency. Therefore, new data

structures should be de�ned for querying and updating constraint databases,

with worst case time and space comparable to those of data structures for

relational databases [3].

At least two constraint language features should be supported by index struc-

tures in constraint databases:

� ALL selection. It retrieves, from a given generalized relation r, all gen-

eralized tuples whose extension is contained in the extension of a given

generalized tuple speci�ed in the query, called query generalized tuple. If

the extension of a generalized tuple t is contained in the extension of a

query generalized tuple q, we denote this fact by All(q; t). Given a general-

ized relation r and a query generalized tuple q, we denote by ALL(q; r) the

set ftjt 2 r;All(q; t)g.

� EXIST selection. It retrieves, from a given generalized relation r, all gen-

eralized tuples whose extension has a non-empty intersection with the ex-

tension of a query generalized tuple q. If the extensions of t and q have a

non-empty intersection, we denote this fact by Exist(q; t). Given a general-

ized relation r and a query generalized tuple q, we denote by EXIST (q; r)

the set ftjt 2 r;Exist(q; t)g. Since ALL(q; r) � EXIST (q; r), it is more

convenient to de�ne the query EXIST

e

(q; r) = EXIST (q; r) n ALL(q; r)

and therefore EXIST

e

(q; r) \ ALL(q; r) = fg. In a similar way, we denote

by Exist

e

(q; t) the fact Exist(q; t)^ :All(q; t).

1

All existing indexing techniques for constraint databases only support EXIST

selection and assume that index values are intervals [1,6,9]. Some other solu-

tions are based on approximation of the extension of generalized tuples [2,8]

and therefore cannot provide a good worst-case performance. The aim of this

paper is to propose a simple indexing mechanism for both EXIST

e

and ALL

selections against two-dimensional linear constraints.

2

Constraints are as-

sumed to be represented by using the linear polynomial constraint theory

1

Note that All; Exist

e

, and Exist are predicates.

2

Results of EXIST selections can be obtained by simply merging ALL and

EXIST

e

selection results.
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[5] and the query generalized tuple is assumed to be a half-plane (also called

query half-plane).

The main result presented in the paper shows how ALL and EXIST

e

selection

problems can be uniformly reduced to the point location problem [7] by using

the concept of geometric duality [4]. With the dual transformation, a query

half-plane from the primal plane is transformed into a point in the dual plane

meanwhile a generalized tuple is transformed into a pair of disjoint and convex

domains, whose boundaries are respectively an upward open and a downward

open polygon.

3

If the angular coe�cient of the line associated with a query half-plane be-

longs to a �xed set of cardinality k, a solution in external storage can be

provided such that it occupies O(k N=B) pages, ALL and EXIST

e

selec-

tions are performed in O(log

B

N=B + T=B) time and updates are performed

in O(k log

B

N=B) time, where B is the number of generalized tuples stored in

one page, N=B is the number of pages required to store N generalized tuples,

and T=B is the number of pages required to store the T generalized tuples

representing the query result. To the best of our knowledge, this is the �rst

approach with low complexity to the problem of indexing two-dimensional

linear constraints.

The paper is organized as follows. Section 2 introduces assumptions and pre-

liminary notations. The reduction of the selection problems to the point loca-

tion problem is presented in Section 3. Section 4 proposes complexity results

for indexing linear constraints. Finally, Section 5 presents some concluding

remarks.

2 Preliminaries

The point location problem is de�ned as follows [7]. Let F = fF

1

; :::; F

n

g

where each F

i

is a point set in the plane and let p be a point in the plane. The

problem of locating point p with respect to F is the problem of determining

all F

i

such that p 2 F

i

.

In the remainder of this paper, we make the following assumptions:

� ALL and EXIST

e

selections are performed with respect to two real vari-

ables x and y. We assume that variable x represents the horizontal axis.

3

An open polygon is a �nite chain of line segments with the �rst and last segments

being half-lines (assuming the segments to be ordered with respect to the �rst

coordinate of their left vertex). An open polygon is upward (downward) open if the

projections of both half-lines on the vertical axis approach +1 (�1).

3



The query generalized tuple has form y � ax + b (also called down-query)

or y � ax+ b (also called up-query) and represents a half-plane. We assume

that a; b 2 R.

� The projection of any generalized tuple on x and y is a generalized tuple

of the form t � C

1

^ ::: ^ C

m

,

4

where each C

i

, i = 1; :::;m, is one of the

following constraints:

5

� down-constraint: C

i

� y � a

i

x + b

i

. A generalized tuple containing only

down-constraints is called down-generalized tuple and its extension is a

convex domain having as boundary an upward open polygon.

� up-constraint: C

i

� y � a

i

x + b

i

. A generalized tuple containing only

up-constraints is called up-generalized tuple and its extension is a convex

domain having as boundary a downward open polygon.

� eq-constraint: C

i

� y = a

i

x + b

i

. We can reduce this constraint to the

previous ones, by substitution with the conjunction of constraints y �

a

i

x+ b

i

^ y � a

i

x+ b

i

.

We assume that a

i

; b

i

2 R, i = 1; :::;m. We denote by e(t) the extension of

a generalized tuple t and by p(t) the boundary of such extension (considered

as a set of points). Similarly, the line associated with a constraint C is

denoted by p(C). Given a constraint C and a generalized tuple t, we say that

C is non-redundant with respect to t if the tuple t

0

� t^C is not equivalent

to t (thus, e(t) and e(t

0

) do not coincide). Otherwise, C is redundant with

respect to t.

A generalized tuple is satis�able if its extension is not empty, i.e., the

generalized tuple is satis�able in the domain associated with the chosen

theory. In the remainder of the paper, we consider only satis�able general-

ized tuples. Satis�able generalized tuples of the type described above and

relations containing only such generalized tuples are called regular.

The dual transformation T we use is similar to the one de�ned in [4]. The

coordinates of a point in the dual plane are denoted by x

d

and y

d

; x

d

represents

the horizontal axis. Let l be a line y = ax + b in the primal plane P. In the

dual plane D, l is transformed into point T (l) � (x

d

= a; y

d

= b). Due the

same transformation, a point p in P is transformed into a line in D. If the

point p is given by the intersection of two lines l

1

and l

2

in P, then the line

T (p) is required to connect points T (l

1

) and T (l

2

) in D. It is easy to show

that if the point p in P is (x = a; y = b), the corresponding dual line T (p) is

y

d

= �ax

d

+ b.

4

The symbol � is used to denote syntactic equality.

5

Let t be a generalized tuple de�ned on variables x

1

; :::; x

n

. The projection of

t on variables x

i

1

; :::; x

i

k

, i

j

2 f1; :::; ng, j = 1; :::; k, is the formula obtained by

existentially quantifying t with respect to variables ~x � fx

1

; :::; x

n

g n fx

i

1

; :::; x

i

k

g

(thus obtaining the formula 9~x t) and then removing the quanti�er by applying a

quanti�er elimination algorithm. This is a typical operation in constraint databases.

4



The dual transformation cannot be applied to vertical lines. Therefore, we

assume that regular generalized tuples do not contain constraints like x � a or

x � a (called vertical line constraints). If some generalized tuples contain such

constraints, we can always rotate the plane associated with the generalized

tuples in such a way that no rotated tuple contains vertical line constraints.

For simplicity, we still denote the coordinates of the rotated plane by x and y.

3 Dual representation for regular generalized tuples

In this section, we extend the representation in the dual plane proposed for

lines to generalized tuples. To this purpose, we �rst consider down- and up-

generalized tuples. Then, we extend such analysis to the case of arbitrary

regular generalized tuples.

3.1 Regular down-generalized tuples

Let t be a regular down-generalized tuple t � C

1

^:::^C

m

,C

i

� y � a

i

x+b

i

, i =

1; :::;m. Without loss of generality, we assume that all C

i

's are not redundant

with respect to t and sorted in the increasing order of a

i

, i = 1; :::;m.

A regular down-generalized tuple t from the primal plane P is transformed

in the dual plane D into a convex set of points (a convex domain), whose

boundary is a downward open polygon. We construct the polygon in two

steps. First we consider all points T (p(C

i

)), i = 1; :::;m, and construct the

chain of line segments S

i

; i = 1; : : : ;m� 1, where S

i

connects points T (p(C

i

))

and T (p(C

i+1

)). The set of points belonging to such chain is denoted by h(t).

Basically, points composing a segment S

i

correspond to all lines in P obtained

by an anti-clockwise rotation of line p(C

i

) to match line p(C

i+1

) around the

point where p(C

i

) and p(C

i+1

) intersect.

Now consider a line l in the primal plane. If l touches the extension e(t) of the

down-generalized tuple t, that is, l intersects the boundary of e(t) but not its

interior, there are two cases: (i) a vertex of p(t) lies on l; (ii) an edge of p(t)

lies on l. In the �rst case, due to the previous discussion, in the dual plane

T (l) belongs to segment S

i

, for some i 2 f1; :::;m � 1g. In the second case,

T (l) coincides with T (p(C

j

)), for some j 2 f1; :::;mg. Therefore, in both cases

T (l) belongs to h(t). The vice versa also holds. Based on these considerations,

we can state the following lemma.

Lemma 1 Let t be a regular down-generalized tuple. Let l be a line in the

primal plane P. Then, T (l) 2 h(t) i� l touches e(t), that is, e(l) \ p(t) is a

5



non-empty convex set (either a point or a segment).

6

To enable processing ALL and EXIST

e

selections, we generate a downward

open polygon h

�

(t) by adding to h(t) two vertical downward oriented half-lines,

x

d

= a

1

^ y

d

� b

1

and x

d

= a

m

^ y

d

� b

m

. We denote by D

�

(t) the domain in

D under the polygon h

�

(t). That is, for any point (x

d

= x

d

1

; y

d

= y

d

1

) in D

�

(t),

a

1

< x

d

1

< a

m

holds and there exists a point (x

d

= x

d

1

; y

d

= y

d

2

) 2 h

�

(t) such

that y

d

2

> y

d

1

. Also, we denote by D

0

(t) the domain which is the complement

of D

�

(t)[h

�

(t) in D. Note that the points contained in h

�

(t)nh(t) correspond

in the primal plane to lines which are parallel to either p(C

1

) or p(C

m

) and

which do not intersect e(t). Each point (x

d

= x

d

1

; y

d

= y

d

1

) 2 D

�

(t) represents

in the primal plane a line not intersecting p(t); such line is parallel to a line

y = x

d

1

x + y

d

2

which does not intersect the interior of e(t) (since point (x

d

=

x

d

1

; y

d

= y

d

2

) belongs to h

�

(t)) and satis�es the condition y

d

2

> y

d

1

. Since p(t) is

an upward open polygon, this means that e(t) is contained in the half-plane

y � x

d

1

x+ y

d

1

. Finally, D

0

represents in the primal plane all lines intersecting

e(t) in at least one point not belonging to p(t).

Using the concepts de�ned above, the dual transformation of a down-generalized

tuple t can be de�ned as T (t) � D

�

(t) [ h

�

(t). The proposed transforma-

tion preserves the redundancy relationship between a constraint and a down-

generalized tuple. Consider a down-generalized tuple t. A constraint C � y �

ax + b in P contains either the entire extension of t (thus, it is redundant

with respect to t) or part of e(t) (thus, it is not redundant with respect to

t). Using Lemma 1 and the properties of D

�

(t), D

0

(t), h(t), and h

�

(t), it can

be shown that this redundancy relationship is transformed in the dual plane

in the containment relationship between point (x

d

= a; y

d

= b) and domain

D

�

(t) [ h

�

(t), as stated by the following lemma. Note that an up-constraint

cannot be redundant with respect to a down-generalized tuple.

Lemma 2 Let t be a regular down-generalized tuple. A down-constraint C is

redundant with respect to t i� T (p(C)) 2 D

�

(t) [ h

�

(t). An up-constraint C

is never redundant with respect to t.

Lemma 2 gives a method for reducing ALL and EXIST

e

selections to the

point location problem. Indeed, given a down-query q in P of the form y �

ax+ b, predicate All(q; t) is satis�ed i� y � ax+ b is redundant with respect

to t. If it is not redundant, Exist

e

(q; t) is satis�ed. Given an up-query q in P

of the form y � ax+ b, All(q; t) is never satis�ed. Exist

e

(q; t) is satis�ed only

if p(q) intersects e(t).

Corollary 3 Let t be a regular down-generalized tuple and let q be a down-

query. All(q; t) is satis�ed i� T (p(q)) 2 D

�

(t) [ h

�

(t) and Exist

e

(q; t) is

satis�ed i� T (p(q)) 2 D

0

(t).

6

If l is the line y = ax+ b, e(l) denotes the extension of constraint y = ax+ b.

6



(a)

p(t)

p(q2) = p(q2’)

p(q1) = p(q1’)

y

x

yd

xd

(b)

h(t)

D(t)

D(t)

h(t)*

-

0

T(p(q2))

T(p(q1))

Fig. 1. A regular down-generalized tuple and two query half-planes: (a) in the primal

plane P ; (b) in the dual plane D.

Corollary 4 Let t be a regular down-generalized tuple and let q be an up-

query. Exist

e

(q; t) is satis�ed i� T (p(q)) 2 D

0

(t) [ h(t). All(q; t) is never

satis�ed.

Example 5 Figure 1(a) illustrates the extension of the down-generalized tuple

t � y � �0:5x + 3 ^ y � �2x + 4 ^ y � x � 2 in the primal plane P.

Figure 1(b) shows the dual representation of such generalized tuple. Consider

the down-queries q

1

� y � �x � 1 and q

2

� y � 5. Figure 1(b) shows that

T (p(q

1

)) 2 D

�

(t) and T (p(q

2

)) 2 D

0

(t). According to Corollary 3, it means

that All(q

1

; t) and Exist

e

(q

2

; t) are satis�ed. Figure 1(a) con�rms the results.

If we instead consider the up-queries q

0

1

� y � �x � 1 and q

0

2

� y � 5,

from Corollary 4 it follows that only the selection Exist

e

(q

0

2

; t) is satis�ed.

The correctness of this result can be observed in Figure 1(a).

In the case of up-generalized tuples, results are analogous to the ones presented

above. The only di�erence is that the open polygon h

�

(t) in the dual plane

is upward open and it is constructed by adding to h(t) two vertical upward

oriented half-lines, x

d

= a

1

^ y

d

� b

1

and x

d

= a

m

^ y

d

� b

m

. Conditions for

ALL and EXIST

e

selections change symmetrically by replacing D

�

(t) with

D

+

(t) and pre�x \down-" with pre�x \up-". D

+

(t) denotes the domain in D

over the polygon h

�

(t). That is, for any point (x

d

= x

d

1

; y

d

= y

d

1

) in D

+

(t),

a

1

< x

d

1

< a

m

holds and there exists a point (x

d

= x

d

1

; y

d

= y

d

2

) 2 h

�

(t) such

that y

d

2

< y

d

1

.

7



3.2 Arbitrary regular generalized tuples

Let t be a regular generalized tuple of type C

1

^ :::^C

m

^D

1

^ :::^D

n

, such

that C

i

� y � a

i

x+ b

i

; i = 1; : : : ;m, and D

j

� y � c

j

x+ d

j

; j = 1; : : : ; n. All

C

i

's and D

j

's are assumed to be non redundant with respect to t and sorted in

the increasing order of angular coe�cients a

i

, i = 1; :::;m, and c

j

, j = 1; :::; n.

In the following, we denote by t

down

the down-generalized part C

1

^ ::: ^ C

m

of t and by t

up

its up-generalized part D

1

^ ::: ^D

n

.

If a

1

< c

n

, p(t

down

) and p(t

up

) intersect on the left of e(t). This means that

there exists an intersection point (x = x

1

; y = y

1

) between p(t

down

) and p(t

up

)

such that, for all points (x = x

2

; y = y

2

) belonging to e(t), x

1

� x

2

holds.

Therefore, such point is the leftmost vertex of p(t) in P. Similarly, p(t

down

)

and p(t

up

) intersect on the right if a

m

> c

1

and the intersection gives the right-

most vertex of p(t) in P. If t contains at least one up-constraint and at least

one down-constraint, p(t) has at least one of these extreme vertices. Without

loss of generality, in the following we consider what happens to redundancy

conditions if a left intersection exists. For the right intersection, the discussion

is analogous.

The presence of the leftmost vertex in p(t) makes redundant with respect to t

some constraints which are not redundant with respect to t

down

and t

up

. These

constraints are called left redundant with respect to t. Let LV (t) be the set

of constraints that are left redundant with respect to t and let LLV (t) =

fp(C) j C 2 LV (t)g. Any line l 2 LLV (t) intersects lines p(C

1

) and p(D

n

),

which de�ne the leftmost vertex, on the left of this vertex (see for example

line l in Figure 2). Let y

d

= ex

d

+ f be the line in D de�ned by points

T (p(C

1

)) � (x

d

= a

1

; y

d

= b

1

) and T (p(D

n

)) � (x

d

= c

n

; y

d

= d

n

). It can

be shown that for each line l � y = ax + b 2 LLV (t), a is lower than a

1

or

greater than c

n

; moreover: (i) if a < a

1

, point (x

d

= a; y

d

= b) satis�es the

inequality b � ea + f and the down-constraint associated with l belongs to

LV (t); (ii) if a > c

n

, point (x

d

= a; y

d

= b) satis�es the inequality b � ea+ f

and the up-constraint associated with l belongs to LV (t). The vice versa also

holds. Therefore, LLV (t) is transformed in the dual plane into two disjoint

and convex domains limited by vertical lines x

d

= a

1

and x

d

= c

n

, and the

line de�ned by points (x

d

= a

1

; y

d

= b

1

) and (x

d

= c

n

; y

d

= d

n

). From the

above considerations, the following result holds (for the case of the rightmost

vertex of t, the results are symmetric).

Lemma 6 Let t be a regular generalized tuple of type C

1

^:::^C

m

^D

1

^:::^D

n

such that C

i

� y � a

i

x+ b

i

; i = 1; : : : ;m, and D

j

� y � c

j

x+ d

j

; j = 1; : : : ; n.

Assume that a

1

< c

n

(thus p(t) admits the leftmost vertex). Let y

d

= ex

d

+ f

be the line de�ned by points T (p(C

1

)) � (x

d

= a

1

; y

d

= b

1

) and T (p(D

n

)) �

(x

d

= c

n

; y

d

= d

n

) in the dual plane. A down-constraint C � y � ax + b is

8



left redundant with respect to t i� a < a

1

and b � ea + f . An up-constraint

C � y � ax+ b is left redundant with respect to t i� a > c

n

and b � ea+ f .

Using the previous result, in order to reduce the ALL and EXIST

e

se-

lection problems to the point location problem, a regular generalized tuple

t is transformed in the dual plane into a pair of disjoint and convex do-

mains. The boundaries of such domains are two open polygons which we

construct in two steps, as we have done for down-generalized tuples in Sub-

section 3.1. In the �rst step, we consider points T (p(C

i

)); i = 1; : : : ;m, and

T (p(D

j

)); j = 1; : : : ; n, in the dual plane and construct two chains of segments

h

down

(t) and h

up

(t) as follows:

(1) First, the chain of segments h

down

(t) is constructed as h(t

down

) and the

chain h

up

(t) is constructed as h(t

up

).

(2) If a

1

< c

n

, we add the half-line x

d

� a

1

^ y

d

= ex

d

+ f to h

down

(t) and

the half-line x

d

� c

n

^ y

d

= ex

d

+ f to h

up

(t), where y

d

= ex

d

+ f is the

line connecting points T (p(C

1

)) and T (p(D

n

)).

Points satisfying x

d

< a

1

^ y

d

= ex

d

+ f or x

d

> c

n

^ y

d

= ex

d

+ f

correspond in the primal plane to lines intersecting the extension of the

generalized tuple t only in its leftmost vertex.

(3) If a

m

> c

1

, we add the half-line x

d

� a

m

^ y

d

= e

0

x

d

+ f

0

to h

down

(t) and

the half-line x

d

� c

1

^ y

d

= e

0

x

d

+ f

0

to h

up

(t), where y

d

= e

0

x

d

+ f

0

is

the line connecting points T (p(C

m

)) and T (p(D

1

)).

Points satisfying x

d

> a

m

^ y

d

= e

0

x

d

+ f

0

or x

d

< c

1

^ y

d

= e

0

x

d

+ f

0

correspond in the primal plane to lines intersecting the extension of the

generalized tuple t only in its rightmost vertex.

The following lemma generalizes Lemma 1 to the case of regular generalized

tuples.

Lemma 7 Let t be a regular generalized tuple. Let l be a line in the primal

plane P. Then, T (l) 2 h

up

(t) [ h

down

(t) i� e(l) \ p(t) is a non-empty convex

set.

In the second step, we construct two open polygons h

�

down

(t) and h

�

up

(t), ob-

tained from h

down

(t) and h

up

(t) by adding either two, one, or none vertical

half-lines.

(1) First h

�

down

(t) is constructed as h

down

(t) and h

�

up

(t) is constructed as

h

up

(t). If p(t) has both the leftmost and rightmost vertices, h

�

down

(t) and

h

�

up

(t) do not change in the following steps.

(2) If p(t) does not admit the leftmost vertex in P, we add the half-line

x

d

= a

1

^y

d

� b

1

to h

�

down

(t) and the half-line x

d

= c

n

^y

d

� d

n

to h

�

up

(t).

(3) If p(t) does not admit the rightmost vertex, we add the half-line x

d

=

a

m

^ y

d

� b

m

to h

�

down

(t) and the half-line x

d

= c

1

^ y

d

� d

1

to h

�

up

(t).

9



We de�ne D

�

(t) and D

+

(t) as the domains under h

�

down

(t) and over h

�

up

(t),

respectively. Moreover, we de�ne domain D

0

(t) as the complement of D

�

(t)[

D

+

(t) [ h

�

up

(t) [ h

�

down

(t) in plane D. The dual transformation of a regular

generalized tuple t can be now de�ned as T (t) � D

�

(t) [ h

�

down

(t) [D

+

(t) [

h

�

up

(t). The polygons h

�

down

(t) and h

�

up

(t), constructed as above, satisfy the

following property.

Proposition 8 Let t be a regular generalized tuple. Then, h

�

down

(t) is under

h

�

up

(t).

7

Proof. We prove the lemma by contradiction. Let t be a regular generalized

tuple. Assume that there exists a vertical line q � x

d

= a in D such that q

intersects h

�

up

(t) and h

�

down

(t) in points (x

d

= a; y

d

= y

d

1

) and (x

d

= a; y

d

= y

d

2

)

and y

d

1

< y

d

2

. In this case, there exists a point (x

d

= a; y

d

= b) such that

y

d

1

< b < y

d

2

in D, which belongs to both D

�

(t) and D

+

(t). Due to results

presented in Subsection 3.1 and Lemma 6, this means that in P both half-

planes y � ax + b and y � ax+ b contain e(t) and line y = ax+ b does not

touch it (Lemma 7). As we have a contradiction here, h

�

up

(t) is always over

h

�

down

(t). 2

From the previous result it follows that D

�

(t) and D

+

(t) are disjoint domains

and h

�

up

(t) and h

�

down

(t) are possibly touching open polygons. From Lemma 6

and Proposition 8 the following important result follows.

Proposition 9 Let t be a regular generalized tuple. Let q(�) be a query gen-

eralized tuple y � ax+ b, where � 2 f�;�g. Then:

� All(q(�); t) i� T (q(�)) 2 D

�

(t) [ h

�

down

(t);

� All(q(�); t) i� T (q(�)) 2 D

+

(t) [ h

�

up

(t);

� Exist

e

(q(�); t) i� T (q(�)) 2 D

0

(t) [ h

up

(t);

� Exist

e

(q(�); t) i� T (q(�)) 2 D

0

(t) [ h

down

(t):

Example 10 Figure 2(a) illustrates the regular generalized tuple t � y �

�0:5x+ 3 ^ y � �2x+ 4 ^ y � x� 2^ y � x+ 3 ^ y � �x+ 6 in the primal

plane P and Figure 2(b) shows its dual representation. Given the down-queries

q

1

� y � �x � 1, q

2

� y � 5, q

3

� y � 4:5, q

4

� y � x, we can see in

Figure 2(b) that T (p(q

1

)) 2 D

�

(t), T (p(q

2

)) 2 D

+

(t), T (p(q

3

)) 2 h

up

(t) and

T (p(q

4

)) 2 D

0

(t). It follows from Proposition 9 that All(q

1

; t), Exist

e

(q

3

; t),

and Exist

e

(q

4

; t) are satis�ed. Figure 2(a) shows that this result is correct. If

we consider the up-queries q

0

1

� y � �x � 1, q

0

2

� y � 5, q

0

3

� y � 4:5,

7

This means that if a vertical line x

d

= a in D intersects h

�

up

(t) and h

�

down

(t) in

points (x

d

= a; y

d

= y

d

1

) and (x

d

= a; y

d

= y

d

2

), then y

d

1

� y

d

2

.
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(a)

p(t)

l

p(q1) = p(q1’)
p(q4) = p(q4’)

p(q3) = p(q3’)
p(q2) = p(q2’)

x

y

yd

xd

(b)

D(t)

D(t)

-

+

D(t)
0

h_up(t)

h_down(t)*

*

T(p(q4))

T(p(q3))
T(p(q2))

T(p(q1))

Fig. 2. A regular generalized tuple and some query half-planes: (a) in the primal

plane P ; (b) in the dual plane D.

and q

4

� y � x, from Proposition 9 it follows that All(q

0

2

; t), All(q

0

3

; t), and

Exist

e

(q

0

4

; t) are satis�ed. Figure 2(a) con�rms the results.

4 Index structure

Suppose that the angular coe�cients of the lines associated with query half-

planes are known and given by a set S. In such a case, ALL and EXIST

e

selections can be e�ciently reduced to the 1-dimensional interval management

problem for which multiple indexing techniques were proposed, in both main

memory [4,7] and secondary storage [1].

The reduction is based on the following consideration. For any tuple t, a

vertical line x

d

= a in plane D can intersect both h

down

(t) and h

up

(t), or one

of them, or none of them. In the �rst (most general) case, the line is split

into three open intervals ]�1; y

d

1

[; ]y

d

1

; y

d

2

[ and ]y

d

2

;+1[, where y

d

1

and y

d

2

are

intersections of the line with h

down

(t) and h

up

(t), respectively. By Proposition

9, if the query generalized tuple q(�) is given by y � ax+ b; a 2 S, and value b

belongs to the interval ]�1; y

d

1

], then predicate All(q(�); t) is satis�ed. If b 2

[y

d

2

;+1[, or b 2 [y

d

1

; y

d

2

[, or b 2]y

d

1

; y

d

2

], predicates All(q(�); t), Exist

e

(q(�),t),

and Exist

e

(q(�); t) are satis�ed, respectively.

Thus, to perform selections against a set of regular generalized tuples, it is

su�cient to maintain three 1-dimensional interval sets for each value in set

11



S. Management of 1-dimensional intervals is a classic problem from computa-

tional geometry [7]. An optimal solution to the problem in secondary storage

has been recently proposed in [1]. It requires linear space and logarithmic time

for query and update operations applied on a set of N intervals. This proves

the following theorem.

Theorem 11 Let r be a regular generalized relation containing N regular

generalized tuples. Let q be a query half-plane. Let T be the cardinality of the

set ALL(q; r) (EXIST

e

(q; r)). If the angular coe�cient of p(q) is contained

in a prede�ned set of cardinality k, there is an indexing structure for storing

r in O(k N=B) pages such that ALL(q; r) and EXIST

e

(q; r) selections are

performed in O(log

B

N=B+T=B) time and generalized tuple update operations

are performed in O(k log

B

N=B) time.

5 Concluding remarks

The paper has proposed a geometric representation for regular two-dimensional

linear constraints and has shown how selection problems for constraint data-

bases can be reduced to geometric point location problems with respect to this

dual representation. The representation has then be used to show that, if the

angular coe�cient of the line associated with a query half-plane belongs to a

prede�ned set, an optimal secondary storage solution to the indexing problem

for ALL and EXIST

e

selections (and therefore also for the EXIST selection)

exists.
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